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The linked-cluster type of series expansions with a variational parameter are derived to the eighth order for
the spin-S exchange-interaction model. These series expansions are analyzed to obtain phase transition tem-
peraturesTc , latent heats, and discontinuities of the order parameter atTc for the face-centered-cubic lattice.

I. Introduction. The exchange operator studied by
Schrödinger1 in 1941 had been used to construct a spin
model, called the exchange-interaction~EI! model,2–5 which
contains multipole interactions of the form (Si•Sj )

n with
n51,2, . . . ,2S. This model attracts wide theoretical inter-
ests, and pedagogic attentions. The complexities which arise
from the nonlinearity and the noncommutability of quantum
spin operators prohibit the model from deep understanding
of its thermodynamic properties.

When the spinS51/2, the EI model reduces to the
Heisenberg6 model, which has been well studied. For spin-1
systems which contain dipole and quadrupole interactions,
critical properties have been studied by various methods.7–9

For general spins (S.1), limited results are obtained from
the studies of high-temperature series expansions,10 real-
space renormalizations,11,12 quantum Monte Carlo
simulations,13 and the Green function method.14 All of these
studies forS.1 did not investigate thermal variations of the
order parameters. Besides, the system was assumed to have a
continuous phase transition. Recently great efforts have been
made in effective-field theories, such as the mean-field
approximation,15,16the finite cluster approximation,17 and the
constant coupling approximation.18 All of the effective-field
studies show that the EI model undergoes a first-order phase
transition forS>1.

It has been shown15 that in the mean-field approximation,
the EI model has exactly the same critical properties as the
Potts model. Both models undergo a first-order phase transi-
tion for S>1. Determinations of the critical parameters for
first-order phase transitions have been more difficult and less
successful than those for continuous transitions. We have re-
cently developed a method19 of analyzing critical properties
from the linked-cluster series expansions. Very good results
have been obtained when the method is applied to the Potts
model which is known to have a first-order phase transition.
The mean-field theory is the lowest-order approximation of
our method.

In this Brief Report we study the critical properties of the
EI model for general spins by using the same method pro-
posed in Ref. 19. We derive the free energy series expansions
similar to the linked-cluster series expansions, but treat the
parameter involved as a variational one. In Sec. II we de-
scribe briefly the method to calculate the free energy series
expansions, and derive formulas for the order parameter and
the internal energy. In Sec. III series expansions to the eighth
order are analyzed to obtain the critical temperaturesTc , the
discontinuities of the order parameters atTc , denoted as

DM , and the latent heat, denoted asDU for the face-
centered-cubic lattice. A brief discussion is also made in Sec.
III. Finally, some of the important calculations for the semi-
invariants are given in the Appendix.

II. Linked-cluster series expansions for the EI model.The
Hamiltonian of the EI model can be expressed16 as

2bH5~J/kT!(̂
i j &

Pi j

5K(̂
i j &

(
l50

2S

(
m52 l

l

A~S,l !Qm
~ l !~Si !Qm

~ l !~Sj !, ~1!

whereb51/kT, J is the coupling constant,K5bJ, and the
summation(^ i j & is over all nearest-neighbor pairs of spins.
The exchange operatorPi j is to permute the spin variables
Si andSj :

Pi j f ~Si ,Sj !5 f ~Sj ,Si !Pi j , ~2!

for any spin-state functionf (Si ,Sj ). The coefficients
A(S,l ) are15

A~S,l !522l~2l11!~2S2 l !!/ ~2S1 l11!!, ~3!

andQm
( l ) are spin multipole moments given as

Q0
~0!51, Q0

~1!5Sz , Q1
~1!5Sx , Q21

~1!5Sy ,

Q0
~2!5~3/2!@Sz

22S~S11!/3#, Q1
~2!5A3/2~SxSz1SzSx!,

Q21
~2!5A3/2~SySz1SzSy!, Q2

~2!5A3/2~Sx
22Sy

2!,

Q22
~2!5A3/2~SxSy1SySx!, etc. ~4!

All of the spin multipole momentsQm
( l ) for lÞ0 are traceless

and Hermitian operators.
For a system ofN spins on a lattice of coordination num-

ber z, the mean-field Hamiltonian16 HM is

2bHM5Kz(
i51

N

(
l50

2S

(
m52 l

l

A~S,l !Qm
~ l !~Si !^Qm

~ l !&

2
NKz

2 (
l50

2S

(
m52 l

l

A~S,l !^Qm
~ l !&2, ~5!

where^Qm
( l )& is the mean-field thermal average ofQm

( l ) . The
order parameterM (T), also called polarization, is defined16

as
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^Qm
~ l !&5M ~T!^fkuQm

~ l !ufk&, ~ lÞ0!, ~6!

whereufk& is the ground state of the system. The polariza-
tion M (T) has been shown9,20 to be independent ofl ,m and
ufk&. All multipole momentsQm

( l )( lÞ0) are equivalent, and
M (T) is the only order parameter of the system.

The second term in Eq.~5! is a constant operator which
can be neglected. The mean-field Hamiltonian reduces to

2bHM5KzM(
i51

N

rk~Si !, ~7!

with the spin density matrix

rk~Si !5(
l50

2S

(
m521

l

A~S,l !^fkuQm
~ l !ufk&Qm

~ l !~Si !. ~8!

As shown in Ref. 16, for any set of 2S11 orthonormal
single-spin states:uf0&,uf1&, . . . ,uf2S&, rk5ufk&^fku, and

rkuf j&5ufk&^fkuf j&5dk juf j&. ~9!

Therefore rk has only one nonzero matrix element:
^fkurkufk&51. All other matrix elements vanish. This prop-
erty simplifies greatly the trace calculations whenrk are in-
volved.

In our derivation of the linked-cluster series expansions,
we define a single-spin HamiltonianH0 which is obtained by
replacingKzM in the mean-field Hamiltonian by a varia-
tional parameterL, i.e.,

2bH05L(
i51

N

rk~Si !. ~10!

The Hamiltonian is rewritten as

H5H01H1 , ~11!

with the fluctuation HamiltonianH1 given by

2bH15K(̂
i j &

Pi j2L(
i51

N

rk~Si !. ~12!

The partition function is then written as

Z5Tr exp~2bH !5Z0^exp~2bH1!&0 , ~13!

where^ &0 is the thermal average with respect to the Hamil-
tonianH0 and

Z05Tr exp~2bH0!5~eL12S!N. ~14!

The mean-field free energy per spin is

2bF0 /N5N21lnZ05 ln~eL12S!. ~15!

The linked-cluster series expansions of the correction to
the mean-field free energyDF[F2F0 is

2bDF~K,L !/N5N21ln~Z/Z0!5N21ln^exp~2bH1!&05
1

N
lnH 11 (

n51

` K FK(̂
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N

rk~Si !G nL
0

Yn! J
5
1

N(
n51

` K FK(̂
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Pi j2L(
i

N

rk~Si !G nL
c

Yn!5 (
n51

`

(
m50

n

anmK
n2mLm/n!. ~16!

Here ^ &0 is the thermal average, whilê&c is the cumulant
average. The coefficientsanm can be calculated by the dia-
grammatic method, or by the cluster expansion method.6,21

The main difference between the present calculation and the
previous work for the Potts model19 is that Kroneckerd
functions d i j in the Potts model are replaced by spin ex-
change operatorsPi j . SincePi j andPjk do not commute, the
present calculation is much more complicated than that of
the Potts model. Some of the important thermal averages
which involve products ofPi j and rk are given in the Ap-
pendix.

If the summation is taken up to thenth order, we obtain
the nth-order free energy, denoted asF (n). The first-order
and the second-order free energies depend only on the coor-
dination numberz. They are

2bF ~1!/N5N21lnZ01~zD2 /2!K2xL, ~17!

2bF ~2!/N52bF ~1!/N1@z2~D32D2
2!

1z~D2
222D311!/2#K2/21zx~D22x!KL

1~x2x2!L2/2, ~18!

with x[eL/(eL12S) andDn[(enL12S)/(cL12S)n. F (3)

and higher-order free energies depend on the details of the
lattice structure. We have calculated the coefficientsanm to
the eighth order (m<n<8) numerically for the cubic lat-
tices. It is too lengthy to present these coefficients in this
article. If L50, Eq. ~16! reduces to the high-temperature
series expansion; and if L5Kz@exp(KzM)21#/
@exp(KzM)12S#, Eq. ~16! is the same as the conventional
linked-cluster series expansion. In the present method,L is
treated as a variational parameter, and the stable value ofL is
determined by minimizing the free energy.

The parameterL is related to the thermal average
^Qm

( l )&, and is nonzero if and only if the system is ordered.
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Therefore, the stable value ofL may be considered as the
order parameter of the system. However, it is important to
note thatL is not the same as the conventional order param-
eterM defined in Eq.~6!, which is proportional to the ther-
mal averages of the spin multipole moments. The order pa-
rameterM can be derived from the thermal average of the
spin density operator. We have

^rk&5(
l50

2S

(
m52 l

l

A~S,l !^fkuQm
~ l !ufk&^Qm

~ l !&

5M(
l51

2S

(
m52 l

l

A~S,l !^fkuQm
~ l !ufk&

21~2S11!21

5~2SM11!/~2S11!. ~19!

Uses have been made of Eq.~6! and the relation16

(
l50

2S

(
m52 l

l

A~S,l !^fkuQm
~ l !ufk&

251. ~20!

We also have

K (
i

rk~Si !L 5
Tr( irk~Si !e

2bH

Tre2bH 5
^( ir~Si !e

2bH1&0
^e2bH1&0

52
]

]L
ln^e2bH1&0 . ~21!

Therefore

2
2SM11

2S11
5
1

N

]

]L
ln^e2bH1&0

5 (
n51

`

(
m51

n

manmK
n2mLm21/n!. ~22!

The coefficientsanm are functions ofL as illustrated in Eqs.
~17! and ~18!. But in the above equationZ0 and anm are
regraded as constants, when the derivative of2bDF with
respect toL is calculated.

Similarly the internal energy per spin of the system is
given by

2
U

NJ
5

^(^ i j &Pi j &
N

5
1

N

Tr(^ i j &Pi j e
2bH

Tre2bH

5
1

N

^(^ i j &Pi j e
2bH1&0

^e2bH1&0
5
1

N

]

]K
ln^e2bH1&0

5 (
n51

`

(
m50

n21

~n2m!Kn2m21Lm/n!. ~23!

For thenth-order free energy series, the corresponding order
parameterM (n) and the internal energyU (n) are one order
lowered.

III. Results and discussions.We considerF (n)(K,L) as the
Landau free energy of the system, andL as the Landau order
parameter. One can plotF (n) versusL at a given temperature.
The value ofL which gives the lowest free energyF (n) is the
stable value ofL at the given temperature, denoted asLs

(n)

3(K). We calculateLs
(n) as functions of the temperature

numerically. At low temperatures, the free energy curves
have only one minimum atLs

(n).0. It indicates that the sys-
tem is in the ordered phase. At high temperatures, minimum
occurs atLs

(n)50 only and the system is disordered. For
temperatures in between, the free energy curves have one
maximum which is unstable and two minima: one is zero and
the other is positive. At the critical temperatureTc

(n), both
minima have the same free energy. AboveTc

(n) , the positive
minimum is a metastable phase. The free energy analysis
shows that the EI model undergoes a first-order phase tran-
sition for S>1 as predicted by the effective-field
approximations.15–18 For spin-1/2 system, the bifurcation of
the two minima does not occur. It undergoes a continuous
phase transition. Results ofTc

(n) are given in Table I.
It is not clear theoretically how thenth-order critical tem-

peratures converge to the limiting value. Similar to the Potts
model19 we assume that

Tc
~n!5Tc1cn211O~n22!. ~24!

Extrapolation of the nth-order critical temperatures to
n→` yields the phase transition temperatureTc of the sys-
tem. Our results based on the series expansions up to the
eighth order are shown in Table I. The uncertainties in our
estimates ofTc are within one percent for small spins. The
values estimated by the high-temperature series expansion10

are also included for comparison.
Using Eqs.~22! and ~23!, we calculate thenth-order ap-

proximations of the order parameterM (n) and the internal
energyU (n), evaluated atL5Ls

(n)(K) for the given tempera-
ture. The discontinuities ofM (n) and U (n), denoted as
DM (n) andDU (n) which are evaluated atTc

(n) are listed in
Tables II and III, respectively. Similar extrapolations as Eq.
~24! are also made to obtain the limiting values of the critical
parameters. The uncertainties in our estimates ofDM and
DU are within a few percent.

The series ofM (n) andU (n) are one order shorter than the
free energy series. Besides,DM (n) andDU (n) fluctuate with
n vigorously for large spins. The accuracies in the extrapo-
lation of the limiting values become poor whenS.5/2.

For the face-centered-cubic lattice, the free energy series
up to the eighth order behaves so smooth that the critical

TABLE I. Critical temperatureskTc
(n)/J for the face-centered-

cubic lattice. HTS means the high temperature series expansion
~Ref. 10! MFA represents the mean-field approximation~Ref. 16!.

n S51/2 S51 S53/2 S52 S55/2

MFA 6 4.3248 3.6410 3.2461 2.9824
1 6 4.3248 3.6410 3.2461 2.9824
2 5 3.5836 2.9873 2.6416 2.4100
3 23/5 3.3880 2.8634 2.5555 2.3479
4 4.4293 3.3468 2.8580 2.5655 2.3662
5 4.3494 3.3160 2.8275 2.5300 2.3252
6 4.3003 3.2812 2.7926 2.4940 2.2879
7 4.2621 3.2605 2.7840 2.4953 2.2981
8 4.2306 3.2521 2.7822 2.4967 2.3018
` 4.02 3.139 2.708 2.442 2.250
HTS 4.02 3.10 2.64 2.35 2.14
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temperaturesTc
(n) converge rapidly. For other cubic lattices

whose lattice structure are not so compact as the face-
centered-cubic lattice, the free energy series up to the eighth
order do not give smoothTc

(n) . Analyzing such series for
critical parameters become unreliable even for small spins.

In general, the successive orders of critical parameters
converge more rapidly for small spins. This manifest that for
high spins the nonlinearities (Si•Sj )

n interact in complicated
ways. In conclusion our studies for the face-centered-cubic
lattice confirm that the EI model undergoes a first-order
phase transition forS>1.
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Appendix.In calculating the series expansions, we have to
evaluate

^A&05
Tr A exp~2bH0!

Tr exp~2bH0!
, ~A1!

whereA are products of exchange operatorsPi j and density
matricesrk(S). Since the products ofPi j can be expressed in
terms of the product of independent permutation cycles~i 1,
i 2,...,i p), and each cycle can be evaluated independently in
the trace calculation, all calculations of̂A&0 can be

decomposed into products of̂( i 1,i 2,...,i p)rk
ni1(Si1)rk

ni22

3(Si2)•••rk
ni p(Si p)&0, ^~i 1,i 2,...,i p)&0, and ^rk

ni(Si)&0. Here

at least one of the integers {ni} i5 i1

i p is nonzero. By using the

permutation property ofPi j and the property
15 of the density

matricesrk, one can show that

^~ i 1,i 2,...,i p!rk
ni1~Si1!rk

ni2~Si2!•••rk
ni p~Si r!&05xp,

~A2!

^ i 1,i 2,...,i p&05~epL12S!/~eL12S!p[Dp, ~A3!

^rk
ni~Si !&05x, ~niÞ0!, ~A4!

with x[eL/(eL12S).
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TABLE II. Discontinuities of the order parametersDM (n) for
the face-centered-cubic lattice.

n S51 S53/2 S52 S55/2

MFA 1/2 2/3 3/4 4/5
1 1/2 2/3 3/4 4/5
2 0.4889 0.6592 0.7509 0.8112
3 0.4294 0.5827 0.6690 0.7281
4 0.3644 0.4990 0.5751 0.6260
5 0.3436 0.4959 0.5905 0.6609
6 0.3500 0.5128 0.6190 0.7054
7 0.3435 0.4929 0.5841 0.6510
8 0.3144 0.4428 0.5139 0.5563
` 0.273 0.387 0.486 0.55

TABLE III. Latent heat per spinDU (n)/NJ for the face-
centered-cubic lattice.

n S51 S53/2 S52 S55/2

MFA 1 2 27/10 16/5
1 1 2 27/10 16/5
2 0.6565 1.3216 1.8022 2.1620
3 0.4328 0.9319 1.3393 1.6750
4 0.3025 0.7033 1.0552 1.3540
5 0.2591 0.6619 1.0350 1.3643
6 0.2523 0.6545 1.0343 1.3860
7 0.2334 0.5996 0.9461 1.2625
8 0.1942 0.4988 0.7804 1.0198
` 0.037 0.273 0.534 0.81
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