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We describe a diagrammatic calculation of the condensate fraction of dense and strongly interacting Bose
systems at zero temperature using the framework of parquet theory. Starting from the proper self-energy of
parquet theory we perform a major rearrangement of diagrams to ensure proper counting and to express the
final result in terms of well-behaved quantities. A number of interesting limiting cases are considered, in
particular the hard sphere Bose gas at low densities where analytical results can be obtained. The present
formalism is well-suited for extension to finite temperatures, and we consider possible strategies in that
direction.

I. INTRODUCTION

The phenomenon of Bose-Einstein condensation~BEC!
has long been a subject of great interest and extensive re-
search. Although the original motivation came from the well-
known properties of liquid4He many decades ago, there is
presently a renewed interest in BEC in a variety of systems
including excitons in Cu2O,

1 spin-polarized atomic
hydrogen,2 and kaons in dense nuclear matter.3–5Also, BEC
is believed to play a role in high-Tc superconductors.

6

Although a well-defined many-body theory exists and is,
in principle, capable of a complete description of this
phenomenon,7 it is far too complicated to obtain useful ana-
lytical results except in the special cases of weak interaction
and low density. The most famous example is a system of
hard spheres of radiusa at a densityr. Here, analytical
results have been obtained by Lee, Huang, and Yang8–10and
by Wu11 who determined the leading terms of a perturbative
expansion in the parameterAra3. It is instructive to estimate
the useful range of this expansion for the realistic case of
liquid 4He for whicha is roughly 2 Å. If we require that the
second-order correction to the ground state energy be less
than 50% of the first-order contribution, the density should
be less than 1025 Å 23. This is to be compared with the
empirical equilibrium density of liquid 4He which is
0.021 85 Å23. Given the complexity of the underlying exact
many-body theory, it is clear that approximate theories must
be formulated to deal with the realistic cases of dense and
strongly interacting systems.

Let us first consider the situation at zero temperature.
There exists a number of approximate theories which can be
roughly divided into variational approaches,12,13 diagram-
matic approaches, and the elegant but numerically demand-
ing Green’s function Monte Carlo~GFMC! method14,15

which yields an essentially exact solution of the many-body
Schrödinger equation. The most successful variational theo-
ries make use of the so-called hypernetted chain~HNC!
approximation16,17and can be improved perturbatively using
the method of correlated basis functions~CBF!.13,18The sim-
plest diagrammatic approach which contains all ingredients
necessary to ensure that all observable quantities are well
behaved~and, thus, provides a suitable starting point for per-
turbative improvements! is known as parquet theory.19–21By

making well-defined approximations, it is possible to dem-
onstrate that the underlying physical contents of the HNC
approximation and parquet theory are identical.22 Each of
these theories yields remarkably reliable results for quantities
such as the ground state energy or the static liquid structure
function of dense and strongly interacting Bose systems.
While a formalism for HNC calculations of the condensate
fraction exists,23–26the analogous formalism has not yet been
constructed in parquet theory. Such construction is the object
of the present paper, and we will draw parallels between the
two approaches whenever possible.

Eventually, the goal is to extend the zero-temperature for-
malism to finite temperatures. For example, one would like
to compute the temperature at which the condensate fraction
of liquid 4He becomes zero in order to compare with the
experimentally observedl transition atT52.17 K. This
problem has not been solved. Initial attempts at finite-
temperature calculations have been made in both variational
and diagrammatic approaches,27–30 but reliable calculations
of the condensate fraction and thel point have not yet been
achieved. Nonzero temperature also leads to significant com-
plication of the GFMC method which must be replaced by
the path integral Monte Carlo~PIMC! method, which re-
quires even greater computational efforts and results in
somewhat larger error bars. Although PIMC data hint at a
roughly correct value ofTl ,

31 the error bars are too large to
draw unambiguous conclusions. At first glance, it would ap-
pear that it is simpler to extend approximate diagrammatic
theories to finite temperature than variational theories. In
principle, diagrammatic theories merely require the replace-
ment of zero-temperature Green’s functions by their well-
known finite-temperature analogs. While this replacement is
numerically challenging, it is conceptually simple. Unfortu-
nately, the problem is not so simple since finite temperature
also changes the way in which diagrams should be grouped
and ~approximately! summed. We shall discuss some pos-
sible strategies which might be adopted in this case.

The organization of this paper is as follows. Section II
deals with the diagrammatic derivation of the condensate
fraction in parquet theory and contains the main results of
the paper. A number of interesting limiting cases, including
the famous hard sphere Bose gas, will be considered in Sec.
III. A discussion of the possible extension of the present
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results to finite temperatures is given in Sec. IV, and a variety
of conclusions are drawn in Sec. V. Three appendixes are
provided for the more technical details of the derivation in
Sec. II.

II. DIAGRAMMATIC DERIVATION
OF THE CONDENSATE FRACTION

In this section, we construct a diagrammatic description
of the condensate fractionnc within the framework of par-
quet theory. For a discussion of the necessary techniques and
the notation we refer the reader to Refs. 19 and 21. Here, we
note only that we treat a homogeneous system of bosons as a
system of fermions with an artificial degeneracyn equal to
the number of particlesA by taking the simultaneous limits
kF→0 andn→` (kF is the Fermi momentum!.32

Before proceeding, we point out that, with well-defined
kinematic approximations, the parquet equations reduce ex-
actly to the HNC/0 equations derived in variational theory.33

Thus, there is a close connection between these two ap-
proaches although their starting points might appear to be
completely different. We shall see that there is a similar con-
nection in the case of the condensate fraction.

The condensate fraction is that fraction of the particles
which occupies thek50 state. In our fermionic formalism,
this corresponds to the particles having momentum less than
kF ~sincekF→0). Explicit counting rules are needed in go-
ing from the proper self-energyS!(k,v) to nc in order to
ensure that diagrammatic truncations do not introduce count-
ing errors. A major rearrangement of diagrams will be nec-
essary to expressnc in terms of small and well-behaved
quantities such as the four-point functionG and to eliminate
all reference to the bare potentialV. We will argue on purely
diagrammatic grounds and neglect for the moment details of
the kinematic approximations necessary for numerical imple-
mentation.

The full propagator is

Gab~k,v!5dabF u~k2kF!

v2vk2S!~k,v!1 ih

1
u~kF2k!

v2vk2S!~k,v!2 ih G , ~1!

wherea andb label the fictitious ‘‘spin’’ quantum number of
the Fermi system, andh is an infinitesimal positive constant.
Units are chosen such thatvk5k2/2. The number density of
particles in the condensate,rc5ncr, can be obtained imme-
diately:

rc52 inE d4k

~2p!4
u~kF2k!G~k,v!ei ev

52 inE d4k

~2p!4
u~kF2k!

v2vk2S!~k,v!2 ih
ei ev. ~2!

Here,e is an infinitesimal positive constant that ensures con-
vergence of thev integration. Specifically, it forces us to
close the contour of integration in the upper half-plane. Per-
forming the integration overd3k in the limit kF→0,n→`,
we obtain

nc52 i E dv

2p

1

v2S!~0,v!2 ih
ei ev. ~3!

In order to perform thev integration we must determine all
zeros of the denominator in the above expression. The ex-
plicit form of S!(0,v) in approximate parquet theory guar-
antees that there is one and only one zero atv5v0 where
v0 is real and negative. Thev integration is now performed
by closing the contour in the upper half-plane. We obtain

nc5
1

12
]S!~0,v!

]v
U
v0

. ~4!

While it is, in principle, necessary to determinev0 exactly, it
would be very convenient if one could find an approximate
location for this zero. Numerical studies indicate that the
value v050 provides a very good approximation for the
exact location. We shall use this approximation in the follow-
ing so that our basic equation for the condensate fraction
becomes

nc5
1

12
]S!~0,v!

]v
U
v50

. ~5!

Given the explicit diagrammatic form ofS! in parquet
theory as shown in Fig. 1, we can now proceed to calculate
the derivative ofS!(0,v) with respect tov at v50. The
first diagram in Fig. 1 evaluates torV(k50) and is, there-
fore, independent of the incoming four-momentum. It does
not contribute to the desired derivative. Our attention now
focuses entirely on the second diagram in Fig. 1.

Differentiation of this diagram with respect to the fourth
componentv of the incoming four-momentum means differ-
entiation of every piece of the diagram that depends on this
v. The only explicit reference tov is contained in the left-
most particle line. Since approximate parquet theory neglects
all self-energy insertions, this and every other explicit par-
ticle line is understood to correspond to a free propagator
Gab
0 (k,v), obtained from Eq.~1! by settingS!(k,v) equal

to zero. Itsv derivative is simply

]G0
ab~k,v!

]v
52@G0

ab~k,v!#2. ~6!

From now on, we will label a differentiated particle line in a
diagram by an3 on this line. This is equivalent to substitut-
ing 2G0

2 for G0 when the diagram is to be evaluated accord-
ing to the Feynman rules.

FIG. 1. The proper self-energy,S!(k,v), in parquet theory. The
incoming and outgoing lines carry four-momentum (k,v).
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In addition to the explicitv dependence of the leftmost
particle line there is an implicitv dependence inG in the
second diagram of Fig. 1. Recall thatG5V1L1C, whereL
andC are ladder and chain diagrams, respectively. Denoting
thev derivatives~evaluated atv50) of L andC by dL and
dC, respectively, we can represent]S!(0,v)/]vuv50 as the
sum of the two diagrams in Fig. 2.

The next step is to determinedL anddC. This is~almost!
straightforward given the parquet equations forL andC,

L5~V1C!Gpp~V1C!1~V1C!GppL, ~7a!

C5~V1L !Gph~V1L !1~V1L !GphC. ~7b!

Here,Gpp andGph are particle-particle~pp! and particle-hole
~ph! propagators, respectively. The bare potentialV is local
and, hence, independent ofv. Applying the chain rule
should then yield expressions fordL and dC. However,
there is one subtlety. In any given diagram, the only refer-
ence to theexternalv lies in the leftmost particle line. It is
only at this line where differentiation with respect to the
externalv occurs. This places no restrictions on the number
of particle-particle propagators involved. However, as soon
as some momentum ‘‘branches’’ to the right through a
particle-hole propagator, there will be no further reference to
the externalv in the rest of the chain following this particle-
hole propagator. With this observation, we are able to formu-
late equations fordL anddC:

dL5~V1C!dGppG1dCGppG1~V1C!Gpp~dL1dC!,
~8a!

dC5dLGphG. ~8b!

Here,dGpp denotes a particle-particle propagator whose left
single particle line is differentiated with respect to the exter-
nal v ~i.e., this particle line is marked by an3). The fact
that a particle-hole propagator eliminates all reference to the
externalv is reflected in the equation fordC.

Using Eq.~7a!, Eq. ~8a! can be brought into a more con-
venient form which eliminates all reference to the bare po-
tential ~which is generally ill behaved! in favor of G ~which
is the smallest quantity available and well behaved!. These
manipulations are performed in Appendix A. We obtain

dL1dC5GdGppG1~11GGpp!dC~11GppG!, ~9a!

dC5dLGphG. ~9b!

The two diagrams in Fig. 2 which determine
]S!(0,v)/]vuv50 still contain a factor of the bare potential.
In order to exploit the cancellations inherent inG as fully as
possible, we would like to rearrange these diagrams so that

bare potential lines do not appear. Also, we would like the
resulting diagrams to be top-bottom symmetric. This is not
merely an aesthetic desire. It also helps guarantee that the
symmetries of the underlying physical processes will be re-
spected in our approximate treatment.

The necessary rearrangements can be made using Eqs.
~7a! and ~9!. They are, however, neither straightforward nor
simple and are therefore described in Appendix B. The final
result can again be expressed in terms of two diagrams which
are shown in Fig. 3.

Let us focus our attention on the second diagram in Fig. 3.
Its leading contribution to]S!(0,v)/]vuv50 is of fifth order
in the potential. For weak potentials and/or low density, this
contribution will be negligible compared with the contribu-
tion of the first diagram. Also, the diagram contains three
factors ofG. As mentioned before,G is the smallest quantity
available. It reflects maximal cancellations between short-
range repulsion and long-range attraction. Thus, even if the
potential is not weak or the density is not low, we expect this
diagram to make a small contribution compared with the
contribution from the first diagram. This expectation is sup-
ported by numerical studies. Our second approximation,
therefore, is to neglect this diagram altogether. This approxi-
mation results in a considerable simplification of subsequent
calculations.

We have arrived at a fairly simple form for the condensate
fraction. However, the appearance of a marked propagator in
the first diagram of Fig. 3 suggests that it may be necessary
to take a closer look at diagrams which have been neglected
along the way. Our starting point for the present consider-
ations was Fig. 1 which is a result of approximate parquet
theory. This approximation neglects all vertex corrections
and all self-energy insertions in any given diagram; the main
reason for this neglect~apart from a desire for simplicity! is
the fact that first-order vertex corrections and self-energy in-
sertions are strictly absent in Bose systems. Inclusion of
these effects would have consequences of two different types

FIG. 4. The second and the third diagrams can still be inter-
preted as containing self-energy insertions. This is no longer pos-
sible for the first diagram due to the marked propagator.

FIG. 2. Diagrams contributing to]S!(0,v)/]vuv50 . The in-
coming and outgoing particle lines carry four-momentum zero.

FIG. 3. A better-behaved form for]S!(0,v)/]vuv50 . Again,
the incoming and outgoing particle lines carry four-momentum
zero.
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for the determination of the condensate fraction. Thev dif-
ferentiation~and the marked propagator! can occur at a place
accessible to approximate parquet theory as in the second
and third diagrams shown in Figs. 4 and 5. Propagator and
vertex corrections remain such after the differentiation.
These effects can be evaluated by constructingnc in the bare
theory ~as above! and ‘‘merely’’ replacing all bare propaga-
tors and vertices by the corresponding dressed quantities.
This can result in numerical changes but not in structural
changes. However, thev differentiation of a fully dressed
diagram can also occur at a location not accessible to ap-
proximate parquet theory as in the first diagrams shown in
Figs. 4 and 5. These are structurally new contributions to
nc which materially alter the counting of diagrams contrib-
uting to the condensate fraction. Since our primary concern
here is with the counting of diagrams and not with their
numerical evaluation, we will continue to neglect all dia-
grams which contain explicit vertex corrections and/or self-
energy insertions~e.g., the second and third diagrams in
Figs. 4 and 5!. We will, however, explicitly reinstate struc-
turally new diagrams such as the first diagrams in Figs. 4 and
5. Many more new diagrams will be generated in higher
orders inC. Specifically, in ordern, there will ben! dia-
grams contributing to]S!(0,v)/]vuv50 . This follows from
the fact that there aren! distinct ways to mark the leftmost
propagator innth order.~See Figs. 12 and 13, below, in this
respect.!

Fortunately, one additional~kinematic! approximation
renders explicit evaluation of these diagrams unnecessary.
We demonstrate in Appendix C that all additional diagrams
can be included by exponentiating the first diagram in Fig. 3.
The approximation involved can be seen to be controlled and
reliable. Our final result for the condensate fraction is simply

nc5exp~D !, ~10!

whereD is the value of the first diagram in Fig. 3 as evalu-
ated according to the Feynman rules.

Note that Eq.~10! always predicts a nonzero condensate
fraction atT50. This fact provides an initial signal that the
approximation leading to Eq.~10! may not be valid for non-
zero temperature since we expect that all systems of interest
will have a finite transition temperature. While this could
arise through singularities inD, it seems more likely that the
approximations leading to exponentiation break down. We
shall return to this question in Sec. IV. It is also interesting to
note that Eq.~10! has the same structure as the HNC result
for the condensate fraction.24 Unfortunately, a detailed dia-

grammatic interpretation of the HNC exponent requires a
fairly precise discussion of how a special subset of ladder
diagrams is to be incorporated in the evaluation ofD. Ladder
diagrams in this subset contain one and only one pp propa-
gator where both intermediate particles are in the condensate
simultaneously. The contribution of these diagrams to, e.g.,
the binding energy per particle or the static structure function
is numerically small compared to the contribution of all lad-
der diagrams so that little attention has been paid to this
point previously. Unfortunately, this is not the case for the
condensate fraction so that this question should be addressed
with greater care. Here, we are concerned primarily with the
structure of the diagrammatic derivation. Details associated
with the correct counting of these special diagrams will be
considered in a separate publication.

III. LIMITING CASES

In this section, we consider three particularly interesting
limiting cases of the results of the preceding section. These
will be ~i! the pure ladder sum,~ii ! the pure chain@or random
phase approximation~RPA!# sum, and~iii ! the hard sphere
system.

A. Pure ladders

The pure ladder limit is obtained by setting the chains
equal to zero. Looking at Fig. 3, there appears to be nothing
left to calculate. We must recall, however, that Fig. 3 was the
result of a considerable rearrangement of diagrams. To obtain
the correct ladder limit, we look back at the proper self-
energy shown in Fig. 1. It is now given by the sum of all
pure ladder diagrams closed off with a bare propagator. In
each diagram of ordern in V, there aren21 distinct ways to
mark the leftmost particle line. Correct counting rules allow
for the inclusion of the full ladder sum before and after the
marked propagator. Thus, the condensate fraction is deter-
mined by the diagram in Fig. 6. Explicit evaluation of this
diagram yields

DL52 i E d4k

~2p!4
u~k2kF!G0

2~k,v!p0~k,v!~Vk1Lk!
2

52
r

4E d3k

~2p!3
~Vk1Lk!

2

vk
2 . ~11!

Here,p0(k,v) denotes a particle-hole propagator which is
given as

FIG. 5. The second and the third diagrams can still be inter-
preted as containing vertex corrections. This is no longer possible
for the first diagram due to the marked propagator.

FIG. 6. In the limiting case of pure ladders, the condensate
fraction is determined by this diagram.
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p0~k,v!52 inE d4p

~2p!4
G0~k1p!G0~p!

5
2rvk

~v2vk1 ih!~v1vk2 ih!
. ~12!

L is obtained from the ladder equation, Eq.~7a!, with the
replacement ofC by zero. After performing the integration
over the fourth component of the intermediate momentum
we obtain

L~k!5E d3p

~2p!3
V~ up1ku!

1

~22vp!
@V~p!1L~p!#.

~13!

Barring special dynamical circumstances, the quantity
Vk1Lk will be nonzero atk50. Hence, the integrand of Eq.
~11! behaves like 1/k2 in the small-k limit, and the integral is
divergent. We obtain an unphysical result. This is an indica-
tion of the absolute necessity of summing the chain diagrams
~or RPA! for Bose systems.21

B. Pure chains or the RPA limit

The RPA limit is obtained by neglecting the ladders in the
defining equation for the chains, Eq.~7b!. The calculation for
this case is performed in Appendix III. Indeed, Eq.~34!
yields

D RPA52
1

rE d3k

~2p!3
~ek2vk!

2

4ekvk
, ~14!

where ek
25vk

212rvkV(k). The integrand is now propor-
tional to k in the small-k limit, so that the integral is finite.
This result of Eq.~14! is precisely the same as the uniform
limit of the HNC condensate fraction.34

C. Hard sphere limit

The limit of a dilute gas of hard spheres is especially
interesting since analytical results have been obtained using
a variety of methods.8–10 In Ref. 21 we showed that parquet
theory correctly reproduces the binding energy obtained in
Ref. 9. The aim of this section is to demonstrate that the
condensate fraction obtained in Ref. 10 is also reproduced by
our formalism.

We briefly summarize the arguments used in Ref. 21 to
treat the hard sphere system. We consider a hard-core poten-
tial of rangea; i.e., the potential is simply

V~r !5H 1` for r,a,

0 for r.a.
~15!

We construct the ladder sum using the bare potential in anal-
ogy with Eq.~13!. This ladder sum is then used to drive the
chain equation. This procedure is sensible if the density is
relatively low or the range of the core is relatively small~i.e.,
if ra3!1).

Equation~13! can be solved analytically for a potential of
finite heightV05k2 and rangea.35 We obtain

V~k!1L̃~k!54paFsinkaka
2coska

tanhka

ka G k2

k21k2 ,

~16!

whereL̃ denotes the zero-density approximation to the cor-
rect ladder sum,L. The hard-core limit of Eq.~16!,
k2→`, is simply

V~k!1L̃~k!54pa
sinka

ka
. ~17!

The effective potentialVeff5V1L̃ represents an appropri-
ate driving term for the chains. Naively, the condensate frac-
tion can then be obtained from Eq.~14! through the substi-
tution ofV by Veff in ek . In the determination of the binding
energy, a counting problem arose in connection with the
second-order contribution ofVeff to E/A.21 This is not the
case for the condensate fraction where there are no such
counting problems due to the presence of the marked propa-
gator on the leftmost line. Hence, the naive expectation is
correct.

It remains to compute the integral in Eq.~14!. We
now have an explicit expression forek , ek

25vk
2

18pravk sinka/ka. Given the structure of the integrand, it
is clear that the leading contribution in the present limit
comes from the region of smallk. There, it is legitimate to
approximateV(k)1L̃ by 4pa. This approximation enables
us to perform the integration analytically. Specifically,

DHS52
1

rE d3k

~2p!3
~Avk

218pravk2vk!
2

4vkAvk
218pravk

524S ra3

p D 1/2E
0

`

dz
~A11z21!2

z5/2A11z

52
8

3 S ra3

p D 1/2, ~18!

where HS stands for hard spheres. In the present limit,
exp(D)'11D so that

nc
HS512

8

3 S ra3

p D 1/2. ~19!

This is precisely the result found in Ref. 10.

IV. TOWARDS FINITE TEMPERATURES

Ultimately, one would like to construct a reliable approxi-
mate many-body theory for the finite-temperature case. As
indicated in the Introduction, several important steps in this
direction have been made in both the variational and the
diagrammatic formalisms. Variational theories are more ad-
vanced at present, and considerable work has been done both
below27,28 and above29 the l point. To date, parquet theory
has only been extended to temperatures below thel point,30

and the close connection between the two approaches per-
sists at finite temperatures. Thus, the substantial analogies
between variational formalisms and parquet theory make the
former very useful to guide the development of the latter.
However, a reliable calculation of, e.g., thel point of liquid
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4He has not been achieved yet in approximate theories, al-
though data from PIMC calculations are available.31 Hence,
further development of approximate theories seems very de-
sirable.

While it is not our aim to provide a detailed discussion of
the condensate problem at finite temperatures, several obser-
vations about this problem may be useful. At first sight, the
extension toTÞ0 seems relatively straightforward in the
present formalism. Much of the work of summing diagrams
has already been done, and the extension should largely be a
matter of replacing zero-temperature Green’s functions by
their finite-temperature analogs. However, a number of prob-
lems and subtleties arise in this extension, and it is the pur-
pose of this section to discuss these in some detail.

One formalism convenient for the treatment of condensed
Bose systems at finite temperatures has been developed by
Lee36 in the context of the canonical ensemble. This formal-
ism is likely to be useful for the extension of parquet theory
to TÞ0. In Lee’s approach, the free propagator is given by

G0~k,vn!5
1

ivn2vk1m0
, ~20!

where thevn are discrete Matsubara frequencies given by
vn52pn/b with b51/kBT (kB is the Boltzmann constant!.
The quantitym0 is the chemical potential of the noninteract-
ing Bose system at temperatureT. Of course, finite-
temperature calculations present various technical complica-
tions. Instead of performing the relatively simple integrations
over v appropriate for zero temperature, it is necessary to
sum over the discrete Matsubara frequencies. While these
sums can be done analytically in certain simple cases, results
typically depend on the remaining~external! Matsubara fre-
quencies in a complicated way, and further computation is
severely hindered. Thus, additional approximations will be
called for.30 Also, an additional counting rule in Lee’s for-
malism leads to certain subtleties in the treatment of conden-
sate propagators. Such problems are largely technical in na-
ture, and we prefer to focus on diagrammatic aspects of the
problem.

The tacit ~diagrammatic! assumption is that those dia-
grams which provide the most important contributions to the
zero-temperature problem will also be of primary importance
for TÞ0. Unfortunately, this assumption is not entirely cor-
rect. Many classes of diagrams have been excluded from the
parquet formalism because they are strictly zero atT50.
Examples include exchange diagrams and vertex corrections
involving local potentials. Such diagrams no longer vanish
whenTÞ0. Indeed, certain classes of these diagrams can be
shown to be essential for the cancellation of explicit diver-
gences, and their contributions must be included with care.

In particular, it is not obvious that the exponentiation of dia-
grams, Eq.~10!, remains valid forTÞ0. ~It is difficult to
reconcile exponentiation with a vanishing condensate frac-
tion at the transition temperature.! This exponentiation was
obtained by reinstating important diagrams~vertex correc-
tions and self-energy insertions! previously neglected and by
demonstrating that their inclusion could be approximated by
exponentiating the basic diagram~i.e., the first diagram in
Fig. 3!.

In general, the four-point function follows from functional
differentiation of the proper self-energy with respect to the
propagator so that a single diagrammatic contribution toS!

leads to many diagrams inG. Unfortunately, it is not possible
to construct any approximate many-body theory forG which
maintains complete consistency withS!.37 As a conse-
quence, general rules for proceeding fromG to S! are not
applicable in any approximate theory. Explicit counting rules
must be constructed, and their construction is usually not
unique. In principle, all algorithms leading to the same set of
diagrams are equally valid. In practice, approximations must
be made, and different routes will suggest different approxi-
mation schemes. Thus, we would like to suggest an equiva-
lent way to recover those ‘‘additional’’ diagrams incorpo-
rated by exponentiation. This alternate approach is valid at
T50 and is likely to be more fruitful whenTÞ0 since it
provides for the cancellation of new explicit divergences in a
natural way.

The basic diagram can also be obtained by the following
process: Take the contribution of the chains to the four-point
function and close the end points at the top with a marked
propagator. This process is depicted in Fig. 7. Similarly, the
two diagrams in Fig. 12, below, can be obtained by closing
ladder diagrams of second order in the chains in the same
way. Figure 8 illustrates this process. One of these ladder
diagrams is an exchange diagram. In exactly the same way,
all diagrams of higher order inC can be obtained by closing
higher-order ladder diagrams. These ladder diagrams must
include all possible exchange contributions. Innth order,

FIG. 7. Closing off the top end points of the chain contribution
to G with a differentiated propagator yields the first diagram in
Fig. 3.

FIG. 8. Closing off the top end points of the second-order ladder
diagrams~in C! with a differentiated propagator yields the two
diagrams in Fig. 12. Note that we must include the exchange dia-
gram on the right.

FIG. 9. Closing off the top end points of this third-order ladder
diagram~in C! with a differentiated propagator yields the fifth dia-
gram in Fig. 13.
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there aren! such diagrams corresponding to then! distinct
possibilities of attaching potential~i.e., chain! lines to the
line on the right hand side of the ladder diagram. As an
example, Fig. 9 demonstrates how the fifth diagram in Fig.
13, below, is obtained in this scheme.

It is clear that this procedure generates all the diagrams
previously included through the exponentiation in Eq.~10!.
Note, however, that it is necessary to retain all possible ex-
change contributions to the ladder diagrams. All of these
exchange contributions are strictly zero atT50 when local
potentials are used as rungs. This was the reason for their
neglect in the evaluation of the ladders at zero temperature.
However, nonlocal rungs~such asv-dependent chains! yield
nonzero exchange diagrams even atT50. Their inclusion
was accomplished through the exponentiation in Eq.~10!. At
finite temperatures, even local rungs give rise to nonzero
exchange diagrams. On the one hand, this indicates the need
for greater care in the summation of ladder diagrams. On the
other hand, it may provide a convenient way to include the
‘‘additional’’ diagrams in question without exponentiation.

The contribution of the bare potential toG will also make
a nonzero contribution to the condensate fraction at finite
temperature when closed with a marked propagator in the
manner described above. Thus, the basic diagram which
yields the condensate fraction atTÞ0 is just the full four-
point function,G85V1L81C, closed off with a marked
propagator. Here,L8 denotes the ladder sum including all
possible exchange diagrams. See Fig. 10 in this regard. There
is no longer any need for exponentiation.

The foregoing discussion has assumed but not specified
the existence of a ‘‘marked propagator’’ at finite tempera-
tures. AtT50, this object arose from a differentiation with
respect to the fourth component of the four-momentum
which was equivalent to substituting2G0

2 for G0 in the
evaluation of the resulting Feynman diagram. AtTÞ0, we
must deal with discrete Matsubara frequencies with respect
to which we cannot differentiate. However, we can again
obtain the result2G0

2 for the marked propagator if we dif-
ferentiate with respect to the chemical potential which ap-
pears in the denominator of the propagator. While there are
arguments in support of this procedure, we do not regard this
issue as settled.

There are two general problems which remain. The first is
how to unify the theories at zero and finite temperature so
that theT→0 limit of the finite-temperature result will yield

the zero-temperature result. The kinematic approximations
adopted atT50 ~as described in Appendix C! are markedly
different from those which would be required in the method
described above, so that there is no guarantee that theT50
results would be the same. The second problem is the correct
incorporation of the RPA sum in the exchange diagrams. As
we have demonstrated in the text, respecting the RPA limit is
vital for convergence properties. Clearly, an exact treatment
is out of the question due to the technical difficulties associ-
ated with the infinite sums over Matsubara frequencies. We
suspect that a judicious approximate treatment of thev de-
pendence may provide a solution not only to the second but
also to the first problem.

A better understanding of the finite-temperature properties
of condensed Bose systems is highly desirable. Of course,
there is still a great amount of work to be done, but efforts
along the lines suggested here seem very much worthwhile.

V. CONCLUSIONS

We have derived an interpretation of the condensate frac-
tion of Bose systems atT50 in terms of diagrams of the
parquet class. A major rearrangement of diagrams was per-
formed in order to obtain a result which reflects the symme-
tries of the underlying physical processes and to express this
result in terms of small and well-behaved quantities. Impor-
tant diagrams previously neglected in parquet theory were
reinstated simply with the aid of one judicious kinematic
approximation. We considered a number of limiting cases
and showed that our results can reproduce the uniform limit
of the HNC condensate fraction and the perturbative result
for the condensate fraction of the hard sphere system.

Two questions remain open. The first is how properly to
extend our formalism to finite temperatures. We have dis-
cussed this problem in the preceding section and suggested
some ideas in this direction. The second question is that of
the correct inclusion of the subset of ladder diagrams men-
tioned at the end of Sec. II and of the construction of reliable
kinematic approximations to produce actual numbers for ac-
tual physical systems~such as liquid4He!. We will address
this problem in a separate publication.
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APPENDIX A: SIMPLIFYING dL

We rewrite Eq.~8a! as

@12~V1C!Gpp#dL5~V1C!dGppG1~V1C!GppdC

1dCGppG. ~A1!

Formal solution of this equation fordL requires the inverse
operator@12(V1C)Gpp#

21. From our equation forG,

G5V1C1L5~V1C!1~V1C!GppG, ~A2!

we see that

@12~V1C!Gpp#
21~V1C!5G. ~A3!

FIG. 10. An alternative diagrammatic representation of the con-
densate fraction. As described in the text, this diagram includes all
the diagrams that had been included through the exponentiation of
Eq. ~10! at T50. G8 is the sum of the bare potentialV, the ladders
including all exchange diagramsL8, and the chainsC.
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Substitution of Eq.~23! into Eq. ~21! yields

dL5GdGppG1GGppdC

1@12~V1C!Gpp#
21dCGppG. ~A4!

For the last term in this equation it is convenient to write the
inverse operator in a different form. We multiply Eq.~A2! by
Gpp on the right and add unity on both sides to obtain

1511GGpp2~V1C!Gpp2~V1C!GppGGpp

5@12~V1C!Gpp#@11GGpp#. ~A5!

This immediately yields

@12~V1C!Gpp#
21511GGpp. ~A6!

Substituting this form of the inverse operator into Eq.~A4!,
we obtain

dL5GdGppG1GGppdC1dCG ppG1GGppdCGppG,
~A7!

which is seen to be identical with Eq.~9a!.

APPENDIX B: REARRANGING DIAGRAMS

We think of the second diagram for the proper self-energy
in Fig. 1 as a ladder diagram,L̄5VGppG, closed with a bare
propagator,G0 . The corresponding ladder diagrams which,
when closed with a bare propagator, lead to the diagrams in
Fig. 2 are given as

dL̄5VdGppG1VGpp~dL1dC!. ~B1!

Using Eq.~9!, we rewrite this equation as

dL̄5VdGppG1VGpp@GdGppG1~11GGpp!dC~11GppG!#

5@V1VGppG#@dGppG1GppdC~11GppG!#. ~B2!

Since L5(V1C)GppG, we can replaceV1VGppG by
V1L2CGppG in Eq. ~B2!:

dL̄5~V1L !dGppG2CGppGdGppG1~V1L !GppdC

1~V1L !GppdCGppG2CGppGGppdC

2CGppGGppdCGppG. ~B3!

We now use Eq.~9b! to rewrite the third term in Eq.~B3! as
(V1L)Gpp(dLGphG). The effect of closing off this diagram
with a bare Green’s function is equivalent to closing off the
diagram @(V1L)GphG#GppdL5CG ppdL with a bare
Green’s function. This process is depicted in Fig. 11.

Ultimately, we are interested only in diagrams which con-
tribute to the condensate fraction. We define a new quantity,

dL̃, by replacing the third term in Eq.~B3! by CG ppdL.

Closing off dL̃ with a bare propagator yields exactly the
same set of diagrams that would be obtained by closing off
dL̄ with a bare propagator. Using Eq.~A7!, we obtain

dL̃5~V1L !dGppG2CGppGdGppG

1CGpp@GdGppG1GGppdC1dCGppG

1GGppdCGppG#

1~V1L !GppdCGppG2CGppGGppdC

2CGppGGppdCGppG. ~B4!

A number of desirable cancellations lead to

dL̃5~V1L !dGppG1~V1L !GppdCGppG1CGppdCGppG

5~V1L !dGppG1GGpp~dLGphG!GppG. ~B5!

Closing off dL̃ in this form leads precisely to the two dia-
grams in Fig. 3. In the first diagram, we have made use of the
chain equationC5(V1L)GphG.

APPENDIX C: EXPONENTIATING DIAGRAMS

We wish to construct a simple but reliable kinematic ap-
proximation which facilitates evaluation of all the diagrams
contributing to ]S!(0,v)/]vuv50 . Using Eqs.~7b! ~with
Gph5p0) and ~12!, we first constructC(k,v). We obtain

C~k,v!5
~ek

22vk
2!2

2rvk~v2ek1 ih!~v1ek2 ih!
, ~C1!

where ek
25vk

212rvkV̄k . ~Here, V̄k stands for a generic
particle-hole irreducible potential driving the chains.! We de-

FIG. 12. Diagrams contributing to]S!(0,v)/]vuv50 in second
order inC.

FIG. 13. Diagrams contributing to]S!(0,v)/]vuv50 in third
order inC.

FIG. 11. Three different representations of the same diagram.
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note the value of the first diagram in Fig. 3 byx. Given the
explicit form of C(k,v), x evaluates to

x52 i E d4k

~2p!4
~ek

22vk
2!2

~v2vk1 ih!22rvk

3
1

~v2ek1 ih!~v1ek2 ih!

52
1

rE d3k

~2p!3
~ek2vk!

2

4vkek
. ~C2!

We now turn to the evaluation of higher-order diagrams in
C. As we have argued in Sec. II, there aren! diagrams innth
order. The second- and third-order contributions to
]S!(0,v)/]vuv50 are illustrated in Figs. 12 and 13, respec-
tively. We will denote the contribution of thei th diagram in
nth order byxni . Hence,i runs from 1 ton!.

After the usualv integrations have been performed ana-
lytically, the first diagram in Fig. 12 evaluates to

x2152
1

r2E d3k

~2p!3
d3p

~2p!3
~ek2vk!

2

4vkek

~ep2vp!
2

4vpep

3
~ep1vp!

2

~ek1ep1vk1p!
2 . ~C3!

Equation~C3! has intentionally been written in a suggestive
fashion. If the denominator of the last term on the right hand
side were independent ofk, the two integrals would factor
into two independent integrals overd3k andd3p. A natural
approximation, therefore, is to first replacevk1p by
vk1vp ~an ‘‘angle average’’ approximation! and then re-
placek by p in this denominator. The result now becomes
extremely simple:

x2152
x2

~2! !2
.

Evaluation of the second diagram in Fig. 12 yields

x2252
1

r2E d3k

~2p!3
d3p

~2p!3
~ek2vk!

2

4vkek

~ep2vp!
2

4vpep

3
~ek1vk!~ep1vp!

~ek1ep1vk1p!
2 . ~C4!

Again, we replacevk1p by vk1vp in the last denominator
on the right hand side of Eq.~C4!. To maintain symmetry
betweenk andp, we once replacek by p and oncep by k in
one of the two factors in this denominator, respectively. This
leads to

x2252
x2

~2! !2
.

The pattern has become obvious by now. Equivalent kine-
matic approximations can be constructed in exactly the same
way in higher orders. Each diagram in ordern evaluates to
2(2x)n/(n!) 2. There aren! diagrams in this order, yielding
a total contribution of2(2x)n/n! to ]S!(0,v)/]vuv50 .
Thus,

]S!~0,v!

]v
U
v50

52 (
n51

`
~2x!n

n!
512exp~2x!. ~C5!

Substitution of Eq.~C5! into Eq. ~5! yields Eq.~10! imme-
diately.

The form of the above kinematic approximations was
guided by a desire to make calculations tractable and to
maintain symmetry between the kinematic variables appear-
ing in the various integrals. They are, however, also numeri-
cally reliably. The error introduced by these approximations
is not substantial. The dominant contribution to a given inte-
gral ~say, overd3k) comes from the region of small argu-
ment given the structure of the integrand. There,ek domi-
natesvk so that the replacement ofvk1p by vk1vp has
virtually no effect on the value of the integrand. Further-
more, the replacement ofk by p does not alter the threshold
behavior of the integrand. This leads us to believe that the
overall error made is small. We have verified this assumption
by numerical studies using interactions and densities appro-
priate of liquid 4He.

*Present address: Max-Planck-Institut fu¨r Kernphysik, 69117
Heidelberg, Germany.
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