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We present a comprehensive analysis of a linear growth model, which combines the characteristic features
of the Edwards-Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it
describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We
calculate in detail the surface width and various correlation functions characterizing the model. In particular,
we study the crossover scaling of these functions between the two limits described by the combined equation.
Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different
initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as
wi(0)@js /j(t)#

d/2, wherej(t);t1/z is the time-dependent correlation length associated with the growth pro-
cess,wi(0) is the initial roughness andjs the correlation length of the substrate roughness, andd is the surface
dimensionality. As a second application, we compute the large distance asymptotics of the height correlation
function and show that it differs qualitatively from the functional forms commonly used in the intepretation of
scattering experiments.

I. INTRODUCTION

The dynamics of interfaces ranging from dendritic growth
to flame front propagation can often be described by rela-
tively simple evolution equations.1 Typically such evolution
equations are given in terms of partial differential equations
with a stochastic noise component. Perhaps the best-known
example is the nonlinear Kardar-Parisi-Zhang~KPZ!
equation,2 which describes kinetic roughening of randomly
driven interfaces such as growing surfaces or flame fronts in
forest fires.3 Complete understanding of these nonlinear
equations is still mostly lacking.

Under certain circumstances discussed below the relevant
nonlinearities may be so weak that a fullylinear model can
provide an adequate description. One example is the growth
model of Edwards and Wilkinson~EW!,4 which describes the
sedimentation of granular particles under gravitation. An-
other important model is the noisy Mullins equation dis-
cussed by Wolf and Villain and others5–7 @the Mullins-Wolf-
Villain ~MWV ! equation# in the context of molecular beam
epitaxy ~MBE!. Being linear, both of these equations have
been analyzed in some detail. However, recently it has been
shown both from macroscopic arguments8 and through more
microscopic derivations9,10 that for some cases involving sur-
face diffusion and desorption, a more general linear equation
of the form

] th5n1¹
2h1n2¹

4h1h ~1!

emerges, whereh5h(x,t) is the surface height above a
d-dimensional substrate,h(x,t) is a noise term, andn1 and

n2 are parameters. Since the gradient terms of Eq.~1! are
simply a combination of the EW and MWV equations, we
call it the combined linear growth~CLG! equation. Stability
requires thatn1>0 andn2<0. While it is physically possible
thatn1,0 ~see Sec. II B!, the treatment of this case requires
the inclusion of additional nonlinear terms in~1!, and will
not be addressed here.

The purpose of the current work is to present a detailed
analysis of Eq.~1!, which is missing so far. This is useful for
two main reasons. First, the calculations in this work gener-
alize the previous results obtained for the EW and MWV
equations, which are somewhat incomplete and scattered in
the literature.4,5,7,8,11–16Second, Eq.~1! is the simplest ex-
ample of a growth equation with anintrinsic length scale.
Balancing the two gradient terms in~1! one finds that they
become comparable at the scale

l *5Aun2u/n1. ~2!

The kinetic roughening process is governed by the fourth
derivative term on scales smaller thanl * but the second-
order term dominates on scales larger thanl * . Physically,
the two terms represent different relaxation mechanisms,
through surface diffusion~fourth derivative!, evaporation–
condensation or step edge barriers~second derivative!.8,17Of
course, writing a continuum equation with an intrinsic scale
is meaningful only if this scale much exceeds the micro-
scopic cutoff, given by the lattice spacinga; the detailed
estimates ofn1 and n2 derived in Sec. II show thatl * is
indeedmesoscopic, in the sense thatl *@a, under typical
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conditions. Mesoscopic intrinsic length scales such as
domain18 or terrace19 sizes play an important role in the ki-
netic roughening of real surfaces. Moreover, the competition
and interplay between different relaxation and roughening
mechanisms is probably typical in many experimental situa-
tions; for this reason combined linear equations like~1! have
already been used extensively in the analysis of experimental
data.20

A major advantage of working withlinear growth equa-
tions is that they allow us to explicitly compute any statisti-
cal quantity of interest, rather than just extracting the values
of scaling exponents, which have been the focus of most
previous studies of kinetic roughening.21We will exploit this
fact to address two questions of direct experimental rel-
evance: the evolution of the initial substrate roughness dur-
ing growth, and the shape of the height-height correlation
function. In both cases we find that the heuristic expressions
commonly employed in the experimental literature arein-
compatiblewith the explicit calculations.

The organization of the paper is as follows. We shall first
briefly review the physical background and various argu-
ments leading to Eq.~1!, and in particular various interpre-
tations of the coefficientsn1 andn2 . Following this, Sec. III
contains a full solution of the CLG model in terms of the
relevant measures of the surface roughness. We concentrate
on the scaling behavior and finite-size dependence of the
surface widthw(L,t), the equal-time height-height correla-
tion functionG(x,t), and the saturated height-height corre-
lation functionCs(x,t). In particular, we study in detail the
crossover behaviorof these quantities to the well-known
limits given by the EW and MWV equations. In Sec. IV we
discuss the experimentally important effects of substrate
roughness, the shape of the height correlation function and
the influence of long-ranged noise correlations. Finally, sum-
mary and conclusions are given in Sec. V.

II. DERIVATION OF THE LINEAR GROWTH MODEL

In this section we provide some microscopic justification
for the combined linear growth equation~1!. We consider
two different physical situations, corresponding to a surface
in thermal equilibrium ~Sec. II A! and a vicinal surface
growing in the step-flow mode~Sec. II B!, respectively. In
both cases the fourth-order derivative term in~1! reflects
capillarity-driven surface diffusion,17 while the second-order
term will be seen to arise from distinct mechanisms.

A. Equilibrium dynamics of a solid-on-solid model

We consider a one-dimensional solid-on-solid surface de-
scribed by a set of integer height variableshi defined on a
lattice. The energy of the surface is given by the
Hamiltonian22

H5~K/2!(
i

uhi2hi11u. ~3!

The surface evolves according to the following dynamic
processes:9 particles are deposited (hi→hi11) at a constant
rateF; they evaporate (hi→hi21) at rate

Wi
ev5k0exp@2~ES81niEN8 !/kBT# ~4!

and jump from sitei to site j5 i61 at rate

Wij
diff5k0exp@2~ES1niEN!/kBT#. ~5!

Herek0 defines some microscopic hopping rate of the order
of a typical phonon frequency. We will generally measure
time in units ofk0

21 , so that effectivelyk051; likewise the
basic length unit will be provided by the lattice constant. The
energy barriers in~4! and~5! each have a substrate contribu-
tion (ES8 andES) and a bonding contribution proportional to
the lateral coordination number

ni5u~hi112hi !1u~hi212hi !, ~6!

which takes the valuesni50,1,2 in one dimension. Detailed
balance relative to~3! holds if

EN5EN8 5K and F5k0exp@2~ES81K !/kBT#. ~7!

The distinguishing feature of the diffusion rates~5! is that
they depend only on the environment at the initial sitei . It
was shown elsewhere23 how this fact can be used toexactly
derive the continuum equation of motion for the surface, in
the case where only surface diffusion is allowed. Here we
generalize the approach of Ref. 23 to include desorption and
deposition. Note, however, that this derivation is only valid
when the surface is inequilibrium with the vapor, as ex-
pressed by the second condition in~7!.

From the master equation of the process one easily de-
rives the following equation of motion for the ensemble av-
eraged height,9,23

d

dt
^hi&5

1

2
e2ES /kBT~¹2l! i2e2ES8/kBTl i1F, ~8!

where (¹2l) i5l i111l i2122l i denotes the lattice Laplac-
ian, andl i[^exp@2(K/kBT)ni#&. This quantity is related to
the local chemical potentialm i ,

23

l i5exp@2~K2m i !/kBT#. ~9!

We now pass to the continuum limit^hi&,m i
→h(x,t),m(x,t), where h(x,t) and m(x,t) are averages
taken over some large region~still small on the macroscopic
scale! centered aroundi5x. The local chemical potential
m(x,t) is then determined by the local surface curvature via
a Gibbs-Thomson relation

m52ĝ~¹h!¹2h, ~10!

where the stiffnessĝ is a nonlinear function of the local
surface slope that can be directly computed from the Hamil-
tonian ~3!;23 at zero tilt (¹h50),

ĝ~0!5kBT@cosh~K/2kBT!21#. ~11!

For slowly varying, macroscopic profiles the typical cur-
vatures are small, so that~9! can be expanded inm. This
results in the macroscopic equation

] th52
1

2
~kBT!21e2~ES1K !/kBT¹2@ ĝ~¹h!¹2h#

1~kBT!21e2~ES81K !/kBTĝ~¹h!¹2h, ~12!
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which can be used e.g., to predict the decay of periodic sur-
face modulations.23 Note that the deposition term has disap-
peared due to the second of the detailed balance conditions
~7!. Because of the orientation dependence of the stiffness,
~12! is highly nonlinear.

Here we are primarily interested in the mesoscopic fluc-
tuations around a surface that is on average flat. Equation
~12! can then be linearized by expandingĝ around the aver-
age orientationu5^¹h&. It is not, strictly speaking, consis-
tent to keep only the terms linear inh, since the nonlineari-
ties arising from the expansion of the stiffness in the second
term of ~12! @such as (¹h)2¹2h# are more relevant in the
renormalization-group sense than the linear fourth-order
term; however, we will ignore this difficulty in the interest of
obtaining an analytically tractable model. Thus we arrive at
the two systematic terms in~1!, and identify the coefficients
as

n15~kBT!21ĝ~u!e2~ES81K !/kBT,

n252 1
2 ~kBT!21ĝ~u!e2~ES1K !/kBT. ~13!

To complete the derivation of~1!, the statistics of the
noise term has to be specified. This requires no further infor-
mation, since detailed balance forces the stationary distribu-
tion of the continuum fieldh(x,t) to be governed by the
Hamiltonian

Hc5~ ĝ~u!/2!E dx~¹h!2, ~14!

as can be seen from a central limit argument applied to the
sum of independent local slope variables~3!. A straightfor-
ward way to ensure the stationarity of exp@2Hc /kBT# is to
modify the distribution functional of the white noise into the
following form:

P@h#5
eS@h#

Z
, ~15!

where S52@ ĝ(u)/2kBT#*dk *dt(n11n2k
2)21uĥ(k,t)u2,

andZ5*DheS@h#, whereĥ(k,t) is the Fourier transform of
h(x,t). This leads to the noise covariance

^h~x,t !h~x8,t8!&52@kBT/ĝ~u!#~n11n2¹
2!d~x2x8!

3d~ t2t8!. ~16!

Our derivation provides a microscopic basis for the clas-
sical theory of Mullins,17 who showed that second- and
fourth-order derivatives ofh arise from evaporation-
condensation dynamics and surface diffusion dynamics, re-
spectively. We may further conclude that the length scale
beyond which the lower-order derivative associated with
evaporation-condensation dynamics dominates is given by

l *;A2n2 /n1;exp@~1/2!~ES82ES!/kBT# ~17!

in units of the lattice constant. Since, typically, the activation
energies for evaporation much exceed those for surface dif-
fusion, l * can be quite large at moderate temperatures. It
should be noted, however, that due to detailed balance the
length scale~17! cannot appear in any stationary, equal-time

correlation functions, since these only depend on the Hamil-
tonian ~14!. Nevertheless,l * and a related time scale will
appear in the time-dependent quantities, to be discussed in
subsequent sections of this paper.

B. Step-flow growth on vicinal surfaces

Technologically important deposition techniques such as
MBE are typically carried out at temperatures where desorp-
tion is negligible, so that, effectively,n150 in ~13!. How-
ever, as was first pointed out by Villain,8 under growth con-
ditions other mechanisms related to growth-induced surface
currents24 exist that generically give rise to a second-order
derivative in the continuum equation. A remarkable feature
of such currents is that they can be destabilizing, leading to
n1,0 in ~1!. In the present work we focus on the kinetic
roughening of astablesurface withn1>0, and therefore we
describe here only the simplest microscopic mechanism for
the generation of a positiven1 term through the
‘‘Schwoebel’’ effect involving step edge barriers25 ~for some
other mechanisms see Ref. 10!. As in the preceding section
we restrict ourselves to a one-dimensional surface. In two
dimensions the mechanism described here gives rise to an
anisotropic Laplaciann i] i

21n']'
2 in ~1!, with different co-

efficientsn i andn' parallel and perpendicular to the surface
steps, at least one of which is negative.26

We consider avicinal surface with uniform step spacing
l , which is assumed to be much smaller than the diffusion
length l D governing the island spacing on asingular
surface;19 this ensures that island nucleation on the terraces
can be neglected, and the surface grows in the step-flow
mode.26 Moreover, we assume strong step edge barriers,
which effectively suppress any interlayer transport. Under
such conditions every atom that is deposited on a terrace
attaches to the ascending step edge, and the surface current is
simply J5Fl /2 ~as before, F denotes the deposition
rate!.8,24,26The coefficientn1 is then given by the negative
derivative of J with respect to the surface inclination
1/l .24 This yields

n15Fl 2/2. ~18!

Provided the capillarity-driven surface diffusion is not too
strongly affected by the deposition, the expression~13! for
n2 is still expected to be valid. Thus the crossover length
scale~2! can be estimated as

l *;l 21A2n2 /F;l cap
2 /l , ~19!

wherel cap;(2n2 /F)
1/4 is a length scale gauging the rela-

tive importance of capillarity and deposition.26 For an order
of magnitude estimate, we note thatn2 can be directly mea-
sured from the decay time of periodically modulated surface
profiles. For semiconductor surfaces a typical value is27

2n2'1(mm)4 per hour, implying thatl cap'1000 Å at a
deposition rate of 1 s21. This much exceeds the step spacing
on typical vicinal surfaces, and thus, as in the case of equi-
librium dynamics~Sec. II A!, there are good reasons to ex-
pect l * to be large compared to the lattice constant.

Of course, the most prominent effect of deposition is to
provide an additional source of ‘‘shot noise’’ fluctuations.
Assuming, again, that the~volume conserving! fluctuations
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due to surface diffusion are not much changed by the depo-
sition flux, we obtain the noise covariance

^h~x,t !h~x8,t8!&5@F12~kBTn2 /ĝ !¹2#d~x2x8!d~ t2t8!.
~20!

A comparison between the strengths of the two compo-
nents of the noise, i.e.,F and kBTn2 /ĝ, defines a further
crossover length scale

l ** ;~Dcoll /F !1/2, ~21!

where Dcoll5k0exp@2(ES1K)/kBT# defines, within the
present model, thecollectivesurface diffusion coefficient.23

In contrast to the detailed balance situation of Sec. II A, here
the two crossover lengthsl * and l ** need not be equal.
Their ratio is of the order

l * /l ** ;~kBT!21l 21ĝ1/2;l 21exp~K/4kBT!, ~22!

where in the last step we have used the expression~11! for
smallT. Thus, at low temperaturesl *@l ** . This provides
some justification for neglecting the conserved noise compo-
nent in ~20!, as will be done throughout Sec. III.

III. SOLUTIONS FOR VARIOUS PHYSICAL QUANTITIES

In this section we summarize our results for the physically
interesting measures of the surface roughness of the CLG
model, for arbitrary surface dimensionalitiesd<z, wherez
is the dynamic exponent. The physically interesting quanti-
ties that we calculate are the surface widthw(L,t) and two
correlation functionsG(x,t) andCs(x,t). The surface width
is the size of typical height fluctuations around the mean
h̄[Š^h(x,t)&x‹h :

w2~L,t ![Š^@h~x,t !2h̄#2&x‹h , ~23!

where^ &x and ^ &h denote averaging over space and noise,
respectively, andL is the lateral extent of the surface, assum-
ing periodic boundary conditions. The two correlation func-
tions can be derived from the general two-point correlation
functionCg(x,t,t8), which is defined as

Cg~x,t,t8![Š^@h~x1x8,t1t8!2h~x8,t8!#2&x8‹h

5Cg~x,t,t8!. ~24!

All the correlation functions appearing in this section are
thus dependent only on the magnitudex5uxu. The equal-
time correlation functionG(x,t8)[Cg(x,t50,t8) and the
saturated correlation functionCs(x,t)[Cg(x,t,t8@ts),
wherets is the saturation time to be defined later. We point
out that the translational invariance of Eq.~1! makes the
averaging over noise and space interchangeable when the
noise correlations are also translationally invariant. In this
section we assume Gaussian white noise of the form

^h~x,t !h~x8,t8!&h52Ddd~x2x8!d~ t2t8!, ~25!

^h~x,t !&h50 . ~26!

Later on in Sec. IV we discuss the influence of the con-
served noise component that appears in Eqs.~16! and ~20!.

Here we also assume a flat initial condition,h(x,t50)50.
Growth on an initially rough surface is dealt with in Sec. IV.

The results for the CLG equation trivially reduce to the
limits of the EW or MWV equations whenn250 or n150,
respectively. Also, simple power counting shows that for an
infinite system, the EW behavior will always eventually
dominate. In this work, however, we are interested in inves-
tigating the crossover timetc from MWV to EW growth. The
crossover always occurs for aninfinitely large system where
the MWV behavior is dominant for early times (t!tc).
Moreover, in afinite system for a suitable choice of the
crossover length scalel * , the MWV growth can be made
dominant for all times. As was noted already, we focus on
the stable casen1.0, n2,0. If n1,0, the early time growth
can be of MWV type but the long-time behavior of the sur-
face is unstable.

The main results for the CLG growth equation are given
in the subsequent paragraphs. As usual,21 the asymptotics of
the surface correlations involve the roughness exponentx,
the dynamic exponentz, and the exponent ratiob5x/z,
which describes how the surface width increases with time.
The two limiting cases of~1! are characterized by the expo-
nents

z152, b15~22d!/4, x15~22d!/2 ~EW! ~27!

as was first derived in Refs. 4 and 11 and

z254, b25~42d!/8, x25~42d!/2 ~MWV !, ~28!

compare to Refs. 5–7 and 12. It is understood that
b5x50 implies logarithmic roughening.

The crossover time scale is given bytc5un2u/n1
2 and

the saturation time ~for finite system size L) by
ts5Lz2/(Lz1n11un2u). The crossover length scalel *
5Aun2u/n1 was defined in Sec. I. In the following we use the
dimensionless scaling variables:p1[n1t/L

2, p2[un2ut/L4,
y1[n1t/x

2, and y2[un2ut/x4. The dynamic correlation
lengths for the EW and MWV cases are defined as
j1[(2n1t)

1/2 andj2[(2un2ut)1/4.

A. Surface width

The scaling function for thesurface widthis obtained
from Eq. ~23!:

w2~L,t !5
2D

n1
L2x1Fw

1 ~p1 ,p2!5
2D

un2u
L2x2Fw

2 ~p1 ,p2!,

~29!

where

Fw
j ~p1 ,p2!5

Vd21

2~2p!d
E
1

`

dk kd21@12e22~p1k
21p2k

4!#

3
pj

p1k
21p2k

4 , ~30!

whereVd21 is the surface area of ad-dimensional sphere,
and j51,2. We obtain the following power-law behavior in
the different time regimes:

If p1@p2 , then
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w2}H L2x1 for t@ts

t2b1 for tc!t!ts

t2b2 for t!tc .

If p1!p2 , then

w2}H L2x2 for t@ts

t2b2 for t!ts .
~31!

The main result here is that for afinite system the MWV
behavior can dominate for all times, including the saturated
regime. This is shown in Fig. 1, where it can be seen that
even forp15p2 , the EW region can be made to vanish by
choosingts5tc .

B. Equal-time correlation function

The scaling function for theequal-time correlation func-
tion is obtained from Eq.~24!. Hence,

G~x,t !5
2D

n1
x2x1FG

1 ~y1 ,y2!5
2D

un2u
x2x2FG

2 ~y1 ,y2!,

~32!

where

FG
j ~y1 ,y2!5

1

~2p!d
E

V
E
0

`

dk kd21@12e22~y1k
21y2k

4!#

3@12cos~ka!#
yj

y1k
21y2k

4 , ~33!

and j51,2. The notation*V means angular integration, and
a[cos(k,x).

We obtain the following power-law behavior in the differ-
ent regimes:

If p1@p2 , then

G~x,t !}5
L2x1 for x5O ~L ! and t@ts

x2x1 for l *!x!L and t@ts

x2x2~L/x!2x1 for x!l *!L and t@ts

x2x1 for j1@x@l * and tc!t!ts

t2b1 for l *!j1!x and tc!t!ts

x2x2~j2 /x!2x1 for x!j2!l * and t!tc

t2b2 for x@j2 and t!tc .

If p1!p2 , then

G~x,t !}5
L2x2 for x5O ~L ! and t@ts

x2x2~L/x!2x1 for x!L and t@ts

x2x2~j2 /x!2x1 for x!j2 and t!ts

t2b2 for x@j2 and t!ts .
~34!

To summarize, the correlation function can exhibit both
EW and MWV scaling behavior forp1@p2 , while in the
opposite case we find ‘‘anomalous’’ scaling behavior,

G;x2x2~L/x!2x1, G;x2x2~j2 /x!2x1, ~35!

of the kind characteristic of the MWV equation14 as well as
certain nonlinear models.15,28,29The scaling~35! is anoma-
lous in the sense thatG at fixed x has no finite limit for
L→` andj2→`; this implies the appearance of arbitrarily
large height gradients and is associated with the fact that the
MWV roughness exponentx2.1 for d,2, compare to~28!.
Note that the increase ofG with x in ~35! is governed neither
by x1 nor by x2 , but by an anomalous roughness exponent
x̃5x22x151.

C. Saturated correlation function

The scaling function for thesaturated correlation function
is obtained from Eq.~24!. Hence,

Cs~x,t !5
2D

n1
x2x1FC

1 ~y1 ,y2!5
2D

un2u
x2x2FC

2 ~y1 ,y2!, ~36!

where

FC
j ~y1 ,y2!5

1

~2p!d
E

V
E
0

`

dk kd21@12e2~y1k
21y2k

4!

3cos~ka!#
yj

y1k
21y2k

4 , ~37!

and j51,2. For simplicity, we only give the results in the
limits where eithert50 or x50. In the first case, the power-
law behavior ofCs(x,0) is given by the following:

If p1@p2 , then

Cs~x,0!}H L2x1 for x5O ~L !

x2x1 for l *!x!L

x2x2~L/x!2x1 for x!l *!L.

If p1!p2 , then

FIG. 1. A log-log plot of the surface widthw2(t) of the CLG
equation for several valuesun2u and n1 in d51, with L510 000.
The two scaling regimes of the surface widthw2}t3/4 for t!tc and
w2}t1/2 for t@tc are clearly visible. For the topmost curven151
and un2u51028 and the crossover time lntc[ln(un2u/n1

2)'218 is
shown. For the second curven15un2u51, and lntc50. Finally, the
two overlapping lowest curves represent the CLG surface width
with n151 and un2u5108, and the pure MWV case withn150,
un2u5108. In both cases the saturation time lnts'18.
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Cs~x,0!}H L2x2 for x5O ~L !

x2x2~L/x!2x1 for x!L.
~38!

The behavior ofCs(0,t) is given by the following:
If p1@p2 , then

Cs~0,t !}H L2x1 for t@ts

t2b1 for tc!t!ts

t2b2 for t!tc .

If p1!p2 , then

Cs~0,t !}H L2x2 for t@ts

t2b2 for t!ts .
~39!

As in Sec. III B, both EW and MWV behavior are found in
the different regimes.

IV. APPLICATIONS

The goal of the present section is to illustrate how linear
growth equations can be used to address experimentally rel-
evant questions about kinetic roughening that have so far
received little or no theoretical attention. Specifically, we dis-
cuss the contribution of the substrate roughness to the width
of a growing surface, and the detailed form of the spatial
height correlation function.

A. Effects of substrate roughness

In the real world, thin films are rarely deposited onto a
perfect, atomically flat substrate. Consequently, every experi-
mental investigation of kinetic roughening has to deal with
the substrate contribution to the roughness of the film sur-
face. To the extent that this problem has been addressed at
all, it is usually assumed30 that the substrate gives an addi-
tive, constant contribution to the variance of the height fluc-
tuations~the square of the width!, as

w2~ t !5wi
21wG

2 ~ t !, ~40!

wherewi is the width of the substrate surface andwG de-
notes the growth-induced contribution~throughout this sec-
tion the lateral system size is taken to be infinite and there-
fore the dependence onL is suppressed!. This simple ansatz
ignores the fact that the memory of the initial roughness is
lost during the growth process, as the growing film succes-
sively covers up the features of the substrate. The short
wavelength features are preferentially suppressed~compare
to a layer of snow covering a rugged landscape!, an effect of
much importance for the scattering from multilayer films.31

In the following we show that~i! within the framework of
linear growth equations, the superposition ansatz~40! is jus-
tified; however,~ii ! the substrate contributionwi becomes
time dependent and decreases witht in a manner governed
by the ratio of the substrate correlation lengthjs to the cor-
relation lengthj(t);t1/z of the growth process; for long
times,j@js , we find

wi~ t !;wi~0!~js /j!d/2. ~41!

The fact that the total width is the sum of a decreasing and
an increasing part entails the somewhat counterintuitive pos-

sibility thatw(t) may initially decreasewith increasing film
thickness, as has been observed in recent experiments.32,33

To justify statements~i! and ~ii !, we assume that the sur-
face has been grown from timet52t0 to t50, driven by
some initial noiseh2 in such a way that the height-height
correlation function is given by

^Ĥ0~k!Ĥ0~k8!&ĥ2
5 f ~k,k8!, ~42!

whereĤ0(k)[Ĥ0(k,t50), and the average has been taken
over all configurations created by the noiseh2 . We note that
for t.0, h2[0. At t50, a new growth process with noise
h is turned on. Let us denote the full solution of the CLG
equation byĤ(k,t) with the initial conditionĤ0(k). Then,

Ĥ~k,t !5Ĥ0~k!e2a~k!t1ĥ~k,t !, ~43!

wherea(k)[n1k
21un2uk4, andĥ(k,t) denotes the solution

of the CLG equation with a flat initial condition. Calculating
the correlation function with respect to both the old noise
h2 ~from t52t0 to t50) and a new noiseh ~for t.0)
gives

Š^Ĥ~k,t !Ĥ~k8,t !&ĥ‹ĥ2
5 f ~k,k8!e2@a~k!1a~k8!#t

1^ĥ~k8,t !ĥ~k,t !&ĥ , ~44!

given that either^Ĥ0(k)&ĥ2
50, or ^ĥ(k,t)&ĥ50, which

makes the cross terms disappear. The influence of the initial
conditions vanishes exponentially fast in the Fourier space
but not necessarily in the real space. To see this we consider
the following example. At timet52t0 the surface is flat.
Then we switch on the beam and let the surface evolve until
t50 driven by the CLG growth dynamics~the noiseh2 is
white!. For f we get

f ~k,k8!5K E
2t0

0

dtĥ2~k,t!ea~k!t

3E
2t0

0

dt8ĥ2~k8,t8!ea~k!t8L
ĥ2

5
2D

~2p!d
12e22a~k!t0

2a~k!
dd~k1k8!. ~45!

Integrating the first term on the right-hand side of~44!
with respect tok shows that the initial roughness decays
slowly, aswi

2;t0 /t, in the limit t→`, when the substrate
dimensiond52. This corresponds precisely to~41! with EW
scaling,js;t0

1/2 andj;t1/2.
In the preceding we deal with the full CLG equation. Next

we will focus on calculating the time-dependent substrate
surface widthwi

2(t) for the special casesn250 ~EW equa-
tion, z52) andn150 ~MWV equation,z54) of ~1!. More-
over, we assume that the substrate surface has been grown by
either EW or MWV dynamics, so that its correlations can be
described by the Fourier amplitudes

^uĤ0~k!u2&ĥ2
5
A0

kzs
@12e2~kjs!

zs#, ~46!
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where js is the substrate correlation length, andzs52 or
zs54 for surfaces generated by EW or MWV dynamics,
respectively. The roughness exponent of the substrate is
xs5(zs2d)/2. Solving ~1! subject to the initial condition
Ĥ0(k), one obtains

Š^uĤ~k,t !u2&ĥ‹ĥ2
5^uĤ0~k!u2&ĥ2

e2@kj~ t !#z

1
D

n

1

kz
@12e2@kj~ t !#z#, ~47!

wherez is the dynamic exponent of the growth process and
j(t)5(2nt)1/z its correlation length. Since the variancew2 is
obtained by integrating~47! over k, the decomposition~40!
is valid and the substrate contribution at timet is given by

wi
2~ t !5Vd21A0E

0

kmax
dk kd212zs@12e2~kjs!

zs#e2~kj!z.

~48!

The upper cutoffkmax is of the order of the inverse lattice
constant; in the following we assume thatjs andj are large
compared to 1/kmax and setkmax5` in ~48!.

Substitutingq5(kjs)
zs in ~48! yields

wi
2~ t !5~Vd21A0 /zs!js

zs2dE
0

`

dq qd/zs22~12e2q!e2tqz/zs,

~49!

where the dimensionless time variablet5(j/js)
z has been

introduced~recall thatj;t1/z). The integral can be explicitly
computed ifz5zs ; details are given in Appendix A. To ana-
lyze ~49! in the general case, let us first assume thatzs.d,
i.e., xs.0, which covers MWV substrates ind51 and
d52, and EW substrates ind51.

This ensures that the integral overqd/zs22 converges at
infinity, and hence the factor exp(2tqz/zs) can be dropped
when t!1. The width is therefore independent oft for
t!1. Physically this simply reflects the fact that, for a sur-
face with power-law roughness,xs.0, the width is domi-
nated by the long-wavelength fluctuations with wavelengths
of the order ofjs . At time t initial fluctuations of wave-
lengths up to the correlation lengthj(t) have been elimi-
nated, thus the substrate contribution to the width decreases
appreciably only whenj'js or t'1.

For zs5d ~i.e., x050; for example, an EW substrate in
d52) the integral overqd/zs22 diverges logarithmically at
largeq. The factor exp(2tqz/zs) then has to be retained, and
one finds thatwi(t)

2; ln(1/t) for t!1; of course, this be-
havior is valid only fort.(kmaxjs)

2z, since the initial rough-
nesswi(0)

2'Vd21A0ln(kmaxjs). Finally, in the ~somewhat
academic! casezs,d, wi(t) decreases as a power law also
for t!1, aswi(t)

2;j2(d2zs), see Appendix A.
The behavior for larget can be discussed independent of

zs . For t@1 the integral ~49! is effectively cut off at
q't2zs /z!1; therefore we can set 12e2q'q in the inte-
grand, and it follows by rescaling that

wi
2~t!'A0js

zs2d
~js /j!d;t2d/z. ~50!

This result has a simple interpretation. Forj@js the growth
process averages over a large numberN5(j/js)

d of domains

in which the initial fluctuations are statistically independent.
The height variance of each domain is of the order
A0js

zs2d , and averaging overN domains reduces the vari-
ance by a factor of 1/N. If the substrate has power-law
roughness (xs.0), thenwi(0)

2'A0js
zs2d and ~50! is iden-

tical to ~41!.
The last argument is valid also for completely general

initial conditions characterized by a correlation function of
the form

^uĤ0~k!u2&ĥ2
5

Vd21A0

kd12x0
g~kjs!, ~51!

wherex0 denotes the roughness exponent of the substrate
and the scaling functiong(s) satisfies g(s→`)51,
g(s→0)50. The expression~49! generalizes to

wi
2~t!5Vd21A0js

2x0E
0

`

dq q2~112x0!g~q!e2tqz. ~52!

To extract the behavior for larget we need to know how
g(s) vanishes for smalls. This is fixed by requiring that~51!
should have a finite limit fork→0 ~this limit gives rise to the
center of mass fluctuations of the surface, see Ref. 34!. Con-
sequently,g(s);sd12x0, and~52! decays as

wi
2~t!'Vd21A0js

2x0t2d/z'wi
2~0!~js /j!d, ~53!

in accordance with the heuristic argument.
In summary, we have shown that, under rather general

conditions, the substrate contributionwi to the width of a
rough growing surface remains essentially constant as long
as the correlation lengthj of the growth process is smaller
than the substrate correlation lengthjs , and that it decreases
according to~41! for j@js . While the functional form of the
transition between the two regimes is not analytically acces-
sible in general, a useful interpolation formula is

wi~ t !
25wi~0!2~11t/ts!

2d/z ~54!

with a fit parameterts , which has already been employed in
the analysis of experimental data.33 In Fig. 2 the decay of the
substrate width is illustrated for two special cases, and the
formula ~54! is compared to the exact expression derived in
Appendix A.

B. Shape of the height correlation function

The dynamic scaling hypothesis of kinetic roughening
theory21 states that the height-height correlation function
should have the scaling form

C~x,t ![^h~x81x,t !h~x8,t !&5w2~ t !F„x/j~ t !… ~55!

with w25C(0,t), henceF(0)51, andj;t1/z. To date al-
most all theoretical work has focused on the behavior of the
height difference correlation function

G~x,t !5^@h~x81x,t !2h~x8,t !#2&52@C~0,t !2C~x,t !#

52w2@12F„x/j~ t !…# ~56!

for x!j, i.e., the short-distance behavior,
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F~s!'12O ~s2x!, s→0, ~57!

of the scaling function. In contrast, the overall shape ofF or,
in particular, the way it decays for large arguments, has not
been addressed theoretically, although a considerable amount
of empirical information is available.20 This question is of
some experimental importance, since the interpretation of
scattering data from rough surfaces typically requires a
model for the entire correlation function.35 A widely used
form for F is36

F~s!5exp~2s2x!, ~58!

which assumes a simple relation between large-distance and
short-distance behaviors. Here we show by explicit calcula-
tions within the linear theory that the large-distance decay of
F involves a new exponent not simply related tox, and that,
moreover, the decay can be oscillatory rather than mono-
tonic.

First, we make some general remarks concerning the cor-
relation function for the CLG model. The entire correlation
function valid for all ranges can be rewritten ford52 as@by
substitutionk85k/j in Eq. ~32!#

GS xj , j1j ,
j2
j D5

D

pn1

j1
2

j2E0
`

dk k@12J0~kx/j!#

3
@12e2@~j1

2/j2!k21~j2
4/j4!k4##

~j1
2/j2!k21~j2

4/j4!k4
, ~59!

wherej1[(2n1t)
1/2 andj2[(2un2ut)1/4. As far as the CLG

model can be considered to describe the physics correctly,
either Eq.~59! or Eq. ~32! could be used directly as fitting
functions, with the parameters (D,n1 ,n2) or
„A[D/(2pn1),j1 ,j2… to be fitted. The amplitude is set by

parametersD or A. The correlation lengthj(t) in Eq. ~59!
corresponds to the experimentally observable correlation
length. We can numerically determine the dependence ofj
on j1 and j2 by using the relation C(x5j)/
C(x50)5e21, which is the usual definition of the correla-
tion length. The surfacej(j1 ,j2) is plotted in Fig. 3. A least-
squarest fit for a set of solutionsj5j(j1 ,j2) yields

jp[a1j11a2j250.08533j111.60573j2 . ~60!

In addition, numerical studies show thatj follows the
scaling relation j(aj1,aj2)5aj(j1,j2). Our choice
jp[a1j11a2j2 is a simple case that quite accurately satis-
fies the definition for the correlation length.

Unlike the case of the heuristic correlation function~58!,
the requirementx!j alone is not sufficient to determine the
scaling behavior ofG for CLG model with a fixed exponent
x. The scaling analysis of Sec. III shows that the scaling of
the correlation function depends on two dimensionless quan-

FIG. 2. Decay of the substrate contribution to the surface width
for dimensionalityd52 and dynamic exponentszs5z54 ~full up-
per curve! and zs5z52 ~full lower curve!. The full curves show
the exact expressions derived in Appendix B, while the dotted curve
shows the interpolation formula~54!. The dashed lines indicate the
asymptotic power laws.

FIG. 3. ~a! The correlation lengthj as a function of the two
dynamical correlation lengthsj1[(2n1t)

1/2 andj2[(2un2ut)1/4 of
the CLG model.~b! The relative errorE[(jp2j)/j between the
plane fit jp5a1j11a2j2 and j @Eq. ~59!#. The averagerelative
error is about 1%. The maximum error in the figure (10%) occurs
for largej1 and smallj2 .
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tites: j1 /j2;(t/tc)
1/2 and j1x/j2

2;x/l * . If t/tc@1,
x/l *@1, and x!j, then G}x2x1(d52) and
x'x1(d52)50. If t/tc!1, x/l *!1, and x!j, then G
}x2x2(d52)ln(j2 /x) and thusx'x2(d52)51.

Let us next determine the behavior of the correlation
function for large values of the ratiox/j[s. Rather than
trying to present the full solution for the CLG model we shall
limit ourselves to the one- and two-dimensional EW and
MWV models. For thed51 EW case, the evaluation ofC is
straightforward. We have

] tC~x,t !5
2Ds

px E0
`

dkeıks2k2. ~61!

This is a Gaussian integral that can be done. The integration
over t is also standard. We obtain the result

C~x,t !5w2~ t !F~s!, ~62!

with

w2~ t !5
Dj1

n1Ap
; ~63!

F~s!5
1

2E0
1

dyy21/2e2s2/~4y!→2s22e2s2/4 ~64!

ass→`. The behavior of the scaling functionF is in strik-
ing contradiction to the conventional ansatz~58!, which
would lead one to expect an exponential decay forx51/2.

Thed52 EW case is also simple to calculate:

] tC~x,t !5
D

pE0
`

dk kJ0~kx!e2~j1k!2. ~65!

Integrating the result from 0 tot yields13

C~s!5
D

4pn1
E
s2/4

`

dy y21e2y[
D

4pn1
E1~s

2/4!, ~66!

where E1 is an exponential integral. The asymptotic
power-law expansion ofE1 reveals that as a function ofs
the leading term is equivalent to thed51
case: E1(x);x21e2x(12x2112x222•••), hence F(s)
;s22e2s2/4.

In thed51 MWV case we confront the integral37

] tC~x,t !}j2
21E

2`

`

dkeısk2k4[j2
21E

2`

`

dke2 f ~k!. ~67!

The behavior of the leading asymptotic behavior can be
evaluated using the method of stationary phase.38 In the limit
s→` only the neighborhoods of saddle points contribute to
the integral. They are determined from the relation]kf50:

k0[S s4D
1/3

eıp/6, k1[S s4D
1/3

eı5p/6, k2[S s4D
1/3

eı3p/2.

~68!

Removal of each saddle point to the origin results in a qua-
dratic dependence off (k) on k: f (k)2 f (ki)→bik

2 as

k→0, i50,1,2. Thus, in the leading approximation we retain
only the Gaussian part of the integrand:

] tC~x,t !}j2
21bi

21/2e2 f ~ki !. ~69!

Furthermore, we note that the contributions coming from
distinct saddle points are additive if the paths of integration
are properly chosen in the complex plane. Despite the fact
that the individual contributions coming from pointsk0 and
k1 are complex, their sum is real. The pointk2 has to be
discarded as it would cause an exponential blow up. Finally,
we obtain

C~x,t !;
j2
3

un2u
s25/3e2a1s

4/3
@a1sin~a2s

4/3!1a2cos~a2s
4/3!#,

~70!

wherea1[(3/8)421/3 and a2[(3A3/8)421/3. The correla-
tion functionC is an oscillating function for large values of
the arguments and can assume negative values as well.

For thed52 MWV case we use the same method as in
the previous case:

] tC~x,t !5
2D

~2p!2
E

2`

`

dk1E
2`

`

dk2e
2j2

4
~k1
2
1k2

2
!21ı~k1x11k2x2!.

~71!

To determine the saddle points we set]k1f5]k2f50,

where f denotes the expression in the exponential of~71!.
This yields

]k1f50; ]k2f50 , ~72!

⇒ 4j2
4k1

314j2
4k1k2

22ıx150; 4j2
4k2

314j2
4k2k1

22ıx250 ,
~73!

which can be solved with the ansatzk15ax1 , k25ax2 .
Again we get three saddle points, one of which corresponds
to an exponential divergence. Summing up the contributions
of the remaining two and integrating over time gives a real
answer:

C~s!;
j2
2

un2u
s22e2a1s

4/3
cos~a2s

4/3!. ~74!

As before, an oscillating function results.
Summarizing, it appears that the large-distance decay of

the scaling functionF(s) in ~55! generally has the form of a
‘‘squeezed’’ exponential decorated by a subleading power
law,

F~s!'s2ge2csd, s→`, ~75!

where the amplitudec can be real~as in the EW equation! or
complex ~as in the MWV equation!; in the latter case the
decay is modulated by oscillations. In contrast to what is
suggested by the heuristic function~58!, the decay exponent
has no direct relation to the roughness exponentx; rather, in
the examples treated here,d seems to be characteristic of the
surface relaxation process but independent of dimensionality.
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In Appendix B we give an alternative derivation ford51,
which suggests thatd5z/(z21) andg511d/2 for the gen-
eralized linear equation

] th52~2]x
2!z/2h1h ~76!

with integer values ofz/2.
It is worth pointing out that a rapid, exponential-like de-

cay of the correlation function should be expected only for
growth processes that arelocal in space, such as~76!, for
which the Fourier transform ofC(x,t) is an analytic function
of k for small uku. A simple example of a nonlocal kinetic
roughening process is diffusion-limited erosion,39 formally
the generalization of~76! to z51, for which it can be shown
that, ind51,

C~x,t !5
1

2p

D

n
ln~11j2/x2! ~77!

for distances larger than the lattice spacinga; at x'a,
C'w2'(D/n)ln(j/a), sincex5(12d)/250 in d51.39 As
usual, the correlation length isj52nt. At large distances
~77! decays as a power law,C;(j/x)2, reflecting the non-
local nature of the interface dynamics.

C. Effects of noise

We have shown in Sec. II that the correlation function for
the noise typically consists of two components,

^h~x,t !h~x8,t8!&52~D12D2¹
2!d~x2x8!d~ t2t8!,

~78!

where the first, white-noise component arises from evapora-
tion and deposition, while the second, conserved component
reflects the thermal fluctuations in the surface current.8 In
Fourier space the correlator~78! reads

^h̃~k,v!h̃~k8,v8,!&h̃5~2p!2d~2D112D2k
2!dd~k1k8!

3d~v1v8!, ~79!

whereh̃ denotes the Fourier transform with respect to both
space and time. So far we have considered the behavior of
the surface on scales large compared to the noise crossover
scale l ** ;(D2 /D1)

1/2, where the conserved part can be
neglected. In the opposite regimex!l ** we can set
D150 and analyze the behavior generated only by diffusion
noise. The corresponding power laws are easily evaluated:
because theD2 correlator in~79! is of the same form as for
the white noise apart from the factork2, the results presented
in Sec. III hold if we replaced by d12.

In Ref. 41 it was pointed out that the effect of fast degrees
of freedom may sometimes be represented by means of a
colored noise termhc , i.e., the noise has power-law corre-
lations. Through renormalization group analysis it was
shown that power-law-correlated noise changes the scaling
exponents for the KPZ equation. Now we shall extend our
analysis of Eq.~1! to include power-law-correlated noise as
well. We assume that the noise has long-distance correlations
of the form

^hc~x,t !hc~x8,t8!&hc
5ux2x8u2r2dut2t8u2%21, ~80!

with 0,r,d/2 and 0,%,1/2. Taking the Fourier trans-
form of Eq. ~80! leads to

^h̃c~k,v!h̃c~k8,v8!&h̀c
5
2D~k,v!

~2p!d
dd~k1k8!d~v1v8!,

~81!

whereD(k,v)5D8uku22ruvu22%, andD8 is a function of
r and%. The analysis of the power-law behavior for both
EW and MWV cases gives the following relations between
the new roughening exponents~primed! and the old ones:

b185b11
1
2r1%; x185x11r12%. ~82!

b285b21
1
4r1%; x285x21r14%. ~83!

Clearly, z18[x18/b1852 and z28[x28/b2854 are satisfied be-
causex1 /b152 and x2 /b254. These results agree with
previous treatments.12,16,41

V. SUMMARY AND CONCLUSIONS

In this work, we have presented a detailed quantitative
analysis of a combined linear stochastic growth equation,
which incorporates both EW and MWV types of behavior. In
particular, we have identified the relevant scaling variables
and calculated in detail the behavior of the surface width,
and various correlation functions in different regimes. Our
analysis shows that the CLG model possesses the MWV type
of scaling regime at early times (t!tc) and crosses over to
EW type of growth for later times. In a finite system it is,
however, possible that the system maintains MWV type of
growth dynamics for all times given that the prefactor of the
fourth-order gradient term is very large (L!l * ). Addition-
ally, the equal-time and saturated correlation functions reveal
interesting and complicated crossover behavior between the
two limits. We should also note that in the appropriate limits,
our results completely agree with the previously derived re-
sults for the surface width and the equal-time correlation
functions of the EW and MWV equations.4,12–16We have
also recalculated the scaling exponents in Sec. IV for colored
noise that has long-range spatial and temporal correlations.
Our results show that the long-range part of the noise
changes the exponents, in analogy to the case of the nonlin-
ear KPZ equation.41

The solvability of the CLG model allows us to address
other important problems related to surface growth problems
as well. A particularly interesting case concerns the influence
of rough initial conditions. In Sec. IV we demonstrate that
the effect of initial roughness ind52 disappears as a power
law in time ;t0 /t if the surface has initially roughened
through the CLG growth dynamics for a timet0 . In general,
the initial roughness vanishes as (js /j)

d;t2d/z for EW and
MWV models asj@js . For a general growth process the
behavior of this transient is easy to evaluate by Fourier trans-
forming the exponentially damped initial height-height cor-
relation function@Eq. ~44!#.

Finally, to make the connection to experiments more con-
crete we have proposed the use of the parametrized correla-
tion functions obtained for the CLG model for fitting of dif-
fusive x-ray reflectivity data. In Sec. IV we establish a
relation between the parametersn1 and n2 of the CLG
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growth model and the experimental fitting parameterj @cf.
Eq. ~60!#. Moreover, both the small (x!j) and the large
(x@j) scale behavior of the correlation function of the CLG
model are found to be different from the experimentally used
fitting functions. This also implies that the measured decay
exponentx from heuristic fitting functions bears no direct
relation to the roughness exponent of the CLG model. We
hope that these calculations will be useful in future experi-
ments on surface growth.
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APPENDIX A: SUBSTRATE ROUGHNESS FOR zs5z

Here we explicitly evaluate the integral~49! in the special
casezs5z. Taking the derivative of~49! with respect tot
and reintegrating, we obtain

wi
25

Vd21A0G~d/z!

z2d
js
z2d@~t11!12d/z2t12d/z#. ~A1!

Three cases have to be distinguished.
~i! z.d: In this case both the substrate and the growing

surface are rough with roughness exponent
x5(z2d)/2.0. The expression~A1! then has a finite limit
wi
2(0)5Vd21A0G(d/z)js

z2d/(z2d) for t→0. Fort!1 the
roughness remains essentially unchanged,

wi~t!2'wi~0!2~12t12d/z!, ~A2!

while for t@1 it decays as

wi
2~t!'~12d/z!wi

2~0!t2d/z ~A3!

in accordance with~41!.
~ii ! z5d: Substrate and surface are logarithmically rough.

Taking the limit (z2d)→0 in ~A1! gives

wi
2~t!5~Vd21A0 /z!ln~111/t! ~A4!

which diverges fort→0. Clearly ~A4! is valid only for
j.kmax

21 , i.e., t.t05(kmaxjs)
2z; the initial roughness is

wi(t0)
2'Vd21A0ln(kmaxjs). Fort0!t!1 the substrate con-

tribution decays slowly, aswi(t)
2'Vd21A0ln(1/t), while

for t@1 ~A4! reduces to

wi
2~t!'~Vd21A0 /z!t21, ~A5!

which is of the form~41! with a prefactor of order unity.
~iii ! z,d: Substrate and surface are smooth, and the width

is microscopic at all times. In this case~A1! combines two
power law decays: fort!1,

wi
2~t!;js

2~d2z!t2~d/z21!;j2~d2z! ~A6!

independent ofjs , while for t@1 one finds

wi
2~t!'@Vd21A0G~d/z!/z#js

2~d2z!t2d/z;js
2~d2z!~js /j!d

~A7!

as in the previous two cases.

APPENDIX B: DERIVATION OF THE EXPONENT d

Here we present a simple way of computing the expo-
nentsd andg characterizing the decay of the height corre-
lation scaling function~75! for the generalized linear equa-
tion ~76! in one dimension. It follows immediately from~76!
that the Fourier transformF̂(q) of F(s) is, up to some factor,

F̂~q!'q2z~12e2qz!. ~B1!

We now exploit the fact that, by definition,F̂(q) can also be
written as40

F̂~q!' (
n50

`
An

n!
~2ıq!n, ~B2!

where

An5E
2`

`

dssnF~s! ~B3!

is thenth moment of the real-space scaling function. Com-
paring ~B1! to the power series~B2!, we obtain the relation

uAzku'
1

k11

~zk!!

k!
, k50,1,2 . . . . ~B4!

The asymptotics ofF(s) can then be extracted by com-
paring the behavior of~B4! for large k with that obtained
from the ansatz~75! inserted into~B3!; assuming the ampli-
tudec in ~75! to be real, the integral~B3! is easily evaluated
in the saddle-point approximation. The leading behavior is
An;nn/d, which, compared touAzku;k(z21)k from ~B4!, im-
plies thatd5z/(z21). Moreover, from the integral~B3! one
obtains a power-law factor;n1/d21/22g/d, which has to be
matched to the factor (k11)21 that appears in~B4!; this
forces g to take the valueg511d/2. Both results agree
with the detailed calculations of Sec. IV B.

*Electronic address: majaniem@fltxa.helsinki.fi
†Electronic address: ala@fltxa.helsinki.fi
‡Present address: Fachbereich Physik, Universita¨t GH Essen,
D-45117 Essen, Germany. Electronic address:
j.krug@kfa-juelich.de

1Dynamics of Curved Fronts, edited by P. Pelce´ ~Academic Press,
London, 1988!.

2M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56, 889
~1986!.

3N. Provatas, T. Ala-Nissila, M. Grant, K. R. Elder, and L. Piche´,
Phys. Rev. E51, 4232~1995!.

4S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London Ser. A
381, 17 ~1982!.

5D. E. Wolf and J. Villain, Europhys. Lett.13, 389 ~1990!.
6S. Das Sarma and P. Tamborenea, Phys. Rev. Lett.66, 325~1991!.
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