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Variational analyses of series expansions for the exchange-interaction model
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The linked-cluster type of series expansions with a variational parameter are derived to the eighth order for
the spinS exchange-interaction model. These series expansions are analyzed to obtain phase transition tem-
peraturesT ., latent heats, and discontinuities of the order paramet&y, &ir the face-centered-cubic lattice.

I. Introduction. The exchange operator studied by AM, and the latent heat, denoted a4J for the face-
Schralinget in 1941 had been used to construct a spincentered-cubic lattice. A brief discussion is also made in Sec.
model, called the exchange-interacti@) model?~>which lIl. Finally, some of the important calculations for the semi-
contains multipole interactions of the forn§(S;)" with  invariants are given in the Appendix.
n=1,2,...,2S. This model attracts wide theoretical inter-  Il. Linked-cluster series expansions for the EI modéie
ests, and pedagogic attentions. The complexities which ariggamiltonian of the EI model can be expresteas
from the nonlinearity and the noncommutability of quantum
spin operators prohibit the model from deep understanding —BHZ(J/kT)E P,
of its thermodynamic properties. (i) '

When the spinS=1/2, the El model reduces to the

2S |
Heisenberfymodel, which has been well studied. For spin-1 —K AS.HOW (s 1
systems which contain dipole and quadrupole interactions, <.2,> |:Eo mzz—l (SHQm (S)Qm(S). (@)

critical properties have been studied by various metfods.
For general spins§>1), limited results are obtained from
the studies of high-temperature series expansibnsal-

where=1/kT, J is the coupling constank =3J, and the
summationZ ;;, is over all nearest-neighbor pairs of spins.

space renormalizatiodd? quantum Monte Carlo The exchange operatdt;; is to permute the spin variables

simulationst? and the Green function methd8All of these i @ndS;:
studies forS>1 did not_investigate thermal variations of the P, F(S,S)=F(S,S)P;; )
order parameters. Besides, the system was assumed to have a
continuous phase transition. Recently great efforts have bedr any spin-state functionf(S;,S;). The coefficients
made in effective-field theories, such as the mean-field\(S,!) are®
approximationt>*the finite cluster approximatiotf,and the o
constant coupling approximatidf All of the effective-field A(S =272+ 1)(2S-DY(2S+1+1)!, 3
studies show that the EI model undergoes a first-order phagghdQ() are spin multipole moments given as
transition forS=1.

It has been showf that in the mean-field approximation, QY=1, Q{’=s,, Q=s,, Q%=s,,
the ElI model has exactly the same critical properties as the
Potts model. Both models undergo a first-order phase transiQ(? = (3/2)[ S2— S(S+1)/3], QP =3/2AS,S,+S,S)),
tion for S=1. Determinations of the critical parameters for
first-order phase transitions have been more difficult and less Q@i: \/§/2(Sy52+ S,S), <22>= \/§/2(5)2(_ 55),
successful than those for continuous transitions. We have re-
cently developed a methtof analyzing critical properties Q@%: NEYZ SS+S,S), etc. (4)
from the linked-cluster series expansions. Very good results
have been obtained when the method is applied to the Potél of the spin multipole moment) for | #0 are traceless
model which is known to have a first-order phase transitionand Hermitian operators.
The mean-field theory is the lowest-order approximation of For a system oN spins on a lattice of coordination num-

our method. berz, the mean-field HamiltonidfiH,, is
In this Brief Report we study the critical properties of the N 25 |
El model for general spins by using the same method pro- _ | |
posed in Ref. 19. We derive the free energy series expansions ~AHu= Kzi; |=Zo m;| A )QE“)(S)<QE“)>
similar to the linked-cluster series expansions, but treat the s |
parameter involved as a variational one. In Sec. Il we de- NKz (2
scribe briefly the method to calculate the free energy series - Tgo m:E_l A(SH(Qm)*% )

expansions, and derive formulas for the order parameter and
the internal energy. In Sec. Il series expansions to the eightihere(Q()) is the mean-field thermal average@f) . The
order are analyzed to obtain the critical temperatiiesthe  order parameteM (T), also called polarization, is defiréd
discontinuities of the order parameters B, denoted as as
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(QW)=M(T) (Sl Q¢ (1%0), (6) N
" A . —BHo=L2, p(S). (10
where|¢,) is the ground state of the system. The polariza- i=1
tion M(T) has been showrf’to be independent dfm and o .
|by). All multipole momentsQ()(1#0) are equivalent, and The Hamiltonian is rewritten as
M(T) is the only order parameter of the system.
The second term in Ed5) is a constant operator which H=Hy+Hy, (11
can be neglected. The mean-field Hamiltonian reduces to . ) o )
with the fluctuation Hamiltoniamd,; given by
N
~BHu=KZM2, p((S), (7) N
i —BH1=KX P;—L2, p(S). (12)
with the spin density matrix i =1
28 | The partition function is then written as
pd(S)=2 2 ASI(AlQR 4R (S).  (®)
mom==t Z=Tr exp(— BH)=Zo(exp(— BH1))o, (13

As shown in Ref. 16, for any set ofS2 1 orthonormal

single-spin state$ipo),| 1), - . . | bas), pr=|d) (i, and where( ), is the thermal average with respect to the Hamil-

tonianH, and

ol @)= D) dil D) = kil &;)- 9
Therefore p, has only one nonzero matrix element: Zo=Tr exp(— BHq) = (e-+29)N. (14
(bl pil i) = 1. All other matrix elements vanish. This prop- i .
erty simplifies greatly the trace calculations whepare in- 1€ mean-field free energy per spin is
volved.
In our derivation of the linked-cluster series expansions, —BFo/N=N"1InZy=In(e"+2S). (19

we define a single-spin Hamiltonia, which is obtained by
replacingKzM in the mean-field Hamiltonian by a varia-
tional parametet, i.e.,

The linked-cluster series expansions of the correction to
the mean-field free energfF=F—F, is

K(Zj) F’ij_LZi Pk(S)ln> /n!]

% n
ni=> > a, K" ™L"n!.

n=1 m=0

n=1

— BAF(K,L)/IN= N1In(Z/ZO)=N1In<exp(—,8Hl)>O:$|n|

1+§<

1

_Nn_1<

Here( ), is the thermal average, while), is the cumulant
average. The coefficients,, can be calculated by the dia-
grammatic method, or by the cluster expansion mefifdd.
The main difference between the present calculation and the
previous work for the Potts mod@lis that Kroneckers
functions &;; in the Potts model are replaced by spin eX-\ith x=e"/(e-+2S) and D,=(e""+2S)/(ct+29)". F®
change operatof3;; . SinceP;; andPj, do not commute, the  5nq higher-order free energies depend on the details of the

present calculation is much more complicated than that ofstiice structure. We have calculated the coefficienys to
the Potts model. Some of the important thermal averagege eighth order i<n<8) numerically for the cubic lat-

K>

0y

(16)

N n
Pi,-—LZi pk(s>l >

—BF?IN=— BFY/N+[2%(D;— D3)
+2(D5—2D3+1)/2]K?/2+zx(D,— x)KL

+(x—x?)L?/2, (18)

which involve products oP;; and p, are given in the Ap-
pendix.

If the summation is taken up to theh order, we obtain
the nth-order free energy, denoted &$". The first-order

tices. It is too lengthy to present these coefficients in this
article. If L=0, Eq. (16) reduces to the high-temperature
series expansion; and if L=KzexpKzM)—1]/
[exp(KzM)+2S], Eq.(16) is the same as the conventional

and the second-order free energies depend only on the codinked-cluster series expansion. In the present methoig,

dination number. They are

— BFYIN=N"1nZy+(zD,/2)K—xL, (17)

treated as a variational parameter, and the stable valuesof
determined by minimizing the free energy.

The parameterL is related to the thermal average
(QWy, and is nonzero if and only if the system is ordered.
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Therefore, the stable value &f may be considered as the
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TABLE |. Critical temperaturekT{"/J for the face-centered-

order parameter of the system. However, it is important tecubic lattice. HTS means the high _temperatur.e sgries expansion
note thatl is not the same as the conventional order param(Ref. 10 MFA represents the mean-field approximatiétef. 16.

eterM defined in Eq.6), which is proportional to the ther-
mal averages of the spin multipole moments. The order pa- "
rameterM can be derived from the thermal average of the \;zn 6

spin density operator. We have

2S |

(=2, 2 ASH(AQW|#(Qm)

28 |

B MIZ:L m:2_| A(S (il Qi di)?+(28+1) 7

=(2SM+1)/(25+1). 19
Uses have been made of &) and the relatiotf

2S |

go mzz_, A(S (i Q| iy?=1. (20)

We also have

<Z pk<si>>=

TrEip(S)e " (Zip(S)e 1),
Tre PH (e M),

J
=— — —BH1
aLIn(e Yo-

(21
Therefore
2SM+1 1 ¢
T —pH
25+1 N aL™e o
3 n
=> D ma,K""L™"Ynl. (22
n=1m=1

The coefficients,,,, are functions oL as illustrated in Egs.
(17) and (18). But in the above equatio#Z, and a,, are
regraded as constants, when the derivative-g#AF with
respect ta. is calculated.

S=1/2 S=1 S=3/2 S=2 S=5/2
4.3248 3.6410 3.2461 2.9824
1 6 4.3248 3.6410 3.2461 2.9824
2 5 3.5836 2.9873 2.6416 2.4100
3 23/5 3.3880 2.8634 2.5555 2.3479
4 4.4293 3.3468 2.8580 2.5655 2.3662
5 4.3494 3.3160 2.8275 2.5300 2.3252
6 4.3003 3.2812 2.7926 2.4940 2.2879
7 4.2621 3.2605 2.7840 2.4953 2.2981
8 4.2306 3.2521 2.7822 2.4967 2.3018
0 4.02 3.139 2.708 2.442 2.250
HTS 4.02 3.10 2.64 2.35 2.14

numerically. At low temperatures, the free energy curves
have only one minimum &t{">0. It indicates that the sys-
tem is in the ordered phase. At high temperatures, minimum
occurs atLg”):O only and the system is disordered. For
temperatures in between, the free energy curves have one
maximum which is unstable and two minima: one is zero and
the other is positive. At the critical temperatu'l"é"), both
minima have the same free energy. Aba\® , the positive
minimum is a metastable phase. The free energy analysis
shows that the EI model undergoes a first-order phase tran-
sition for S=1 as predicted by the effective-field
approximations®~8 For spin-1/2 system, the bifurcation of
the two minima does not occur. It undergoes a continuous
phase transition. Results " are given in Table I.

It is not clear theoretically how theth-order critical tem-

peratures converge to the limiting value. Similar to the Potts
model® we assume that

TW=T,+cn 1+0(n"?). (24)

Extrapolation of the nth-order critical temperatures to

Similarly the internal energy per spin of the system isN— yields the phase transition temperatdreof the sys-

given by

U EapPy) 1 TS Pye
NJ N N  Tre PH
:£<E(ij)Pije_'EH1>O_ 1
N (e7Frn)g
o n-—1

=> > (n—mK" ™ 1L"nL.

n=1 m=0

J
= — —| —pBH
N 8K|n<e 1>O

(23

tem. Our results based on the series expansions up to the
eighth order are shown in Table |. The uncertainties in our
estimates ofT . are within one percent for small spins. The
values estimated by the high-temperature series expdfision
are also included for comparison.

Using Egs.(22) and (23), we calculate theath-order ap-
proximations of the order parametdst(™ and the internal
energyU™, evaluated at =L {"(K) for the given tempera-
ture. The discontinuities oM and U™, denoted as
AM®™ and AU™ which are evaluated &" are listed in
Tables Il and 1ll, respectively. Similar extrapolations as Eq.

For thenth-order free energy series, the corresponding ordef24) are also made to obtain the limiting values of the critical

parametetM (" and the internal energy(™ are one order
lowered.

lll. Results and discussiongle consideF(M(K,L) as the
Landau free energy of the system, dnds the Landau order
parameter. One can pIBt" versusL at a given temperature.
The value ofL which gives the lowest free energy™ is the
stable value ol at the given temperature, denoted Lég)
X(K). We calculateL(S“) as functions of the temperature

parameters. The uncertainties in our estimatea bf and
AU are within a few percent.

The series oM™ andU(™ are one order shorter than the
free energy series. BesidesM (W and AU ™ fluctuate with
n vigorously for large spins. The accuracies in the extrapo-
lation of the limiting values become poor wh&x»5/2.

For the face-centered-cubic lattice, the free energy series
up to the eighth order behaves so smooth that the critical
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TABLE Il. Discontinuities of the order parametetsM (™ for TABLE Ill. Latent heat per spinAUM/NJ for the face-
the face-centered-cubic lattice. centered-cubic lattice.
n S=1 S=3/2 S=2 S=5/2 n S=1 S=3/2 S=2 S=5/2
MFA 1/2 2/3 3/4 4/5 MFA 1 2 27/10 16/5
1 1/2 2/3 3/4 4/5 1 1 2 27/10 16/5
2 0.4889 0.6592 0.7509 0.8112 2 0.6565 1.3216 1.8022 2.1620
3 0.4294 0.5827 0.6690 0.7281 3 0.4328 0.9319 1.3393 1.6750
4 0.3644 0.4990 0.5751 0.6260 4 0.3025 0.7033 1.0552 1.3540
5 0.3436 0.4959 0.5905 0.6609 5 0.2591 0.6619 1.0350 1.3643
6 0.3500 0.5128 0.6190 0.7054 6 0.2523 0.6545 1.0343 1.3860
7 0.3435 0.4929 0.5841 0.6510 7 0.2334 0.5996 0.9461 1.2625
8 0.3144 0.4428 0.5139 0.5563 8 0.1942 0.4988 0.7804 1.0198
© 0.273 0.387 0.486 0.55 0 0.037 0.273 0.534 0.81

temperature§’ (C”) converge rapidly. For other cubic lattices whereA are products of exchange operatés and density
whose lattice structure are not so compact as the facewatricesp,(S). Since the products d¥;; can be expressed in
centered-cubic lattice, the free energy series up to the eightierms of the product of independent permutation cy¢lgs
order do not give smootﬁ'(cn). Analyzing such series for i»,...ip), and each cycle can be evaluated independently in
critical parameters become unreliable even for small spins.the trace calculation, all calculations dfA), can be
o e e ST O TS e etedacomposed o producs. ol ()6
) RURISRL i i N
high spins the nonlinearitiesS(- ;)" interact in complicated X(S,) Py p(Sp»O_* <('1"2’-"i’ p)>9’ and (p,'(S))o- .Here
ways. In conclusion our studies for the face-centered-cubi@t least one of the integersif} ip:il is nonzero. By using the
lattice confirm that the EI model undergoes a first-orderermutation property oP;; and the properfy of the density
phase transition fog=1. matricespy, one can show that
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AppendixIn calculating the series expansions, we have to (inig. i p)o=(EP-+29)/(e-+2S)P=D,,  (A3)
evaluate
n
(A Tr A exp(— BHo) AL (P (S))o=%, (n#0), (Ad)
O Trexp(—BHo) with x=e/(e" + 29).
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