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The effect of quenched random fields and local perturbations of critical temperature on the critical behavior
at phase transitions is studied within the framework of an exactly solvable model that takes into account
interaction of fluctuations with equal and opposite momenta. Using the replica method the dimensional reduc-
tion by 2 for systems with finite-range interaction and quenched random fields is explicitly shown. For
interaction of the infinite range the model demonstrates the mean-field critical asymptotics independently of
dimensionality or the presence of random fields.

I. THE MODEL

Within the past two decades there has been considerable
interest in critical behavior of random systems.1–9 The
renormalization-group~RG! treatment does not provide an
unambiguous solution of this problem.1–7 Therefore, it is
very instructive to consider phase transitions in random sys-
tems within the framework of exactly solvable models that
take into account fluctuation effects at least partly. In Refs.
8–11 the spherical model12 has been applied for the consid-
eration of the instability of an ordered phase due to a random
field. In the present paper we study effects of quenched ran-
dom fields and local temperature fluctuations in the reduced
f4 model which takes into account interaction of fluctuations
with equal and opposite momenta only. This model allows
for an exact solution. It is very convenient for investigation
of critical phenomena in complex systems. Even though in
its simplest version it has the same critical asymptotics as the
spherical model,13,14 it explicitly demonstrates major qualita-
tive results that have been obtained within renormalization-
group theory, including fluctuation induced first-order phase
transitions.15,16Renormalization-group theory and the model
lead to a similar critical behavior for phase transitions in
orthorhombic high-Tc superconductors withd pairing

17 and
for oxygen ordering near a structural phase transition in
Y-Ba-Cu-O.18 Below we briefly review basic features of the
‘‘pure’’ model and derive relationships that will be used in
subsequent sections for consideration of the disordered case.

We start from the Ginzburg-Landau functional with a sca-
lar order parameterf~x!,

H5 1
2 E ddx@tf2~x!1c„¹f~x!…21 1

4gf4~x!22hf~x!#,

~1!

wheret }T2Tc , Tc is a trial critical temperature andh is a
constant field. To calculate the partition function with the
functional ~1! exactly, we split interaction terms as follows:

E ddxf4~x!→
1

V
a2@f#, a@f#5E ddxf2~x!, ~2!

whereV is the system volume. After such a reduction the
model takes into account interaction of fluctuations with
equal and antiparallel momenta only. This can be seen if one

rewrites Eq.~2! in the momentum representation. Then the
reduction~2! is equivalent to splitting thed function, which
provides momentum conservation, into the product of twod
functions: d~q11q21q31q4!→d~q11q2!d~q31q4!. This re-
duction transfers thef4 model into the universality class of
the spherical model.13,14

In order to calculate a functional integral with respect to
f~x! one has to transform the fourth-order form with respect
to f in the Boltzmann factor in the partition function into a
bilinear form. This can be done with the help of a transfor-
mation analogous to that of Hubbard-Stratonovich,

expF2
V

2
KS a@f#

V D G5
1

2pE dx dy expF2
V

2
KS xVD

1 i ~xy2ya@f#!G , ~3!

whereK is an arbitrary function. After applying the transfor-
mation ~3! Gaussian integrals with respect tof in the parti-
tion function can be calculated. As a result, the partition
function takes the form:

Z}E
2`

`

dx dy expH 2
V

2 F tx1
1

4
gx22xy

1
1

V(
q

lnucq21yu2
h2

y G J . ~4!

The summation of the kind(qlnucq21yu has to be cutoff
since it diverges on the upper limit. However, critical asymp-
totics should not depend upon momentum cutoff. For the
spacial dimension 2,d,4 this can be handled by renormal-
izing the summation and then setting the momentum cutoff
to be equal to infinity.14,15 For d>4 the sum becomes non-
renormalizable and we must maintain the momentum cutoff
explicitly. As we demonstrate below the dependence upon
the momentum cutoff is absorbed into a renormalization of
the trial value of the critical temperature and into an insig-
nificant constant addition to the free energy. If the cutoff
momentum is equal toL, then

(
q
lnucq21yu5@yud~L,c!2 f d~y;c!#V, ~5!
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where

ud~L;c!5
Sd

~2p!d
3H Ld22/c~d22! , dÞ2

@11 ln~cL2!#/2c , d52,
~6!

f d~y;c!5
Sd

~2p!d
35

pyd/2

dcd/2 sin@p~d22!/2#
[k~c!yd/2,

dÞeven

2
1

d S 2
y

cD
d/2

lnuyu[2m~c!yd/2lnuyu,

d5even,

and Sd is the surface area of ad-dimensional unit radius
sphere.ud~L! is used to renormalizex,x→x1ud(L), which
consequently results in the renormalization of the trial criti-
cal temperaturet,t5t1g/2ud(L). As a result the partition
function becomes

Z}E dx dy exp@2VF~x,y!#;

F~x,y!5 1
2 @x~ t2y!1gx2/42 f d~y,c!2 h2/y#. ~7!

In the thermodynamic limit,V→`, one can exactly calculate
integrals in Eq.~7! using the method of the steepest descend.
Hence, all thermodynamic quantities can be calculated. The
free-energy density is given by Eq.~7! with x andy being a
solution of the system of equations:]F/]x50, ]F/]y50. Af-
ter eliminatingx from these equations we derive an equation
for y,

t2y1 ~g/2! @~h/y!22 f d8~y;c!#50. ~8!
An equilibrium value of the order parameter is given by

f052 ]F/]h5h/y~h! ~9!
with y determined by Eq.~8!. Whenh50 a nontrivial real
value of the order parameter,f0Þ0, exists for anyd.2 and
t,0. Equations~8! and~9! givef05~22t/g)1/2. Whend<2
a nontrivial solution,f0Þ0, does not exist. Therefore,d52
is a lower marginal dimension for the model. The critical
exponentb is equal to1

2. The model gives more interesting
results when calculating the critical exponentd. When t50
and hÞ0 Eqs. ~8! and ~9! reduce to the equation for the
order parameter

2
h

f0
1
g

2
f0
22

gk~c!d

4
h~d22!/2f0

~22d!/250, dÞeven

~10a!

2
h

f0
1
g

2
f0
21

gm~c!

2 S hf0
D ~d22!/2F11

d

2
lnS hf0

D G50,

d5even. ~10b!

In the limit h→0 the solutions of Eqs.~10! are easily found:

f0'H ~k~c!d/2!2/~d12!h~d22!/~d12!, 2,d,4

@2 ~h/3c2! ln~hc!#1/3, d54

~2/g!1/3h1/3, d.4.

~11!

From Eq. ~11! it follows that d54 is an upper marginal
dimension: when 2,d,4 the critical exponentd coincides
with the RG result,d5(d122h)/(d221h), if numeri-

cally small exponenth is set to be equal to zero, ford.4 the
model gives the mean-field result,d53, and ford54 a loga-
rithmic correction tod arises.

Furthermore, for 2,d,4 a crossover effect from critical
behavior to mean field whenh increases can be obtained
from Eq. ~10a!. In other words, when 2,d,4 and

h@g~d12!/2~42d!k~c!3/~42d! ~12!

the first term in Eq.~10a! becomes dominant and the critical
exponentd changes from (d12)/(d22) to 3. Sincec is a
squared correlation radius far away from the critical point
(t;1), the Ginzburg parameterGi, which defines the width
of the fluctuation region, is proportional to
Gi}c2d/(42d)}k(c)2/(42d). Therefore, it follows from Eq.
~12! that the crossover from critical to mean-field behavior
occurs whenh@Gi3/2. This coincides with the results of the
RG analysis.

II. RANDOM FIELD

In this section we examine an effect of a random field on
phase transitions within the context of the exactly solvable
model. The Ginzburg-Landau functional with a scalar order
parameterf(x! has the form

H5 1
2 E ddx@tf2~x!1c„¹f~x!…21 1

4 gf4~x!22hf~x!

22h~x!f~x!#, ~13!

where h and h(x! are constant and random fields, respec-
tively. To obtain the free energy averaged over the random
field, following Ref. 19, we replicaten times the partition
function Z by defining an n-component vector
f~x![@f1~x!,...,fn~x!#. Hence,

F52
]

]n F E Dnf~x!exp~2Heff@f~x!# !G
n50

, ~14!

whereHeff@f# is given by

Heff@f~x!#[
1

2E2`

`

ddxH tuf~x!u21c~¹f~x!!22Q@f#

1(
i51

n F14 gf i
4~x!22hf i~x!G J ~15!

with

Q@f#5E ddx lnH 1

A2pB
E dh~x!expF2

h2~x!

2B G
3expF(

i51

n

h~x!f i~x!G J , ~16!

where we supposed thath(x! is ad-correlated Gaussian ran-
dom variable, ^h(x!h~x8!&5Bd(x2x8!. Then Heff@f# be-
comes

Heff5
1

2E ddxF tuf~x!u21c~¹f~x!!21(
i51

n F14 gf i
4~x!

22hf i~x!G2BS (
i51

n

f i~x!D 2G . ~17!
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Now, for the functional~17! we apply a reduction similar to
Eq. ~2!,

E ddxw i
4~x!→

1

V
a2@w i #, a@w i #5E ddxw i

2~x!, ~18!

so that the partition function takes the form

Z}E F)
i51

n

Df iqdxidyi GexpH 2
V

2(i51

n F txi1
1

4
gxi

22xiyi

2
2

AV
hf i0G2

1

2(i51

n

(
q

uf iqu2~yi1cq22B!

1
B

2(q (
i , j51
iÞ j

n

f iqf j2qJ . ~19!

In order to calculate functional integrals in Eq.~19! the
form in the exponent must be diagonalized with respect to
components of the vectorf. After diagonalization we re-
quire thatyi5yj[y since only this choice reproduces the
puref4 upon suppression of the random field. Explicitly, this
is so because in the limit ofB→0 the degeneracy of the
eigenvalues of every other choice does not reduce ton fold
as expected from considerations of the simplef4 model
treated within the context of the replica method. In this case
then3n matrix of interest has only two distinct eigenvalues,

l152 1
2 ~y1cq2!; l252 1

2 ~y1cq22nB!, ~20!

wherel1 is (n21)-fold degenerate. These eigenvalues can
be used to diagonalize then3n matrix with respect tofi .
As the result one can calculate functional integrals in Eq.
~19! and arrive at

Z}E
2`

` S )
i51

n

dxi D dy expH 2
V

2(i51

n F txi1
1

4
gxi

22yxi G
1

~12n!

2 (
q
lnuy1cq2u

2
1

2(q lnuy1cq22nBu1
nVh2

2~y2nB!J . ~21!

After treating the summations with respect toq as in the
previous section we derive

2F~xi ,y,h!5(
i51

n F txi1 1

4
gxi

22yxi G1~12n! f d~y;c!

2 f d~y2nB;c!2
nh2

y2nB
. ~22!

Using ]F/]xi50, we simplify the above equation by replac-
ing xi

2F~y,h!5(
i51

n F2
t2

g
2
y2

g
1
2yt

g
2 f d~y,c!2

h2

y2nBG
1 f d~y;c!2 f d~y2nB;c! ~23!

and the functiony(h) can be found from the equation

]F~y,h!/]y50⇒2 2ny/g1 2nt/g2~n21! f d8~y;c!

2 f d8~y2nB;c!1 nh2/~y2nB!2 50. ~24!

The solution fory5y(h) must then be substituted inF(y,h)
and the disorder averaged value of the equilibrium free en-
ergy is given by

F~h!5 lim
n→0

@F~y~h!,h!/n# . ~25!

An expression of an averaged order parameter,f0, is given
by

f05 lim
n→0

~1/n! @2 ]F~y,h!/]h#y5y~h!5 lim
n→0

@h/y~h!# .

~26!

To find f0 from Eqs.~24! and ~26! one has to expand Eq.
~24! in powers ofn up to the lowest order ofn. For d not
even~including nonintegers! andd even the resulting equa-
tions for the order parameter are

2
2

g S hf0
D 1

2t

g
1f0

22
k~c!

2 S hf0
D ~d22!/2

1
k~c!~d22!B

4 S hf0
D ~d24!/2

50, d5not even ~27a!

2
2

g S hf0
D1

2t

g
1f0

21
m~c!d

2 S hf0
D ~d22!/2

lnS hf0
D1m~c!

3S hf0
D ~d22!/2

2m~c!B~d22!S hf0
D ~d24!/2F12

1
d

2~d22!
1
d

4
lnS hf0

D G50, d5even. ~27b!

In the limit of B→0 Eqs. ~23!–~27! reproduce the corre-
sponding ones of the ‘‘pure’’f4 model.

From Eqs.~27! it is seen that ford<4 no solution forf0
exists. Thus, the random field, regardless of how weak it is,
destroys a long-range order ford<4. Whend.4 we obtain
the second order transition occurring att50 andh50. When
4,d,6 the third and the fourth terms in Eq.~27a! can be
omitted because they become of smaller order inh compared
to the last term. Therefore, this equation gives the same criti-
cal asymptotics as the ‘‘pure’’ model with the lower dimen-
sion 2,d8~5d22),4. Namely, for critical exponentsb and
d we haveb51

2, d5(d812!/~d822!. Whend.6 in the limit
h→0 only the first three terms in Eqs.~27! survive,

2 ~2/g! ~h/f0!1 2t/g1f0
250, ~28!

and we arrive at the mean-field critical exponents. The criti-
cal exponentd for the randomd-dimensional system is ex-
actly the same as that of a (d22)-dimensional pure system.
In addition, as it follows from Eq.~27b!, the random six-
dimensional system, has the same logarithmic corrections as
the pure four-dimensional model. So, the model explicitly
demonstrates the same dimensional crossover in the presence
of quenched random fields found in the RG approach. It may
seem contradictory that the model with the one-component
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order parameter has a lower critical dimensiondc54. In-
deed, the functional~13! corresponds to the random-field
Ising model which hasdc52. However, after the reduction
~18! the model belongs to the spherical model universality
class and, therefore, has symmetryO(N5`).20 Phase tran-
sitions in the spherical model with random fields have been
considered in Ref. 8 where the condensation of the ideal
Bose gas in the presence of random sources has been studied.
The ideal Bose-Einstein condensation at constant volume is
identical to a phase transition in the spherical model. Results
obtained in Ref. 8 are analogous to the results of our model.

The crossover from critical to the mean-field behavior in
4,d,6 and nonzero random field occurs when

h@g@Bk~c!#3/~62d!. ~29!

The above inequality is always true when the fluctuations are
suppressed in the limit ofc→`(k→0). Moreover, when
k~c)50 and m~c)50 Eqs. ~27! reduce to Eq.~28!. That
means that in systems with long-range interactions a second-
order phase transition is restored and critical exponents be-
come the same as the mean-field ones for any dimensionality
regardless of the presence of random fields.

III. RANDOM TEMPERATURE

We now examine the problem of frozen in nonmagnetic
impurities that cause a random perturbation of local tempera-
ture. Phase transitions in such a system can be described by
a free-energy functional

H5
1

2E ddx@t0f
2~x!1t~x!f2~x!1c„¹f~x!…21 1

4 gf4~x!

22hf~x!#, ~30!

where t~x! is a d-correlated random function,
^t(x!t~x8!&5Bd(x2x8!, with zero mean value. After follow-
ing the steps of the replica method and treating the problem
within the context of the exactly solvable model we derive,

2F~xi ,yi ,h!5(
i51

n F txi1 1

4
gxi

22xiyi2 f d~yi ;c!2
h2

yi
G

2BS (
i51

n

xi D 2. ~31!

Using the saddle-point equations]F/]xi50 and]F/]yi50,
we obtainyi andxi which are then used in Eqs.~25! and~31!
to find the averaged free energy. Having in mind that the
only physical choice isyi5yj[y, which impliesxi5xj[x
the saddle-point equations give

t2y1
g

2 Fh2y22 f d8~y,c!G12nB fd8~y;c!2
2nBh2

y
50. ~32!

In the limit n→0 Eq. ~32! is equivalent to Eq.~8!. So, criti-
cal asymptotics in this case are the same as those given by
the model in the pure case. This is in agreement with the
Harris criterion21 according to which disorder of the random
temperature type changes the critical behavior only if the
critical exponenta of the pure system is positive. The critical
exponenta in our model isa52~42d)/(d22) that is nega-
tive for d,4. For d.4 the model gives the mean-field be-
havior which is also insensitive to a randomness.
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