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The strain distribution in a §Ge&, 1/Si superlattice is determined from x-ray diffractometry data with a 25
A depth resolution. A logarithmic dispersion relation is used to determine the phase of the structure factor with
information availablea priori on the sample structure. Phase information is obtained from the observed
reflection intensity via a logarithmic Hilbert transform and theriori information is used to select the zeros
to be included in the solution. The reconstructed lattice strain profile clearly resolves SiGe and Si layers of
90-160 A thickness alternately stacked on a silicon substrate. The SiGe layer is found to have a lattice spacing
in the surface-normal direction significantly smaller than predicted by Vegard’s law. The result gives simulated
rocking-curve profiles in very good agreement with the observation. The apparent deviation from Vegard’s law
could be confirmed by chemical analysis.

[. INTRODUCTION tures has not previously been demonstrated, to our knowl-
edge.
In recent years $i,Ge,/Si superlattices on a silicon sub-
strate have received considerable attention because of the
prospect of developing silicon-based light-emitting devices
for optical communicatiofi? The indirect nature of the band Superlattice samples were prepared on symmetfitldi
gap of silicon can be changed by way of zone folding in thewafers using a gas-source molecular-beam-epitaxy fagility.
SiGe/Si quantum wells. The optical properties of such deA pair of Si400 A)/Si, Ge,; (400 A) bilayers were grown
vices depend upon the microstructures and morphology odn a homoepitaxial kem-thick Si buffer layer. The indicated
thin SiGe layers and their interfacé-ray methods have alloy composition and layer thicknesses are nominal values
unique advantages over other structure probes in that burigd be determined in this study. We carried out x-ray experi-
layers and interfaces are investigated nondestructively. Thements on beamline 20B at the Photon Factory synchrotron
use of intense synchrotron x rays allows atomic resolutionsource, KEK, Tsukuba, Japan. A double-crystal18l)
to be obtained in reflectometry and diffractometry measuremonochromator extracted an x-ray beam of 1.54 A wave-
ments. Most studies to date make use of simulations téength from a bending-magnet source, which was incident on
achieve a fit of measured reflection profiles. Simulationghe sample oriented for the 111 Bragg reflection. An auto-
need models and will in general lead to nonunique answermatic attenuator inserter was placed after the monochromator
for the density or strain profile. A model-independent methodo cope with the wide intensity range measu(édiecades
of mapping lattice strains was developed by Petrashen ardl slit and antiscatter shielding resulted in a beam with di-
Chukovskii, which uses a logarithmic dispersion relation tomensions 0.1 mm verticallgin the plane of diffractionand
determine the structure-factor phase from a measured x-rag~0 mm horizontally being incident on the sample. The ana-
diffraction profile? The technique has been extended to two-lyzer crystal, which was mounted on the detector arm with a
dimensional2D) distortions in crystals with lateral periodic scintillation counter, is a four-reflection symmetric(Hi1)
superstructure modulationst applies the 1D phase-retrieval monolith. The overall arrangement of these crystal elements
formalism to satellite reflections and Fourier synthesizes thés (+,—,+,—,+,—,+). The whole assembly, except the
solutions to build a 2D strain map. The method was demonmonochromator, was housed in the evacuated diurorr
strated in applications to silicon crystals which were ion im-in pressurg of the “BIGDIFF” diffractometer’*° on beam-
planted through periodic surface oxide mask pattérfs. line 20B, whereby air scattering was reduced. To measure a
The present paper describes a model-independent detdwo-dimensional intensity map in the vicinity of the Si 111
mination of lattice strain in thin SiGe/Si multilayers using Bragg peak, a series of samjle) scans were performed for
the 1D phase-recovery metHodvith nanometer spatial fixed positions of the analyzer/detectt®6). The nominal
(depth resolution. Superlattice multilayers involve higher step sizes were 0.0003° inand 0.007° in 2. The parallelo-
strain gradients in the interface regions than ion-implantegyram covered ifw, 26) spacewherew and 2 are plotted as
crystals, and the applicability of the technique to such strucerthogonal axeshas sides parallel to the axis and to the
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line given by 20=26, which represents the direction of the the function INQ(QZ)=|I52(QZ)|eXp[ic~ﬁ(QZ)] is not zero for
crystal truncation rodCTR) for a symmetric sample. CTR ImQ,>0 or has no zero in the upper hdlf, plane (uhp).
scattering originates from an abrupt truncation of the peridn this case the real and imaginary parts oR(qg,) are

odic charge density at a crystal surface. related by the logarithmic Hilbert transfortf:
Intensity distributions in anguldiw, 26) space are trans- I
i ~ 1 = In|R
formed to reciprocal 4, ,q,) space by B(ay) = — = pJ IR(q,) da., R
= (2w—26)sin G5\, (1) - 4G
where”” denotes the Cauchy principal value. A slightly dif-
Ox=26 cosOg/\, (2)  ferent form of the logarithmic dispersion relation has been

where 65 is the Bragg angle anil is the x-ray wavelength. derived from Titchmarsh’s theorem for the causal transform
w=20=0 is located at the Bragg peak. The intensity mapand guoted for phase determmanon}érlureflect|V|ty measure-
occupies a rectangular area in reciprocal space, with the CTIEE‘ents involving x rays and neutro If the reflection
direction parallel tay, . The nominal step sizes correspond to amplitude has no complex zeros in the uhp, the phase of the
1.74x107° and 7.6<10 % nm L in g, andq,, respectively, structure factor is completely determined by the measured
and the corresponding ranges are &80 * and 4.10¢10 intensity. The resultant solution is denoted the minimal-phase
nmL solution in our previous papefs.The phasej)(qz) is related
to the phase requiredi(q,), \/2|a Eq. (5). Observed dlffratgc-
tion intensitiesl (q,) =|R(q,)|* are corrected for the G
lll. PHASE RETRIEVAL METHOD decay and absorptiofu) to give a normalized intensity
In the kinematical approximation, for the case of 1D lat-profile I(q,), which is fit with a polynomial function. This
tice distortions, the amplitude reflection coefficient for dif- function corresponds to
fracted x rays can be written in the fofm

1(Q)=R(QIR*(Q}), ®
R(q,) = fmzph(z)e‘ﬂzeiqzzdz, (3 in the complex plane, wherer indicates a complex
0 gonjugaje“. This expression of intensity is adopted instead of

| e A
where () is proportional to the structure factor of the (Q2 =R(Q)R™(Q,) because it is analytic in the complex

- : . - lane while the latter is not. For re@l, the two expressions
distorted crystal ang is the x-ray-absorption coefficient. We P z
define  the phase ¢q) of R(q) by g|ve 1(a,) =|R(a,)|% If 1(Q,)=0, or has zeros, aQ,; (j

R(q,) =|R(q,)|expli #(q,)]. For small atomic displace- ..M) in the uhp, the phase Gf(QZ) on the real axis
mentsu(z) is glven by

In(2) =y exit2min-u(2)], @ B0 =dua,)+ 3 arg - =) ©

where¢pe” is proportional to the structure factor of a perfect ZJ

crystal andh is the reciprocal-lattice vectdt.The phase of Wheregy is the Hilbert(or minima) phase given by Eq7).
¥n(2) is thus ¢Pe™+27rh-u(z) where ¢P° is the phase of The term @,—QJ)) appears in Eq9) because replacin@,;
l/,ﬁeff_ i , but the by QZ] does not affect the modulus bGQZ) on the real axis,
change of the phase afy,(z) from #[*" is still given by 1(q,). As is evident from Eq(®), if I(QZJ) =0, thenI(QZJ)
2wh-u(z). If the phase¢(q,) of R(q,) is determined from =0. Hence |fI(QZ) hasM zeros in the uhp, it has the same
the measured intensity(q,) =|R(q,)|?, the projection of number of zeros in the Ihp. Zeros IfQ,) occur in pairs
u(z) ontoh can be determined via Eq&) and(4). For this ~ (Q; ,Q;*J-z. We cannot distinguish the zeros B{Q,) from
purpose we extend the functioR(q,) into the complex those ofR* (Q¥). Taking an arbitrary number of zeros from
momentum-transfer plane, by changigg to complexQ,.  the uhp, and the rest from the Ihp, generat¥ssts ofM
R(q,) is the value ofR(Q,) on the real axis of the complex phases, giving'? possible solutions foR(Q,). These rep-
Q, plane.R(Q,) is analytic for InQ,>—u since[4(2)| is  resent ambiguous solutions in the inverse scattering problem.
finite. It is more convenient to treat the functfon The functionR(Q,), having M zeros in the uhp, can be
expressed a$

R(G2)=—i(qz+ip)R(d,) = ¢n(0) + f; i (z)e” “2elhdz

5) R(Q,)= H (QZ Q”) Ru(Q,), (10)
QZ QZJ
representing the normalized amplitude, since this function, h
when continued into the compleég, plane, is analytic at all where
Q, becausajy(z)=0 for z=T, whereT is the thickness of ~
the distorted surface layer lying on a perfect-crystal sub- RH(qZ):“(qZ)lm O, D
strate. As shown by Petrashen and ChukovsKiithe fol-  The first function in the right side of Eq10), called the
lowing condition is valid: Blaschke product, has a modulus of 1. It is thus clear in Eq.
(10) that all 2" solutions give the samE(Q 2 on the real
foc|z,//,’1(z)|e’“2dz<|z,//h(0)|, (6) axis, hence the same theoretical reflection prdfqtqaz) To
choose the most plausible one we must resora tpriori
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TABLE I. Results of a least-squares fit of the x-ray reflectivity
data. Gaussian root-mean-square roughness refers to the top inter-
face of the relevant layer. Numbers in parentheses show standard

109, (nm™)
-2.48 0 +2.48

1

+3.44 deviations.
v: IE 0 Layers Layer thicknes6d) RMS roughnes$A)
T T am Si 137.032.9 9.292.9
Sip.dGey 1 146.243.3 9.363.1)
— o _ Si 164.43.9 12.696.6)
FIG. 1. Scattering intensity distribution in reciprocal space fromSiO'gGGb.1 93.973.7) 17.5915.0

the Si/SiGe superlattice. The 111 Bragg spot, locateg atq,=0,
has full widths at half maxima of 1:810 % and 7.3<10"*nm Y in
gx andq,, respectively, the apparent elongation only being a resulusing the formalism described in Sec. I, which gave a com-
of the scales used far, andq,. plex functiony,(z) . Extracting the phase of this function, we
found displacementi,(z) and its derivativedu,/dz. A pre-

information about the sample structure under investigationiiminary analysis of the intensity data suggested that the total
Incidentally, arf(q,—Q;)/(q,-Q;)] is equivalent to thickness of the actual superlattice layer is close to 550 A,
2 arg[d,— Q) in Eq. (9). If 1(Q,)=0 at Q,; in the uhp,  but not to the design value of 1600 A.

¢(q,) thus increases by2wheng, is scanned from-< to To check the thickness of the Si and SiGe layers we col-
+o. A plot of ¢(q,) will show an appreciable change near lected x-ray reflectivity data. A fit of the specular reflectivity
q;;=ReQy;. profile yielded the parameter values listed in Table I. The

A practical procedure calculates the minimal-phase soluresult shows that the Si and SiGe layers have a thickness of
tion for R(Q,) using a polynomial function of powevl for ~ 90-160 A each, instead of 400 #he design value The
1(Q,) and finds the Hilbert phase(q,). The minimal-  discrepant thickness is believed to be evidence of distinct
phase solution has all zeros in the lhp. The polynomial intererystal-growth processes on the(180) and S{111) sub-
polation produces! zeros ofl (Q,), which are flipped about  strates, by molecular-beam epitaxy. The crystal grower ap-
the real axis to generatd zeros in each of the uhp and the plied experience on th€l00) substrate to the preparation of
lhp. Phasep(q,), derived frome(q,) via the first part of  our (111) sample.

Eq. (5), is used to obtairR(q,)=1(q,)%expli ¢(q,)]. An Vegard's law indicates a 0.4% expanded bulk JSie, ;
inverse Fourier transform oR(q,) gives y(z)exp(—uz), lattice relative to bulk silicon. This information, combined
which is used to finch-u(z) by Eq. (4). If this h-u(z) is  with the layer thicknesses in Table |, provides the steplike
inconsistent with the priori sample information, one of the model strain profile shown in Fig. @®roken ling. The solid

M zeros in the uhp is added to the minimal-phase solution tdines plot the strainsAd(z)/d determined from the x-ray
produce a new solution. This procedure is repeated until welata, wherel is the bulk S{111) lattice spacing. These solu-
arrive at a plausible solution. The powdt of the fitting  tions rely on thea priori information that the strain profile
polynomial function is decided primarily by consideration of has a two-bilayer structure and that the SiGe layers have
the thickness of the surface layer to be investigated and thiarger lattice spacings than the Si layers. The analysis was
desired depth resolution. The angular range of the data used

in the analysis determines a maximal depth resolution of the 5 :
resultant strain profile: L ]

1 A
(12 I I

AZ= e = (260 6y 5L ]

This indicates 25 A for our experiment.

IV. RESULTS

10° Adid
— (™)
<l
S
| 1 |

Figure 1 shows the triple-crystal intensity data plotted in
2D reciprocal space, after normalization according to the 0 f—---- —
flux-monitor readings. The 111 Bragg spot, located at o .
0,=0,=0, looks like a line extended in the, direction. et L L Ll L
This is due to the largely expandeg scale. No truncation 0 200 400 600 800 1000 1200 1400 1600
rod is apparent in the, direction. The smalty, range cov- Depth (A)
ered makes it hard to see a well defined CTR. To reconstruct

the lattice strain profile we only used the intensity distribu- g1 2. Strain profiles for the Si/SiGe superlattice derived from
tion alongq, with q,=0 and discarded other data. One may the minimal-phase solutiofthin solid line and a solution including
suppose that such data could be collected by a simple 1bne zero(thick solid line. The ordinate represents the relative
w—26 scan, rather than time-consuming 2D scans. 1D scangriations of the(111) lattice spacing from that of bulk silicon. The
will not work, however, because the mechanical accuracy obroken line shows the steplike model strain profile with the layer
the x-ray diffractometer is insufficient to keep track of the thicknesses determined by a fit of the specular reflectivity data. The
CTR peak. The data was processed with numerical progranseaks correspond to the SiGe layers and the valleys to the Si layers.
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FIG. 3. Strain profiles obtained from a solution including one  FIG. 5. Structure-factor phase&) Hilbert phaseéSH(qz), (b)
zero (solid line) and a solution including three zer@sroken ling phaseff)(qz) of the solution including a zero a{.003+0.15)
for the Si/SiGe superlattice. nmL, (¢) ¢(g,) with inclusion of two more zeros at—0.0046

+0.35) and (—0.012+0.78) nm ™. Filled circles indicate 2

made for the top 1600 A layer of the sample with the maxi-Phase shifts occurring at the zeros.

mal depth resolution of 25 A. The minimal-phase solution

unravels the two-bilayer structure with the thickness of eactobtained by adding a zero &.003 +0.15j) nm ! to the
layer consistent with the mod@Fig. 2, thin solid ling. The  minimal-phase solution has no negative peak and shows a
valley-peak profile exhibits the alternating Si and SiGe lay-very similar profile (Fig. 2, thick solid ling. We call this

ers from top to bottom. The strain-free silicon buffer is alsosolution the one-zero solution hereafter. Solutions including
well reproduced in the top 1000 A. It shows, however, aextra zeros are inconsistent with taepriori sample infor-

negative peak at the interface to the buffer layer. The solutiomation. One example is shown in Fig. 3, where the broken
profile was derived from a solution including two more zeros

5 4 at(—0.0046+0.35) and(—0.012+0.78) nm 1. We did not
10°¢; (nm™) examine all 2* solutions, but our experience shows that we
0520 -15 -10 -5 0 5 10 15 20 only have to consider zeros close to the Bragg pdnt:0.
AR AR R R R The two peaks in the “one-zero” strain profile have
] heights 2.3—-2.810 2 (Fig. 2), which are one half the pre-
107! | diction by Vegard’'s law assuming a 3G&, ; composition.
3 The actual Ge composition could be checked by secondary
. ion mass spectrometry or Rutherford backscattering. The
profile also shows considerably graded Si/SiGe interfaces. To
check the obtained solution we back calculated the rocking
] curves from the strain profile, using the Takagi formtHin
. Fig. 4 the simulated curve is barely distinguishable from the
] experimental one, showing a remarkable agreement. There is
1 a much better fit to the observation than is the case for the
E curve calculated for the steplike model strain profigee
1 broken line in Fig. 4.

107 -

107 L
107}

107 |
i V. DISCUSSION
When the reflectance has complex zeros, the phase deter-
mination via the logarithmic dispersion relation is plagued
[ ] with the nonunigueness problem. The physical meaning of a
1 S T NS S NN N H TN EU complex zero is that the phase of the x-ray wave changes its
=30 -20 -10 0 020 30 value through . This is illustrated in Fig. 5 which plots the
26  (mrad) phasesp(q,) of the minimal-phase, one-zero, and three-zero
solutions for our superlattice sample. There is no general
FIG. 4. Experimentathin line) and calculatedthick line) rock-  solution to this “phase problem,” but it is possible to reduce
ing curves for the one-zero solution. The broken curve is calculatethe phase ambiguity using the available information. In the
for the steplike model strain profilroken line in Fig. 2. case of our superlattice sample the polynomial interpolation

107 L
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of 1(Q,) produced 64 complex zeros. The number of physi-as well as all the other solutions, produce the same rocking
cally significant zeros can be known from approximate infor-curve shown in Fig. 4thick solid ling. They are derived
mation about the thickness of distorted layers and the straifrom solutions including different numbers of zeros and con-
amplitudes. stitute a family of “reflection-equivalent” strain profilé§.A

For the phase of an x-ray wave to be shifted by @  real problem with the inversion procedure is that one cannot
Bragg reflection at a crystal surface, the surface lattice planexamine a large humber of solutions including zeros. In this
must be displaced by more than one interplanar spatiomg  connection, the importance of various theoretical and experi-
the strain field in the crystal. For this lattice-plane displace-mental attempts to reduce the phase ambiguity cannot be
ment prior information allows us to estimate the number ofoveremphasized.
zeros to be included in the solution. The displacement of the Simulations require a good starting model. In the case of

surface plane is given by our multilayer sample, a model assuming the design layer
thickness, 400 A for each Si and SiGe layer, could lead a

e JT Ad(z) dz (13) simulation to an incorrect result or a least-squares fit could

surf d ' fail to reproduce the observed reflection profile. The ap-

proach using the logarithmic dispersion relation to solve the
inverse scattering problem requires more complicated for-
malisms and numerical programs, and can result in ambigu-

Assuming the lattice constant derived from Vegard's law
(Ad/d=4x10"%) and the total thickness 250 A for the two

Sip fGep.1 layers, we findig,=1 A for our SiGe/Si superlat- ;s answers, but depends on no model. Approxiragigori
tice. The spacing of the @il1) lattice planes is 3.135 A. We jytormation on the sample structure helps in arriving at a

thus know that the most plausible solution includes no or ongq et solution, at least for certain profiles, as demonstrated
zero. Experiences show that for the latter case the zero Iq, this work.

cated neaQZ=_O_is to be ?nqluded. The two solutions in Fig.  The technique can be applied to more complicated
2 actually exhibit very similar strain profiles. The one-zero ijaver structures than studied here. A limiting factor is

solution appears to be more reasonable with no negatiVgye maximal number of zeros that we can handle. This deter-
peak at the buffer interface. . _mines the total thickness of the reconstructed layer and the
Both the minimal-phase and one-zero solutions indicatgyenh resolution, since in our algorithm the number of zeros
appreciable strain at the surface of the superlattice in Fig. 35 equivalent to the number of depth resolution elements used
The top silicon surface is likely to be covered by an oxidej, {he analysis. Our current software and computer capacity
layer, although we have no evidence. A simulation assumingjo\ys ys to treat 128 zeros, and so a superlattice with ten
a suppressed surface strain peak yielded a rocking curve iBhirq of 50-A-thick SiGe/Si bilayers can be investigated with
disagreement with the observation, suggesting that the latticg g resolution, unless the top-layer lattice plane is shifted by
spacing is actually expanded in the surface region. The straiﬁllany multiples of thed spacing. A high-resolution analysis

profile determined can be distorted by the data cutoff. Thefequires data to be collected far from the Bragg faale Eq.
distortion will be marginal, h_owever, as e_videnced b_y the(lz)], but a 3-5 A depth resolution will be achieved on a
very good agreement of the simulated rocking curve with thgq, hackground synchrotron beamline. Possible overlaps of
experimental on€Fig. 4). This convinces us that the thin Si neighboring CTR ‘scatterings can be avoided with slightly

and "SiGe Iaye"rs are actually strained as revealed in Fig. 2niscit samples. A more complete discussion about the appli-
The “one-zero” strain profile shows that relative to the step-.ation limit of our technique will appear in a forthcoming

like model, the Si lattice is expanded by 0.02—0.06 %, while, aper.
the SiGe lattice is contracted by 0.15-0.2 % in the surfacg
normal direction. A simple picture of epitaxial Si and SiGe
lattices can hardly explain these strains. The quite large
negative strair(relative to the steplike modefound for the We thank Y. Shiraki for the sample provision. Contribu-
SiGe layers suggests a smaller Ge composition than théons from Y. Yamaguchi, and T. Ohkawa in the specular
nominal value(x=0.1). reflectivity measurement are appreciated. We also appreciate

For the determination of strain profiles simulations arediscussion with P. Petrashen, K. Nugent, and T. Gureyev. The
commonly used to fit the measured reflection prdfitd!  computer code used in this work was originally developed by
Simulations need a model and will in general lead to nonuP. Petrashen and we thank him for making it available to us.
nique answers for the strain profilsee beloy. As stated in  The synchrotron experiment described in this work was sup-
Sec. lll, there are in general a large number of strain profileported by the Photon Factory under proposal 94G347 and the
giving exactly the same reflection profile. All these strainAustralian National Beamline FacilityANBF). A.Y.N. ac-
profiles can have very different shapes. A lucid account iknowledges the support from an ARC Grant. This work is
given by Reiss and Lipperheitfefor the case of the density supported by Monbusho International Scientific Research
profiles (scattering potentialsin neutron reflectometry. In  Program, No. 04044066, and Grant-in Aid for Scientific Re-
our case, all the three strain profiles shown in Figs. 2 and Jearch, No. 06452310.
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