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We present a comprehensive analysis of a linear growth model, which combines the characteristic features
of the Edwards-Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it
describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We
calculate in detail the surface width and various correlation functions characterizing the model. In particular,
we study the crossover scaling of these functions between the two limits described by the combined equation.
Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different
initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as
w;i(0)[ &/£(1)]192, where&(t) ~t'7 is the time-dependent correlation length associated with the growth pro-
cessw;(0) is the initial roughness ang] the correlation length of the substrate roughness daisdhe surface
dimensionality. As a second application, we compute the large distance asymptotics of the height correlation
function and show that it differs qualitatively from the functional forms commonly used in the intepretation of
scattering experiments.

[. INTRODUCTION v, are parameters. Since the gradient terms of [&j.are
simply a combination of the EW and MWV equations, we
The dynamics of interfaces ranging from dendritic growthcall it the combined linear growtiCLG) equation. Stability
to flame front propagation can often be described by relarequires that;=0 andv,<0. While it is physically possible
tively simple evolution equationsTypically such evolution thatv;<0 (see Sec. Il B the treatment of this case requires
equations are given in terms of partial differential equationghe inclusion of additional nonlinear terms (&), and will
with a stochastic noise component. Perhaps the best-knowrot be addressed here.
example is the nonlinear Kardar-Parisi-Zhan@KPZ2) The purpose of the current work is to present a detailed
equatior? which describes kinetic roughening of randomly analysis of Eq(1), which is missing so far. This is useful for
driven interfaces such as growing surfaces or flame fronts itwo main reasons. First, the calculations in this work gener-
forest firess Complete understanding of these nonlinearalize the previous results obtained for the EW and MWV
equations is still mostly lacking. equations, which are somewhat incomplete and scattered in
Under certain circumstances discussed below the relevatie literature"®’811-1Second, Eq(1) is the simplest ex-
nonlinearities may be so weak that a fullgear model can ample of a growth equation with antrinsic length scale
provide an adequate description. One example is the growtBalancing the two gradient terms {) one finds that they
model of Edwards and WilkinsofEW),* which describes the become comparable at the scale
sedimentation of granular particles under gravitation. An-
other important model is the noisy Mullins equation dis- /% =\|vollvy. 2)
cussed by Wolf and Villain and othéfs [the Mullins-Wolf-
Villain (MWV) equatior} in the context of molecular beam  The kinetic roughening process is governed by the fourth
epitaxy (MBE). Being linear, both of these equations havegerivative term on scales smaller thaff but the second-
been analyzed in some detail. However, recently it has beegrder term dominates on scales larger th@n Physically,
shown both from macroscopic argumérasd through more  the two terms represent different relaxation mechanisms,
microscopic derivatioris-°that for some cases involving sur- through surface diffusiorifourth derivative, evaporation—
face diffusion and desorption, a more general linear equatiogondensation or step edge barriésscond derivative®'” Of
of the form course, writing a continuum equation with an intrinsic scale
_ 2 4 is meaningful only if this scale much exceeds the micro-
gh=v1Voh+2,Voht 7 @ scopic cutoff, given by the lattice spacirg the detailed
emerges, wherdh=h(x,t) is the surface height above a estimates ofv; and v, derived in Sec. Il show that™ is
d-dimensional substrate;(x,t) is a noise term, an@; and  indeedmesoscopicin the sense that™*>a, under typical
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conditions. Mesoscopic intrinsic length scales such asnd jump from site to sitej=i*1 at rate

domairt® or terracé® sizes play an important role in the ki- .

netic roughening of real surfaces. Moreover, the competition W™ = koex — (Es+niEn)/KgT]. )
?nnedcr:gtrfirs%e;yisbgtrvgggglydtlgs:sgtir:ert?;(n?;/l()elpaer:?m:aonﬂgrgirtt;%ere ko, defines some microscopic hopping rate of the order
tions; for this reason combined linear equations [ikehave of a typical phonon frequency. We will generally measure

: : : . ime in units ofk, *, so that effectivelyk,=1; likewise the
already been used extensively in the analysis of experiment ne .0 . 0~
data?® asic length unit will be provided by the lattice constant. The

energy barriers ii4) and(5) each have a substrate contribu-
tion (Eg andEg) and a bonding contribution proportional to
ghe lateral coordination number

A major advantage of working witlinear growth equa-
tions is that they allow us to explicitly compute any statisti-
cal quantity of interest, rather than just extracting the value
of scaling exponents, which have been the focus of most _ _ _
previous studies of kinetic roughenifbWe will exploit this M= 0(hisa =)+ 6(hi 1~ hy), ®
fact to address two questions of direct experimental relwhich takes the values;=0,1,2 in one dimension. Detailed
evance: the evolution of the initial substrate roughness durbalance relative tg¢3) holds if
ing growth, and the shape of the height-height correlation
function. In both cases we find that the heuristic expressions ~ En=Ey=K and F=keexf —(Es+K)/kgT].  (7)
commonly employed in the experimental literature are o o o )
compatiblewith the explicit calculations. The distinguishing feature Qf the diffusion rg(@ |s_t_hat

The organization of the paper is as follows. We shall firstthey depend only on the environment at the initial sitét
briefly review the physical background and various argu-Was shown elsewhefehow this fact can be used xactly
ments leading to Eq.1), and in particular various interpre- derive the continuum equation pf motion for the surface, in
tations of the coefficients, andv,. Following this, Sec. Il  the case where only surface diffusion is allowed. Here we
contains a full solution of the CLG model in terms of the 9eneralize the approach of Ref. 23 to include desorption and
relevant measures of the surface roughness. We concentr&gPosition. Note, however, that this derivation is only valid
on the scaling behavior and finite-size dependence of th&hen the surface is iequilibrium with the vapor, as ex-
surface widthw(L,t), the equal-time height-height correla- Pressed by the second condition(if). _
tion function G(x,t), and the saturated height-height corre- _ From the master equation of the process one easily de-
lation functionC¢(x,t). In particular, we study in detail the ves the fP"OVg[{'g equation of motion for the ensemble av-
crossover behavioof these quantities to the well-known €raged heigtt;
limits given by the EW and MWV equations. In Sec. IV we d 1
discuss the experimentally important effects of substrate —<hi):—e*ES”‘BT(VZ)\)i—e*E's’kBT)\i+F, (8)
roughness, the shape of the height correlation function and dt 2
the influence of long-ranged noise correlations. Finally, sumynare W2\);=\;.1+\;_1— 2\, denotes the lattice Laplac-

mary and conclusions are given in Sec. V. ian, and\;=(exd —(K/kgT)n;]). This quantity is related to

the local chemical potentiat; , %3
Il. DERIVATION OF THE LINEAR GROWTH MODEL

In this section we provide some microscopic justification Ni=exd — (K- ui)/kgT]. 9

for the combined linear growth equatidd). We consider We now pass to the continuum limit(h;),u;
two different physical situations, corresponding to @ surface ., (x 1) u(x.t), where h(x.t) and u(x.t) are averages

in thermal equilibrium(Sec. 11 A) and a vicinal surface (axen over some large regidstill small on the macroscopic
growing in the step-flow modéSec. 11 B), respectively. In - g4 centered around=x. The local chemical potential

bOth cases .the fourth-ord.er Qeri7v ati\(e term (i reflects m(x,t) is then determined by the local surface curvature via
capillarity-driven surface diffusioly, while the second-order a Gibbs-Thomson relation

term will be seen to arise from distinct mechanisms.
p=—y(Vh)V?h, (10

where the stiffnessy is a nonlinear function of the local

We consider a one-dimensional solid-on-solid surface degyface slope that can be directly computed from the Hamil-
scribed by a set of integer height variablgsdefined on a  (gpian (3);% at zero tilt (Vh=0),

lattice. The energy of the surface is given by the
Hamiltoniarf? Y(0)=kgT[coshK/2kgT)—1]. (11

A. Equilibrium dynamics of a solid-on-solid model

P . For slowly varying, macroscopic profiles the typical cur-
7 (K/Z)Z i =hical. © vatures are small, so th#) can be expanded ig. This
results in the macroscopic equation
The surface evolves according to the following dynamic
processes:particles are depositedh(—h;+1) at a constant 1 1 (Ea+K)kaTo2r & >
rate F; they evaporatel{—h;—1) at rate dth=— E(kBT) e s o VIV Vh]

Wievz koeXF[_(E/s-l- niEl,\])/kBT] 4 ‘*‘(|<|3-|—)7197(Eé+ K)/kBTa’(Vh)VZh’ (12
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which can be used e.qg., to predict the decay of periodic sureorrelation functions, since these only depend on the Hamil-
face modulation$® Note that the deposition term has disap- tonian (14). Nevertheless/* and a related time scale will
peared due to the second of the detailed balance conditiorappear in the time-dependent quantities, to be discussed in
(7). Because of the orientation dependence of the stiffnessubsequent sections of this paper.
(12) is highly nonlinear.

Here we are primarily interested in the mesoscopic fluc- B. Step-flow growth on vicinal surfaces
tuations around a surface that is on average flat. Equation
(12) can then be linearized by expandifrgaround the aver-
age orientatioru=(Vh). It is not, strictly speaking, consis-
tent to keep only the terms linear m since the nonlineari-
ties arising from the expansion of the stiffness in the secon
term of (12) [such as Yh)2V2h] are more relevant in the
renormalization-group sense than the linear fourth-orde

Technologically important deposition techniques such as
MBE are typically carried out at temperatures where desorp-
tion is negligible, so that, effectively,=0 in (13). How-
gver, as was first pointed out by Villafnynder growth con-
ditions other mechanisms related to growth-induced surface
f:urrenté4 exist that generically give rise to a second-order

term; however, we will ignore this difficulty in the interest of derivative in the continuum equation. A remarkable feature

obtaining an analytically tractable model. Thus we arrive atOf such currents is that they can be destabilizing, leading to

the two systematic terms if1), and identify the coefficients v1<0 n (1). In the present quk we focus on the kinetic
as roughening of astablesurface withv,=0, and therefore we

describe here only the simplest microscopic mechanism for
the generation of a positiver; term through the
“Schwoebel” effect involving step edge barriérgfor some
other mechanisms see Ref.)18s in the preceding section
we restrict ourselves to a one-dimensional surface. In two

To complete the derivation ofl), the statistics of the dimensions the mgchar;ism d(zespribed here gives rise to an
sotropic Laplamaw”(?” +v, 47 in (1), with different co-

noise term has to be specified. This requires no further infor@N!s( \
mation, since detailed balance forces the stationary distribigfficients» andv, parallel and perpendicular to the surface

tion of the continuum fielch(x,t) to be governed by the Steps, at least one of which is negatffe. _
Hamiltonian We consider avicinal surface with uniform step spacing

/’, which is assumed to be much smaller than the diffusion
. length /', governing the island spacing on singular

~%c:(7(u)/2)f dx(Vh)?, (149 surface'® this ensures that island nucleation on the terraces

can be neglected, and the surface grows in the step-flow

as can be seen from a central limit argument applied to thehode?® Moreover, we assume strong step edge barriers,

sum of independent local slope variabl@. A straightfor-  which effectively suppress any interlayer transport. Under

ward way to ensure the stationarity of €xp7./kgT] isto  such conditions every atom that is deposited on a terrace
modify the distribution functional of the white noise into the attaches to the ascending step edge, and the surface current is

v1=(kgT) " 1y(u)e™ (EstilkeT,

vy=—3(kgT) *y(u)e”(FsTHMkeT, (13

following form: simply J=F//2 (as before,F denotes the deposition
. rate.82426The coefficientr, is then given by the negative
e 7] . . . . . .
P[7]= , (15) der]\éiltlvg of J with respect to the surface inclination
z 1//.* This yields
where  S=—[¥(u)/2ksT]fdk [dt(rs+ vk?) " (k,1)|% = F /22, 19
andZ= [ Zned 7 wherey(k,t) is the Fourier transform of
n(x,t). This leads to the noise covariance Provided the capillarity-driven surface diffusion is not too
ey - 5 , strongly affected by the deposition, the expresdib8) for
(m(x ) (X" 1)) =2[kgT/ (W) J(vy+ v2V") S(X=X") v, is still expected to be valid. Thus the crossover length
X S(t—t'). (16) scale(2) can be estimated as
Our derivation provides a microscopic basis for the clas- e~ = vl ”/ga,!/’} (19

. . 7 _
sical theory of Mullinst’ who showed that second- and where/’cap~(—v2/F)l’4 is a length scale gauging the rela-

fourth-order  derivatives ofh arise from evaporation- tive importance of capillarity and depositiéhFor an order

condensation dynamics and surface diffusion dynamics, re- - . ;
X of magnitude estimate, we note that can be directly mea-
spectively. We may further conclude that the length scale . L
sured from the decay time of periodically modulated surface

beyond which the lower-order derivative associated withprofiles For semiconductor surfaces a typical val@@ is
evaporation-condensation dynamics dominates is given by ™ v,~1(xm)* per hour, implying that gz~ 1000 A at a

/ / deposition rate of 1's'. This much exceeds the step spacing
*~\—vylv~ 1/2)(Es—Eg)/kgT 1
valvi~exl (1/2)(Es—Eg)keT] 9 on typical vicinal surfaces, and thus, as in the case of equi-

in units of the lattice constant. Since, typically, the activationlibrium dynamics(Sec. Il A), there are good reasons to ex-
energies for evaporation much exceed those for surface difpect/* to be large compared to the lattice constant.
fusion, /* can be quite large at moderate temperatures. It Of course, the most prominent effect of deposition is to
should be noted, however, that due to detailed balance thgrovide an additional source of “shot noise” fluctuations.
length scalg17) cannot appear in any stationary, equal-timeAssuming, again, that thé/olume conservingfluctuations
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due to surface diffusion are not much changed by the depg-ere we also assume a flat initial conditidr(x,t=0)=0.

sition flux, we obtain the noise covariance Growth on an initially rough surface is dealt with in Sec. IV.
. N , , The results for the CLG equation trivially reduce to the
(n(xH)7(X" ")) =[F+2(kgTva/y)V]S(x=Xx")8(t=t").  |imits of the EW or MWV equations whem,=0 or »;=0,

respectively. Also, simple power counting shows that for an
infinite system, the EW behavior will always eventually
dominate. In this work, however, we are interested in inves-
tigating the crossover timg from MWV to EW growth. The
crossover always occurs for amfinitely large system where

/%~ (Dol F)Y2, (21) the MWV behavior is dominant for early timed<t.).

Moreover, in afinite system for a suitable choice of the

where Dy =koexd —(EstK)/kgT] defines, within the crossover length scale*, the MWV growth can be made
present model, theollectivesurface diffusion coefficier®  dominant for all times. As was noted already, we focus on
In contrast to the detailed balance situation of Sec. Il A, herghe stable case; >0, v,<0. If v;<0, the early time growth

the two crossover lengths* and /** need not be equal. can be of MWV type but the long-time behavior of the sur-
Their ratio is of the order face is unstable.
. The main results for the CLG growth equation are given
-1 ,-121/2 _ o—1

/7~ (kgT) /TRy 5~/ T Texp(KIAkgT), (220 i the subsequent paragraphs. As ugligihe asymptotics of
where in the last step we have used the expresd@itnfor ~ the surface correlations involve the roughness expogent

smallT. Thus, at low temperature$* >/** . This provides the dynamic exponent, and the exponent rati@= x/z,
some justification for neglecting the conserved noise compoXhich describes how the surface width increases with time.

nent in(20), as will be done throughout Sec. IlI. The two limiting cases ofl) are characterized by the expo-
nents

2,=2, p1=(2=d)/4, x,=(2-d)/2 (EW) (27)

was first derived in Refs. 4 and 11 and

A comparison between the strengths of the two compo
nents of the noise, i.eF and kgTv,/y, defines a further
crossover length scale

Ill. SOLUTIONS FOR VARIOUS PHYSICAL QUANTITIES

In this section we summarize our results for the physically
interesting measures of the surface roughness of the cLé
model, for arbitrary surface dimensionalitidssz, wherez _ oA oA
is the dynamic exponent. The physically interesting quanti- =4, Bo=(4-d)f8, xo=(4=d)2 (MWV), (28)
ties that we calculate are the surface widtfL,t) and two  compare to Refs. 5-7 and 12. It is understood that
correlation functionss(x,t) andCg(x,t). The surface width 3=y =0 implies logarithmic roughening.
is the size of typical height fluctuations around the mean The crossover time scale is given ty=|v,|/»? and

h={(h(x,t))x}," the saturation time (for finite system sizel) by
) — ts=L7%/(L%v,+|v,|]). The crossover length scale™
wA(L,t)=([h(x,t) =h]%)x,, 23 =\v,]/v, was defined in Sec. I. In the following we use the

where( ), and( ), denote averaging over space and noiseglmensmgless scaling vana‘l‘ralepiz vit/L?, 925|V2|t/|-4;
respectively, andl is the lateral extent of the surface, assum-Y1= »1t/x%, and y2=|v|t/x*. The dynamic correlation
ing periodic boundary conditions. The two correlation func-'engths folr/z the EW and MWV cases are defined as
tions can be derived from the general two-point correlationb1=(2v1t)""* and &= (2| v,|t)™™.
function Cy(x,t,t"), which is defined as

A. Surface width

Y\ — ’ " _ r4r\12
Co(x,t,t ) ={([h(x+x",t+t")=h(x",t")]9)x), The scaling function for thesurface widthis obtained

=Cqy(x,t,t"). (24  from Eq.(23):
All the correlation functions appearing in this section are ) 2D 2l _ 2D 2xor2
thus dependent only on the magnitude|x|. The equal- wo(L,t)= V_ll- Fw(plvp2)_w|— Fw(P1,P2),
time correlation functionG(x,t")=Cy(x,t=0t") and the (29)

saturated correlation  functionC(x,t)=Cy(X,t,t">t),

wheret, is the saturation time to be defined later. We pointwhere
out that the translational invariance of E{.) makes the
averaging over noise and space interchangeable when the Ei
noise correlations are also translationally invariant. In this w
section we assume Gaussian white noise of the form

Qg-q (= 1 2(0 K2+ DaK4
= —111 — @ 2(p1k"+p2k™)
(plipZ) 2(277)(] 1 dk kd [1 € ! 2 ]

Pj
(n(x,H)n(x',t")),=2D & (x—x)d(t—t"), (25 X T PR (30)
(n(x,1)),=0. (26)  whereQ_, is the surface area of @-dimensional sphere,

andj=1,2. We obtain the following power-law behavior in
Later on in Sec. IV we discuss the influence of the con-the different time regimes:
served noise component that appears in E4S). and (20). If p1>p,, then
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FIG. 1. A log-log plot of the surface width?(t) of the CLG
equation for several valuds,| and v, in d=1, with L =10 000.
The two scaling regimes of the surface widif«t3* for t<t, and
w2xtl2 for t>1, are clearly visible. For the topmost curvg=1
and |v,|=10"% and the crossover time tiEin(|v,|/1)~—18 is
shown. For the second curvg=|v,|=1, and In,=0. Finally, the
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(L2 for x=7(L) and t>tg
x2X1 for /*<x<L and t>tg
x2X2(L/x)2X1  for x</*<L and t>tq
G(x,t)x{ XX for &>x>/* and t.<t<tq
t2h1 for /*<¢;<x and to<t<tg
X2X2(£,1x)2X1 for x<§,</* and t<t,
| t7P2 for x>¢&, and t<t,.

If p;<<p,, then

L2x2 for x=(L) and t>tq

x2X2(L/x)?X1  for x<L and t>tg
Gx,t={ ,

XX2( &, [X)X1 for x<<&, and t<tg

t2h2 for x>¢, and t<t,.

(34)

To summarize, the correlation function can exhibit both
EW and MWV scaling behavior fop;>p,, while in the

two overlapping lowest curves represent the CLG surface widttopposite case we find “anomalous” scaling behavior,

with »;=1 and|v,|=1C®, and the pure MWV case with,=0,
|v,|=10%. In both cases the saturation timegal8.

L2 for t>tq
for t.<t<tg

for t<t,.

Ww2oc! t2P1

t282
If p1<<p,, then
L 2x2

2
whee t2B2

for t>tg

for t<t;. S

The main result here is that for finite system the MWV

behavior can dominate for all times, including the saturated

G~x?X2(L/x)2X1, G~x2X2(&,/x)2Xe, (35

of the kind characteristic of the MWV equatifras well as
certain nonlinear modef$:?22° The scaling(35) is anoma-
lous in the sense thab at fixed x has no finite limit for
L—o and&,—o0; this implies the appearance of arbitrarily
large height gradients and is associated with the fact that the
MWV roughness exponent,>1 for d<2, compare tq28).
Note that the increase @& with x in (35) is governed neither
by x4 nor by x», but by an anomalous roughness exponent

X=x2—x1=1.

C. Saturated correlation function

regime. This is shown in Fig. 1, where it can be seen that The scaling function for theaturated correlation function
even forp;=p,, the EW region can be made to vanish by is obtained from Eq(24). Hence,

choosingts=t..

B. Equal-time correlation function

The scaling function for thequal-time correlation func-
tion is obtained from Eq(24). Hence,

2D , 2D ,
G(x, t)——x MEE(Y1,Ya) = | 2|>< 2FG(Y1.Y2),
(32
where

. 1 »
FJG(YLYZ): anfo dk kd_l[]__e—Z(ylk2+y2k4)]

X[1- Cos(ka)] (33

Yj
ke+yok*’

andj=1,2. The notatiory , means angular integration, and

a=cosf,X).

We obtain the following power-law behavior in the differ-

ent regimes:
If p1>p,, then

2D 2D
CAXJr:;;x”ﬂFayLy»=¢;;xb2FayLy», (36)

where
FL(y1.y2) = —dl Tk KU1 e 0akP vk
clY1:Y2 2m)alo

(37

Y
Xcogka)l—>—2,
: a)]hk +yok

and j=1,2. For simplicity, we only give the results in the
limits where eithet=0 orx=0. In the first case, the power-
law behavior ofC(x,0) is given by the following:

If p;>p,, then

L2x1 for x=c(L)
for /*<x<L

x2X2(L/x)%X1  for x</*<L.

Ce(x,0)c{ X*X1

If p;<<p,, then
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L2x2 for x=(L) sibility that w(t) may initially decreasewith increasing film
x2X2(L/x)2X1  for x<L. (38)  thickness, as has been observed in recent experinffetits.
To justify statementsi) and (ii), we assume that the sur-
The behavior ofC(01t) is given by the following: face has been grown from timte= —t, to t=0, driven by
If p1>p,, then some initial noisez_ in such a way that the height-height
correlation function is given by

Cy(X,0)

L2 for t>tq
CL(0f)! t?P1 for te<t<t, (Ho(K)Ho(k")); =f(k,k'), (42)

t?f2  for t<t,. ~ -
or ¢ whereHy(k)=Hq(k,t=0), and the average has been taken

If p1<<p,, then over all configurations created by the noige. We note that
for t>0, »_=0. At t=0, a new growth process with noise
L2 for t>tq 7 is turned on. Let us denote the full solution of the CLG
CsOD=1 28, tor teet,. (39 equation by (k,t) with the initial conditionHo(k). Then,
As in Sec. Il B, both EW and MWV behavior are found in A(k,t)=Ho(k)e 2t Rk, 1), (43)

the different regimes. .
wherea(k)= v,k?+|v,|k?* andh(k,t) denotes the solution
IV. APPLICATIONS of the CLG equation with a flat initial condition. Calculating

L _ ) the correlation function with respect to both the old noise
The goal of the present section is to illustrate how Ilnearni (from t=—t, to t=0) and a new noise; (for t>0)

growth equations can be used to address experimentally reéives
evant questions about kinetic roughening that have so fa
received little or no theoretical attention. Specifically, we dis- . D LY. — 1 a—lack)+a(k/ )t
cuss the contribution of the substrate roughness to the width (HOHKD);); =f(k ke
of a growing surface, and the detailed form of the spatial +<F1(k’ t)ﬁ(k 0);

, )5,

height correlation function. (44)

given that either(Hq(k)); =0, or (h(k,t));=0, which
A. Effects of substrate roughness makes the cross terms disappear. The influence of the initial
In the real world, thin films are rarely deposited onto aconditions vanishes exponentially fast in the Fourier space
perfect, atomically flat substrate. Consequently, every experfut not necessarily in the real space. To see this we consider
mental investigation of kinetic roughening has to deal withthe following example. At timet=—t, the surface is flat.
the substrate contribution to the roughness of the film surThen we switch on the beam and let the surface evolve until
face. To the extent that this problem has been addressed &t 0 driven by the CLG growth dynamidshe noiser_ is

all, it is usually assuméd that the substrate gives an addi- white). For f we get
tive, constant contribution to the variance of the height fluc-

. . 0

tuations(the square of the widihas f(k,k’)=< f drs_(k,r)e®r

-t
WA (1) =w}+wg(t), (40 ’

0

wherew; is the width of the substrate surface awg de- X dr' 7_(k’,7)ed "

notes the growth-induced contributigthroughout this sec- ~to o

tion the lateral system size is taken to be infinite and there-

fore the dependence dnis suppressedThis simple ansatz 2D 1—e 22kt 5 ,

ignores the fact that the memory of the initial roughness is “2m%  2a(k) (k+k’). (45

lost during the growth process, as the growing film succes-

sively covers up the features of the substrate. The short |ntegrating the first term on the right-hand side (48)
wavelength features are preferentially suppres@ethpare  with respect tok shows that the initial roughness decays
to a layer of snow covering a rugged landsgape effect of  sjowly, asw?~t,/t, in the limit t—o, when the substrate

much importance for the scattering from multilayer filfs.  gimensiond= 2. This corresponds precisely 1) with EW
In the following we show thati) within the framework of scaling,g;té’z and é~t12,

linear growth equations, the superposition an$4y is jus-
tified; however,(ii) the substrate contributiow; becomes
time dependent and decreases witim a manner governed
by the ratio of the substrate correlation lengthto the cor-
relation length&(t)~tY? of the growth process; for long
times, &> &g, we find

In the preceding we deal with the full CLG equation. Next
we will focus on calculating the time-dependent substrate
surface Width\Niz(t) for the special cases,=0 (EW equa-
tion, z=2) andv,=0 (MWV equation,z=4) of (1). More-
over, we assume that the substrate surface has been grown by
either EW or MWV dynamics, so that its correlations can be
Wi (1) ~w; (0) (&), (41) described by the Fourier amplitudes

The fact that the total width is the sum of a decreasing and

- Ao )
2y, —_ 11— (ké&)*s
an increasing part entails the somewhat counterintuitive pos- {[Ho(k)] Vi kzs[1 e, (46)
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where &, is the substrate correlation length, amg=2 or  in which the initial fluctuations are statistically independent.
z.=4 for surfaces generated by EW or MWV dynamics, The height variance of each domain is of the order
respectively. The roughness exponent of the substrate isongd, and averaging oveN domains reduces the vari-
Xs=(zs—d)/2. Solving (1) subject to the initial condition ance by a factor of N. If the substrate has power-law

Ho(k), one obtains roughness ¥s>0), thenw; (0)>~Ao£= ¢ and (50) is iden-
- - _ z tical to (41).
2\, — 2y o [kém]
(IHK D55 =(IHo(k)[%); e The last argument is valid also for completely general

initial conditions characterized by a correlation function of
D1 2
+ = P[]__e*[kf(t)] ], (47)  the form
14

. . N Qq-,A
wherez is the dynamic exponent of the growth process and Ho(K)|?); = _d_d = Og(kg ) (51)
£(t) = (2vt) ¥ its correlation length. Since the variane@ is (Ho(01%5 = a2, *

obtained by integrating4?7) overk, the decompositior40)

. : o L where xo denotes the roughness exponent of the substrate
is valid and the substrate contribution at timnés given by Xo g b

and the scaling functiong(s) satisfies g(s—x)=1,
Koo g(s—0)=0. The expressiof49) generalizes to
WA(1) =04 1Aq fo dk KI-1-7% 1 — g~ (k&)™) (ko7

(48) Wi(7)= Qg 1AgE fo dq g~ **20g(q)e . (52
The upper cutoffk,,, is of the order of the inverse lattice
constant; in the following we assume thatand ¢ are large To extract the behavior for largewe need to know how
compared to Ky, and sek = in (48). g(s) vanishes for smaB. This is fixed by requiring tha®1)
Substitutingg = (kés)* in (48) yields should have a finite limit fok— 0 (this limit gives rise to the

center of mass fluctuations of the surface, see Ref.Gdn-

0 2z — cd+2xg
Wiz(t):(ﬂd—lAO/zs)5257dJ‘ dq = 2(1—e 9o J : sequentlyg(s)~s , and(52) decays as
0

(49) W2(1)~ Qg 1Agt 0 Y2~ w(0)(£/6)%, (53
where the dimensionless time variabte: (¢/£5)* has been in accordance with the heuristic argument.
introduced(recall that¢é~t*?). The integral can be explicitly In summary, we have shown that, under rather general

computed ifz=zg; details are given in Appendix A. To ana- conditions, the substrate contributiov) to the width of a
lyze (49) in the general case, let us first assume thatd, rough growing surface remains essentially constant as long
i.e., x>0, which covers MWV substrates id=1 and as the correlation length of the growth process is smaller
d=2, and EW substrates ih=1. than the substrate correlation length and that it decreases

This ensures that the integral ovg?% 2 converges at according ta41) for &> &,. While the functional form of the
infinity, and hence the factor expg?=) can be dropped transition between the two regimes is not analytically acces-
when 7<1. The width is therefore independent offor  sible in general, a useful interpolation formula is
7<1. Physically this simply reflects the fact that, for a sur-
face with power-law roughnesg,>0, the width is domi- wi(1)>=w;(0)*(1+t/ty) ¥ (54)
nated by the long-wavelength fluctuations with wavelength
of the order of&g. At time t initial fluctuations of wave-
lengths up to the correlation lengi(t) have been elimi-
nated, thus the substrate contribution to the width decreas
appreciably only wheg~ ¢, or 7~ 1.

For z;=d (i.e., xo=0; for example, an EW substrate in
d=2) the integral overg¥%~2 diverges logarithmically at
largeq. The factor expt 79?%) then has to be retained, and
one finds thaw;(7)2~In(1/7) for 7<1; of course, this be- The dynamic scaling hypothesis of kinetic roughening
havior is valid only forr> (khaés) % since the initial rough- theory! states that the height-height correlation function
nessw;(0)2~Q4_1AqIN(knaxéd. Finally, in the (somewhat should have the scaling form
academit casez,<<d, w;(7) decreases as a power law also
for r<1, asw;(7)°~ ¢ (97%) see Appendix A. Cx,H)=(h(x"+x,t)h(x’,t))=WA()F(x/&(t)) (55)

The behavior for large can be discussed independent of . 2_ _ Y )
z,. For =1 the integral (49) is effectively cut off at with w' =C(01), henceF(0)=1, and¢~t *. To date al
q~ 7 %/?<1; therefore we can set-le"9~q in the inte-
grand, and it follows by rescaling that

Swith a fit parametetg, which has already been employed in
the analysis of experimental datiin Fig. 2 the decay of the
substrate width is illustrated for two special cases, and the
?8rmu|a(54) is compared to the exact expression derived in
Appendix A.

B. Shape of the height correlation function

most all theoretical work has focused on the behavior of the
height difference correlation function

G(x,t)=([h(x" +x,t) —h(x’,1)]?)=2[C(0t) — C(x,1)]

WA()=Agt™ &g/ 6)I~t7 92, (50)
=2w?[1-F(x/&(1))] (56)

This result has a simple interpretation. o £ the growth
process averages over a large nunier(£/£,)9 of domains  for x<¢, i.e., the short-distance behavior,
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FIG. 2. Decay of the substrate contribution to the surface width
for dimensionalityd=2 and dynamic exponeng=z=4 (full up-
per curvg and z;=z=2 (full lower curve. The full curves show
the exact expressions derived in Appendix B, while the dotted curve
shows the interpolation formul@®4). The dashed lines indicate the
asymptotic power laws.

F(s)~1—(s%), s—0, (57)

of the scaling function. In contrast, the overall shapé€ af,

in particular, the way it decays for large arguments, has not
been addressed theoretically, although a considerable amount
of empirical information is availabl& This question is of
some experimental importance, since the interpretation of
scattering data from rough surfaces typically requires a
model for the entire correlation functidn.A widely used

form for F is%

FIG. 3. (a) The correlation lengtlk¢ as a function of the two
_ _ dynamical correlation lengthg, = (2v,t)¥? and &,= (2| v,|t)** of
F(s)=exp —s?), 58 _ 1 2 2
(s) 3 ) (58) the CLG model.(b) The relative errolE=(¢,—¢)/¢ between the
which assumes a simple relation between large-distance amdhne fit é,= &+ ayé, and £ [Eq. (59)]. The averagerelative
short-distance behaviors. Here we show by explicit calculaerror is about 1%. The maximum error in the figure (10%) occurs
tions within the linear theory that the large-distance decay ofor large§; and smallé,.

F involves a new exponent not simply relatedytoand that,

moreover, the decay can be oscillatory rather than monoP@rameter® or A. The correlation lengti(t) in Eq. (59)
tonic. corresponds to the experimentally observable correlation

First, we make some general remarks concerning the cof€N9th- We can numerically determine the dependencé of

relation function for the CLG model. The entire correlation©? é1 and & by using the relation C(x=¢)/

_ _ _l . . . .
function valid for all ranges can be rewritten foe=2 asfpy ~ C(X=0)=€_ ", which is the usual definition of the correla-
substitutionk’ =k/¢ in Eq. (32)] tion Iength_. The surface(gl,g_z) is plotted in F_lg. 3. Aleast-
squarest fit for a set of solutiords=£(£,,£5) yields

2 o0

(g% %) _ % %f dk K 1-Jo(kx/é)] £,= a1 €1+ ayk,=0.0853F, + 1.6057%,.  (60)
1 0

2 2 a 4 aa In addition, numerical studies show thé&tfollows the

[1— e [(EVEIRH (&I €DK scaling relation &(a&j,aé)=aé(é,&). Our  choice

(§§/§2)k2+(§‘2‘/§4)k4 . (59 Ep=a1é1 1 ayé; is a simple case that quite accurately satis-
fies the definition for the correlation length.
where&;=(2v,t)¥2 and £,= (2| v,|t) Y% As far as the CLG Unlike the case of the heuristic correlation functi@8),

model can be considered to describe the physics correctlihe requiremenk<¢ alone is not sufficient to determine the
either Eq.(59) or Eq. (32) could be used directly as fitting scaling behavior oz for CLG model with a fixed exponent
functions, with the parameters D(vi,v,) or y. The scaling analysis of Sec. Ill shows that the scaling of
(A=D/(27v,),&1,&5) to be fitted. The amplitude is set by the correlation function depends on two dimensionless quan-
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tites: & /&~ (t/ty)Y? and &x/&a~xi/*. If tite>1, k—0,i=0,1,2. Thus, in the leading approximation we retain
x//*>1 and x<¢ then Gox2x1d=2) gpng  Only the Gaussian part of the integrand:

x~x1(d=2)=0. If t/t.<1, x//*<1, andx<¢, then G 112 f (k)

e x2X2(4=2)n(£,/x) and thusy~ x,(d=2)=1. HC(x, )& Ty e 1, (69
Let us next determine the behavior of the correlation o .

function for large values of the ratig/¢=s. Rather than Furthermore, we note that the contributions coming from

trying to present the full solution for the CLG model we shall distinct saddle points are additive if the paths of integration
limit ourselves to the one- and two-dimensional EW and@'® Properly chosen in the complex plane. Despite the fact

MWV models. For thed=1 EW case, the evaluation 6fis  that the individual contributions coming from poirtg and

straightforward. We have k, are complex, their sum is real. The poky has to be
discarded as it would cause an exponential blow up. Finally,
2Ds (= 2 we obtain
3,C(x,t)= —f dkeks™«, (61)
mX Jo §3
2 53 —a st 4/3 4/
This is a Gaussian integral that can be done. The integrationC(*:t)~ Tl® 1= aysin(ags™) + axcoga,s™ ],
overt is also standard. We obtain the result (70)
C(x,t)=W2(t)F(s), (62)  wherea;=(3/8)4" and a,=(3/3/8)4" 3. The correla-

tion functionC is an oscillating function for large values of

with the argumens and can assume negative values as well.
For thed=2 MWV case we use the same method as in
W(t) = D& : (63) the previous case:
Vl\/;
9 C(x,t)= ﬂzjx dli’m dkzefgg(k%k§)2+|(k1x1+k2x2)_
F(s)= Efldyy‘1/2e‘52/(4y)H25‘2e‘52/4 64) (2m)°) -« —o
2J)o (7D
ass—o. The behavior of the scaling functidn is in strik- To determine the saddle points we g@(tlfzgsz:o,
ing contradiction to the conventional ansa8), which |\ horet denotes the expression in the exponential Z.
would lead one to expect an exponential decayyferl/2. This yields
Thed=2 EW case is also simple to calculate:
akf=0; (9kf:0, (72)
D (> 2 1 2
3, C(x,t)= ;f dk kJ(kx)e™ (€07, (65)
0 = 4G+ AEK K~ 1, =0; 483+ 483k K3~ 1%,=0
Integrating the result from 0 tbyields" (73
w0 D which can be solved with the ansakz=ax;, ky=aXx,.
C(s)= J dy y le V= E,(s?/4), (66) Again we get three saddle points, one of which corresponds
4y )2 47vq

to an exponential divergence. Summing up the contributions
where E; is an exponential integral. The asymptotic of the remaining two and integrating over time gives a real
power-law expansion oE; reveals that as a function ¢f  @nswer.
the leading term is equivalent to thed=1
case: E;(x)~x e X(1—x"1+2x"2—...), hence F(s)
~s‘2e‘52’4.

In thed=1 MWV case we confront the integfal

8

C(s)~ —2-s5 26~ 215" 0qa,s%). (74)

|V2

As before, an oscillating function results.
% 4 % Summarizing, it appears that the large-distance decay of
f7tC(X,t)°<§£lf dkesk X E§£lf dke "™. (67)  the scaling functiorF(s) in (55) generally has the form of a
o o “squeezed” exponential decorated by a subleading power

The behavior of the leading asymptotic behavior can béaw,
evaluated using the method of stationary phsa.the limit s
s—o only the neighborhoods of saddle points contribute to F(s)~s 7e ¢, s—, (79

the integral. They are determined from the relatigh=0:
S
kOE ( Z
suggested by the heuristic functi@dg), the decay exponent
has no direct relation to the roughness exponentther, in
Removal of each saddle point to the origin results in a quathe examples treated hei@seems to be characteristic of the
dratic dependence of(k) on k: f(k)—f(kj)—b;k?® as surface relaxation process but independent of dimensionality.

where the amplitude can be realas in the EW equatigror
13 complex (as in the MWV equatiop in the latter case the
372, decay is modulated by oscillations. In contrast to what is

1/3 1/3
S S
17716 — = 157/6 ==
e, kl—(4) e™ ks <4

(68)
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In Appendix B we give an alternative derivation fde=1,

which suggests thai=z/(z— 1) andy= 1+ §/2 for the gen-

eralized linear equation
ah=—(=5)"h+7 (76)

with integer values o#/2.
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with 0<p<d/2 and 0<p<1/2. Taking the Fourier trans-
form of Eq. (80) leads to

~ - 2D(k,w)
(me(k,w) ﬂc(k',w'»;?c:W Sk+k)S(w+w'),

(81)

It is worth pointing out that a rapid, exponential-like de- where D(k,w)=D’|k| ?’|w| 2¢, andD’ is a function of
cay of the correlation function should be expected only forp and ¢. The analysis of the power-law behavior for both

growth processes that atecal in space, such a&76), for
which the Fourier transform &@(x,t) is an analytic function

of k for small |k|. A simple example of a nonlocal kinetic

roughening process is diffusion-limited erostnformally
the generalization of76) to z= 1, for which it can be shown
that, ind=1,

1D _—
C(x,t)=zjln(1+§ /x%)

(77

for distances larger than the lattice spaciag at x=a,
C~w?~(D/v)In(&a), sincey=(1—d)/2=0 in d=13As
usual, the correlation length i5=2vt. At large distances
(77) decays as a power lag~ (¢/x)?, reflecting the non-
local nature of the interface dynamics.

C. Effects of noise

EW and MWV cases gives the following relations between
the new roughening exponeririmed and the old ones:

Bi=PBitip+te; xi=xitp+2e. (82)

B3=PBat+ip+eO; xs=x2+ptape. (83

Clearly, z;=yx1/B1=2 andz,=yx,/B,=4 are satisfied be-
causey,/B1=2 and x,/B,=4. These results agree with
previous treatments:1°41

V. SUMMARY AND CONCLUSIONS

In this work, we have presented a detailed quantitative
analysis of a combined linear stochastic growth equation,
which incorporates both EW and MWV types of behavior. In
particular, we have identified the relevant scaling variables
and calculated in detail the behavior of the surface width,

We have shown in Sec. Il that the correlation function forand various correlation functions in different regimes. Our

the noise typically consists of two components,

(p(X,t) (X" ,t"))=2(D;—D,V?) 8(x—x") 8(t—t"),

where the first, white-noise component arises from evapor
tion and deposition, while the second, conserved compone

reflects the thermal fluctuations in the surface curfeint.
Fourier space the correlat¢r8) reads

(n(k,0) (k' @",));=(2m) 92D +2Dk?) s%k+k’)

X8 w+w'), (79

where 7 denotes the Fourier transform with respect to both
space and time. So far we have considered the behavior @
the surface on scales large compared to the noise crosso

scale /** ~(D,/D;)?,
neglected. In the opposite regime</** we can set

Vanges the exponents, in analogy to the case of the nonlin
where the conserved part can be o5 kKpz equatiofi:

analysis shows that the CLG model possesses the MWV type
of scaling regime at early timeg<€t.) and crosses over to
EW type of growth for later times. In a finite system it is,
however, possible that the system maintains MWV type of
rowth dynamics for all times given that the prefactor of the
urth-order gradient term is very largé €/*). Addition-
ally, the equal-time and saturated correlation functions reveal
interesting and complicated crossover behavior between the
two limits. We should also note that in the appropriate limits,
our results completely agree with the previously derived re-
sults for the surface width and the equal-time correlation
functions of the EW and MWV equatiof$?~1®We have
also recalculated the scaling exponents in Sec. IV for colored
noise that has long-range spatial and temporal correlations.
ur results show that the long-range part of the noise

The solvability of the CLG model allows us to address

D, =0 and analyze the behavior generated only by diffusionyher important problems related to surface growth problems

noise. The corresponding power laws are easily evaluategis e, A particularly interesting case concerns the influence
because th®, correlator in(79) is of the same form as for of rough initial conditions. In Sec. IV we demonstrate that

in Sec. Il hold if we replacel by d+ 2.

law in time ~ty/t if the surface has initially roughened

In Ref. 41 it was poin_ted out that the effect of fast degreethough the CLG growth dynamics for a ting. In general,
of freedom may sometimes be represented by means of {fig initial roughness vanishes a& (¢)%~t~%Z for EW and
colored noise termy,, i.e., the noise has power-law corre- \wy\ models as¢>é&,. For a general growth process the
lations. Through renormalization group analysis it waspehayior of this transient is easy to evaluate by Fourier trans-

shown that power-law-correla_ted noise changes the scaling)rming the exponentially damped initial height-height cor-
exponents for the KPZ equation. Now we shall extend oufg|ation function[Eq. (44)].

analysis of Eq(1) to include power-law-correlated noise as

Finally, to make the connection to experiments more con-

well. We assume that the noise has long-distance correlationgete we have proposed the use of the parametrized correla-

of the form

(1) (X, t1)), = x=x[ 7|t —t'[?271, (80)

tion functions obtained for the CLG model for fitting of dif-
fusive x-ray reflectivity data. In Sec. IV we establish a

relation between the parameters and v, of the CLG
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growth model and the experimental fitting paramegecf. which is of the form(41) with a prefactor of order unity.

Eq. (60)]. Moreover, both the smallx<£) and the large (iii) z<d: Substrate and surface are smooth, and the width
(x> ¢) scale behavior of the correlation function of the CLG is microscopic at all times. In this cagdl) combines two
model are found to be different from the experimentally usedower law decays: for<1,

fitting functions. This also implies that the measured decay , C(d-2) —(dz—1 e

exponenty from heuristic fitting functions bears no direct wi (1)~ & 7 (Wb gmldm2) (A6)
relation to the roughness exponent of the CLG model. W

Sndependent o, while for 71 one finds
hope that these calculations will be useful in future experi- P & T

ments on surface growth. WA(7)~[Qg_ 1AL (d/2)/z] ¢ 42 7 V2w g (2 £ 1 £)d

(A7)
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as in the previous two cases.

Here we present a simple way of computing the expo-
nentsé and y characterizing the decay of the height corre-
lation scaling function75) for the generalized linear equa-
APPENDIX A: SUBSTRATE ROUGHNESS FOR z,=z tion (76) in one dimension. It follows immediately fro76)

Here we explicitly evaluate the integr@9) in the special that the Fourier transfori(q) of F(s) is, up to some factor,

casez,=z. Taking the derivative 0f49) with respect tor N Y
and reintegrating, we obtain Fla)~q %(1-e™). A (BD)
Oy AT (d/2) We now exploit the fact that, by definitiof,(q) can also be
d-170 - _ _ i 0
szg o[ (74 1)Lz A-diz] (A1)  Written a$
Three cases have to be distinguished. f:(q)% 2 ﬁ(_ 1q)", (B2)
(i) z>d: In this case both the substrate and the growing n=o n!
surface are rough  with  roughness exponeniwhere
x=(z—d)/2>0. The expressiofAl) then has a finite limit
wi2(0)=Qd_1A0F(d/z)§§_d/(z—d) for 7—0. For r<1 the 3
roughness remains essentially unchanged, An= fﬁwdS@F(S) (B3)
~ —df
Wi(7)?~w;(0)*(1— 797, (A2) " is thenth moment of the real-space scaling function. Com-
while for 7>1 it decays as paring (B1) to the power serie@B2), we obtain the relation
W2 (7)~(1—d/z)w?(0) 7~ 92 (A3) 1 (zk)!

A~ = k=012... . (B4)
in accordance with{41). k+1 K
(|'|) z=d: qustrate and :'surface are logarithmically rough. The asymptotics of (s) can then be extracted by com-

Taking the limit ¢—d)—0 in (A1) gives paring the behavior ofB4) for large k with that obtained
2, ~\_ from the ansatz75) inserted into(B3); assuming the ampli-
; = - + . . . .

Wi(7)=(Qa-1A0/2)In(1+1/7) (Ad) tudec in (75) to be real, the integrdB3) is easily evaluated

which diverges forr—0. Clearly (A4) is valid only for in the saddle-point approximation. The leading behavior is

ek L, ie., ™10=(kmads % the initial roughness is A,~n"? which, compared tA,,| ~kZ Yk from (B4), im-

W;(70)%~ Q- 1AIN(Knads). FOr o< 7<1 the substrate con- plies thaté=z/(z—1). Moreover, from the integr¢B3) one

tribution decays slowly, asv;(7)°~Qq_;AIN(1/7), while  obtains a power-law factorn¥°~Y2-¥ which has to be

for 7>1 (A4) reduces to matched to the factork(+ 1)~ that appears in(B4); this
5 . forces v to take the valuey=1+ 6/2. Both results agree
Wi (7)~(Qq-1A0/Z) 77, (A5)  with the detailed calculations of Sec. IV B.
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