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Fluctuation effects in the Ising model with reduced interaction and quenched disorder
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The effect of quenched random fields and local perturbations of critical temperature on the critical behavior
at phase transitions is studied within the framework of an exactly solvable model that takes into account
interaction of fluctuations with equal and opposite momenta. Using the replica method the dimensional reduc-
tion by 2 for systems with finite-range interaction and quenched random fields is explicitly shown. For
interaction of the infinite range the model demonstrates the mean-field critical asymptotics independently of
dimensionality or the presence of random fields.

I. THE MODEL rewrites Eq.(2) in the momentum representation. Then the
reduction(2) is equivalent to splitting theé function, which
Within the past two decades there has been considerabfgovides momentum conservation, into the product of tivo
interest in critical behavior of random systels.The  functions: 5(q1+q2+qi+q4)—>5(ql+qz)a(q3+q4). This re-
renormalization-grougRG) treatment does not provide an duction transfers theb” model into the universality class of
unambiguous solution of this probleln’ Therefore, it is the spherical modéf4
very instructive to consider phase transitions in random sys- In order to calculate a functional integral with respect to
tems within the framework of exactly solvable models that$(x) one has to transform the fourth-order form with respect
take into account fluctuation effects at least partly. In Refsto ¢ in the Boltzmann factor in the partition function into a
8—11 the spherical modélhas been applied for the consid- bilinear form. This can be done with the help of a transfor-
eration of the instability of an ordered phase due to a randormation analogous to that of Hubbard-Stratonovich,

field. In the present paper we study effects of quenched ran-
dom fields and local temperature fluctuations in the reduced vV [alé] 1 V(X
- —||=5=| dx dyexpg — 5 K| 5
\ 2 2 V
+i(xy—ya[¢])}, ()

¢* model which takes into account interaction of fluctuations 2
with equal and opposite momenta only. This model allows

for an exact solution. It is very convenient for investigation

of critical phenomena in complex systems. Even though in

its simplest version it has the same critical asymptotics as the ) ) . ]
spherical modet>it explicitly demonstrates major qualita- WhereK is an arbitrary function. After applying the transfor-
tive results that have been obtained within renormalizationMation (3) Gaussian integrals with respect doin the parti-
group theory, including fluctuation induced first-order phasdion function can be calculated. As a result, the partition
transitionst>® Renormalization-group theory and the model function takes the form:
lead to a similar critical behavior for phase transitions in

orthorhombic highF, superconductors witid pairing'’ and 7o J'w dx dyexp[
for oxygen ordering near a structural phase transition in —w
Y-Ba-Cu-O!® Below we briefly review basic features of the )
“pure” model and derive relationships that will be used in " Ez In|cg2+y|— h_” (@)
subsequent sections for consideration of the disordered case. \ar vyl

We start from the Ginzburg-Landau functional with a sca-
lar order parametes(x), The summation of the kin&In|cg®+y| has to be cutoff

since it diverges on the upper limit. However, critical asymp-
[ g ) 5. 1. .4 totics should not depend upon momentum cutoff. For the
H_if dX[r¢*(x) +c(Vh(x)"+ 394" (X) —2hé(X)], spacial dimension 2d<4 this can be handled by renormal-
(1) izing the summation and then setting the momentum cutoff
to be equal to infinity*® For d=4 the sum becomes non-
renormalizable and we must maintain the momentum cutoff
explicitly. As we demonstrate below the dependence upon
the momentum cutoff is absorbed into a renormalization of
1 the trial value of the critical temperature and into an insig-
f ddx¢4(x)_>\—/ a’[ 4], a[qs]:f dix¢%(x), (2) nificant con_stant addition to the free energy. If the cutoff
momentum is equal td, then

whereV is the system volume. After such a reduction the
model takes into account interaction of fluctuations with INlca®+v|=TVO.(A.C)—Fiv:c) IV 5
equal and antiparallel momenta only. This can be seen if one % lea™+yl=[yéu(A.0) = fa(y:c) ]V, ©

1 e
X+ 7 gx =Xy

2

wherer«T—T,., T, is a trial critical temperature artdis a
constant field. To calculate the partition function with the
functional (1) exactly, we split interaction terms as follows:
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where cally small exponeny is set to be equal to zero, fde>4 the
model gives the mean-field resufis=3, and ford=4 a loga-
_ Sy AY?e(d-2), d#2 rithmic correction toé arises.
fa(A;C)= (27)8 X [1+In(cA®)]/2c, d=2, Furthermore, for 2 d<4 a crossover effect from critical
6) behavior to mean field wheh increases can be obtained
( wyd? o from Eq.(103. In other words, when d<4 and
dcd?2 sin (d—2)/2] =x(C)y™, h>g(d+2)/2(4—d)K(C)3/(4—d) (12)
fy(yic)= Sy > d+even the first term in Eq(10a becomes dominant and the critical
’ (27)° a2 a2 exponents changes fromd+2)/(d—2) to 3. Sincec is a
i E) In[y|= = u(c)y™inlyl, squared correlation radius far away from the critical point
d=even (t~1), the Ginzburg paramet&i, which defines the width

\ of the fluctuation region, is proportional to
and S, is the surface area of d-dimensional unit radius Gixc™ @™ Dok (c)?*"9. Therefore, it follows from Eq.
sphere g,(A) is used to renormalize,x—x+ 64(A), which ~ (12) that the crossover from critical to mean-field behavior
consequently results in the renormalization of the trial criti-occurs wherh>Gi®2 This coincides with the results of the
cal temperaturer,t=7+g/264(A). As a result the partition RG analysis.

function becomes

II. RANDOM FIELD

Zocf dx dyexd —VF(x,y)];

F(x,y)=3[x(t—y)+gx*/4—fy(y,c)— h’ly]l.  (7)

In this section we examine an effect of a random field on
phase transitions within the context of the exactly solvable
model. The Ginzburg-Landau functional with a scalar order

In the thermodynamic limity —, one can exactly calculate parameters(x) has the form
integrals in Eq(7) using the method of the steepest descend.
Hence, all thermodynamic quantities can be calculated. The

free-energy density is given by E€y) with x andy being a
solution of the system of equationd=/dx=0, dF/dy=0. Af-

ter eliminatingx from these equations we derive an equation

fory,

t—y+(g/2) [(hly)*—f4(y;c)]=0. €S)
An equilibrium value of the order parameter is given by
¢o=— dFIdh =hly(h) 9
with y determined by Eq(8). Whenh=0 a nontrivial real
value of the order parameteb,#0, exists for anyd>2 and
t<0. Equationg8) and(9) give ¢,=(—2t/g)*2 Whend<2
a nontrivial solution,¢,#0, does not exist. Thereford=2

is a lower marginal dimension for the model. The critical
exponentg is equal to3. The model gives more interesting

results when calculating the critical exponehtwWhent=0

and h#0 Egs.(8) and (9) reduce to the equation for the

order parameter

- £+ g 2— w h(d=2242=d2=0  d+even
0
(103
c)[ h|@22 g [h
L. §+gﬂ( )(—) [1+—|n<—”=0,
o 2 2 \¢o 2 "\ oo
d=even. (10b

In the limit h— 0 the solutions of Eq410) are easily found:

(K(C)d/2)2/(d+2)h(d72)/(d+2), 2<d<4
$o~1 [— (h/3c?) In(hc)]*3, d=4 (12)
(21g)*n1? d>4.

From Eq. (1) it follows that d=4 is an upper marginal
dimension: when 2d<4 the critical exponens coincides
with the RG result,5=(d+2— 5)/(d—2+ %), if numeri-

H=§ [ d%0rg?00+ oV 6007+ § 9600~ 200
C2h(0 ()], (13

where h and h(x) are constant and random fields, respec-
tively. To obtain the free energy averaged over the random
field, following Ref. 19, we replicat@é times the partition

function Z by defining an n-component vector
dX)=[1(x),....05(X)]. Hence,
J
F=—- fDncb(X)exp(—Heﬁ[cb(X)]) . (14

whereH [ ¢] is given by

— oo

1 (>
He &(X) 1= EJ dXm 71 ¢(X) >+ e(V ¢(x)*— QL ¢]

"1
2 [Z 9;'(x) = 2h () ] (15
with
1 h?
Q[(b]:Jddx In| Jﬁf dh(x)exr{—%
xex;{Zl h(x) ¢;(X) J (16)

where we supposed thh{x) is a 5-correlated Gaussian ran-
dom variable, (h(x)h(x"))=B&(x—x"). Then Hq4 ] be-
comes

1 !
Heﬁ=§f d%| 7/ p(x)|2+c(V (%)) 2+ > [z 9’
i=1
n 2
—2hi(x) —B(g1 ¢i<x>) : (17
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Now, for the functionak17) we apply a reduction similar to and the functiory(h) can be found from the equation
Eq. (2),
a dF(y,h)/dy =0=— 2ny/g + 2nt/g—(n—1)f4(y;c)
1
f ddx<pi4(x)—>v a’l¢i], a[goi]=j d%e?(x), (18 —fi(y—nB;c)+ nh?(y—nB)2=0. (24

The solution fory=y(h) must then be substituted F(y,h)
and the disorder averaged value of the equilibrium free en-

v 1 ergy is given by
exp{ ) rxi+ngi2—xiyi
n—0

so that the partition function takes the form

o

iﬂl D iqdxidy; F(h)=lim[F(y(h),h)/n]. (25)

2 120 ) ) An expression of an averaged order parametgr,is given
W heio|— Eizl % | $igl*(yitcq°—B) by
5 n o= lim (1/n)[— dF(y,h)/oh],_ym=lim[h/y(h)].
n—0 n—0
i#]

To find ¢, from Egs.(24) and (26) one has to expand Eq.
In order to calculate functional integrals in EG.9) the  (24) in powers ofn up to the lowest order ofi. For d not

form in the exponent must be diagonalized with respect teven(including nonintegensandd even the resulting equa-
components of the vectog. After diagonalization we re- tions for the order parameter are
quire thaty;=y;=y since only this choice reproduces the
pure ¢* upon suppression of the random field. Explicitly, this _ E(L) n E b2 @(L
is so because in the limit dB—0 the degeneracy of the g\ ¢g g 0 2 \¢o
eigenvalues of every other choice does not reduce ftud

(d-2)2

as expected from considerations of the simgie model k(c)(d—=2)B [ h @472
L . : _—| =0, d=not even (273
treated within the context of the replica method. In this case 4 bo
then X n matrix of interest has only two distinct eigenvalues,
2(h\ 2t  _ pu(c)d h|@22 [(nh
M==F(y+eq)i Ao=—iy+ed-nB), (20 “glg|tg TRt (g g te©
where); is (n—1)-fold degenerate. These eigenvalues can h \(d-2)/2 h\ (=421
be used to diagonalize thexn matrix with respect top; . X I) _M(C)B(d_z)(d)—) [5
As the result one can calculate functional integrals in Eq. 0 0
(19) and arrive at d d ( h ”
+————+-=1Inl—||=0, d=even. 27b
i ur 242 1" 270
Zx fm(il dXi)dy ex ——i=21 >+ gxiz_yxi} In the limit of B—0 Eqgs. (23)—(27) reproduce the corre-

sponding ones of the “pure* model.

(1—n) ) From Egs.(27) it is seen that fod<4 no solution forg,

2 E In|y+co?| exists. Thus, the random field, regardless of how weak it is,

a destroys a long-range order fd=4. Whend>4 we obtain

nVHh ] the second order transition occurring a0 andh=0. When

0= (- (21)  4<d<6 the third and the fourth terms in ER79 can be

2(y—nB) omitted because they become of smaller orddr @ompared

After treating the summations with respect doas in the to the last term. Therefore, this equation gives the same criti-

previous section we derive cal asymptotics as the “pure” model with the lower dimen-

sion 2<d'(=d—2)<4. Namely, for critical exponentg and

J’_

1
—=> Inly+cq®—nB|+
2 q

n 1 Swe havep=3, 6=(d’+2)/(d’—2). Whend>6 in the limit
2F (X ,y,h)=2,1 tx;+ 7l g—yx |+(1—n)f4(y;c) h—0 only the first three terms in Eq&7) survive,
2 ~ (2/g) (h/ $o) + 2t/g + $5=0, (28)
—fa(y—nB;c)— y—nB’ (22)  and we arrive at the mean-field critical exponents. The criti-

cal exponent for the randomd-dimensional system is ex-
Using dF/dx; =0, we simplify the above equation by replac- actly the same as that of @+ 2)-dimensional pure system.

ing x; In addition, as it follows from Eq(27b), the random six-
dimensional system, has the same logarithmic corrections as
" t2 y? 2yt h? the pure four-dimensional model. So, the model explicitly
2F(y,h)= ;1 ) + 9 faly.c)— y—nB demonstrates the same dimensional crossover in the presence

of quenched random fields found in the RG approach. It may
+f4(y;c)—fq(y—nB;c) (23)  seem contradictory that the model with the one-component
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order parameter has a lower critical dimensidg=4. In- 1

deed, the functiona(13) corresponds to the random-field szf d%[ 7?(X) + 7(X) pA(X) +C(V (X)) + 3 gp*(x)
Ising model which hasl.=2. However, after the reduction

(18) the model belongs to the spherical model universality —2ho(x)], (30

— o) 20
C!"’.‘SS and, thereforg, has symmg@(/N—oo). . Phase tran- where 7(x) is a J&-correlated random function,
sitions in the spherical model with random fields have bee 7(X)7x'))=B(x—x'), with zero mean value. After follow-

consideregl in Ref. 8 where the condensation of the ideq the steps of the replica method and treating the problem
Bose gas in the presence of random sources has been studi@gthin the context of the exactly solvable model we derive,
The ideal Bose-Einstein condensation at constant volume is

identical to a phase transition in the spherical model. Results "
obtained in Ref. 8 are analogous to the results of our model. 2F (XY 'h):Z’l

The crossover from critical to the mean-field behavior in
4<d<6 and nonzero random field occurs when

1, h?
tx; + 7 9% =Xy —fqa(yiic)— v

n 2
—B(El xi) . (31)

Using the saddle-point equations/dx;=0 anddF/dy;=0,
we obtainy; andx; which are then used in EqR5) and(31)

: N . to find th d f . Having i ind that th
The above inequality is always true when the fluctuations ar%Onl;nghys?C;V%%?fe i;fiye;e;/rg)\/,vhiciwirrz?p“;s?n:X,E?( ©
i j ' i j

suppressed in the limit of—c(x—0). Moreover, when o saddle-point equations give
k(c)=0 and u(c)=0 Egs.(27) reduce to EQq.(28). That

means that in systems with long-range interactions a second- glh ,
order phase transition is restored and critical exponents bd= Y™ 5 F_fd(y*c)

come the same as the mean-field ones for any dimensionalit}% o ) _ .
regardless of the presence of random fields. In the limit n—0 .Eq.(.32) is equivalent to Eq(8). So, criti-
cal asymptotics in this case are the same as those given by

the model in the pure case. This is in agreement with the
Harris criteriorf* according to which disorder of the random
lll. RANDOM TEMPERATURE temperature type changes the critical behavior only if the

: . ._critical exponent of the pure system is positive. The critical
We now examine the problem of frozen in nonmagnetic . del ise— aV/(d hat i
impurities that cause a random perturbation of local tempera€XPOnenix in our model isa=—(4—d)/(d—2) that is nega-

ture. Phase transitions in such a system can be described Bye for d<4. Ford>4 the model gives the mean-field be-
a free-energy functional havior which is also insensitive to a randomness.

h>g[B«x(c)]¥6~ 9. (29

2 h2

+2nBfi(y;c)—

=0. (32
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