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The strain distribution in a Si0.9Ge0.1/Si superlattice is determined from x-ray diffractometry data with a 25
Å depth resolution. A logarithmic dispersion relation is used to determine the phase of the structure factor with
information availablea priori on the sample structure. Phase information is obtained from the observed
reflection intensity via a logarithmic Hilbert transform and thea priori information is used to select the zeros
to be included in the solution. The reconstructed lattice strain profile clearly resolves SiGe and Si layers of
90–160 Å thickness alternately stacked on a silicon substrate. The SiGe layer is found to have a lattice spacing
in the surface-normal direction significantly smaller than predicted by Vegard’s law. The result gives simulated
rocking-curve profiles in very good agreement with the observation. The apparent deviation from Vegard’s law
could be confirmed by chemical analysis.

I. INTRODUCTION

In recent years Si12xGex/Si superlattices on a silicon sub-
strate have received considerable attention because of the
prospect of developing silicon-based light-emitting devices
for optical communication.1,2 The indirect nature of the band
gap of silicon can be changed by way of zone folding in the
SiGe/Si quantum wells. The optical properties of such de-
vices depend upon the microstructures and morphology of
thin SiGe layers and their interfaces.3 X-ray methods have
unique advantages over other structure probes in that buried
layers and interfaces are investigated nondestructively. The
use of intense synchrotron x rays allows atomic resolutions
to be obtained in reflectometry and diffractometry measure-
ments. Most studies to date make use of simulations to
achieve a fit of measured reflection profiles. Simulations
need models and will in general lead to nonunique answers
for the density or strain profile. A model-independent method
of mapping lattice strains was developed by Petrashen and
Chukovskii, which uses a logarithmic dispersion relation to
determine the structure-factor phase from a measured x-ray-
diffraction profile.4 The technique has been extended to two-
dimensional~2D! distortions in crystals with lateral periodic
superstructure modulations.5 It applies the 1D phase-retrieval
formalism to satellite reflections and Fourier synthesizes the
solutions to build a 2D strain map. The method was demon-
strated in applications to silicon crystals which were ion im-
planted through periodic surface oxide mask patterns.5–7

The present paper describes a model-independent deter-
mination of lattice strain in thin SiGe/Si multilayers using
the 1D phase-recovery method4 with nanometer spatial
~depth! resolution. Superlattice multilayers involve higher
strain gradients in the interface regions than ion-implanted
crystals, and the applicability of the technique to such struc-

tures has not previously been demonstrated, to our knowl-
edge.

II. EXPERIMENT

Superlattice samples were prepared on symmetric Si~111!
wafers using a gas-source molecular-beam-epitaxy facility.8

A pair of Si~400 Å!/Si0.9Ge0.1 ~400 Å! bilayers were grown
on a homoepitaxial 1-mm-thick Si buffer layer. The indicated
alloy composition and layer thicknesses are nominal values
to be determined in this study. We carried out x-ray experi-
ments on beamline 20B at the Photon Factory synchrotron
source, KEK, Tsukuba, Japan. A double-crystal Si~111!
monochromator extracted an x-ray beam of 1.54 Å wave-
length from a bending-magnet source, which was incident on
the sample oriented for the 111 Bragg reflection. An auto-
matic attenuator inserter was placed after the monochromator
to cope with the wide intensity range measured~6 decades!.
A slit and antiscatter shielding resulted in a beam with di-
mensions 0.1 mm vertically~in the plane of diffraction! and
2.0 mm horizontally being incident on the sample. The ana-
lyzer crystal, which was mounted on the detector arm with a
scintillation counter, is a four-reflection symmetric Si~111!
monolith. The overall arrangement of these crystal elements
is ~1,2,1,2,1,2,1!. The whole assembly, except the
monochromator, was housed in the evacuated drum~1 Torr
in pressure! of the ‘‘BIGDIFF’’ diffractometer9,10 on beam-
line 20B, whereby air scattering was reduced. To measure a
two-dimensional intensity map in the vicinity of the Si 111
Bragg peak, a series of sample~v! scans were performed for
fixed positions of the analyzer/detector~2u!. The nominal
step sizes were 0.0003° inv and 0.007° in 2u. The parallelo-
gram covered in~v, 2u! space~wherev and 2u are plotted as
orthogonal axes! has sides parallel to thev axis and to the
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line given by 2v52u, which represents the direction of the
crystal truncation rod~CTR! for a symmetric sample. CTR
scattering originates from an abrupt truncation of the peri-
odic charge density at a crystal surface.

Intensity distributions in angular~v, 2u! space are trans-
formed to reciprocal (qx ,qz) space by

qx5~2v22u!sin uB /l, ~1!

qx52u cosuB /l, ~2!

whereuB is the Bragg angle andl is the x-ray wavelength.
v52u50 is located at the Bragg peak. The intensity map
occupies a rectangular area in reciprocal space, with the CTR
direction parallel toqz . The nominal step sizes correspond to
1.7431025 and 7.631024 nm21 in qx andqz , respectively,
and the corresponding ranges are 6.8731024 and 4.1031021

nm21.

III. PHASE RETRIEVAL METHOD

In the kinematical approximation, for the case of 1D lat-
tice distortions, the amplitude reflection coefficient for dif-
fracted x rays can be written in the form4

R~qz!5E
0

`

ch~z!e2mzeiqzzdz, ~3!

where ch(z) is proportional to the structure factor of the
distorted crystal andm is the x-ray-absorption coefficient. We
define the phase f(qz) of R(qz) by
R(qz)5uR(qz)uexp[if(qz)]. For small atomic displace-
mentsu(z)

ch~z!5ch
perf exp@2p ih•u~z!#, ~4!

wherech
perf is proportional to the structure factor of a perfect

crystal andh is the reciprocal-lattice vector.11 The phase of
ch(z) is thusfh

perf12ph•u(z) wherefh
perf is the phase of

ch
perf. Equation ~4! is not valid for large uu~z!u, but the

change of the phase ofch(z) from fh
perf is still given by

2ph•u~z!. If the phasef(qz) of R(qz) is determined from
the measured intensityI (qz)5uR(qz)u

2, the projection of
u(z) ontoh can be determined via Eqs.~3! and~4!. For this
purpose we extend the functionR(qz) into the complex
momentum-transfer plane, by changingqz to complexQz .
R(qz) is the value ofR(Qz) on the real axis of the complex
Qz plane.R(Qz) is analytic for ImQz.2m sinceuch(z)u is
finite. It is more convenient to treat the function4

R̃~qz!52 i ~qz1 im!R~qz!5ch~0!1E
0

`

ch8~z!e2mzeiqxzdz

~5!

representing the normalized amplitude, since this function,
when continued into the complexQz plane, is analytic at all
Qz becausech8(z)50 for z>T, whereT is the thickness of
the distorted surface layer lying on a perfect-crystal sub-
strate. As shown by Petrashen and Chukovskii,4 if the fol-
lowing condition is valid:

E
0

`

uch8~z!ue2mzdz,uch~0!u, ~6!

the function R̃(Qz)5uR̃(Qz)uexp[i f̃(Qz)] is not zero for
ImQz.0 or has no zero in the upper halfQz plane ~uhp!.
In this case the real and imaginary parts of lnR̃(qz) are
related by the logarithmic Hilbert transform:12

f̃~qz!52
1

p
P E

2`

` lnuR̃~qz8!u
qz82qz

dqz8 , ~7!

whereP denotes the Cauchy principal value. A slightly dif-
ferent form of the logarithmic dispersion relation has been
derived from Titchmarsh’s theorem for the causal transform
and quoted for phase determination in reflectivity measure-
ments involving x rays and neutrons.13,14 If the reflection
amplitude has no complex zeros in the uhp, the phase of the
structure factor is completely determined by the measured
intensity. The resultant solution is denoted the minimal-phase
solution in our previous papers.6,7 The phasef̃(qz) is related
to the phase required,f(qz), via Eq. ~5!. Observed diffrac-
tion intensitiesI (qz)5uR(qz)u

2 are corrected for the 1/q z
2

decay and absorption~m! to give a normalized intensity
profile Ĩ (qz), which is fit with a polynomial function. This
function corresponds to

Ĩ ~Qz!5R̃~Qz!R̃* ~Qz* !, ~8!

in the complex plane, where* indicates a complex
conjugate.4 This expression of intensity is adopted instead of
Ĩ (Qz)5R̃(Qz)R̃* (Qz) because it is analytic in the complex
plane while the latter is not. For realQz the two expressions
give Ĩ (qz)5uR̃(qz)u

2. If Ĩ (Qz)50, or has zeros, atQzj ( j
51,2,...,M ) in the uhp, the phase ofR̃(Qz) on the real axis
is given by

f̃~qz!5f̃H~qz!1(
j

arg
qz2Qzj

qz2Qzj*
, ~9!

wheref̃H is the Hilbert~or minimal! phase given by Eq.~7!.
The term (qz2Qzj* ) appears in Eq.~9! because replacingQzj

byQzj* does not affect the modulus ofĨ (Qz) on the real axis,
Ĩ (qz). As is evident from Eq.~8!, if Ĩ (Qzj)50, then Ĩ (Qzj* )
50. Hence ifĨ (Qz) hasM zeros in the uhp, it has the same
number of zeros in the lhp. Zeros inĨ (Qz) occur in pairs
(Qzj ,Qzj* ). We cannot distinguish the zeros ofR̃(Qz) from
those ofR̃* (Qz* ). Taking an arbitrary number of zeros from
the uhp, and the rest from the lhp, generates 2M sets ofM
phases, giving 2M possible solutions forR̃(Qz). These rep-
resent ambiguous solutions in the inverse scattering problem.
The function R̃(Qz), having M zeros in the uhp, can be
expressed as12

R̃~Qz!5)
j51

M SQz2Qzj

Qz2Qzj*
D R̃H~Qz!, ~10!

where

R̃H~qz!5u Ĩ ~qz!u1/2ei f̃H~qz!. ~11!

The first function in the right side of Eq.~10!, called the
Blaschke product, has a modulus of 1. It is thus clear in Eq.
~10! that all 2M solutions give the sameR̃(Qz) on the real
axis, hence the same theoretical reflection profileĨ (qz). To
choose the most plausible one we must resort toa priori
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information about the sample structure under investigation.
Incidentally, arg@(qz2Qzj)/(qz2Qzj* )# is equivalent to
2 arg(qz2Qzj) in Eq. ~9!. If Ĩ (Qz)50 at Qzj in the uhp,
f̃(qz) thus increases by 2p whenqz is scanned from2` to
1`. A plot of f̃(qz) will show an appreciable change near
qz j5ReQzj .

A practical procedure calculates the minimal-phase solu-
tion for R̃(Qz) using a polynomial function of powerM for
Ĩ (Qz) and finds the Hilbert phasef̃H(qz). The minimal-
phase solution has all zeros in the lhp. The polynomial inter-
polation producesM zeros ofĨ (Qz), which are flipped about
the real axis to generateM zeros in each of the uhp and the
lhp. Phasef(qz), derived fromf̃H(qz) via the first part of
Eq. ~5!, is used to obtainR(qz)5I (qz)

1/2exp[if(qz)]. An
inverse Fourier transform ofR(qz) gives ch(z)exp~2mz!,
which is used to findh•u(z) by Eq. ~4!. If this h•u(z) is
inconsistent with thea priori sample information, one of the
M zeros in the uhp is added to the minimal-phase solution to
produce a new solution. This procedure is repeated until we
arrive at a plausible solution. The powerM of the fitting
polynomial function is decided primarily by consideration of
the thickness of the surface layer to be investigated and the
desired depth resolution. The angular range of the data used
in the analysis determines a maximal depth resolution of the
resultant strain profile:

Dz5
1

qz
max5

l

~2u!maxcosuB
. ~12!

This indicates 25 Å for our experiment.

IV. RESULTS

Figure 1 shows the triple-crystal intensity data plotted in
2D reciprocal space, after normalization according to the
flux-monitor readings. The 111 Bragg spot, located at
qx5qz50, looks like a line extended in theqx direction.
This is due to the largely expandedqx scale. No truncation
rod is apparent in theqz direction. The smallqx range cov-
ered makes it hard to see a well defined CTR. To reconstruct
the lattice strain profile we only used the intensity distribu-
tion alongqz with qx50 and discarded other data. One may
suppose that such data could be collected by a simple 1D
v22u scan, rather than time-consuming 2D scans. 1D scans
will not work, however, because the mechanical accuracy of
the x-ray diffractometer is insufficient to keep track of the
CTR peak. The data was processed with numerical programs

using the formalism described in Sec. III, which gave a com-
plex functionch(z). Extracting the phase of this function, we
found displacementuz(z) and its derivativeduz/dz. A pre-
liminary analysis of the intensity data suggested that the total
thickness of the actual superlattice layer is close to 550 Å,
but not to the design value of 1600 Å.

To check the thickness of the Si and SiGe layers we col-
lected x-ray reflectivity data. A fit of the specular reflectivity
profile yielded the parameter values listed in Table I. The
result shows that the Si and SiGe layers have a thickness of
90–160 Å each, instead of 400 Å~the design value!. The
discrepant thickness is believed to be evidence of distinct
crystal-growth processes on the Si~100! and Si~111! sub-
strates, by molecular-beam epitaxy. The crystal grower ap-
plied experience on the~100! substrate to the preparation of
our ~111! sample.

Vegard’s law indicates a 0.4% expanded bulk Si0.9Ge0.1
lattice relative to bulk silicon. This information, combined
with the layer thicknesses in Table I, provides the steplike
model strain profile shown in Fig. 2~broken line!. The solid
lines plot the strainsDd(z)/d determined from the x-ray
data, whered is the bulk Si~111! lattice spacing. These solu-
tions rely on thea priori information that the strain profile
has a two-bilayer structure and that the SiGe layers have
larger lattice spacings than the Si layers. The analysis was

FIG. 1. Scattering intensity distribution in reciprocal space from
the Si/SiGe superlattice. The 111 Bragg spot, located atqx5qz50,
has full widths at half maxima of 1.331024 and 7.331024 nm21 in
qx andqz , respectively, the apparent elongation only being a result
of the scales used forqx andqz .

TABLE I. Results of a least-squares fit of the x-ray reflectivity
data. Gaussian root-mean-square roughness refers to the top inter-
face of the relevant layer. Numbers in parentheses show standard
deviations.

Layers Layer thickness~Å! RMS roughness~Å!

Si 137.03~2.8! 9.29~2.8!
Si0.9Ge0.1 146.24~3.3! 9.36~3.1!
Si 164.4~3.4! 12.69~6.6!
Si0.9Ge0.1 93.97~3.7! 17.59~15.0!

FIG. 2. Strain profiles for the Si/SiGe superlattice derived from
the minimal-phase solution~thin solid line! and a solution including
one zero~thick solid line!. The ordinate represents the relative
variations of the~111! lattice spacing from that of bulk silicon. The
broken line shows the steplike model strain profile with the layer
thicknesses determined by a fit of the specular reflectivity data. The
peaks correspond to the SiGe layers and the valleys to the Si layers.
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made for the top 1600 Å layer of the sample with the maxi-
mal depth resolution of 25 Å. The minimal-phase solution
unravels the two-bilayer structure with the thickness of each
layer consistent with the model~Fig. 2, thin solid line!. The
valley-peak profile exhibits the alternating Si and SiGe lay-
ers from top to bottom. The strain-free silicon buffer is also
well reproduced in the top 1000 Å. It shows, however, a
negative peak at the interface to the buffer layer. The solution

obtained by adding a zero at~0.00310.15i! nm21 to the
minimal-phase solution has no negative peak and shows a
very similar profile ~Fig. 2, thick solid line!. We call this
solution the one-zero solution hereafter. Solutions including
extra zeros are inconsistent with thea priori sample infor-
mation. One example is shown in Fig. 3, where the broken
profile was derived from a solution including two more zeros
at ~20.004610.35i ! and~20.01210.78i ! nm21. We did not
examine all 264 solutions, but our experience shows that we
only have to consider zeros close to the Bragg point,Qz50.

The two peaks in the ‘‘one-zero’’ strain profile have
heights 2.3–2.631023 ~Fig. 2!, which are one half the pre-
diction by Vegard’s law assuming a Si0.9Ge0.1 composition.
The actual Ge composition could be checked by secondary
ion mass spectrometry or Rutherford backscattering. The
profile also shows considerably graded Si/SiGe interfaces. To
check the obtained solution we back calculated the rocking
curves from the strain profile, using the Takagi formula.11 In
Fig. 4 the simulated curve is barely distinguishable from the
experimental one, showing a remarkable agreement. There is
a much better fit to the observation than is the case for the
curve calculated for the steplike model strain profile~see
broken line in Fig. 4!.

V. DISCUSSION

When the reflectance has complex zeros, the phase deter-
mination via the logarithmic dispersion relation is plagued
with the nonuniqueness problem. The physical meaning of a
complex zero is that the phase of the x-ray wave changes its
value through 2p. This is illustrated in Fig. 5 which plots the
phasesf̃(qz) of the minimal-phase, one-zero, and three-zero
solutions for our superlattice sample. There is no general
solution to this ‘‘phase problem,’’ but it is possible to reduce
the phase ambiguity using the available information. In the
case of our superlattice sample the polynomial interpolation

FIG. 3. Strain profiles obtained from a solution including one
zero ~solid line! and a solution including three zeros~broken line!
for the Si/SiGe superlattice.

FIG. 4. Experimental~thin line! and calculated~thick line! rock-
ing curves for the one-zero solution. The broken curve is calculated
for the steplike model strain profile~broken line in Fig. 2!.

FIG. 5. Structure-factor phases.~a! Hilbert phasef̃H(qz), ~b!
phasef̃(qz) of the solution including a zero at~0.00310.15i !
nm21, ~c! f̃(qz) with inclusion of two more zeros at~20.0046
10.35i ! and ~20.01210.78i ! nm21. Filled circles indicate 2p
phase shifts occurring at the zeros.
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of Ĩ (Qz) produced 64 complex zeros. The number of physi-
cally significant zeros can be known from approximate infor-
mation about the thickness of distorted layers and the strain
amplitudes.

For the phase of an x-ray wave to be shifted by 2p on
Bragg reflection at a crystal surface, the surface lattice plane
must be displaced by more than one interplanar spacingd by
the strain field in the crystal. For this lattice-plane displace-
ment prior information allows us to estimate the number of
zeros to be included in the solution. The displacement of the
surface plane is given by

usurf5E
0

T Dd~z!

d
dz. ~13!

Assuming the lattice constant derived from Vegard’s law
~Dd/d5431023! and the total thickness 250 Å for the two
Si0.9Ge0.1 layers, we findusurf51 Å for our SiGe/Si superlat-
tice. The spacing of the Si~111! lattice planes is 3.135 Å. We
thus know that the most plausible solution includes no or one
zero. Experiences show that for the latter case the zero lo-
cated nearQz50 is to be included. The two solutions in Fig.
2 actually exhibit very similar strain profiles. The one-zero
solution appears to be more reasonable with no negative
peak at the buffer interface.

Both the minimal-phase and one-zero solutions indicate
appreciable strain at the surface of the superlattice in Fig. 2.
The top silicon surface is likely to be covered by an oxide
layer, although we have no evidence. A simulation assuming
a suppressed surface strain peak yielded a rocking curve in
disagreement with the observation, suggesting that the lattice
spacing is actually expanded in the surface region. The strain
profile determined can be distorted by the data cutoff. The
distortion will be marginal, however, as evidenced by the
very good agreement of the simulated rocking curve with the
experimental one~Fig. 4!. This convinces us that the thin Si
and SiGe layers are actually strained as revealed in Fig. 2.
The ‘‘one-zero’’ strain profile shows that relative to the step-
like model, the Si lattice is expanded by 0.02–0.06 %, while
the SiGe lattice is contracted by 0.15–0.2 % in the surface
normal direction. A simple picture of epitaxial Si and SiGe
lattices can hardly explain these strains. The quite large
negative strain~relative to the steplike model! found for the
SiGe layers suggests a smaller Ge composition than the
nominal value~x50.1!.

For the determination of strain profiles simulations are
commonly used to fit the measured reflection profile.15–17

Simulations need a model and will in general lead to nonu-
nique answers for the strain profile~see below!. As stated in
Sec. III, there are in general a large number of strain profiles
giving exactly the same reflection profile. All these strain
profiles can have very different shapes. A lucid account is
given by Reiss and Lipperheide18 for the case of the density
profiles ~scattering potentials! in neutron reflectometry. In
our case, all the three strain profiles shown in Figs. 2 and 3,

as well as all the other solutions, produce the same rocking
curve shown in Fig. 4~thick solid line!. They are derived
from solutions including different numbers of zeros and con-
stitute a family of ‘‘reflection-equivalent’’ strain profiles.18 A
real problem with the inversion procedure is that one cannot
examine a large number of solutions including zeros. In this
connection, the importance of various theoretical and experi-
mental attempts to reduce the phase ambiguity cannot be
overemphasized.

Simulations require a good starting model. In the case of
our multilayer sample, a model assuming the design layer
thickness, 400 Å for each Si and SiGe layer, could lead a
simulation to an incorrect result or a least-squares fit could
fail to reproduce the observed reflection profile. The ap-
proach using the logarithmic dispersion relation to solve the
inverse scattering problem requires more complicated for-
malisms and numerical programs, and can result in ambigu-
ous answers, but depends on no model. Approximatea priori
information on the sample structure helps in arriving at a
correct solution, at least for certain profiles, as demonstrated
in this work.

The technique can be applied to more complicated
multilayer structures than studied here. A limiting factor is
the maximal number of zeros that we can handle. This deter-
mines the total thickness of the reconstructed layer and the
depth resolution, since in our algorithm the number of zeros
is equivalent to the number of depth resolution elements used
in the analysis. Our current software and computer capacity
allows us to treat 128 zeros, and so a superlattice with ten
pairs of 50-Å-thick SiGe/Si bilayers can be investigated with
5 Å resolution, unless the top-layer lattice plane is shifted by
many multiples of thed spacing. A high-resolution analysis
requires data to be collected far from the Bragg peak@see Eq.
~12!#, but a 3–5 Å depth resolution will be achieved on a
low-background synchrotron beamline. Possible overlaps of
neighboring CTR scatterings can be avoided with slightly
miscut samples. A more complete discussion about the appli-
cation limit of our technique will appear in a forthcoming
paper.
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