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Dynamical replica theory for disordered spin systems
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We present a method to solve the dynamics of disordered spin systems on finite time scales. It involves a
closed driven diffusion equation for the joint spin-field distribution, with time-dependent coefficients described
by a dynamical replica theory which, in the case of detailed balance, incorporates equilibrium replica theory as
a stationary state. The theory is exact in various limits. We apply our theory to both the symmetric and the
nonsymmetric Sherrington-Kirkpatrick spin glass, and show that it describéauh®rical experiments very
well.

Recently it has become cléahat even mean-field models
exhibit the ageing phenomena, familiar from experiments on Wk(0)=3{1— otanf Bh, (o)1}, hi(e)=2>, Jjjo;+9,
real spin glas$,that were hitherto assumed to be typical for 7! 3)
short-range systems. This has led to a renewed interest in ) ) .
dynamical studies of mean-field spin-glass models and t¥/here=1/T is the inverse temperature. The mixing angle
valuable new insights into spin-glass dynamics away fronfo€[0,7] controls the degree of_symmetry of the interactions
equilibrium, see, e.g., Ref. 3. In this paper we present aijl)- For @=0 we recover the original SK spin-glass model.
approach to analyzing the dynamics of spin-glass models ob“?w the interactions are symmetric, the dynamics obey de-
finite time scales, leading to a dynamical replica theory,.alled balance, an) reduces to a Glauber dynamics, lead-

which, in the case of detailed balance, incorporates equilib-'J asymptotically to the Boltzmann equilibrium distribution
; P . ' P = p..(o)~exd — BH ()] with the conventional Hamiltonian
rium replica theory as a stationary stdtacluding replica

symmetry breaking, if it occuysThe formalism is built on a H(o)= _E o J oi— 02 o (4)
closure procedure with which we obtain a closed diffusion I

equation for the joint spin-field distribution. It builds on and g~ however, detailed balance is violated and equilib-
extends earlier studiés® Our theory is proven to be exact rium statistical mechanics no longer applies. o the
for short times and in equilibrium. For intermediate times Wejnteraction matrix is fully antisymmetric.

joint spin-field distribution indeed obeys a closed dynamicQ(g)=[Q,(0),...£}(o)] we can derive a macroscopic sto-
equation. Here we discuss only the underlying physical ideaghastic equation in the form of a Kramers-Moyal expansion.
and the results of applying our theory to both the symmétric For deterministically evolving observablés the thermody-
and the nonsymmetficSherrington-Kirkpatrick spin glass. namic limit) on finite time scales only the firgtiouville)
Full mathematical details will be published elsewh&ie  term in this expansion will survive, leading to the determin-
believe the agreement between theory &sichulation ex-  istic flow equation

periment to be quite convincing. d
The generalizedasymmetri¢ version of the Sherrington- at O,
Kirkpatrick (SK) model! introduced in Ref. 8, consists bf
Ising spinso; e{—1,1} with infinite-range interactiong;; :
i 2 ,p(0) 5[~ Q(0)]ZWi(0)[Q(Fi0)—Q(0) ]
Jij=Jo/N + (JIVN)[cog 3 w)x;; +Ssin(3 ®)y;;] _N'L"x S P 0) [ — Q(0)] '
Xi=Xji, Yij=Vji- (@ )

There are twanatural ways for (5) to close. Firstly, by the
Fori<j each of the random quantitieg andy;; , represent- argument of the subshell average(# depending orr only
ing quenched disorder, are drawn independently from &hrough (o) [now p (o) will drop out], and secondly by
Gaussian distribution with zero mean and unit variance. Théhe microscopic dynamict?) allowing for equipartitioning
evolution in time of the microscopic probability distribution Solutions[wherep,(o) depends owr only through€Q(o)]. In

p,(@) is given by the master equation both cases the correct equations are obtained upon simply
eliminating p,(o) from (5). We now make two assumptions:
N (i) the observable$)(o) are self-averaging with respect to

4 po) =2, [P Fro)W(Fyo)—pa)Ww(a)], (2)  the microscopic realization of the disorder; ,y;;}, at any
dt k=1 time, and(ii) in evaluating the subshell average we assume
equipartitioning of probability within th&2 subshell of the
in which F, is a spinflip operator F,®(o) ensemble. As a result the macroscopic equat®nis re-
=®d(04,...,— 0y,...,0) and the transition rates, (o) and  placed by a closed one, from which the unpleasant fraction
the local alignment fields, (o) are can be removed with a replica identityee, e.g., Ref. 20
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d this exercise, as usual involving a saddle-point problem, can
gt Q= lim lim 2 2 E wi(oH[ Q(F;ot) be found in Ref. 9. The result is the diffusion equation
N—® n—0 ot o i
J
n EDt(Lh):%[1+£tanf(/3h)]Dt(—§,h)
—oah]l] 5[ﬂt—n<a“>]> : (6)
o %y} — z[1-¢ taniBh)]D(¢,h)
For observables truly governed by a closed equation our clo- P
sure procedure reduces to the natural énethe sense dis- + — { Dy(Z,h)[h—6—Jo(tank BH))p ]
cussed abovyeso we know by construction: if a closed self- dh !
averaging equation fof),(o) exists, it must indeed béb). +.7¢,h;Dy]

For the set of observablé€3(o) we now choose thénfinite

dimensionagl joint spin-field distribution: ) d
+I1—(o tan(BH))p ] - Di(&h) ¢ (8)

D(¢hi0)=(1N) 2 0, dh=hi()] (D it the short hand(f(o.H))g=S, [dHD(aH) (0 H).
) ] ] . We find all interesting physics to be concentrated in a single
with the local fields (3). Since both the magnetization grjying term. #:

m=(1/N)Z;0; and the energy4) can be written as integrals
over D(¢,h; o), the theory will automatically be exa6 in /[ ¢,h:D]=— lim E q b s(tanh( BHY) o)y

the limit J—0, (ii) for t—0 (upon choosing appropriate ini- no0 aB
tial conditiong, and (iii) in the limit t—o (for systems
evolving towards equilibrium To circumvent technical X(o[h—H1]6; 5 [Hp——Jom

subtleties we assume that the distributi@h is sufficiently

- t
well behaved: we evaluat®,(£,h) in a numberl of field +i32 com(RT) g])u

arguments and take the linit»co after the limit N—oo. A +coso(S[h—H118, .0 .)w(tank BH,)
closed diffusion equation foD;(¢,h) was also derived in hogte
Ref. 11. Although similar in spirit to ours, the latter study X[Hg—6—Jom+id’cosu(Ro) ghm}.  (9)

employed a different closure procedure, lacking the proper-

ties of the present one of built-in exactness in various limits This involves an effective measuk in replica space
We can now run the familiar machinery of replica theory

and evaluaté6) for the choice(7). The distributionD,(Z,h) (f[H. o) _JdH 2,M[H,e]f[H, 0]

can be shown to indeed evolve deterministically. Details of UM JdH £ M[H, o] '

. 1 A
M[H,o-]=exp{ —|m-a—§Jza-Qa—|E D, (o,.H,)

— 537 [H—6-Jom+ iJ2 coswRo]-q YH- 6—Jom+iJ?cowR o] (10)

05— - o5l ‘ -

FIG. 1. Magnetizatioom and energy per spin
E in the J=1 SK model afT =0, for J;=0 (left)
and Jy=1 (right). Solid lines: numerical simula-
tions withN=8000; dotted lines: result of solving
the RS diffusion equation.
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FIG. 2. Field distributionsD,(a,h) in the
J=1 SK model afl =0, for J;=0 (left) andJy=1
(right). Histograms: numerical simulations with
N=8000; lines: result of solving the RS diffusion
equation.

FIG. 3. Magnetizatioom and energy per spin
E in the asymmetrid=1 SK model afT =0, for
Jo=0 (left) andJy=1 (right). Solid lines: numeri-
cal simulations witiN=5600; dotted lines: result
of solving the RS diffusion equation.

FIG. 4. Field distributionsD(o,h) in the
asymmetricJ=1 SK model atT=0, for J;=0
(left) and Jg=1 (right). Histograms: numerical
simulations withN=5600; lines: result of solving
the RS diffusion equation.
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with H=(H4,...,H,) ando=(0,...0,). Thenxn matrices dow, left graph int>0 windows. ForJ,=1 we were not able
{q,Q,R}, the n vectors{m,m}, and the function® ,(o,H) to calculate the solution of Eq8) up to t=6, due to the

are obtained by extremization of the surfake critical behavior of the saddle-point equations. For the fully
) A ) ~ asymmetric modelw=m/2, one finds much simpler equa-
‘I’=|% dH D(o,H)D (o, H)+i X m,m, tions, due to a decoupling of the spins from the fields. In this

case Eq(8) allows for solutions wher®,(1,h) +D,(— 1)
1 1 remains of a Gaussian form at all times, in accordance with
+§JZZ [AapQapt COWRR.]— 5 In detg Refs. 8 and 14. The results of confrontiig with T=0
“p simulation experiments for the asymmetrios=m/2 SK
model are shown in Figs. 3 and 4, fa§=0 (left pictures
+In J dH > M[H,o]. (1) andJ,=1 (right pictures; for the initial conditionsmy=0,
7 my=0.3, and m=0.6. Figure 4 shows the distributions
For the detailed balance case=0 [the SK(Ref. 7 model,  D;(a,h) for one particular initial stateD;(1,h): upper graph
the equilibrium state calculated within equilibrium statisticalin t=0 window, right graph int>0 windows; D,(—1,h):
mechanic$? is found to define a stationary state(8j. Here  lower graph int=0 window, left graph int>0 windows.
we restrict ourselves to replica-symmetfiRS) saddle points In this paper we have shown how one can solve the dy-
of W, an analysis of11) involving broken replica symmetry namics of disordered spin systems on finite time scales with
ala Parist? is the subject of a future study. It is a straight- a dynamical generalization of equilibrium replica theory. Al-
forward exercise to work out the RS saddle-point equationshough we have restricted our analysis by making the
and the corresponding expressiofizs for the driving term  replica-symmetri¢RS) ansatz, on the time scales considered
(9), which, upon insertion int@8), controls the evolution of the agreement between theory and simulation experiment is
the joint spin-field distribution in RS approximation. Evalu- already quite satisfactory. At this stage we need more effi-
ating. Zgs requires solving the RS saddle-point equations atient numerical procedures in order to extend the time scales
each instance of time. In the usual manner one can also cdier which we can solve the equations of the theory. This
culate the de Almeida-Thouless instabitityvith respect to  would enable us to compare, for instance, with data such as
replicon fluctuations; here involving variation of three order-the ones in Ref. 15, and to investigate the possible existence
parameter matrices, as opposed to one. of stationary states other than the one corresponding to ther-
We test our theory by comparing the results of solvingmal equilibrium. Our theory is by construction exact in vari-
numerically equation8) in RS ansatz, for the two model ous limits. Its full exactness depends crucially on whether
choicesw=0 andw=7/2, with the results of performing nu- the joint spin-field distribution indeed obeys a closed self-
merical simulations of the discretized version of the stochasaveraging dynamic equation, which is difficult to verify. We
tic dynamics(2,3). Since solving(8) requires a significant plan to investigate several approaches to this problem in the
computational effort, even within the RS ansatz, we restricnear future. Firstly, we want to apply our formalism to dis-
our experiments to zero external fields and to initial configu-ordered spin systems for which the dynamics has been
rations with spin states chosen independently at randonsolved by other means, like the toy mofelr the spherical
given a required initial magnetization. For the original SK spin glass® Secondly we want to try to derive a diffusion
model, obtained fow=0, the results of confronting8) with equation for the joint spin-field distribution, starting from the
typical simulation experiments &=0 are shown in Figs. 1 exact(but rather complicatedclosed equations for the cor-
and 2, forJ,=0 (left pictureg andJ,=1 (right pictures. In relation functionC(t,t') and the response functida(t,t’),
Fig. 1 the top graphs represent the magnetizatioand the each with two real-valued argumenf$wo times. The
lower graphs represent the energy per dpjrfor the initial  present formalism also involves two functioBg(1,h) and
conditionsmy=0 and my=0.3. Figure 2 shows the corre- D,(—1,), with two real-valued arguments eatbne time
sponding distribution®,(o,h) for one particular choice of and one field It is therefore quite imaginable that both for-
initial state [D{(1,h): upper graph int=0 window, right malisms constitute exact descriptions of the dynamics of dis-
graph int>0 windows;D,(—1,h): lower graph int=0 win-  ordered spin models.
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