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Unusual low-frequency elastic anomalies around the upper incommensurate phase of
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Low-frequency elastic properti€gd—15 H2 of [NHsCzH;],MnCl, crystals have been investigated in the
phase transition region to the upper incommensurate phaskase. We have found that the character of the
elastic anomalies is essentially different ndarand T, although the symmetry breaking at these phase
transitions is equivalent. In addition the anomalies both in real and imaginary part of complex effective elastic
constants are strongly frequency dependent in the range of 1-15 Hz. This unusual elastic behavior in the region
of the reentranB-y-6 phase sequence is treated within the framework of a phenomenological theory.

I. INTRODUCTION incommensurate dielectric crystals due to its complicated
phase sequence with two unusual incommensurate phases.
Bis-propylammonium tetrachloromanganatéPAMC) On cooling, PAMC shows the following sequence of
[NH4C;H;1,MnCl, is a unique compound among structurally phases:

0 18, Te 18 T T 5
a(Dg,) —— B(D3,) —— y(inc) —— &(D3y, e(inc) §(C3n)
440 K 393 K 343 K 163 K 114 K

where y and € are the incommensurate phases. Especiallghows that the modulation wavelength is about 40 A and the
extraordinary is the upper incommensurate phgsgnce it  amplitude~0.5 A. The value of modulation wavelength is
is sandwiched between two phasgsnd 6 which have the practically unchanged in the whole temperature range of the
same symmetry, i.e., the normal phase is reentrant. Structus; phase.

ally, PAMC is a representative of the perovskite-type layer From the point of view of the phenomenological Landau
structures with formula(C,H,p . 1NH3),MCl, (n<5). The  theory thep-y-8 phase sequence is very interesting and ru-
layers of corner-sharing Mngbctahedra forming sheets of ther unusual. The treatment frequently used for the usual
perovskite are sandwiched between layers ¢fifSiH; pro-  improper incommensurate ferroelectrics or ferroelastics with
pylammonium chains. Dynamically disordered rigid propy- 5 thermodynamical potential where the order parameter is

lammonium chains are hydrogen bonded to the MriCla- o, 5 4ed around the commensurate wave végtorannot

hedra. The resulting neutral strata stack on each other and a8 s : :
) . applied in the case of thephase in PAMC. A hypotheti-
held together by van der Waals interactirhe phase tran- cal direct transition fromB to & phase would be connected

sition into incommensurate phageis associated with the with a non-svmmetrv-breaking ord ter. Th |
condensation of the soft mode at the wave vector y Ty 'g oraer parameter. 1 he unusua
temperature behavior of the incommensurate modulation am-
q,= (1/6+ 5)c* +b* (1) plitude accordi_ng to Kind and I\/_Iura’llappears as a result of
a strong coupling between the inhomogeneous order param-
belonging to theH line (between they andT point) of the  eter » and this totally symmetric order parameter The
orthorombic base centered Brillouin zoh@he incommen-  specific feature of the PAMC compound is an unusually high
surate structure is characterized by a modulation of the intethermal expansion perpendicular to the layeSince this
layer distance with an amplitude in tlyedirection (perpen-  thermal expansion is associated with the spontaneous strain
dicular to layers and a wave vector in the direction componene,,=e,, which transforms according to the iden-
(parallel to layers In contrast to the usual lock-in transition tity representation of th@ phase, it was identified with the
in the improper incommensurate ferroelectric and ferroelastinon-symmetry-breaking order parametér.renormalization
crystals, where the amplitude of the modulation wave conof some initial expansion coefficients due to the higher-order
tinues to increase at, and the modulation parameté&  coupling terms betweer ande, is the essential reason for
gradually vanishes, in PAMC the amplitude of the incom-the reentrant behavior of thgphase.
mensurate modulation wave vanishes on both sides ofthe = Thus PAMC is an extraordinary system where the anhar-
phase, whereas the wave-vector behavior is not critical. Thenonic effects are strongly developed. It is obvious that this
structure determination of the incommensuratephase big anharmonicity should manifest itself also in the elastic

0163-1829/96/5@.3)/83236)/$10.00 53 8323 © 1996 The American Physical Society



8324 A. V. KITYK et al. 53

1Hz

0.6

CliCo (arb.units)
C,-tgé. (arb.units)

-

Cr‘ -

FIG. 1. Three-point-bending geometry.

properties. Therefore the performance of corresponding mea-
surements is timely without doubt. In the present paper we
report the original experimental results on low-frequency
(1-15 H2 elastic investigations of the phase transitions into
the upper incommensuratephase. The obtained results are
discussed within the framework of a phenomenological Lan-
dau theory.

ClICq (arb.units)
Z- tgd, (arb.units)

Cr =

Il. EXPERIMENTAL RESULTS

Single crystals PAMC were grown by slow evaporation of
an aqueous solution of equimolar amounts of 28H,Cl
and MnC}-4H,0. The crystals were oriented under a polar-
izing microscope, and samples for measurements were
cleaved parallel to the layers. We used the crystallographic
orientation where the perovskite layers are perpendicular to
the z axis. This setting differs from that used in other refer-
ences(e.g., from Kind and Mura}.

The low-frequency elastic measurements were performed
by the three-point-bending method using a dynamical me-
chanical analyseiPerkin-Elmer DMA-3. The sample geom-
etry for this method is presented in Fig. 1. The relation be-
tween the effective spring constait measured by DMA-7
and Ym%ngs modulus is determined by the following 0 " P s e
equation: T(K)

C'/Co' (arb.units)
C, tgd, (arb.units)

cr =

K=Y(q)4b(h/L)3[1+1.5h/L)?Y(q)/G(pa)]~ L, (2) FIG. 2. Measured temperature dependences of the relative real
. C,=C'ICy (O) and imaginaryC;=C/tg5 (A) parts of the com-
where the geometrical parametérsh, andL of the sample ey effective elastic constar@*[100] for different frequencies.
are shown in Fig. 1Y(q) is the Young's modulus along the ¢/ corresponds ta=400 K.

direction, andG(pq) is the shear modulus. Since the values

of Y(q) andG(pq) are of the same order and the ratigl()?>  the low-frequency elastic measurements is usually not better
in our measurements is0.01 we will neglect the second than 20% the corresponding results will be presented in a
contribution in Eq.(2). In this case the Young's modulus relative form for the realC;(q) =Y’ (q)/Y,(q)] and imagi-
Y(q) is simply pr_oportional to the effective s_pring_ constantnary [C/(q)=C,(q)tgs] parts of the effective complex

K. In the dynamic mode of the DMA-7 a sinusoidal force g|astic constanE* (q), where the value fo¥(q) is taken at
P(T)=Poe'*" is applied to the sample resulting in a sinu- 400 K The accuracy in this case was about 1%. Elastic mea-
soidal change in length of the sample. If the specimen has a§;rements have been performed at heating with a rate of
internal friction, there is a phase shift between the appliedemperature change of about 0.5 K/min.

H H _ i(wt— 5 . .
stress and the resulting deformatibift) =U,e'('~” mea- The temperature dependences of the real and imaginary
sured by the sensitive electromechanical system of DMA‘7parts of the effective complex elastic constants

In this case the spring constant and the Young’s modulus ar@f(qll[lOO]) and C*(ql[ 110]) at different frequencie€l,

complex: 5, and 8 Hz are presented in Fig. 2 and Fig. 3, respectively.
* = P(t)/U(t) =K' +iK", (29 The changes of the effective elastic constdjfsare associ-

ated with the temperature behavior of Young’s moduli

Y*()=Y"(q)+iY"(q), (2b)  Y([100)) andY([110]), which can be expressed through the

) elastic compliences as follows:
where K’'=(Py/Uy)coss, K"=(Py/Uy)sins=K'tgé,

Y'(q)~K', andY”"(q)~K". Since the absolute accuracy of Y~ 100]=S,4/2+ S,,/2, (38
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& g into the imaginary partC; (see Fig. 3 of the complex effective
i = elastic constan€;[110] atT=T,.
.a 3..2
S © Particularly, the anomalous peak in the temperature behavior
of C/([110]) cannot be observed nedr, at frequencies
higher than 12 HZsee Fig. 4
(iii) The phase transition from th@to the y phase af; is
accompanied by a clear decrease in the imaginary parts of
_ - both complex elastic constan@’ ([100]) and C; ([110]),
£ “g' while the real part ofC; ([100]) essentially increases. In
3 £ addition the corresponding spontaneous contributid@s
i‘; = =C/(T)—C/(extr) and AC/=C/(T)—C/(extr) [where
o .
Q g C,(extr) andC/(extr) are the extrapolations of the/ (T)
f..’ © and C/(T) dependences from the high-temperature phase
S (see Fig. 2] are also strongly frequency dependéfrg. 5).
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FIG. 3. Measured temperature dependences of the relative real q [ [100]
C/=C'ICy (J) and imaginaryC;=C/tg5 (A) parts of the com- 0.12 -
plex effective elastic constar@}[110] for different frequencies. U~
C,, corresponds td =400 K. QA o08f
Y Y 110]=(S11+ Spot Seet 2S12)/4, (3b) 0.04 |-

where the second contribution in E@a) is introduced due ] 1
to the existence of a polidomain structure with 90° domains.
In the geometrygl[110] the polidomain structure does not 08
influence the effective magnitude ®f [110]. The domains
immediately appear below,=440 K and exist in thes, v, -
andé phases. As follows from Figs. 2 and 3, both geometries %
of elastic measurements show clear anomalous behavior in 04 L
the region of the phase transitiofiat T; and T;) into the ' -+
incommensuratey phase. In connection with this we would
like to point out that several facts are rather unusual at a first

glance. | | 1
(i) The character of the elastic anomalies is essentially 0 5 10 15

different nearT; and T, although the symmetry breaking at

these phase transition points is equivalent. f (Hz)

(i) The magnitudes of the elastic anomalies rikain the
real parts of both complex effective elastic constants FiG. 5. Frequency dependences of the anomalous contributions

Cr([100]) and Cy([110]) and in the imaginary part of into the real AC;) and imaginary AC") parts(see Fig. 2 of the
CF([110]) decrease essentially with increasing frequencycomplex effective elastic consta@f[100] at T=366 K.
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lll. LANDAU THEORY APPROACH cording to thers representation at th¥ point. Knowing the
transformation properties of both order parameteasd 7,

Let us consider the obtained results in the framework of g, free-energy expansion can be written as follows:

phenomenological theory. The elastic complienSes Sy,

Ses, @andS;, [see Eqgs. @ and 3b)] are expressed through F=F,+F,+F,,, (5)
the elastic constant§;; by the following equations: K K

F,=3Aqnqms + 5B(ngni)2+-- | 5
1= (ColCr— Chal, 42 o= atatte +4Bnata) o
F =3[ANT=To)+x73]r?+5B'r*+---,  (5b)
Sp=(C11Ca3— Clp)/A, (4b) ’
: * ’.2 1 : 2 * ’.2
S15=(C23C13— C1C33)/A, (40) Frr/u:izl Ui(aingmg tair)+ 5 |=21 Ui (bj; nq g +biir)
866:1/(:66! (4d) 3 3

) ) 5 +.Z Uin(bijnqna‘+b{jr2)+Z SiUirzﬂqﬂg.
A =C11C5C33+2C15C13C 53— CpCi3~ C11C55— CasCln Fre =1

The complicated combinations of many elastic constants, (50
which according to Eq94a)—(4d) give the contributions to _ B N i
the resulting elastic complienc& , create a problem for a Here Aq=Ag(T—T)+Do(T—To)"=(x—0)7/4\ corre
N : : sponds to the incommensurate wave  vector
guantitative analysis. Therefore we will perform only a —[(x—8)/22]*2 wherex, 6, and\ are the expansion co-
qualitative description considering the anomalous behaviofz, t\% , WHETER, 0 P
efficients at the gradient termsy, , bjj, ands; are the cor-

of separate elastic constar@fy . The strong anharmonicity, responding coupling constants. The extraordinary forr of

which manifests itself in the behavior of the elastic proper-. ; .
S : o . . is a consequence of the interaction between the order param-
ties in the region between the phase transitions into the in:

; . etersr and 7 (e, and 7 in the case of Kind and Murdlt It is
commensuratey phase can be explained in two ways. The . o .
. ' o . _~clear thatA, becames negative only within a certain tem-
first one is based on the model of anharmonic interactions v

between the order parameter of thphaser, and the order perature regionT<T<T;. The ela_stlc anomahes_, which
a follow from the free-energy expansidb) can be written as
parameter. The last one appears beldwy due to the upper

phase transition D)}lgaD %_ﬁ) and exists in all low- ACE = —4a¥a¥ xa—4a]*a/* 12y, + by 7é+b] 12
temperature phases including tie v, and § phase. The .
second model considers the anharmonic interactions between (hj=1-3), ©
the order parameter of thephaser, and the non-symmetry- . 2 .2
breaking order parametep. We are presenting here only the ACg6= Pes770+ beel 0: @
first considerations, since the two models are equivalent iyhere
the sense that the non-symmetry-breaking order paramgeter
appears as a result of the upper phase transition, i.e., the ai*=ai+sir§; a*=al+s 77(2,, 8
order parametee, can be considered as a secondary order
parameter with respect to the primary order parameter ngz—Aq/B (T<T<T)),
(e,~r?). One can note that the reentrant behavior of $he 9)
phase can be successfully explained in a quite similar way to 7o=0 (T<T; or T>T)),
Ref. 5 if instead of the coupling betweep ande, we will
consider the interaction betweem, andr leading to the ra=—[ANT—To)+x73]/B" (T<Ty),
renormalization of some initial coefficients in the free energy (10)
expansion. For example the coupliliygn:;r2 (in our casgis ro=0 (T>Ty),
equivalent to the coupling;qng e, (in the case of Kind and
Mural®) sincee,~r?. ., O°F : i 8wy,

The group theoretical consideration of the phase transition XA T OA* 9A [1-iora]- I—iomn (11a
D }’—~D 18 has been performed by PetZdior the isomor-
phous layered compoun@H;NH;),MnCl,. It is connected . I°F ) 16201y,
with the condensation of the soft mode at ¥igoint of the Xo =z ll-len]- 75—, (11b
Brillouin zone of theD 1/ structure. The star of the irreduc- t
ible representation consists of twovectors, therefore the 52=A§77§T/Cn§ 5’2=A(’,2r§T/C,.

corresponding irreducible representations of the space group

D2/ are two-dimensional and the order parameter has twdlere 7, andr, are the equilibrium values of the order pa-
components ; andr,. However, the case when bothand  rametersC, andC, are the specific heat at constapandr,

r, are nonzero in the distorted phase, leads to an eightfoldespectively,A,A* are the normal phonon coordinates for
unit cell which is not observed in the investigated compoundamplitudon mode(see Dvorak and Petzéltand Rehwald
The phase transitio 3/(z=1)—D 38(z=2) corresponds et al!?, andw is the frequency of the dynamical stress. In
to the more simple casg=r andr,=0 orr;=0 andr,=r, order to explain ultralow-frequency elastic relaxation, the
which are physically equivalent and leads to two types of 90amplitudon susceptibility, and the order parameter suscep-
domains observed beloW,. The soft mode transforms ac- tibility y, are written in the form of two different relaxational
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mechanisms with relaxation timeg (or 7,) and z,,.**"'*The An unusual global decrease in the imaginary part of both
first part in Eq.(118 and Eq.(11b) is the so-called Landau- elastic constant€; ([100]) and C;([110]) as well as the
Khalatnikov term which is obtained from a relaxational be-clear increase in the real part 6f ([100]) (see Figs. 2 and
havior of the order-parameter fluctuations, i.e.,3), which is observed in the whole temperature range of the
on(t) =on(0)exp(—t/7a) and or(t)=or(0)exg—t/7,). The  incommensuratey phase, immediately follows from the
second part describes central peak phenomena due to flugomparison of the second terms in E¢s3) and (14) with
tuations of the temperaturéT(t) = 6T(0)exf—t/7) with  the first terms in Eqs(15) and (16), respectively. From the
the thermal diffusion time'~** experimental data it follows thai/*|=|a/ +s73|<|a/],
ro=h2/D a2, 12 therefore ifa/ >0, the coupling const.a'nts,; §hould pe nega-
tive. In other words, the phase transition into the incommen-
where D is the thermal diffusivity constant and is the  suratey phase is accompanied by a decrease of the effective
thickness of the sample. Sineg (7;) is usually of the order renormalized coupling constaaf* due to the direct nega-
of 107°-10 13 s and thereforer, <1 (w7, <1) in the region  tive contrlbutlon of the incommensurate modulation ampli-
1-15 Hz, we can neglect the relaxational part of thetude 770 Finally we must stress that all contributions men-
Landau—Khalatnikov mechanism. On the other hand, théioned above strongly depend on the frequency, as follows
value of 7, is of the order of 0.1-1 ¥ and therefore the from the corresponding relaxation parts of E¢E3)—(16).
corresponding relaxation contribution should be taken intdParticularly, the anomalies in the imaginary part ©f
account. Inserting11g and(11b) into Eg. (6) one obtains should be clearly observed only at low frequencies
(wny=1k; (1k’)) while in the high-frequency region

(T<T<T)), (wnp>1/k; (1K")) it gradually vanishes. The anomaly in the
real part would remain also at high frequencies, however, it
, . 2afal 1+w’rpk would be less compared to those observed in the low-
Ci=ReACH =~ —F" 17772 frequency limit [AC/(0=0)/AC,(w7>1)=k; (k')]. In
th this picture the obtained experimental resgkgs. 2—-5 are
2a/*af* 1+ w?iK' in good qualitative agreement with the predictions from the
TT B 1+ 022K?2 phenomenological theory. One must note that we neglected
th here the temperature dependences of the thermodynamical
+by; 770+ buro, (13 coefficientsB andB’, which from our point of view should

be taken into account in the case of a more quantitative de-
scription. This remark is especially important in the case of
the coefficientB, since the second-order transitionTatand
the first-order transition af are situated on different sides
around the hypothetical tricritical point, where this coeffi-
- s (14) cient changes its sign. Particularly, in the region of srall
B 1+ o 7k values it is necessary to include into the free energy expan-
sion the sixth-order terrﬁC(nqna‘)3/6], which changes the
form of Egs.(13) and(14). However, since the phase transi-
pa'al 14 wlr2K' tions atT; and T, show clear features of first- and second-
=RACH)=— 4 ® T r (15)  order transitions, respectively, it is reasonable to assume that
B' 1+ (1)27-t2hk’2 o the hypothetical tricritical pointB=0) is situated near the
middle of they phase. In that case Eg&l3) and (14) are
valid for the explanation of the elastic anomalies in the vi-
2ai’aj’ otk —1) cinity of both incommensurate phase transition points. Fi-
B 1+ wi2K?’ (16)  nally we assume that the asymmetrical behavior of the com-
plex effective elastic constanC;[100] and C;[110]
where k= 1+A0T/2C B andk’'= 1+A(’)2T/20 B’. Let us Observed neaf; andT. is related only with one or several
now compare qulg) (16) with the experimental data. The elastic constanté:I j- Unfortunately, from our measurements
asymmetric anomalous behavior of the real and imaginaryve cannot determine which elastic consta@fsare respon-
parts of the complex effective elastic constaf$[100] §|ble for_ a such unusual .elastlc behavior in the phase transi-
(Fig. 2 andC*[110] (Fig. 3), which is observed ned; and tion region to_the upper incommensurate phase. The answer
T., follows from the first terms of Eq€13) and (14) if we of this question may be obtained from further ultrasonic

assume that the renormalized coupling constafitstrongly =~ Méasurements.

depend on the temperature due to the contribution of the ACKNOWLEDGMENTS
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2af a]* oTn(k—1)
B 1+ wzrtzhkz

AC)=Im(AC})=

2a/"a* wrp(k'—1)

+

(T<T, or T,<T<Ty),

AC];=Im(AC}) =
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