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We describe a diagrammatic calculation of the condensate fraction of dense and strongly interacting Bose
systems at zero temperature using the framework of parquet theory. Starting from the proper self-energy of
parquet theory we perform a major rearrangement of diagrams to ensure proper counting and to express the
final result in terms of well-behaved quantities. A number of interesting limiting cases are considered, in
particular the hard sphere Bose gas at low densities where analytical results can be obtained. The present
formalism is well-suited for extension to finite temperatures, and we consider possible strategies in that
direction.

I. INTRODUCTION making well-defined approximations, it is possible to dem-
onstrate that the underlying physical contents of the HNC
The phenomenon of Bose-Einstein condensatBEC)  approximation and parquet theory are identfaEach of
has long been a subject of great interest and extensive rehese theories yields remarkably reliable results for quantities
search. Although the original motivation came from the well-sych as the ground state energy or the static liquid structure
known properties of liquid*He many decades ago, there is function of dense and strongly interacting Bose systems.
presently a renewed interest in BEC in a variety of systemgvhile a formalism for HNC calculations of the condensate
including excitons in CyO,' spin-polarized atomic fraction exist£3-2%the analogous formalism has not yet been
hydroger?. and kaons in dense nuclear maftetAlso, BEC  constructed in parquet theory. Such construction is the object
is believed to play a role in higfi; superconductor’. of the present paper, and we will draw parallels between the
Although a well-defined many-body theory exists and is,two approaches whenever possible.
in principle, capable of a complete description of this Eventually, the goal is to extend the zero-temperature for-
phenomenon,it is far too complicated to obtain useful ana- malism to finite temperatures. For example, one would like
lytical results except in the special cases of weak interactiofio compute the temperature at which the condensate fraction
and low density. The most famous example is a system obf liquid “He becomes zero in order to compare with the
hard spheres of radiua at a densityp. Here, analytical experimentally observed transition atT=2.17 K. This
results have been obtained by Lee, Huang, and ¥dfignd  problem has not been solved. Initial attempts at finite-
by Wu't who determined the leading terms of a perturbativetemperature calculations have been made in both variational
expansion in the parametdﬁ. It is instructive to estimate and diagrammatic approach&s?® but reliable calculations
the useful range of this expansion for the realistic case 0bf the condensate fraction and thepoint have not yet been
liquid *He for whicha is roughly 2 A. If we require that the achieved. Nonzero temperature also leads to significant com-
second-order correction to the ground state energy be legdication of the GFMC method which must be replaced by
than 50% of the first-order contribution, the density shouldthe path integral Monte Carl6PIMC) method, which re-
be less than 10° A 3. This is to be compared with the quires even greater computational efforts and results in
empirical equilibrium density of liquid *He which is  somewnhat larger error bars. Although PIMC data hint at a
0.021 85 A~2. Given the complexity of the underlying exact roughly correct value of, ,*! the error bars are too large to
many-body theory, it is clear that approximate theories mustiraw unambiguous conclusions. At first glance, it would ap-
be formulated to deal with the realistic cases of dense angear that it is simpler to extend approximate diagrammatic
strongly interacting systems. theories to finite temperature than variational theories. In
Let us first consider the situation at zero temperatureprinciple, diagrammatic theories merely require the replace-
There exists a number of approximate theories which can bment of zero-temperature Green’s functions by their well-
roughly divided into variational approach¥s:® diagram-  known finite-temperature analogs. While this replacement is
matic approaches, and the elegant but numerically demandrumerically challenging, it is conceptually simple. Unfortu-
ing Green's function Monte CarldGFMC) method*'® nately, the problem is not so simple since finite temperature
which yields an essentially exact solution of the many-bodyalso changes the way in which diagrams should be grouped
Schralinger equation. The most successful variational theoand (approximately summed. We shall discuss some pos-
ries make use of the so-called hypernetted ch@NC) sible strategies which might be adopted in this case.
approximation®!’and can be improved perturbatively using  The organization of this paper is as follows. Section I
the method of correlated basis functig®BF).**'8The sim-  deals with the diagrammatic derivation of the condensate
plest diagrammatic approach which contains all ingredient$raction in parquet theory and contains the main results of
necessary to ensure that all observable quantities are wdlie paper. A number of interesting limiting cases, including
behavedand, thus, provides a suitable starting point for per-the famous hard sphere Bose gas, will be considered in Sec.
turbative improvemenjss known as parquet theoty-?!By  Ill. A discussion of the possible extension of the present
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results to finite temperatures is given in Sec. 1V, and a variety

of conclusions are drawn in Sec. V. Three appendixes are N
provided for the more technical details of the derivation in v
Sec. II. +
r
II. DIAGRAMMATIC DERIVATION

OF THE CONDENSATE FRACTION
. . . ) o FIG. 1. The proper self-energy,*(k,w), in parquet theory. The
In this section, we construct a diagrammatic descriptionncoming and outgoing lines carry four-momentuk) ).

of the condensate fractiom, within the framework of par-
guet theory. For a discussion of the necessary techniques and f do 1

the notation we refer the reader to Refs. 19 and 21. Here, we Ne=—i m oS 0w —in

note only that we treat a homogeneous system of bosons as a T 0=27(0w) =iy

system of fermions with an artificial degeneraeyequal to  |n order to perform thew integration we must determine all

the number of particleA by taking the simultaneous limits zeros of the denominator in the above expression. The ex-

ke—0 andv—oo (K is the Fermi momentujt?? plicit form of 3*(0,w) in approximate parquet theory guar-
Before proceeding, we point out that, with well-defined antees that there is one and only one zere atw, where

kinematic approximations, the parquet equations reduce ex;  is real and negative. The integration is now performed

Thus, there is a close connection between these two ap-

ei €w. (3)

proaches although their starting points might appear to be 1
completely different. We shall see that there is a similar con- Ne= - : (4)
A . 027 (0,w)
nection in the case of the condensate fraction. =
The condensate fraction is that fraction of the particles Jo wg

which occupies th&=0 state. In our fermionic formalism, o o . .

this corresponds to the particles having momentum less thafnile it s, in principle, necessary to determing exactly, it

ke (sinceke—0). Explicit counting rules are needed in go- WOU|("J be very_convenlent if one could.flnd' an approximate
ing from the proper self-energy*(k, ) to n, in order to location for this zero. Numerical studies |r_1d|c:_:1te that the
ensure that diagrammatic truncations do not introduce count/@lué @o=0 provides a very good approximation for the
ing errors. A major rearrangement of diagrams will be nec-exact location. We shall use t_h|s approximation in the follovy-
essary to express, in terms of small and well-behaved N9 SO that our basic equation for the condensate fraction

quantities such as the four-point functibnand to eliminate  Pecomes
all reference to the bare potenthal We will argue on purely

diagrammatic grounds and neglect for the moment details of n.= 1 (5)
the kinematic approximations necessary for numerical imple- ¢ 1— 92*(0,0)
mentation. Jw

The full propagator is @m0

Given the explicit diagrammatic form oE* in parquet

ap O(k—Kkg) theory as shown in Fig. 1, we can now proceed to calculate
G (K, 0)= 8pp ————< - the derivative of3*(0,0) with respect tow at w=0. The
o—o—2"(K,0)+in : - S ,
first diagram in Fig. 1 evaluates 9/(k=0) and is, there-
O(kr—k) fore, independent of the incoming four-momentum. It does
+ w—o— 2 (K,w)—in|’ () not contribute to the desired derivative. Our attention now

focuses entirely on the second diagram in Fig. 1.
wherea andg label the fictitious “spin” quantum number of Differentiation of this diagram with respect to the fourth
the Fermi system, angl is an infinitesimal positive constant. componeniw of the incoming four-momentum means differ-
Units are chosen such that=k?/2. The number density of entiation of every piece of the diagram that depends on this
particles in the condensatg,=n.p, can be obtained imme- «. The only explicit reference t is contained in the left-

diately: most particle line. Since approximate parquet theory neglects
all self-energy insertions, this and every other explicit par-
d?k _ ticle line is understood to correspond to a free propagator
Pe 'VJ W&(kp—k)G(k,w)e' “ GJ4(k,w), obtained from Eq(1) by settingS*(k, ) equal
to zero. Itsw derivative is simply
. d*k 0(ke—k) ico
——Ivf (2m)* w—wk—z*(k,w)—ine - @ 9G5”(k,w)

o =[G (k) 12 ®)

Here, e is an infinitesimal positive constant that ensures con-

vergence of thew integration. Specifically, it forces us to From now on, we will label a differentiated particle line in a
close the contour of integration in the upper half-plane. Perdiagram by anx on this line. This is equivalent to substitut-

forming the integration oved3k in the limit kp— 0,v—oc, ing —GS for Gy when the diagram is to be evaluated accord-
we obtain ing to the Feynman rules.
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T 3L+6C ¢ * L

FIG. 2. Diagrams contributing té%*(0,0)/dw|,-¢. The in- r

coming and outgoing particle lines carry four-momentum zero. FIG. 3. A better-behaved form for3*(0,0)/dw|,_o. Again,

the incoming and outgoing particle lines carry four-momentum

In addition to the explicitw dependence of the leftmost .

particle line there is an implicity dependence " in the

second diagram of Fig. 1. Recall tHat=V+L +C, whereL  pare potential lines do not appear. Also, we would like the
andC are ladder and chain diagrams, respectively. Denotingegyiting diagrams to be top-bottom symmetric. This is not
the » derivatives(evaluated ato=0) 9f L andC by 6L and  perely an aesthetic desire. It also helps guarantee that the
6C, respectively, we can represefi*(0,)/dw|,-o @ the  symmetries of the underlying physical processes will be re-
sum of the two diagrams in Fig. 2. o spected in our approximate treatment.

The next step is to determin#. and 6C. This is(almos} The necessary rearrangements can be made using Egs.
straightforward given the parquet equations foandC, (7a) and(9). They are, however, neither straightforward nor
simple and are therefore described in Appendix B. The final
result can again be expressed in terms of two diagrams which
are shown in Fig. 3.

C=(VHL)Gp(VHL)+(VFL)GpiC. (7b) Let us focus our attention on the second diagram in Fig. 3.
Here,G,, andG,, are particle-particlépp) and particle-hole Its leading contribution t@%*(0,.w)/dw|,,—o is of fifth order
(ph) propagators, respectively. The bare potendds local  in the potential. For weak potentials and/or low density, this
and, hence, independent @f. Applying the chain rule contribution will be negligible compared with the contribu-
should then yield expressions faiL and SC. However, tion of the first diagram. Also, the diagram contains three
there is one subtlety. In any given diagram, the only referfactors ofl". As mentioned beford, is the smallest quantity
ence to theexternalw lies in the leftmost particle line. It is available. It reflects maximal cancellations between short-
only at this line where differentiation with respect to the range repulsion and long-range attraction. Thus, even if the
externalw occurs. This places no restrictions on the numbePotential is not weak or the density is not low, we expect this
of particle-particle propagators involved. However, as soorfliagram to make a small contribution compared with the
as some momentum “branches” to the right through acontribution from the first diagram. This expectation is sup-
particle-hole propagator, there will be no further reference torted by numerical studies. Our second approximation,
the externab in the rest of the chain following this particle- therefore, is to neglect this diagram altogether. This approxi-
hole propagator. With this observation, we are able to formuMation results in a considerable simplification of subsequent

L=(V+C)Gpy(V+C)+(V+C)Gpl, (78

late equations foL and 5C: calculations. o
We have arrived at a fairly simple form for the condensate
OL=(V+C) oG, I+ 5CG, "+ (V+C)Gyy( 6L+ 6C), fraction. However, the appearance of a marked propagator in

(8a) the first diagram of Fig. 3 suggests that it may be necessary
to take a closer look at diagrams which have been neglected
6C=06LGyl. (8b)  along the way. Our starting point for the present consider-
ations was Fig. 1 which is a result of approximate parquet
ttheory. This approximation neglects all vertex corrections
“and all self-energy insertions in any given diagram; the main
reason for this negle¢apart from a desire for simplicifyis
. . : the fact that first-order vertex corrections and self-energy in-
externale is reflected in the equation faiC. sertions are strictly absent in Bose systems. Inclusion of

U.S‘“g Eq.(?a),_ Eq. (.88? can be brought into a more con- these effects would have consequences of two different types
venient form which eliminates all reference to the bare po-

tential (which is generally ill behavedn favor of I' (which
is the smallest quantity available and well behgvéathese
manipulations are performed in Appendix A. We obtain

8L+ 8C=T58Gp I +(1+TGpp) 5C(1+Gy ), (98 <>< < <
5C=06LGT . (9b) ’

Here, G, denotes a particle-particle propagator whose lef
single particle line is differentiated with respect to the exter
nal o (i.e., this particle line is marked by ax). The fact

that a particle-hole propagator eliminates all reference to th

o)

The two diagrams in Fig. 2 which determine
3%*(0,w)/dw|,,—g still contain a factor of the bare potential. ~ FIG. 4. The second and the third diagrams can still be inter-
In order to exploit the cancellations inherentlinas fully as  preted as containing self-energy insertions. This is no longer pos-
possible, we would like to rearrange these diagrams so thaible for the first diagram due to the marked propagator.



53 DIAGRAMMATIC DERIVATION OF BOSE CONDENSATE FRACTIONS 821

V+L

[ay
N\

V+L

(V2

) ( ’

FIG. 6. In the limiting case of pure ladders, the condensate

fraction is determined by this diagram.
FIG. 5. The second and the third diagrams can still be inter-

preted as containing vertex corrections. This is no longer possible . . .
for the first diagram due to the marked propagator. grammatic interpretation of the HNC exponent requires a

fairly precise discussion of how a special subset of ladder

diagrams is to be incorporated in the evaluatioof_adder

diagrams in this subset contain one and only one pp propa-
tor where both intermediate particles are in the condensate

for the determination of the condensate fraction. Thdif-
ferentiation(and the marked propagajaran occur at a place
:Egefhsilzlzig)ggﬁgoﬁ]rg\?vtﬁ iﬁaé?guse.t 4tr:aen?:lry5.a|53rlcr)]p;geat2??n |mul_tan_eously. The contril_)ution of thesg diagrams to, e.g.,
vertex corrections remain such after the differentiation.. b'”d'F‘g energy per particle or the static structure function
These effects can be evaluated by construatinm the bare IS nur_nerlcally small compared to Fhe contribution OT all Iad-.
theory (as aboviand “merely” replacing all bare propaga- der diagrams so that little attention has been paid to this

tors and vertices by the corresponding dressed 0|uantitie§).Olnt prewously.'Unfortunatelly, this IS not the case for the
This can result in numerical changes but not in structuraFondensate fraction so that this question should be addressed

changes. However, the differentiation of a fully dressed with greater care. Here, we are concerned primarily with the

. ! : structure of the diagrammatic derivation. Details associated
diagram can also occur at a location not accessible to ap- g

proximate parguet theory as in the first diagrams shown iI¥\II'[h the correct counting of these special diagrams will be

Figs. 4 and 5. These are structurally new contributions toCOnSIdered in a separate publication.

n. which materially alter the counting of diagrams contrib-
uting to the condensate fraction. Since our primary concern
here is with the counting of diagrams and not with their
numerical evaluation, we will continue to neglect all dia- In this section, we consider three particularly interesting
grams which contain explicit vertex corrections and/or self-limiting cases of the results of the preceding section. These
energy insertionge.g., the second and third diagrams inwill be (i) the pure ladder suntii) the pure chaifior random
Figs. 4 and  We will, however, explicitly reinstate struc- phase approximatiotRPA)] sum, and(iii) the hard sphere
turally new diagrams such as the first diagrams in Figs. 4 angdystem.

5. Many more new diagrams will be generated in higher

orders inC. Specifically, in ordem, there will ben! dia-

grams contributing t@%*(0,w)/dw|,-o. This follows from A. Pure ladders

the fact that there are! distinct ways to mark the leftmost The pure ladder limit is obtained by setting the chains

propagator imth order.(See Figs. 12 and 13, below, in this gqya| to zero. Looking at Fig. 3, there appears to be nothing
respech. . _ _ o left to calculate. We must recall, however, that Fig. 3 was the
Fortunately, one additionalkinematig approximation  regyit of a considerable rearrangement of diagrams. To obtain
renders explicit evaluation of these diagrams unnecessanfe correct ladder limit. we look back at the proper self-
We demonstrate in Appendix C that all additional diagramsenergy shown in Fig. 1. It is now given by the sum of all
can be included by exponentiating the first diagram in Fig. 3pure ladder diagrams closed off with a bare propagator. In
The approximation involved can be seen to be controlled and ., diagram of order in V, there aren— 1 distinct ways to
reliable. Our final result for the condensate fraction is simply4rk the leftmost particle line. Correct counting rules allow

for the inclusion of the full ladder sum before and after the
n.=expD), (100 marked propagator. Thus, the condensate fraction is deter-

) ) ) o mined by the diagram in Fig. 6. Explicit evaluation of this
whereD is the value of the first diagram in Fig. 3 as evalu- giagram yields

ated according to the Feynman rules.

Note that Eq.(10) always predicts a nonzero condensate
fraction atT=0. This fact provides an initial signal that the ) d*k ) )
approximation leading to Eq10) may not be valid for non- DL=—i f Wa(k_ kr) Go(K, @) mo(K, @) (Vi + L)
zero temperature since we expect that all systems of interest

Ill. LIMITING CASES

will have a finite transition temperature. While this could p( d% (V+Ly?
arise through singularities iD, it seems more likely that the == ZJ 23 T (12)

approximations leading to exponentiation break down. We

shall return to this question in Sec. IV. It is also interesting to

note that Eq(10) has the same structure as the HNC resultHere, my(k,®) denotes a particle-hole propagator which is
for the condensate fractidfi.Unfortunately, a detailed dia- given as
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k —'fd4pe k+p)G V0 + L) =dma) T2 cogeq 2ME] K
mo(K,w)=—iv 2mn)? o(k+P)Go(p) (k) +L(k)= T g coXa— —— iz 2

16
2p0, (16)

(12 whereL denotes the zero-density approximation to the cor-
rect ladder sum,L. The hard-core limit of EQ.(16),

L is obtained from the ladder equation, Hga), with the ~ «°—, is simply
replacement ofC by zero. After performing the integration

=(w—wk+i n(w+w—in)’

over the_ fourth component of the intermediate momentum V(k)+[(k):4wa3irka_ (17)
we obtain k
d3p 1 The effective potentiaN/eff=V+I~_ represents an appropri-
L(k)= f WV(“ZH— k|) (_Z—w)[V(p)Jr L(p)]. ate driving term for the chains. Naively, the condensate frac-
p

tion can then be obtained from E.4) through the substi-
tution of V by V¢ in €. In the determination of the binding
Barring special dvnamical circumstan th ntit energy, a counting prqblem arose in connection with the
9 SP ynamical circumstances, e quantiyse .,ng-order contribution Of o to E/A.?L This is not the
Vit Ly wil be.nonzero ak=0. Hen'ce., the '”tegfa”d of Eq. case for the condensate fraction where there are no such
(1.1) behaves like 142 in the small_k limit, and th_e 'T“eg“%" IS counting problems due to the presence of the marked propa-
d_|vergent. We obtain an un_phy5|cal re_sult. This IS an_lndlca- ator on the leftmost line. Hence, the naive expectation is
tion of the absolute necessity of summing the chain diagram orrect.
(or RPA for Bose systems. It remains to compute the integral in Eql4). We
now have an explicit expression fore,, €2=w?
B. Pure chains or the RPA limit +8mpaw, sinkalka. Given the structure of the integrand, it

The RPA limit is obtained by neglecting the ladders in thelS cléar that the leading contribution in the present limit
defining equation for the chains, EqL). The calculation for comes from the region of smatl There, it is legitimate to

this case is performed in Appendix Ill. Indeed, EG4) approximateV(k)+L by 4ma. This approximation enables
yields us to perform the integration analytically. Specifically,

10 &K (e wp)? 1J d°k  (Vog+8mpaw—wy)?

=" 1k "k Dps=——
RPA™ b)) (27)° 4dewy (14 He p) (2m)° 4wk\/wﬁ+87'rpawk

13

where e2= w2+ 2pwV(k). The integrand is now propor- —_4 pa’ 1/szdz(Vl*'Z—l)z
tional tok in the smallk limit, so that the integral is finite. ™ 0 2°2J1+z
This result of Eq.(14) is precisely the same as the uniform 3 12
limit of the HNC condensate fractiof. __ § pa” (18)
3\ 7 '
C. Hard sphere limit where HS stands for hard spheres. In the present limit,
The limit of a dilute gas of hard spheres is especiallyexp@)~1+D so that
interesting since analytical results have been obtained using 312
a variety of method87'%In Ref. 21 we showed that parquet AHS_ 1 — 8[pa® (19
theory correctly reproduces the binding energy obtained in ¢ 3\ 7

Ref. 9. The aim of this section is to demonstrate that the_ . . . .
condensate fraction obtained in Ref. 10 is also reproduced byS IS Precisely the resuit found in Ref. 10.
our formalism.

We briefly summarize the arguments used in Ref. 21 to IV. TOWARDS FINITE TEMPERATURES
treat the hard sphere system. We consider a hard-core poten-

tial of rangea; i.e., the potential is simply Ultimately, one would like to construct a reliable approxi-

mate many-body theory for the finite-temperature case. As

indicated in the Introduction, several important steps in this

direction have been made in both the variational and the
(15 . . . e )
for r>a. diagrammatic formalisms. Variational theories are more ad-

vanced at present, and considerable work has been done both
We construct the ladder sum using the bare potential in anabelow?”?® and abov# the A point. To date, parquet theory
ogy with Eq.(13). This ladder sum is then used to drive the has only been extended to temperatures belowtpeint
chain equation. This procedure is sensible if the density i®nd the close connection between the two approaches per-
relatively low or the range of the core is relatively sm(ak.,  sists at finite temperatures. Thus, the substantial analogies
if pa®<1). between variational formalisms and parquet theory make the
Equation(13) can be solved analytically for a potential of former very useful to guide the development of the latter.

finite heightV,= «? and rangea.3® We obtain However, a reliable calculation of, e.g., thepoint of liquid

4+ for r<a,
Vin=1,
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FIG. 7. Closing off the top end points of the chain contribution  FIG. 8. Closing off the top end points of the second-order ladder

to I' with a differentiated propagator yields the first diagram in diagrams(in C) with a differentiated propagator yields the two
Fig. 3. diagrams in Fig. 12. Note that we must include the exchange dia-

gram on the right.

“He has not been achieved yet in approximate theories, al- ) o ) o )
though data from PIMC calculations are availabi¢lence, N particular, it is not obvious that the exponentiation of dia-
further development of approximate theories seems very dédfams, Eq.(10), remains valid forT#0. (It is difficult to
sirable. reconcile exponentiation with a vanishing condensate frac-
While it is not our aim to provide a detailed discussion of tion at the transition temperaturelhis exponentiation was
the condensate problem at finite temperatures, several obsé&btained by reinstating important diagrarhertex correc-
vations about this problem may be useful. At first sight, thefions and self-energy insertiongreviously neglected and by
extension toT#0 seems relatively straightforward in the demonstrating that their inclusion could be approximated by
present formalism. Much of the work of summing diagrams€XPonentiating the basic diagrafie., the first diagram in
has already been done, and the extension should largely be™0- 3. ) ) )
matter of replacing zero-temperature Green’s functions by N general, the four-point function follow; from functional
their finite-temperature analogs. However, a number of probdifferentiation of the proper self-energy with respect to the
lems and subtleties arise in this extension, and it is the puPropagator so that a single diagrammatic contributiol to
pose of this section to discuss these in some detail. leads to many diagrams In. Unfortunately, it is not possible
One formalism convenient for the treatment of condensed0 construct any approximate many-body theorylfawhich
Bose systems at finite temperatures has been developed Biaintains complete consistency with*.*” As a conse-
Lee® in the context of the canonical ensemble. This formal-quence, general rules for proceeding fréhto %* are not
ism is likely to be useful for the extension of parquet theoryapplicable in any approximate theory. Explicit counting rules

to T#0. In Lee’s approach, the free propaga’[or is given by must be ConStrUCted, and their construction is Usua”y not
unigue. In principle, all algorithms leading to the same set of

diagrams are equally valid. In practice, approximations must
(200 be made, and different routes will suggest different approxi-
mation schemes. Thus, we would like to suggest an equiva-
where thew, are discrete Matsubara frequencies given bylent way to recover those “additional” diagrams incorpo-
w,=2mn/ B with 8= 1/kgT (kg is the Boltzmann constant rated by exponentiation. This alternate approach is valid at
The quantityu is the chemical potential of the noninteract- T=0 and is likely to be more fruitful whef#0 since it
ing Bose system at temperaturB. Of course, finite- provides for the cancellation of new explicit divergences in a
temperature calculations present various technical complicazatural way.
tions. Instead of performing the relatively simple integrations The basic diagram can also be obtained by the following
over w appropriate for zero temperature, it is necessary tgrocess: Take the contribution of the chains to the four-point
sum over the discrete Matsubara frequencies. While theskinction and close the end points at the top with a marked
sums can be done analytically in certain simple cases, resulggopagator. This process is depicted in Fig. 7. Similarly, the
typically depend on the remainin@xternal Matsubara fre- two diagrams in Fig. 12, below, can be obtained by closing
guencies in a complicated way, and further computation idadder diagrams of second order in the chains in the same
severely hindered. Thus, additional approximations will beway. Figure 8 illustrates this process. One of these ladder
called for’° Also, an additional counting rule in Lee’s for- diagrams is an exchange diagram. In exactly the same way,
malism leads to certain subtleties in the treatment of conderall diagrams of higher order i@ can be obtained by closing
sate propagators. Such problems are largely technical in n&igher-order ladder diagrams. These ladder diagrams must
ture, and we prefer to focus on diagrammatic aspects of thclude all possible exchange contributions. rith order,
problem.
The tacit (diagrammati¢ assumption is that those dia- e
grams which provide the most important contributions to the
zero-temperature problem will also be of primary importance
for T+ 0. Unfortunately, this assumption is not entirely cor- N
rect. Many classes of diagrams have been excluded from the
parquet formalism because they are strictly zerorl at0.
Examples include exchange diagrams and vertex corrections
involving local potentials. Such diagrams no longer vanish
whenT#0. Indeed, certain classes of these diagrams can be FIG. 9. Closing off the top end points of this third-order ladder
shown to be essential for the cancellation of explicit diver-diagram(in C) with a differentiated propagator yields the fifth dia-
gences, and their contributions must be included with caregram in Fig. 13.

N )
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the zero-temperature result. The kinematic approximations
adopted aff =0 (as described in Appendix)Gre markedly
different from those which would be required in the method
described above, so that there is no guarantee thak e

X Ind results would be the same. The second problem is the correct
incorporation of the RPA sum in the exchange diagrams. As
we have demonstrated in the text, respecting the RPA limit is
vital for convergence properties. Clearly, an exact treatment
is out of the question due to the technical difficulties associ-
ated with the infinite sums over Matsubara frequencies. We
FIG. 10. An alternative diagrammatic representation of the consyspect that a judicious approximate treatment ofahee-

densate fraction. As described in the text, this diagram includes abendence may provide a solution not only to the second but
the diagrams that had been included through the exponentiation %SO to the first problem.

Eq.(10) atT=0.I"" is the sum of the bare potenti| the ladders
including all exchange diagrants, and the chain€.

A better understanding of the finite-temperature properties
of condensed Bose systems is highly desirable. Of course,
there is still a great amount of work to be done, but efforts
there aren! such diagrams corresponding to thedistinct  along the lines suggested here seem very much worthwhile.
possibilities of attaching potentidl.e., chain lines to the

line on the right hand side of the ladder diagram. As an V. CONCLUSIONS
example, Fig. 9 demonstrates how the fifth diagram in Fig. i , ,
13, below, is obtained in this scheme. We have derived an interpretation of the condensate frac-

It is clear that this procedure generates all the diagramon Of Bose systems af=0 in terms of diagrams of the
previously included through the exponentiation in Et0). parquet class. A major rearrangement of diagrams was per-
Note, however, that it is necessary to retain all possible exiormed in order to obtain a result which reflects the symme-
change contributions to the ladder diagrams. All of thesd'i€S Of the underlying physical processes and to express this
exchange contributions are strictly zeroTat 0 when local result in terms of sr_nall and weII—behgved guantities. Impor-
potentials are used as rungs. This was the reason for thdft diagrams previously neglected in parquet theory were
neglect in the evaluation of the ladders at zero temperatur&€instated simply with the aid of one judicious kinematic
However, nonlocal rung&uch as»-dependent chaingield approximation. We considered a number of I|m|t|_ng cases
nonzero exchange diagrams evenTat0. Their inclusion and showed that our results can reproduce the unn_‘orm limit
was accomplished through the exponentiation in EQ). At of the HNC condensate. fraction and the perturbative result
finite temperatures, even local rungs give rise to nonzer(gOr the conde_nsate frac_tlon of the har_d sphere system.
exchange diagrams. On the one hand, this indicates the need Two questions remain open. The first is how properly Fo
for greater care in the summation of ladder diagrams. On th xtend our formahsm_ to finite temperatures. We have dis-
other hand, it may provide a convenient way to include the?USSed this problem in the preceding section and suggested
“additional” diagrams in question without exponentiation. SOme |deas. In th|_s direction. The second question Is that of

The contribution of the bare potential Fowill also make the correct inclusion of the subset of ladder dl_agrams men-
a nonzero contribution to the condensate fraction at finitipned at the end .Of Sec' Il and of the construction of reliable
temperature when closed with a marked propagator in th mematlc_ approximations to pr_od_ucie actual nu_mbers for ac-
manner described above. Thus, the basic diagram whic}#"l physical ;ystem(ssuch as Ilqwd_ He). We will address
yields the condensate fraction && 0 is just the full four- this problem in a separate publication.
point function,I'’'=V+L’+C, closed off with a marked
propagator. Herel.” denotes the ladder sum including all ACKNOWLEDGMENTS

possible exchange diagrams. See Fig. 10 in this regard. There \ye would like to thank A. Lande for stimulating discus-

is no longer any need for exponentiation. sions. This work was partially supported by the U.S. Depart-

The foregoing discussion has assumed but not specifieghant of Energy under Grant No. DE-FG02-88ER 40388.
the existence of a “marked propagator” at finite tempera-

tures. AtT=0, this object arose from a differentiation with

respect to the fourth component of the four-momentum

which was equivalent to substituting G3 for G, in the We rewrite Eq.(8a) as

evaluation of the resulting Feynman diagram. ¢ 0, we

must deal with discrete Matsubara frequencies with respect [1=(V+C)Gppl L =(V+C) Gl + (V4 C) GppdC

to w.hich we canno% differentiate. However, we can again +8CGyl . (A1)

obtain the result- G for the marked propagator if we dif-

ferentiate with respect to the chemical potential which apFormal solution of this equation fofL requires the inverse

pears in the denominator of the propagator. While there areperatorf 1—(V+C)G,,]~*. From our equation foF,

arguments in support of this procedure, we do not regard this

issue as settled. F=V+CHL=(V+C)+(V+C)Gyl, (A2)
There are two general problems which remain. The first iSye see that

how to unify the theories at zero and finite temperature so

that theT— 0 limit of the finite-temperature result will yield [1-(V+ C)Gpp]’l(VwL C)=T. (A3)

APPENDIX A: SIMPLIFYING 6L
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V+L V+L C

FIG. 11. Three different representations of the same diagram.  FIG. 12. Diagrams contributing % *(0,w)/dw|,, o in second
order inC.

Substitution of Eq(23) into Eq. (21) yields
oL, by replacing the third term in EqB3) by CG,dL.

Closing off SL with a bare propagator yields exactly the
+[1-(V+ C)Gpp]‘15CGppF. (A4)  same set of diagrams that would be obtained by closing off

SL with a bare propagator. Using EGA7), we obtain

SL=T'5G I+ T'GyoC

For the last term in this equation it is convenient to write the
inverse operator in a different form. We multiply Eé2) by

Gpp On the right and add unity on both sides to obtain 5I:=(V+L)5G o —C Gyl 8G T
P Y p
1=14TGpy= (VHC)Gpp= (V+C)Gpl Gy +CGpd ' 8G I + ' GppSC + 5C Gyl
=[1—(V+C)Gppl[ 1+ T Gppl. (A5) +TGppdC Gyl ']
This immediately yields
yy +(V+L)GppdC Gyl — C Gl G, 6C
[1—=(V+C)Gppl *=1+TGy. (AB) —CGyp ' GppdC Gy L. (B4)

Substituting this form of the inverse operator into E44),
we obtain A number of desirable cancellations lead to

SL=T8Gp [ +T GppdC+ 5CG I + G, 6C Gy, )
(A7) 8L=(V+L)8G I+ (V+L)GpdC Gyl + CGppdC Gl

which is seen to be identical with E(Pa). = (V+L) Gl + TG SLGyT) Gl (B5)

APPENDIX B: REARRANGING DIAGRAMS . . . .
Closing off SL in this form leads precisely to the two dia-

We think of the second diagram for the proper self-energyyrams in Fig. 3. In the first diagram, we have made use of the
in Fig. 1 as a ladder diagrarh,=VGp,I', closed with a bare  chain equatiorC=(V+L)Gpl .
propagatorG,. The corresponding ladder diagrams which,
when closed with a bare propagator, lead to the diagrams in

Fig. 2 are given as APPENDIX C: EXPONENTIATING DIAGRAMS
5E=VéGppF+VGpp( SL+ 6C). (B1) We Wi_sh to construct a simple buf[ reliable kinematic ap-
proximation which facilitates evaluation of all the diagrams
Using EQq.(9), we rewrite this equation as contributing to 9%*(0,0)/dw|,—q. Using Egs.(7b) (with

— Gph= o) and(12), we first construcC(k,»). We obtain
OL=VG, '+ VG T 6Gp [+ (1+T'Gpp) 6C(1+Gppl') ]

=[V+ VGl [ 8G ol + GppdC(1+ G ) 1. (B2) (- wd)?

Since L=(V+C)Gpl', we can replaceV+VGyl' by C(k’w):prk(w—ek+in)(w+ek—in)' €D
V+L—CGp,l" in Eq. (B2):
SL=(V+L)8G )l — CGpl Gl + (V+ L) GppdC where e2=w2+2pw V. (Here, V| stands for a generic

particle-hole irreducible potential driving the chajrid/e de-
+(V+L)GppdCG, I = CGppl'Gp6C

—CGpl GGy (B3)

We now use Eq(9b) to rewrite the third term in EqB3) as
(VH+L)G,(6LGpI'). The effect of closing off this diagram
with a bare Green'’s function is equivalent to closing off the
diagram [(V+L)Gl'|GpeolL=CG 0L with a bare
Green's function. This process is depicted in Fig. 11.
Ultimately, we are interested only in diagrams which con- . 13, Diagrams contributing t63*(0,w)/dw|,_o in third
tribute to the condensate fraction. We define a new quantityyger incC.



826 TILO WETTIG AND A. D. JACKSON 53

note the value of the first diagram in Fig. 3 ky Given the 1 d*k  d®p (e— wy)? (ep_wp)Z
explicit form of C(k,w), x evaluates to X22= — 2] 272 27)°  dare, dwpe,
B d*k (ef— wE)? (et o) (€p+ wp) 4
T @t (o—wtin)Z2pwy (et ept wrrp)”
1 Again, we replacev, , , by o+ o, in the last denominator
X - - on the right hand side of EqC4). To maintain symmetry
(0—gtin)(ote—in) betweerk andp, we once replack by p and oncep by k in
10 &3k (e—wp)? one of the two factors in this denominator, respectively. This
- == Tk W (C2) leadsto
pl (2m)° Adwye
X2
We now turn to the evaluation of higher-order diagrams in X22= ~ (212

C. As we have argued in Sec. I, there afediagrams imth Th it has b byi b Equivalent ki
order. The second- and third-order contributions to'''c Patern has become obvious by now. tquivaient kine-

. . P ~matic approximations can be constructed in exactly the same
e e e e Way i e orders. Ech cagram i rdeevaiates o

y. ; 9 —(=x)"/(n")2. There aren! diagrams in this order, yielding
nth order byx,;. Hence,i runs from 1 ton!.

- EVREYy N
After the usualw integrations have been performed ana-2 total contribution of—(=x)/n! to 92" (0.0)/dw],-o.

lytically, the first diagram in Fig. 12 evaluates to Thus,
92" (0,w) S (=x)"
1 &k d®p (&~ w)? (€p—wp)? ——— | =-2 ——=l-exg-x). (CH
X21:__2f 3 3 Jw w=0 n=1 M
p°) (2m)° (2m)° Aowyey 4wpe, o ) ) ]
Substitution of Eq(C5) into Eq. (5) yields Eq.(10) imme-
(ept wp)? diately.

) The form of the above kinematic approximations was

guided by a desire to make calculations tractable and to
Equation(C3) has intentionally been written in a suggestive maintain symmetry between the kinematic variables appear-
fashion. If the denominator of the last term on the right handng in the various integrals. They are, however, also numeri-
side were independent & the two integrals would factor cally reliably. The error introduced by these approximations
into two independent integrals ovefk andd3p. A natural s not substantial. The dominant contribution to a given inte-
approximation, therefore, is to first replace,,, by gral (say, overd®k) comes from the region of small argu-
ot o, (an “angle average” approximationand then re- ment given the structure of the integrand. Thesie domi-
placek by p in this denominator. The result now becomesnateswy so that the replacement @y, by wy+ o, has
extremely simple: virtually no effect on the value of the integrand. Further-
more, the replacement &fby p does not alter the threshold

Y, 2-
(6k+ 6p+ Wy 4 p)

X behavior of the integrand. This leads us to believe that the
X217~ (212" overall error made is small. We have verified this assumption
by numerical studies using interactions and densities appro-
Evaluation of the second diagram in Fig. 12 yields priate of liquid “He.
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