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We present a method to solve the dynamics of disordered spin systems on finite time scales. It involves a
closed driven diffusion equation for the joint spin-field distribution, with time-dependent coefficients described
by a dynamical replica theory which, in the case of detailed balance, incorporates equilibrium replica theory as
a stationary state. The theory is exact in various limits. We apply our theory to both the symmetric and the
nonsymmetric Sherrington-Kirkpatrick spin glass, and show that it describes the~numerical! experiments very
well.

Recently it has become clear1 that even mean-field models
exhibit the ageing phenomena, familiar from experiments on
real spin glass,2 that were hitherto assumed to be typical for
short-range systems. This has led to a renewed interest in
dynamical studies of mean-field spin-glass models and to
valuable new insights into spin-glass dynamics away from
equilibrium, see, e.g., Ref. 3. In this paper we present an
approach to analyzing the dynamics of spin-glass models on
finite time scales, leading to a dynamical replica theory,
which, in the case of detailed balance, incorporates equilib-
rium replica theory as a stationary state~including replica
symmetry breaking, if it occurs!. The formalism is built on a
closure procedure with which we obtain a closed diffusion
equation for the joint spin-field distribution. It builds on and
extends earlier studies.4–6 Our theory is proven to be exact
for short times and in equilibrium. For intermediate times we
can prove that it is exact if in the thermodynamic limit the
joint spin-field distribution indeed obeys a closed dynamic
equation. Here we discuss only the underlying physical ideas
and the results of applying our theory to both the symmetric7

and the nonsymmetric8 Sherrington-Kirkpatrick spin glass.
Full mathematical details will be published elsewhere.9 We
believe the agreement between theory and~simulation! ex-
periment to be quite convincing.

The generalized~asymmetric! version of the Sherrington-
Kirkpatrick ~SK! model,7 introduced in Ref. 8, consists ofN
Ising spinssiP$21,1% with infinite-range interactionsJi j :

Ji j5J0/N1 ~J/AN!@cos~ 1
2v!xi j1sin~ 1

2 v!yi j #

xi j5xji , yi j52yji . ~1!

For i, j each of the random quantitiesxi j andyi j , represent-
ing quenched disorder, are drawn independently from a
Gaussian distribution with zero mean and unit variance. The
evolution in time of the microscopic probability distribution
pt~s! is given by the master equation

d

dt
pt~s!5 (

k51

N

@pt~Fks!wk~Fks!2pt~s!wk~s!#, ~2!

in which Fk is a spin-flip operator FkF(s!
[F(s1 ,...,2sk ,...,sN) and the transition rateswk~s! and
the local alignment fieldshi~s! are

wk~s!5 1
2 $12sktanh@bhk~s!#%, hi~s!5(

jÞ i
Ji js j1u,

~3!

whereb51/T is the inverse temperature. The mixing angle
vP@0,p# controls the degree of symmetry of the interactions
~1!. Forv50 we recover the original SK spin-glass model.7

Now the interactions are symmetric, the dynamics obey de-
tailed balance, and~2! reduces to a Glauber dynamics, lead-
ing asymptotically to the Boltzmann equilibrium distribution
p`~s!;exp@2bH~s!# with the conventional Hamiltonian

H~s!52(
i, j

s iJi js j2u(
i

s i . ~4!

For v.0, however, detailed balance is violated and equilib-
rium statistical mechanics no longer applies. Forv5p the
interaction matrix is fully antisymmetric.

For any given set of l macroscopic observables
V~s!5@V1~s!,...,Vl~s!# we can derive a macroscopic sto-
chastic equation in the form of a Kramers-Moyal expansion.
For deterministically evolving observables~in the thermody-
namic limit! on finite time scales only the first~Liouville!
term in this expansion will survive, leading to the determin-
istic flow equation
d

dt
Vt

5 lim
N→`

(spt~s!d@Vt2V~s!#( iwi~s!@V~Fis!2V~s!#

(spt~s!d@Vt2V~s!#
.

~5!

There are twonatural ways for ~5! to close. Firstly, by the
argument of the subshell average in~5! depending ons only
throughV~s! @now pt~s! will drop out#, and secondly by
the microscopic dynamics~2! allowing for equipartitioning
solutions@wherept~s! depends ons only throughV~s!#. In
both cases the correct equations are obtained upon simply
eliminatingpt~s! from ~5!. We now make two assumptions:
~i! the observablesV~s! are self-averaging with respect to
the microscopic realization of the disorder$xi j ,yi j %, at any
time, and~ii ! in evaluating the subshell average we assume
equipartitioning of probability within theV subshell of the
ensemble. As a result the macroscopic equation~5! is re-
placed by a closed one, from which the unpleasant fraction
can be removed with a replica identity~see, e.g., Ref. 10!:
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d

dt
Vt5 lim

N→`

lim
n→0

(
s1

•••(
sn

(
i

K wi~s1!@V~Fis
1!

2V~s1!# )
a51

n

d@Vt2V~sa!#L
$x,y%

. ~6!

For observables truly governed by a closed equation our clo-
sure procedure reduces to the natural one~in the sense dis-
cussed above!, so we know by construction: if a closed self-
averaging equation forVt~s! exists, it must indeed be~6!.
For the set of observablesV~s! we now choose the~infinite
dimensional! joint spin-field distribution:

D~z,h;s!5 ~1/N! (
i

dz,s i
d@h2hi~s!# ~7!

with the local fields ~3!. Since both the magnetization
m5(1/N)( is i and the energy~4! can be written as integrals
overD(z,h;s!, the theory will automatically be exact~i! in
the limit J→0, ~ii ! for t→0 ~upon choosing appropriate ini-
tial conditions!, and ~iii ! in the limit t→` ~for systems
evolving towards equilibrium!. To circumvent technical
subtleties we assume that the distribution~7! is sufficiently
well behaved: we evaluateDt(z,h) in a numberl of field
arguments and take the limitl→` after the limit N→`. A
closed diffusion equation forDt(z,h) was also derived in
Ref. 11. Although similar in spirit to ours, the latter study
employed a different closure procedure, lacking the proper-
ties of the present one of built-in exactness in various limits.

We can now run the familiar machinery of replica theory
and evaluate~6! for the choice~7!. The distributionDt(z,h)
can be shown to indeed evolve deterministically. Details of

this exercise, as usual involving a saddle-point problem, can
be found in Ref. 9. The result is the diffusion equation

]

]t
Dt~z,h!5 1

2 @11z tanh~bh!#Dt~2z,h!

2 1
2 @12z tanh~bh!#Dt~z,h!

1
]

]h HDt~z,h!@h2u2J0^tanh~bH !&Dt
#

1A@z,h;Dt#

1J2@12^s tanh~bH !&Dt
#

]

]h
Dt~z,h!J ~8!

with the short hand̂ f (s,H)&D5(s*dHD(s,H) f (s,H).
We find all interesting physics to be concentrated in a single
driving termA:

A@z,h;D#52 lim
n→0

(
ab

~q21!ab$^tanh~bH1!sa&M

3^d@h2H1#dz,s1
@Hb2u2J0m

1 iJ2 cosv~R†s!b#&M

1cosv^d@h2H1#dz,s1
sa&M^tanh~bH1!

3@Hb2u2J0m1 iJ2cosv~R†s!b#&M%. ~9!

This involves an effective measureM in replica space

^ f @H,s#&M5
*dH (sM @H,s# f @H,s#

*dH (sM @H,s#
,

M @H,s#5expH 2 i m̂•s2
1

2
J2s•Qs2 i(

a
D̂a~sa ,Ha!

2
1

2J2
@H2u2J0m1 iJ2 cosvR†s#•q21@H2u2J0m1 iJ2cosvR†s#J ~10!

FIG. 1. Magnetizationm and energy per spin
E in the J51 SK model atT50, for J050 ~left!
and J051 ~right!. Solid lines: numerical simula-
tions withN58000; dotted lines: result of solving
the RS diffusion equation.
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FIG. 2. Field distributionsDt(s,h) in the
J51 SK model atT50, for J050 ~left! andJ051
~right!. Histograms: numerical simulations with
N58000; lines: result of solving the RS diffusion
equation.

FIG. 3. Magnetizationm and energy per spin
E in the asymmetricJ51 SK model atT50, for
J050 ~left! andJ051 ~right!. Solid lines: numeri-
cal simulations withN55600; dotted lines: result
of solving the RS diffusion equation.

FIG. 4. Field distributionsDt(s,h) in the
asymmetricJ51 SK model atT50, for J050
~left! and J051 ~right!. Histograms: numerical
simulations withN55600; lines: result of solving
the RS diffusion equation.
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with H5(H1 ,...,Hn) ands5~s1,...,sn!. Then3n matrices
$q,Q,R%, the n vectors$m̂,m%, and the functionsD̂a(s,H)
are obtained by extremization of the surfaceC:

C5 i(
as

E dH D~s,H !D̂a~s,H !1 i(
a

mam̂a

1
1

2
J2(

ab
@qabQab1cosvRabRba#2

1

2
ln detq

1 ln E dH (
s

M @H,s#. ~11!

For the detailed balance casev50 @the SK ~Ref. 7! model#,
the equilibrium state calculated within equilibrium statistical
mechanics,12 is found to define a stationary state of~8!. Here
we restrict ourselves to replica-symmetric~RS! saddle points
of C, an analysis of~11! involving broken replica symmetry
á la Parisi12 is the subject of a future study. It is a straight-
forward exercise to work out the RS saddle-point equations
and the corresponding expressionARS for the driving term
~9!, which, upon insertion into~8!, controls the evolution of
the joint spin-field distribution in RS approximation. Evalu-
atingARS requires solving the RS saddle-point equations at
each instance of time. In the usual manner one can also cal-
culate the de Almeida-Thouless instability13 with respect to
replicon fluctuations; here involving variation of three order-
parameter matrices, as opposed to one.

We test our theory by comparing the results of solving
numerically equation~8! in RS ansatz, for the two model
choicesv50 andv5p/2, with the results of performing nu-
merical simulations of the discretized version of the stochas-
tic dynamics~2,3!. Since solving~8! requires a significant
computational effort, even within the RS ansatz, we restrict
our experiments to zero external fields and to initial configu-
rations with spin states chosen independently at random,
given a required initial magnetization. For the original SK
model, obtained forv50, the results of confronting~8! with
typical simulation experiments atT50 are shown in Figs. 1
and 2, forJ050 ~left pictures! andJ051 ~right pictures!. In
Fig. 1 the top graphs represent the magnetizationm and the
lower graphs represent the energy per spinE; for the initial
conditionsm050 andm050.3. Figure 2 shows the corre-
sponding distributionsDt(s,h) for one particular choice of
initial state @Dt(1,h): upper graph int50 window, right
graph int.0 windows;Dt(21,h): lower graph int50 win-

dow, left graph int.0 windows#. ForJ051 we were not able
to calculate the solution of Eq.~8! up to t56, due to the
critical behavior of the saddle-point equations. For the fully
asymmetric model,v5p/2, one finds much simpler equa-
tions, due to a decoupling of the spins from the fields. In this
case Eq.~8! allows for solutions whereDt(1,h)1Dt(21,h)
remains of a Gaussian form at all times, in accordance with
Refs. 8 and 14. The results of confronting~8! with T50
simulation experiments for the asymmetricv5p/2 SK
model are shown in Figs. 3 and 4, forJ050 ~left pictures!
and J051 ~right pictures!; for the initial conditionsm050,
m050.3, and m50.6. Figure 4 shows the distributions
Dt(s,h) for one particular initial state@Dt(1,h): upper graph
in t50 window, right graph int.0 windows;Dt(21,h):
lower graph int50 window, left graph int.0 windows#.

In this paper we have shown how one can solve the dy-
namics of disordered spin systems on finite time scales with
a dynamical generalization of equilibrium replica theory. Al-
though we have restricted our analysis by making the
replica-symmetric~RS! ansatz, on the time scales considered
the agreement between theory and simulation experiment is
already quite satisfactory. At this stage we need more effi-
cient numerical procedures in order to extend the time scales
for which we can solve the equations of the theory. This
would enable us to compare, for instance, with data such as
the ones in Ref. 15, and to investigate the possible existence
of stationary states other than the one corresponding to ther-
mal equilibrium. Our theory is by construction exact in vari-
ous limits. Its full exactness depends crucially on whether
the joint spin-field distribution indeed obeys a closed self-
averaging dynamic equation, which is difficult to verify. We
plan to investigate several approaches to this problem in the
near future. Firstly, we want to apply our formalism to dis-
ordered spin systems for which the dynamics has been
solved by other means, like the toy model,6 or the spherical
spin glass.16 Secondly we want to try to derive a diffusion
equation for the joint spin-field distribution, starting from the
exact~but rather complicated! closed equations for the cor-
relation functionC(t,t8) and the response functionG(t,t8),
each with two real-valued arguments~two times!. The
present formalism also involves two functionsDt(1,h) and
Dt(21,h), with two real-valued arguments each~one time
and one field!. It is therefore quite imaginable that both for-
malisms constitute exact descriptions of the dynamics of dis-
ordered spin models.

*Present address: Department of Mathematics, King’s College Lon-
don, Strand, London WC2R 2LS, U.K.
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