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Low-frequency elastic properties~1–15 Hz! of @NH3C3H7#2MnCl4 crystals have been investigated in the
phase transition region to the upper incommensurate phase~g phase!. We have found that the character of the
elastic anomalies is essentially different nearTi and Tc although the symmetry breaking at these phase
transitions is equivalent. In addition the anomalies both in real and imaginary part of complex effective elastic
constants are strongly frequency dependent in the range of 1–15 Hz. This unusual elastic behavior in the region
of the reentrantb-g-d phase sequence is treated within the framework of a phenomenological theory.

I. INTRODUCTION

Bis-propylammonium tetrachloromanganate~PAMC!
@NH3C3H7#2MnCl4 is a unique compound among structurally

incommensurate dielectric crystals due to its complicated
phase sequence with two unusual incommensurate phases.1–3

On cooling, PAMC shows the following sequence of
phases:

a~D4h
17! ——→

440 K

T0
b~D2h

18! ——→
393 K

Ti
g~ inc! ——→

343 K

Tc
d~D2h

18! ——→
163 K

Ti8
e~ inc! ——→

114 K

Tc8
j~C2h

5 !

where g and e are the incommensurate phases. Especially
extraordinary is the upper incommensurate phaseg, since it
is sandwiched between two phasesb andd which have the
same symmetry, i.e., the normal phase is reentrant. Structur-
ally, PAMC is a representative of the perovskite-type layer
structures with formula~CnH2n11NH3!2MCl4 ~n,5!. The
layers of corner-sharing MnCl6 octahedra forming sheets of
perovskite are sandwiched between layers of C3H7NH3 pro-
pylammonium chains. Dynamically disordered rigid propy-
lammonium chains are hydrogen bonded to the MnCl6 octa-
hedra. The resulting neutral strata stack on each other and are
held together by van der Waals interactions.4 The phase tran-
sition into incommensurate phaseg is associated with the
condensation of the soft mode at the wave vector

qg5~1/61d!c*1b* ~1!

belonging to theH line ~between theY andT point! of the
orthorombic base centered Brillouin zone.2 The incommen-
surate structure is characterized by a modulation of the inter-
layer distance with an amplitude in they direction ~perpen-
dicular to layers! and a wave vector in thez direction
~parallel to layers!. In contrast to the usual lock-in transition
in the improper incommensurate ferroelectric and ferroelastic
crystals, where the amplitude of the modulation wave con-
tinues to increase atTc and the modulation parameterd
gradually vanishes, in PAMC the amplitude of the incom-
mensurate modulation wave vanishes on both sides of theg
phase, whereas the wave-vector behavior is not critical. The
structure determination of the incommensurateg phase

shows that the modulation wavelength is about 40 Å and the
amplitude;0.5 Å. The value of modulation wavelength is
practically unchanged in the whole temperature range of the
g phase.

From the point of view of the phenomenological Landau
theory theb-g-d phase sequence is very interesting and ru-
ther unusual. The treatment frequently used for the usual
improper incommensurate ferroelectrics or ferroelastics with
a thermodynamical potential where the order parameter is
expanded around the commensurate wave vectorkc , cannot
be applied in the case of theg phase in PAMC. A hypotheti-
cal direct transition fromb to d phase would be connected
with a non-symmetry-breaking order parameter. The unusual
temperature behavior of the incommensurate modulation am-
plitude according to Kind and Muralt5 appears as a result of
a strong coupling between the inhomogeneous order param-
eter h and this totally symmetric order parametere. The
specific feature of the PAMC compound is an unusually high
thermal expansion perpendicular to the layers.6 Since this
thermal expansion is associated with the spontaneous strain
componenteyy5e2 , which transforms according to the iden-
tity representation of theb phase, it was identified with the
non-symmetry-breaking order parameter.5 A renormalization
of some initial expansion coefficients due to the higher-order
coupling terms betweenh ande2 is the essential reason for
the reentrant behavior of theg phase.

Thus PAMC is an extraordinary system where the anhar-
monic effects are strongly developed. It is obvious that this
big anharmonicity should manifest itself also in the elastic
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properties. Therefore the performance of corresponding mea-
surements is timely without doubt. In the present paper we
report the original experimental results on low-frequency
~1–15 Hz! elastic investigations of the phase transitions into
the upper incommensurateg phase. The obtained results are
discussed within the framework of a phenomenological Lan-
dau theory.

II. EXPERIMENTAL RESULTS

Single crystals PAMC were grown by slow evaporation of
an aqueous solution of equimolar amounts of 2NH3C3H7Cl
and MnCl2•4H2O. The crystals were oriented under a polar-
izing microscope, and samples for measurements were
cleaved parallel to the layers. We used the crystallographic
orientation where the perovskite layers are perpendicular to
the z axis. This setting differs from that used in other refer-
ences~e.g., from Kind and Muralt5!.

The low-frequency elastic measurements were performed
by the three-point-bending method using a dynamical me-
chanical analyser~Perkin-Elmer DMA-7!. The sample geom-
etry for this method is presented in Fig. 1. The relation be-
tween the effective spring constantK measured by DMA-7
and Young’s modulus is determined by the following
equation:7

K5Y~q!4b~h/L !3@111.5~h/L !2Y~q!/G~pq!#21, ~2!

where the geometrical parametersb, h, andL of the sample
are shown in Fig. 1,Y~q! is the Young’s modulus along theq
direction, andG~pq! is the shear modulus. Since the values
of Y~q! andG~pq! are of the same order and the ratio (h/L)2

in our measurements is;0.01 we will neglect the second
contribution in Eq.~2!. In this case the Young’s modulus
Y~q! is simply proportional to the effective spring constant
K. In the dynamic mode of the DMA-7 a sinusoidal force
P(T)5P0e

ivt is applied to the sample resulting in a sinu-
soidal change in length of the sample. If the specimen has an
internal friction, there is a phase shift between the applied
stress and the resulting deformationU(t)5U0e

i (vt2d) mea-
sured by the sensitive electromechanical system of DMA-7.
In this case the spring constant and the Young’s modulus are
complex:

K*5P~ t !/U~ t !5K81 iK 9, ~2a!

Y* ~q!5Y8~q!1 iY9~q!, ~2b!

where K85(P0/U0)cosd, K95(P0/U0)sind5K8tgd,
Y8(q);K8, andY9(q);K9. Since the absolute accuracy of

the low-frequency elastic measurements is usually not better
than 20% the corresponding results will be presented in a
relative form for the real@Cr8(q)5Y8(q)/Y08(q)# and imagi-
nary @Cr9(q)5Cr8(q)tgd# parts of the effective complex
elastic constantCr* (q), where the value forY08(q) is taken at
400 K. The accuracy in this case was about 1%. Elastic mea-
surements have been performed at heating with a rate of
temperature change of about 0.5 K/min.

The temperature dependences of the real and imaginary
parts of the effective complex elastic constants
Cr* (qi@100#) andCr* (qi@110#) at different frequencies~1,
5, and 8 Hz! are presented in Fig. 2 and Fig. 3, respectively.
The changes of the effective elastic constantsCr* are associ-
ated with the temperature behavior of Young’s moduli
Y~@100#! andY~@110#!, which can be expressed through the
elastic compliences as follows:

Y21@100#5S11/21S22/2, ~3a!

FIG. 1. Three-point-bending geometry.

FIG. 2. Measured temperature dependences of the relative real
Cr85C8/C08 ~h! and imaginaryCr95Cr8tgd ~m! parts of the com-
plex effective elastic constantCr* @100# for different frequencies.
C08 corresponds toT5400 K.
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Y21@110#5~S111S221S6612S12!/4, ~3b!

where the second contribution in Eq.~3a! is introduced due
to the existence of a polidomain structure with 90° domains.
In the geometryqi@110# the polidomain structure does not
influence the effective magnitude ofY21@110#. The domains
immediately appear belowT05440 K and exist in theb, g,
andd phases. As follows from Figs. 2 and 3, both geometries
of elastic measurements show clear anomalous behavior in
the region of the phase transitions~at Ti and Tc! into the
incommensurateg phase. In connection with this we would
like to point out that several facts are rather unusual at a first
glance.

~i! The character of the elastic anomalies is essentially
different nearTi andTc although the symmetry breaking at
these phase transition points is equivalent.

~ii ! The magnitudes of the elastic anomalies nearTc in the
real parts of both complex effective elastic constants
Cr* (@100#) and Cr* (@110#) and in the imaginary part of
Cr* (@110#) decrease essentially with increasing frequency.

Particularly, the anomalous peak in the temperature behavior
of Cr9(@110#) cannot be observed nearTc at frequencies
higher than 12 Hz~see Fig. 4!.

~iii ! The phase transition from theb to theg phase atTi is
accompanied by a clear decrease in the imaginary parts of
both complex elastic constantsCr* (@100#) andCr* (@110#),
while the real part ofCr* (@100#) essentially increases. In
addition the corresponding spontaneous contributionsDCr8
5Cr8(T)2Cr8(extr) and DCr95Cr9(T)2Cr9(extr) @where
Cr8(extr) andCr9(extr) are the extrapolations of theCr8(T)
and Cr9(T) dependences from the high-temperature phase
~see Fig. 2!# are also strongly frequency dependent~Fig. 5!.

FIG. 3. Measured temperature dependences of the relative real
Cr85C8/C08 ~h! and imaginaryCr95Cr8tgd ~m! parts of the com-
plex effective elastic constantCr* @110# for different frequencies.
C08 corresponds toT5400 K.

FIG. 4. Frequency dependences of the anomalous contributions
into the imaginary partDCr9 ~see Fig. 3! of the complex effective
elastic constantCr* @110# at T5Tc .

FIG. 5. Frequency dependences of the anomalous contributions
into the real (DCr8) and imaginary (DCr9) parts~see Fig. 2! of the
complex effective elastic constantCr* @100# at T5366 K.
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III. LANDAU THEORY APPROACH

Let us consider the obtained results in the framework of a
phenomenological theory. The elastic compliencesS11, S22,
S66, andS12 @see Eqs. 3~a! and 3~b!# are expressed through
the elastic constantsCi j by the following equations:

S115~C22C332C23
2 !/D, ~4a!

S225~C11C332C13
2 !/D, ~4b!

S125~C23C132C12C33!/D, ~4c!

S6651/C66, ~4d!

D5C11C22C3312C12C13C232C22C13
2 2C11C23

2 2C33C12
2 .

The complicated combinations of many elastic constants,
which according to Eqs.~4a!–~4d! give the contributions to
the resulting elastic compliencesSi j , create a problem for a
quantitative analysis. Therefore we will perform only a
qualitative description considering the anomalous behavior
of separate elastic constantsCi j . The strong anharmonicity,
which manifests itself in the behavior of the elastic proper-
ties in the region between the phase transitions into the in-
commensurateg phase can be explained in two ways. The
first one is based on the model of anharmonic interactions
between the order parameter of theg phasehq and the order
parameterr . The last one appears belowT0 due to the upper
phase transition (D 4h

17→D 2h
18) and exists in all low-

temperature phases including theb, g, and d phase. The
second model considers the anharmonic interactions between
the order parameter of theg phasehq and the non-symmetry-
breaking order parametere2. We are presenting here only the
first considerations, since the two models are equivalent in
the sense that the non-symmetry-breaking order parametere2
appears as a result of the upper phase transition, i.e., the
order parametere2 can be considered as a secondary order
parameter with respect to the primary order parameterr
(e2;r 2). One can note that the reentrant behavior of theg
phase can be successfully explained in a quite similar way to
Ref. 5 if instead of the coupling betweenhq ande2 we will
consider the interaction betweenhq and r leading to the
renormalization of some initial coefficients in the free energy
expansion. For example the couplinghqhq* r

2 ~in our case! is
equivalent to the couplinghqhq* e2 ~in the case of Kind and
Muralt5! sincee2;r 2.

The group theoretical consideration of the phase transition
D 4h

17→D 2h
18 has been performed by Petzelt8 for the isomor-

phous layered compound~CH3NH3!2MnCl4. It is connected
with the condensation of the soft mode at theX point of the
Brillouin zone of theD 4h

17 structure. The star of the irreduc-
ible representation consists of twok vectors, therefore the
corresponding irreducible representations of the space group
D 4h

17 are two-dimensional and the order parameter has two
componentsr 1 and r 2. However, the case when bothr 1 and
r 2 are nonzero in the distorted phase, leads to an eightfold
unit cell which is not observed in the investigated compound.
The phase transitionD 4h

17(z51)→D 2h
18(z52) corresponds

to the more simple caser 15r andr 250 or r 150 andr 25r ,
which are physically equivalent and leads to two types of 90°
domains observed belowT0. The soft mode transforms ac-

cording to thet5 representation at theX point. Knowing the
transformation properties of both order parametersr andhq
the free-energy expansion can be written as follows:

F5Fh1Fr1Frhu , ~5!

Fh5 1
2Aqhqhq*1 1

4B~hqhq* !21••• , ~5a!

Fr5
1
2 @A08~T2T0!1¸h0

2#r 21 1
4B8r 41••• , ~5b!

Frhu5(
i51

3

Ui~aihqhq*1ai8r
2!1

1

2 (
i51

6

Ui
2~biihqhq*1bii8 r

2!

1 (
i , j51
iÞ j

3

UiU j~bi jhqhq*1bi j8 r
2!1(

i51

3

siUir
2hqhq* .

~5c!

Here Aq5A0(T2T0)1D0(T2T0)
22(k2d)2/4l corre-

sponds to the incommensurate wave vector
qg5@~k2d!/2l#1/2, wherek, d, andl are the expansion co-
efficients at the gradient terms,5 ai , bi j , andsi are the cor-
responding coupling constants. The extraordinary form ofAq
is a consequence of the interaction between the order param-
etersr andh ~e2 andh in the case of Kind and Muralt5!. It is
clear thatAq becames negative only within a certain tem-
perature regionTc,T,Ti . The elastic anomalies, which
follow from the free-energy expansion~5! can be written as

DCi j*524ai* aj*h0
2xA24ai8* aj8* r 0

2x r1bi jh0
21bi j8 r 0

2

~ i , j51–3!, ~6!

DC66* 5b66h0
21b668 r 0

2, ~7!

where

ai*5ai1sir 0
2; ai8*5ai81sih0

2, ~8!

h0
252Aq /B ~Tc,T,Ti !,

~9!
h050 ~T,Tc or T.Ti !,

r 0
252@A08~T2T0!1¸h0

2#/B8 ~T,T0!,
~10!

r 050 ~T.T0!,

xA
215

]2F

]A* ]A
@12 ivtA#2

id2vt th
12 ivt th

, ~11a!

x r
215

]2F

]r 2
@12 ivt r #2

id82vt th
12 ivt th

, ~11b!

d25A0
2h0

2T/Ch ; d825A08
2r 0

2T/Cr .

Hereh0 and r 0 are the equilibrium values of the order pa-
rameters,Ch andCr are the specific heat at constanth andr ,
respectively,A,A* are the normal phonon coordinates for
amplitudon mode~see Dvorak and Petzelt,9 and Rehwald
et al.10!, andv is the frequency of the dynamical stress. In
order to explain ultralow-frequency elastic relaxation, the
amplitudon susceptibilityxA and the order parameter suscep-
tibility xr are written in the form of two different relaxational
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mechanisms with relaxation timestA ~or tr! andtth .
11,12The

first part in Eq.~11a! and Eq.~11b! is the so-called Landau-
Khalatnikov term which is obtained from a relaxational be-
havior of the order-parameter fluctuations, i.e.,
dh(t)5dh~0!exp~2t/tA! and dr (t)5dr (0)exp~2t/t r!. The
second part describes central peak phenomena due to fluc-
tuations of the temperaturedT(t)5dT(0)exp~2t/tth! with
the thermal diffusion time:11–13

t th5h2/Dp2, ~12!

where D is the thermal diffusivity constant andh is the
thickness of the sample. SincetA ~tr! is usually of the order
of 1029–10213 s and thereforevtA!1 ~vtr!1! in the region
1–15 Hz, we can neglect the relaxational part of the
Landau–Khalatnikov mechanism. On the other hand, the
value of tth is of the order of 0.1–1 s,12 and therefore the
corresponding relaxation contribution should be taken into
account. Inserting~11a! and ~11b! into Eq. ~6! one obtains

~Tc,T,Ti !,

DCi j8 5Re~DCi j* !52
2ai* aj*

B

11v2t th
2 k

11v2t th
2 k2

2
2ai8* aj8*

B8

11v2t th
2 k8

11v2t th
2 k82

1bi jh0
21bi j8 r 0

2, ~13!

DCi j9 5Im~DCi j* !5
2ai* aj*

B

vt th~k21!

11v2t th
2 k2

1
2ai8* aj8*

B8

vt th~k821!

11v2t th
2 k82

, ~14!

~T,Tc or Ti,T,T0!,

DCi j8 5Re~DCi j* !52
2ai8aj8

B8

11v2t th
2 k8

11v2t th
2 k82

1bi j8 r 0
2, ~15!

DCi j9 5Im~DCi j* !5
2ai8aj8

B8

vt th~k821!

11v2t th
2 k82

, ~16!

where k511A 0
2T/2ChB and k8511A08

2T/2CrB8. Let us
now compare Eqs.~13!–~16! with the experimental data. The
asymmetric anomalous behavior of the real and imaginary
parts of the complex effective elastic constantsCr* @100#
~Fig. 2! andCr* @110# ~Fig. 3!, which is observed nearTi and
Tc , follows from the first terms of Eqs.~13! and ~14! if we
assume that the renormalized coupling constantsai* strongly
depend on the temperature due to the contribution of the
order parameterr 0 (ai*5ai1sir 0

2). From the experimental
data it follows thatai andsi should have opposite sign and
uai u'usir 0

2u nearTi . Only in this case the renormalized cou-
pling constantsai* are negligibly small in the region ofTi .
Therefore the anomalous softening will not appear here,
however it should be clearly observed nearTc since the cou-
pling constantsai* became remarkable far fromTi .

An unusual global decrease in the imaginary part of both
elastic constantsCr* (@100#) andCr* (@110#) as well as the
clear increase in the real part ofCr* (@100#) ~see Figs. 2 and
3!, which is observed in the whole temperature range of the
incommensurateg phase, immediately follows from the
comparison of the second terms in Eqs.~13! and ~14! with
the first terms in Eqs.~15! and ~16!, respectively. From the
experimental data it follows thatuai8* u5uai81sih0

2u,uai8u,
therefore ifai8.0, the coupling constantssi should be nega-
tive. In other words, the phase transition into the incommen-
surateg phase is accompanied by a decrease of the effective
renormalized coupling constantai8* due to the direct nega-
tive contribution of the incommensurate modulation ampli-
tudeh0

2. Finally we must stress that all contributions men-
tioned above strongly depend on the frequency, as follows
from the corresponding relaxation parts of Eqs.~13!–~16!.
Particularly, the anomalies in the imaginary part ofCr*
should be clearly observed only at low frequencies
„vtth'1/k; ~1/k8!… while in the high-frequency region
„vtth@1/k; ~1/k8!… it gradually vanishes. The anomaly in the
real part would remain also at high frequencies, however, it
would be less compared to those observed in the low-
frequency limit @DCr8(v50)/DCr8(vt th@1)5k; ~k8!#. In
this picture the obtained experimental results~Figs. 2–5! are
in good qualitative agreement with the predictions from the
phenomenological theory. One must note that we neglected
here the temperature dependences of the thermodynamical
coefficientsB andB8, which from our point of view should
be taken into account in the case of a more quantitative de-
scription. This remark is especially important in the case of
the coefficientB, since the second-order transition atTi and
the first-order transition atTc are situated on different sides
around the hypothetical tricritical point, where this coeffi-
cient changes its sign. Particularly, in the region of smallB
values it is necessary to include into the free energy expan-
sion the sixth-order term@C(hqhq* )

3/6#, which changes the
form of Eqs.~13! and~14!. However, since the phase transi-
tions atTi andTc show clear features of first- and second-
order transitions, respectively, it is reasonable to assume that
the hypothetical tricritical point~B50! is situated near the
middle of theg phase. In that case Eqs.~13! and ~14! are
valid for the explanation of the elastic anomalies in the vi-
cinity of both incommensurate phase transition points. Fi-
nally we assume that the asymmetrical behavior of the com-
plex effective elastic constantCr* @100# and Cr* @110#
observed nearTi andTc is related only with one or several
elastic constantsCi j . Unfortunately, from our measurements
we cannot determine which elastic constantsCi j are respon-
sible for a such unusual elastic behavior in the phase transi-
tion region to the upper incommensurate phase. The answer
of this question may be obtained from further ultrasonic
measurements.
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