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An embedding method is proposed, based upon Green-function matching, for calculating the electronic
properties of an isolated adsorbate. The self-consistent single-particled®geo equation is solved in a
localized region containing the adsorbate and that part of the substrate mainly perturbed by it. The extended
substrate is taken into account exactly by an effective embedding potential. The advantages of the method for
the adsorption problem are discussed and tested by a calculation of the electronic properties of isolated Si and
N adatoms on Al, modeled as jellium. In the former case excellent agreement is found with the results
previously computed by other methods, in the latter, not previously investigated by a first-principles approach,
the ioniclike character of the bond is seen in the calculated charge densities and densities of states. Finally the
problem of the lack of screening due to the presence of an adatom on a simple metal surface is estimated by
the generalized phase-shift theory. This effect turns out to be an important contribution to the atom-surface
interaction energies, and it is corrected to first order by the use of the grand-canonical energy functional.

I. INTRODUCTION (LDA),X® or, more recently, gradient-corrected density
functionals*! The techniques used in present day studies di-
A microscopic understanding of the dynamics ofvide naturally into different classes. Cluster methods employ
adsorption/desorption phenomena at the gas-solid interface é&ssmall number of atoms to represent the adsorbate and sur-
extremely important, as these are the basic processes ojunding substrat¥ Another approach involves the solution
chemical reactions at surfaces. Any dynamical calculation obf the isolated adsorbate problem on an extended substrate
adsorption requires, as input, the knowledge of the adiabaticia the Dyson equation, but by more sophisticated methods
electronic properties of the particle-surface interaction, inthan in the early studies. Alternatively, in the supercell ap-
particular, potential energy surfaces. As dynamical processgwoach, the simplicity afforded by three-dimensional transla-
are very sensitive to the detailed structure of the potentiaional periodicity is fully exploited, e.g., Refs. 13,14. Instead
energy surfacesgb initio studies on the statics of adsorption of an isolated adsorbate, a regular array of adsorbates is con-
have developed into a major field in surface physits. sidered, periodically repeated across the surface. Also, in-
The first calculations of the adiabatic adsorption properstead of an infinitely extended substrate, the solid is repre-
ties of atoms on simple metals date from the works ofsented by a thin film, upwards of three layers thick, but
Grimley# Gunnarsson, Hjelmberg, and LundgviStand normally a relatively modest number. The thin film and ad-
Lang and Williams. Although representing different treat- sorbate overlayer is repeated periodically in a direction nor-
ments, these works share a common approach—the physiaalal to the surface, creating a fully three-dimensional peri-
space is split up into two regions. The former, of relatively odic system, which may then be tackled by the conventional
small volume, where it is assumed that chemisorption is lomachinery of bulk electronic structure theory. The supercell
calized, is often called the embedded region. The latter, theechnique has found favor, because of its numerical simplic-
electronic properties of which are calculated in a lower apAty, yet anab initio description of an isolated chemical spe-
proximation, represents the substrate. In the embedded reies interacting with a semi-infinite solid can still provide
gion a Dyson equation is solved self-consistently, with themore accurate information on the processes leading to ad-
effect of the solid entering in terms of an unperturbed Greersorption. This is because it avoids adsorbate-adsorbate inter-
function. Simple models for the substrate have been used iactions and also takes into account the continuum electronic
these papers: jellium, in the case of Refs. 5,7, possibly alsstates of the substrate.
including a first order perturbation due to the lattice struc- In this paper, we develop a different approach to the study
ture, and cubium for the work reported in Ref. 4. of an isolated adsorbate on an extended subsitaf&ecent
More recently, it has become possible to perform moreconsideration of this problem has led to various formulations
elaborate and sophisticated calculations of adsorbate systerhased upon the Dyson equation. These include the Green-
on realistic surfaces than was possible in the pioneering studunction operator method due to Scheffler and
ies, obtainingab initio solutions within density functional co-workerst’'® where the substrate Green function is ex-
theory®® using either the local density approximation panded in an atom-centered Gaussian orbital basis; methods
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due to Langet al!® and Alde et al,?® which use atom- only within a limited region. The charge density is the central
centered partial wave basis sets and the atomic sphere aguantity in density functional theofy? which is the general
proximation; and a matrix Green-function scattering methodramework adopted here, and from it, all ground state prop-
by Feibelmarf! A rather different approach not based uponerties may be determined. In the present context, this means
the Dyson equation, which uses analytic continuation of thejuantities of interest, such as the adsorption energy, the
spatial coordinates to complex values, has been developed typnding site and geometry of the adsorbate, and the potential
Nordlander and Tully? Although ours is a method for deter- energy surfaces for surface processes such as dissociation or
mining the Green function, it is not based upon the Dysordiffusion?
equation. Instead, we set up an effective Sdimger equa- Since the disturbance is localized, it makes sense to see
tion within a localized regioiithe embedded regidrontain-  whether one can obtain the perturbed charge density from a
ing the adsorbate and the associated perturbed region of tlwalculation that only considers this limited region. Such an
substrate. The influence of the extended substrate enters @approach concentrates effort and resources on the region
the form of a nonlocal energy dependent potential, added tahere the important physics is going on. The difficulty is, of
the Hamiltonian, which acts upon the surface enclosing theourse, that there is coupling to the extended system, and
embedded volume. We determine this embedding potentidghat this coupling is important — for example, broadening
from the Green function of the substrate in the absence of thiecalized levels into resonances, and providing a source of
adsorbate. Eventually, all the relevant physical quantities arelectrons, which can then freely flow into and out of the
obtained as in other methods by projecting our equation ontperturbed region.
a suitable basis set. However, unlike methods based upon the The extended system may be taken into account if the
Dyson equation, our boundary conditions do not enter as alimited region is considered with the appropriate boundary
expansion throughout the embedded volume, giving us moreondition. This boundary condition will influence the solu-
flexibility for the choice of the basis set. In addition, our tion of the Schrdinger equation found within the smaller
method is based upon a variational solution of the Schroregion. Since the region beyond the smaller volume remains
dinger equation, without ang priori biasing in the behavior unperturbed, the boundary condition will not depend upon
of the Green function. For these reasons, we believe that odhe perturbation. In the embedding method, the boundary
embedding method should be a useful addition to the repecondition is implemented via a non-local, energy-dependent
toire of tools available for the study of adsorption. potential, which acts upon the dividing surface of the two
In the following section, we present a derivation of theregions. The embedding potential is derived from a calcula-
main equations of our method, and we discuss their solutiortion performed on the unperturbed system.
In Sec. Ill, we discuss the calculation of physical quantities We briefly summarize the derivation of the embedding
of interest. Section IV illustrates the application of the equations, highlighting pertinent points. Further detail and
method to adsorbates on the surface of Al modeled withirdiscussion are to be found in Refs. 23,24. The total space is
the jellium approximation. This system represents a standargartitioned into regions andll (Fig. 1). The former is the
testing ground for different techniques for studying adsorpvolume to be embedded, the region which contains the ad-
tion, and enables the accuracy and utility of our method to baorbate and that part of the system perturbed by its presence.

assessed. Section V is devoted to conclusions. Regionll is the rest of the extended system, containing the
substrate.
Il. EMBEDDING A variational solution to the single-particle Schiimger

) equation may be found, which explicitly depends only upon
A. Outline the wave function in regio, the region of interest. To do
The embedding methéd?® has been developed for the this, we construct a trial wave functiap(r), which is to be
study of extended systems, where a localized perturbatiomaried within regionl and which in regionl is a solution
has lowered the symmetry and has caused a significant egr) of the Schrdinger equation for the unperturbed system
hancement of the complexity. There are many examples adt energys. On the surfaceS, which divides the two vol-

this situation: impurities within a bulk crystal, interfaces, in umes | and Il, the trial wave function is continuous,
general, and surfaces, in particular, adsorbates at surfacegrg)=y(rg), as it must be to be a valid wave function, but
and so on. a discontinuity in derivative is permitted.

Embedding exploits the fact that very often in these sys- The expectation value of the Hamiltonian in the whole
tems the electronic charge density is significantly perturbedpace is given by

1 FY Y
3 * 3 2, 2 )
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whereng is the unit vector normal to the infinitesimal surface elemefits; pointing out of the regior, and the surface
integral term is the kinetic energy contribution arising from the discontinuity of the wave function derivative &c(dés use
here and throughout the paper, unless otherwise stated, atomicasmfis: m,=1.) The volume integral in regiohnmay be
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eliminated by introducing the Green functi@y for the unperturbed system, which satisfies a zero normal-derivative boundary
condition onS:
dGo(rs,';€)
- = = 0
ang

@

The surface inverse of this Green function is a generalized logarithmic derivative, which relates the amplitude and derivative
of the wave function on surface:

7 r)——2fd2r’ Gol(re,riie)(rl) 3
ansl//(s— JTs Go sifs:e)P(rg).

Following Ref. 23, we can thus obtain the expectation value of the Hamiltonian with our trial function, purely in terms of

1 d 3Gy L(e)
Jd3r P*HPp+ —J d’rg ¢* —¢+ J derJ’ d?rg ¢* Gal(s)—s—o
| 2])s s Js s

guantities evaluated within or on the surface of redion
E

E= -1 . (4)
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Hd o= [ cors [ cre 6t =2 6

E

If this equation is minimized with respect to the trial functign we obtain the following Schdinger equation:

1 J B IGy M(rs.rie) .
H+Ea(r—rs)a—ns)¢(r)+5(r—rs)fsd2rg(eo1(rs,r's;8)+(E—s)%ss>¢(r’s):E¢(r) with rel. (5)

Considering each term in turik is the Hamiltonian of the shown to satisfy an effective Scliinger equation. To
system, a sum of kinetic energy, and potential energy operachieve this minimization in practice, we expand the trial
tors (described in more detail belgwThe normal derivative wave function in a basis and minimize E¢) with respect to
term on the embedding surface provides Hermiticity withinthe expansion coefficients, obtaining a matrix-equation rep-
regionl. Ggl is the embedding potential, constraining the resentation of the Schdinger equation.
trial function ¢ to correctly match on to the substrate wave There are beneficial reasons for switching from the elec-
functions . The energy-derivative term provides a first or- tronic wave function to the single-particle Green function.
der correction tdG, *, so that the constraint is evaluated at The analyticity of the Green function may be exploited to
the working energyE. The correction vanishes ;! is simplify valence integration through the use of complex en-
evaluated at energl, as is done in practice. ergies, and a better des_crlptlon is obtained of spectral fea-
tures and the local density of states. Furthermore, the pres-
ence of the energy-dependent embedding potential if&q.
B. Matrix representation prevents the eigenvalues and eigenvectors from being ob-
In the previous section, the trial wave function, which tained from a single matrix diagonalization, and so one of the
minimized the expectation value of the Hamiltonian, wasCOSt advantages of wave functions over Green functions is
not available in the present situation.
In the usual way, the Green functida for the present
problem is that which solves thiehomogeneouSchralinger
I equation corresponding to E¢p). ExpandingG(r,r’;E) in
the basis sefx ,(r)},

S
ms G(r,r;E)=2 9(E) b xu(DX (1), 6)
'
the Green-function expansion coefficients may be shown to
(4 satisfy the matrix equation,

2” [HMMH+ Gal(E)’u,un_ EOMMH]g(E)MHﬂ/: 5/‘/"“" (7)
"

FIG. 1. The embedding geometry, with regibto be embedded Where contributions to the matrix elements from the Hamil-
in the extended regioh . tonian, embedding potential, and overlap terms are
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J D. The embedding potential

— 3 * 1 2 *
M = f.d P XuH X Efsd s Xu ﬁsxﬂ" The embedding potential may be determined from either
the wave functiorifor example, by inverting Eq.3)] or the
Green functiof! of the unperturbed system, which in the
present case is the clean surface. The clean surface is a sys-
Go H(E) ypur = f dzrsf d?rg x5Go M(E)xur (8 tem which may itself be usefully studied by
s s embedding®>?®?°and so for the current discussion, we as-
sume a knowledge of the Green function rather than the
wave function.
— | 43 * We denote this Green functid@y(r,r’;E). This is nor-
O/L,u' fd r XMX,U,’ . . . M. . .
[ mally available in an expansion, using a basis appropriate to
the clean surface geometry, such as plane or evanescent

) ~waves normal to the surface and Bloch waves along the sur-
We emphasize that the theory developed so far does not iface plané® As described in Sec. Il A, the embedding po-

troduce any additional approximation beyond the singletentia| is the surface inverse o8 of the clean substrate
particle model. In the usual manner, Bq) is solved self-  Green function, which has zero normal derivativeQrthe
con5|stentl_y foIIowm_g d_ensny functional the&rﬁ’/ in the embedding surface. This may be derived fr@, , which
local density approximatioff, as used here, or if desired by iy ‘in general, satisfy some other boundary conditiousu-
using gradient-corrected extensions to the LBAn prac- ally periodic boundary conditions parallel to the substrate
tice, further approximations occur in the solution, due to5nq causal boundary conditions normal to the surface, or, if
truncation of the basis set at a finite basis set size — intro; s ohtained from a supercell calculation, periodic bound-
ducing an error which can be monitored and, in principle,,ry congitions both parallel and normal to the substrate sur-
systematically reduced to any arbitrary level of precision 'tace by matching Green-function methotfsBy suitable
quired — and through the choice of embedding volume,nstormationG,, may be expanded on the embedding sur-
within which the solution is obtained self-consistently. In ¢;.05 the surface of the embedded sphere, which has radius

principle, this too can bg systematically increased and thg, in spherical harmonicgenergy dependence is now im-
error reduced to any desirable level. plicit):

C. The embedded region GM(rS,r’S)ZE FLL,YL(Q)Y’L‘,(Q’), 9
We now consider the actual geometry of the embedded H

region suitable for the adsorption problem. In previous apwhere L is the composite angular momentum index

plications (e.g., Refs. 25,26,28—3®f embedding methods L=(/,m), andQ the solid angle)=(6,#). Similarly, the

to the study of surface properties, the embedded region ha@rmal derivative ofG,, may be expanded on the surface,

consisted of the selvedge region of the crystal surfdélce  with coefficients{FLL,}, and the matching Green-function

top layer or twg and a vacuum portion. In these studies, themethod then shows that the Coefﬁciemgal_ll_,} of the sur-

foc_us qf attention h_as been on properties of t_he cl_ean surfacg,ce expansion of the embedding potential,

which is characterized by the translational invariance sym-

metry parallel to the surface and for which the problem is

simplified through the use of two-dimensional Bloch wave Go (s F9=2 ol YLQ)Y!(Q), (10

functions. Here, the presence of an adsorbate on the surface LL

destroys this invariance to translation across the surface, buiay be found from the matrix equation,

represents a perturbation to the crystal, which involves a

relatively small localized volume in the vicinity of the adsor-

bate. This suggests that for the embedding region, one should

use a limited volume around the adsorbate, but one large

enough to contain that part of the substrate that is perturbe@ihe evaluation of the matrix elemenisandI’’ from Gy,

by the impurity. The reference system used to calculate theavolves integration over the Brillouin zone and summations

embedding potential is the clean surface. over reciprocal-lattice vectors, and along with the Green-
A second factor influencing the choice of embedding refunction expansion is discussed in some detail in Appendix

gion is the question of the expansion of the embedding poA.

tential and the subsequent determination of the electronic We note that there is no problem in obtaining the embed-

structure of the adsorbate on the surface. Both are consideding potential for a substrate described by nonlocal pseudo-

ably simplified if the embedding potential can be expandedotentials, even if the embedding surface should cut through

in a complete, orthogonal set of surface basis functions otthe core of a pseudopotential. This is because the pseudo-

S, leading to an efficient and compact representation. Thisvave-function is still alocal quantity, and it is this which

also simplifies the determination of the Green-function ma-determines the embedding potential, either directly or

trix elements. These two requirements are certainly satisfiethrough the Green function. Naturally, the closer the embed-

through the choice of a spherical embedded region, wherding surface approaches an atomic core, the more structure

the spherical harmonic basis set may be used for surfadbere will be in the substrate wave functions, and so the

expansions. larger the number of basis functions that will be required in

a2
Golt=T"1 1+ =T, (11)
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the expansions db), anngl. This will also be true should ki,
the embedding potential be determined from an all-electron Tow=—50,.- (14

A e 1 2 THu
description of the substrate.g., based upon the muffin-tin

construct, which will most probably require an augmented 1he second contribution to the Hamiltonian is that due to the

basis set description for the surface expansions. normal derivative, the final term in the first line of E@).
The embedding potential contains all the information re—rhis term is

garding the substrate which will enter into the solution of the

Schralinger equation for the perturbed region. It does not a

depend upon the contents of the embedded volume, and D;/,,u,’z5LL’_j/(kna)[/j/(kn’a)_kn’aj/+l(kn’a)]v
needs to be evaluated only once for a given substrate and 2

choice of embedding volume. Hence it is worthwhile to (15
evaluate it to high accuracy. Once this has been done an,uing use of recurrence relations satisfied by the Bessel
arbitrary perturbation may be introduced into the embedded,,tions33

region, and the electronic structure obtained from a calcula- \yi 2 now consider the final contribution to the Hamil-

tion for this region with the embedding potential acting as g nian v/, due to the potential. We assume that the potential
boundary condition. The solution so obtained will be entlrely-S a combination of local and nonlocal terms. The former

equivalent to having solved the problem of the combineqy, | ,qes the exchange-correlation potential, the electrostatic
substrate-adsorbate systerassuming complete basis set ,antia) and the local part of the ionic potential. The latter
convergence and that the perturbation in the charge densitys ihe nonlocal component of the pseudopotential. In all-

and potential are restricted to the embedded volume electron calculations this latter contribution would be zero.
The sum of all the local terms may be expanded within
E. Basis set and matrix elements the embedded sphere as

This embedding approach is flexible enough to allow for
an arbitrary choice of the basis set, but to proceed, it is nec-
essary to make a concrete choice. For the present study, in
which a single adsorbate atom treated in the pseudopotential
approximation is considered on jellium, a convenient basis ighe radial component¥, (r) are tabulated on a grid and
constructed from spherical Bessel functions for radial variainclude contributions from the ionic core, known analyti-

V(H=2 Vi) Y(Q). (16)
<

tion and spherical harmonics for angular variation: cally, the Coulomb contribution, which is found from the
solution of the Poisson equatidthis reduces to the solution
X (1) =Xn,/m(r, Q)= AK)YL(L). (120  of aradial problem for each component and the exchange

correlation potential, which is numerically evaluated by fit-

Ihf arg~umt;nt Qf the Be§selhfunct!on |fs hchosen tq b(?ing its angular variation via a special directions expansion.
n=nm/a, wherea>a, a being the radius of the embedding ¢ contribution to the Hamiltonian matrix elements from
volume. This gives a range of values of amplitude and deg.q |ocal potential is

rivative on the surface of the sphere and so does not preju-
dice or constrain the description of the boundary condition. a
The compos’ite indgm represents bth radial - — and V,LL?L?ZE St'uf r2j (K, )Vn(D)j o (kyer)dr, (17)
angular —/,m — indices. The basis set consists of the L" 0
nuXx (/w+1)? functions with I=<n<n,, and 0</</),. L . _ _
Within the spherical geometry, this basis set may be viewed/hereS;, , is the integral of three spherical harmonics,
as the natural relative of the familiar plane wave basis set
used in more conventional electronic structure calculations, L
and indeed it retains many of the benefits of the latger SL'L”:LWdQ YEEQ)YL(Q)YL(Q). (18)
competitive alternative would use Gaussians for the radial
variation. Note that a similar basis will also be suitable for Only values ofL, L’, andL” satisfying certain conditions
studies which described the substrate by pseudopo;enuala,ve nonzercSt,,_,,.“ One consequence is that only compo-
a_md als_o for molecular adsorbates. More quahzed ba3|§ funGants of the potentiaV/, » for which /"<2/,, need be re-
tions will be needed for all-electron calculations, for which 34ained.
suitable generalization of the linear augmented plane waves
basi€® is an obvious choice.

The matrix elements in E¢7) can now be evaluated. The
overlap matrix is

The contribution from the nonlocal terms is more trouble-
some, as these have a natural origin, which is the position of
the adsorbateR,, rather than the center of the embedded
region, which is the origin of the basis functions. We have
a used ab initio pseudopotentials of the Bachelet-
Omu=5wf r2j A(Kar)j o+ (Kp/r)dr. (13) Hamann—Sc_hIt.eF’E’ type, which have the fornineglecting

0 the spin-orbit interaction

The Hamiltonian matrix may be written as three contribu- .
tions,H=T+ D+ V. The first, the kinetic energy, is straight- yion " ion * 00!

. ! . o ra,Q,,Q00=2, V(r Y (Q)YF(Q)),
forward, as the basis functions are eigenstates of the kinetic ps(Fa:{1a, {2a) Z 7 a)m;/ L(2a) YL ()
energy operator with eigenvaltlélz: (19
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wherer,=|r—R,| and (), is the solid angle subtended by with the curvec beginning below the lowest occupied sféte
r relative to the originR,. The radial components may be and returning to the real energy axis at the Fermi energy
decomposed as Er. The density of state@OS) is found from the spatial
_ _ integral of the LDOS,
V?n(r)zvcore(r)"'Avyn(r)r (20

where the first term, the long-range local Coulomb contribu- cr(E)=f d3r o(r,E), (27)
tion, may be reexpanded about the center of the embedded

sphere and then _combined with the _othe_r local cpntribution% result which clearly depends upon the integration volume.
above. The contributions to the Hamiltonian matrix elementqvlsing the generalized phase shiGPS,% it is possible to

arising from the short-ranged-dependent terms are found determine thehangein the DOS in the whole space, due to

by reexpanding the basis functions about the adsorbate POske presence of the adsorbate. This includes changes within

tion, using the embedded regioand the substrate. The change in the
total number of electrons with energies less tlais given
i A(ka)YL(Q) =2 Dp,(Kn,Ra)j o (Kal2) Y1 (Qa), by
L!
@1 \ L gef F G0 —EO _Jd s
where N(E)==Zimindet 4 6 1—go) = ) 9B 4B
(28)
L - (== L’
D (k,R)=4m2 it/ j (KRS YT QR), where H, is the Hamiltonian of the clean surfacAN(E)

L (22) can be numerically differentiated to yieldo(E), the change

in the density of states of the whole system, which is a quan-
to give tity independent of the radius of the embedding sphere used
in the calculation, once it is sufficiently large.

Finally, we are interested in the total energy of the system,
and, in particular, the interaction energ¥R,) of the atom
with the surface, which is represented by the difference be-
tween the total energy of the interacting system and the ref-
erence energy of the clean surface and the isolated @tom
more details see Appendix)BThis function of adsorbate
Note that, in practice, the short range of the radial compogposition represents the adiabatic potential energy curve for
nents of the nonlocal potential introduces a finite cutoff tothe adsorption process. Using a grand-canonical energy

VZ;; = 2 D::: (kn yRa)Dt"(kn’lRa)
LH

+ .
xf r2j (Kol AV ] pn(Kper)dr. (23)
o ,

this radial integral. functional®®~*°we find #(R,) to be
Finally, the matrix elements of the embedding potential
are obtained in a straightforward way using the expansion “(R)=(AT)+(AU)—ELAQ, (29
(10) and exploiting the orthogonality of the spherical har-
monics:

Er
AT)y=| dE EAG(E)— | d® pe(r)Ve(r), (30
Gy M(E) =25 MENL (k) (kyd). (24 (a7 = [T aE Ero(®)- [ 6 puirVert). (20

Ill. QUANTITIES OF PHYSICAL INTEREST (AUY= }j e [ @ p(r)p(,rf)
Both in the self-consistent solution of the Sctlimger 2J1 R r=r’]
equation(5) and as a quantity of physical interest, the elec-
tron charge densityp,(r) plays a major role in the theory. +Jd3f Pel(exc(pelr)), (39
We determine the charge density from the local density of !

states(LDOS), o(r,E), which is related to the Green func-

tion by whereVg(r) is the effective potential felt by the electrons,

with electrostatic and exchange-correlation contributions in
1 addition to the pseudopotential(r) is the total charge den-
o(r,E)==ImG(r,r;E+ie), (25)  sity, and AQ denotes the excess\Q>0) or the deficit
™ (AQ<0) of electronic charge in the whole system(1)
calculated by the GPS method. Although small for suffi-

¥vhercje|be IS ? sm?ll |mag|n?kr]y energy. Lhet c;tharg_?h(jen5|ty IS iently large embedding volumes, this provides a significant
ound by Integrating over the occupied states. This IS MOSL, b ition to the total energy, which is accounted for

economical!y performed by contour integration, eXplmtingwithin the grand-canonical functional by the additional en-
the analyticity of the Green function in the upper half plane:ergy contributionELAQ, in effect subtracting/adding the

excess/missing charge at the Fermi energy of the substrate,

pol(r)= ilmj dz G(r,r:2), (26) which acts as a r?servoir of electrons to flow into and out of
7 Je the whole systerft!
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TABLE |. Parameters used in the calculatioasis the embed-
ding sphere radius,E® is the kinetic energy cutoff, and
(/w+1)? and ny are the number of spherical and radial basis
functions, respectively. The values given have been arrived at on
X the basis of extensive convergence tests, e.g., increagjrtg 18

changes the N adsorption energy4¥.01 eV, or decreasing,,, by
1 makes a negligible change to the DOS or induced DOS as plotted.

Physical system alay E'YRy m Ny
r
Clean Al surf. 7 23 8 12
0 Sion Al 7 30 8 14
z N on Al 7 44 8 16
a The other main differences between the two approaches are

(i) we use a pseudopotenttafor describing the atom, in-
stead of an all-electron potential used in Ref{iij.Lang and
Williams’ consider some effects caused by the long-range
charge disturbance, due to the adatom by including a correc-
tion in the self-consistent potential at each iteration, while
our calculation is performed purely within the embedded re-
gion. (iii) We use the more accurate exchange-correlation
potential from Ref. 43(iv) Finally, we compute the adsorp-
tion energy by the grand-canonical functional.

FIG. 2. The embedded sphere and coordinate system used in our Figures 3 and 4 show the calculated charge density and
method. The semi-infinite background fills the left portion of the density difference arising from the adsorption of Si on Al at

space. For details see the text. distancedq=2.3a, from the jellium edge(the equilibrium
position found in Ref. Y. In the former, the radius of the
IV. APPLICATIONS embedding sphere, beyond which the calculated charge den-

As the first application of this embedding method, Wesity has no physical relevance, is clearly visible, but for the

consider a single isolated atom on a jellium surface thiéiifference plot this is not the case, due to the localization of
' the charge perturbation to within the embedding volume.

problem representing a suitable nontrivial system forB th olot I with th in Ref. 7. and th .

testing—a critical comparison can be made with the well OIh plots agree well wi 0s€ In Rel. 7, and the minor

known (and often revisitedresults of Lang and William, differences near the nucleus position can be attributed to the
different treatments of the ion core.

We initially require a self-consistent solution for the o -
adsorbate-free surface from which the embedding potentigl We show the calculated gdsorptlon-ln_duced D.OS in Fig. 5
ggr several atom-surface distances. This quantity represents

may be determined. For this we perform a separate calcul o diff bet the density of stat £ th ;

tion embedding a selvedge region onto a semi-infinite je|'+ed : ebretnce te weer:j thet ?Tﬁ'ty IO S aefs 0 Ie suLace

lium substrate, and the embedding potential is constructed blya sorbate systém and that ol Ine clean surface alone, hence
evealing how the distribution of electronic states has

using Eqs(10) and(11) on a sphere of radiug, centered a ; .
: = - changed. On the scale of Fig. 5, both the induced DOS cal-
distanced above the jellium edge. The geometry is mdlcatedculated within the embedded volunieegion 1), which is

in Fig. 2.
To test the quality of the embedding potential, we firs,[plotted, and that found from the GPS for the total space

solved Eq.7) self-consistently within the embedding region
with no adatom. This “empty lattice” test also provides an
assessment of the implementation of the theory, and we
found that the calculated behavior of physical quantities
(charge density, DOS, effective one-electron potential) etc.
for several values of the Wigner radiugwere in very good
agreement with those found from one-dimensional calcula-
tions of the same systems, and that they merged nicely into
those of bulk jellium.

We have next considered a Si atom chemisorbed on Al,
modeled by jellium withr (=2.07a,.%2 A number of test cal-
culations indicated that a sphere of radais 7a, at a dis- .
tanced=1a, from the jellium edge was sufficiently large. -6 -3 z 3 6
For all the parameters of the calculation see Table I. Detailed
results for this Si-Al system have been given by Lang and FiG. 3. Contour plot of the electron chargg(r) for Si on an
Williams in Ref. 7, using a method in which the adsorbateAl-jellium surface at the distanat,,=2.3a,. In the outermost con-
system wave functions are matched onto those of bulk jeltour p,=0.004 a.u.; successive contours increase by 0.006 a.u.
lium; our embedding method may be used for any substratez is in units ofa,.

i
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FIG. 4. Contour plot of the displacements of the electron charge Distance (a.u.)

for Si on an Aljellium surface ade=2.33,. Xy is in units
of ay. FIG. 6. Them=0 (o-like) and|m|=1 (=-like) contributions to
the induced DOS of Si on an Al-jellium surfaésee previous fig-

(1+11) are essentially indistiguishable. The inset, showingure)- The dashed line is the effective one-electron potential of the
results forde,=2.32,, compares very well with the previous ¢lean metal.
calculation reported in Ref. 7. The two resonances, which are
more pronounced and shift to higher energies when the ator@fom-surface embedded region, and we also position the
gets further from the surface, correspond to tisea®d 3  a@tom within the sphere at the same position as for the surface
atomic levels. Figure 6 shows the positions of thepak of calculation. E_’>y this procedure, we minimize errors arising
the m=0 (o-like) and|m|=1 (m-like) components of the from the choice of a smaller radius. _
DOS at various distances from the surface. The splitting, in Ve note thagb initio total energy calculations are usually
agreement with the results of Ref. 7, arises from the breaking difficult task for any impurity problem in an external metal
of the spherical symmetry of the atom by the surface. 10st, due to the long-range character of the Friedel oscilla-

We now consider the interaction energy of the Si-Al sys-tions, mduce(_j in our case by the adat_om. As a consequence,
tem [Egs. (B3)—(B7)]. For consistency, we determine the the.perturbatlon cannqt be .fuIIy Iocallzeq to the.e_mbedded
atomic energyE® (at infinite distance from the surfacby ~ region. Perfect screening will only occur if an infinitely ex-
embedding the atom in vacuum. We have checked that af¢nded embedded region is used, and so some violation of
embedding sphere of radias=12a,, gives electronic prop- charge nept'rallty in the whole system is expected. The
erties of the atom, which coincide with those obtained byexcess/deficit of electron charge is measuf8dc. Il by
solving the standard radial Kohn-Sham problem, while forAQ=[AN(Eg)—Z], Z being the number of the atom va-
a=7a,, we find they only differ negligibly. Therefore, we lence electrons. For Si on Al at the adatom-metal equilibrium

computeE® within a sphere of the same radius as that of thedistance from the jellium edgede,=2.33,, we find
AN(Eg)=4.072 and scAQ=0.072, while thelocal excess
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FIG. 5. Induced DOS of Si on an Al-jellium surface at several
atom-surface distances. The vacuum zero energy is the reference FIG. 7. Adsorption energies of Si on Al, as functions of the
energy level. In the inset, the induced DOS at the distanceatom-surface distance. In the inge@, as a function of the atom-
deq=2.38, is shown. surface distance, is shown.
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FIG. 8. Contour plot of the electron chargg(r) for N on an EEY)
Al-jellium surface at the equilibrium distanag,;=1.0a,. In the o
outermost contoupe=0.004 a.u.; successive contours increase by ~FIG. 10. Induced DOS of N on an Al-jellium surface at several

0.006 a.u.x,y in units ofay. atom-surface distances. The vacuum zero energy is the reference

energy level. In the inset, the induced DOS at the equilibrium dis-

of the electron charge in the embedded region is found to bggcfsdgje}'oao is shown. The narrow peak on the left represents
AQ,=0.09 (with the calculation parameters reported in '
Table ). The excess of electron charge in the whole system . ] _
AQ, as function of the atom-surface distance, is shown iffion of N, ions with an Al surface leads to formation of an
the inset of Fig. 7. This effect is taken into account in theAIN film, hence with N atomic adsorptio:*° These points
adsorption energies by the grand-canonical formalisee ~ Motivate our theoretical investigation of N adsorption on jel-
Sec. Ill and Ref. 4D The resulting adsorption energies of a Ilum,. as weII_ as the quest for a harder test of our method than
Si adatom at various distances from the jellium edge ardreating a Si adatom. o .
shown in Fig. 7, with those of Lang and Williamid\e ob- As the N atom pseudopotel_qtlal is conS|derany deeper apd
serve good agreement between the Si-jellium energies calc{Pore compact than that of Si, a greater numerical effort is
lated in this paper and those in Ref. 7, even though the selfequired, and, in particular, more radial basis functions are
consistent Schidinger equation is solved within two very Needed, as shown in Table I. The contour plots of the charge
different frameworks. This agreement is to be expected givefensity and of the displacements of the electron charge at the
the agreement between the Charge contours and DOS Ogalculated atom-surface bond eqU|I|brlum distance of
tained with the two methods. deq=1.0ay from the jellium edgesee below, are shown in

We now consider N on the same substrate, Al describeffigs. 8 and 9, respectively. Owing to the larger electronega-
by jellium. This is one of the very few first row elements, the tivity of N compared to Si, these plots more closely resemble
electronic adsorption properties on simple metals of whictthose previously computed for a CI adatom on jelliliffor
have yet to be the subject of first-principles calculations. Fur-
thermore, it has been shown experimentally that the interac-
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FIG. 9. Contour plot of the displacements of the electron charge FIG. 11. Adsorption energies of N on Al, as functions of the
for N adsorbed on an Al-jellium surface df,;=1.0a,. Xy in units atom-surface distance. In the inge@, as a function of the atom-
of ag. surface distance, is shown.
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both Cl and N, there is an enhancement of the electronic Application of this embedding approach to an isolated Si
charge in the atomic region, indicating that the N-jelliumadatom on jellium(Al-like) has shown the method to be
(Al-like ) adsorption bond has a more ionic character than theapable of reproducing all the standard Lang and Williams
Si-jellium bond. The induced DOS in Fig. 10 calculated atresults’ In addition, we have made an investigation of the
various distances from the jellium edge shows a pronouncetj-jellium system, which exhibits bonding of primarily ionic
peak, due to the 2 resonance level of N. The behavior of the character. The next stage in development will be to introduce
resonance as a function of distance is the same as that of tRgmore realistic treatment of the substrate, to provide a more
3p resonance of Si, but in the case of N, lies further below2ccurate description of real chemisorption systems.

the Fermi energy, another indication of the predominantly !N terms of results, perhaps the most important point of
ionic character of the N-jellium bond. At lower energies, Ul Paper is an explicit estimate of the lack of screening,

near— 14 eV, the induced DOS becomes slightly negative,bOth in the embedded region and in the whole system, for

indicating a redistribution of states to higher energies upon ,@tomlc aglsorptlon on jellium. Our GPS method supplies a
adsorption. A similar effect occurs with different adsorbdtes. Systematic evaluation of the excess of t_he electron charge in
However, as well as lying deep in energy, this feature exhibEhe v_vhole space, an_d the grand-canonical energy funcuopal
its only minor changes with varying adsorbate height and Sgrowdes the correction to the total energy, to first order in

does not influence the adsorption process significantly. Th Q. POSS”.JIG im_prov_ements to 'ghe problem of Iack Of per-
inset of Fig. 10 shows the DOS at the N-jellium equilibrium ect screening might involve adding an extra potential in the

distanced.q—1.08y. At —17 eV, below the substrate con- self-consistent equation to force global charge neutrality, as

tinuum, the sharp N 2level may also be seen. With varying well as th_e obvious use of larger and larger embeQded re-
d, this level trivially follows the effective potential of the gions. This latter approach naturally becomes feasible only

clean surface. Again, lying so deep in energy, this state doe\g'th greater numerical resources, but it does not solve the
not influence the adsorption process. problem on general physical grounds.

Owing to the more reactive nature of N, the perturbation
induced by the adsorbate is less well screened than that of Si, ACKNOWLEDGMENTS
and this is evident in the lack of perfect charge neutrality in
our calculation. At the N-surface equilibrium position, we  Two of us (M.L.T. and G.P.B). are grateful to Professor
calculateAN(Eg) =5.169,AQ=0.169, andAQ,=0.216 for ~ Grimley for useful discussions on adsorption theory. We ac-
an embedding sphere of radias=7a,. Its variation with ~knowledge useful conversations concerning embedding with
d is shown in the inset to Fig. 11. With=7.5a,, we obtain  J.B.A.N. van Hoof. Financial support from the E.S.F. pro-
a decrease oAQ and AQ, a little larger than 10%. The gramme “Dynamics of gas-surface interactions” is acknowl-
adsorption energy for N on jellium, computed by the grand-edged.
canonical functional to correcto first ordej for the nonzero
value of AQ, is shown in Fig. 11 as a function of atom-
surface distance. Ade,=1.0ay, the N-Al adsorption energy
is Eqgs~ — 4.8 €V, corresponding to a more strongly bonded  Consider the Green functio(r,r’) of a clean periodic
system than Si-Al. This value & ,4sis comparable with that  surface and fix the direction normal to the surface, the unit
found by Lang and Williams for O on jellium; 5.4 eV The  cell area of which isA. SayK = (k,k,) a two-dimensional

smaller value ofde, compared with Si is also comparable reciprocal space vector, one can whtéwe drop the argu-
with the distance found by Lang and Williams for O on jel- nantE to simplify the notation

lium (1.1a,),” and is consistent with the small size of the N
atom in chemisorption—it tends to tuck into the surf&e.

APPENDIX A: EMBEDDING POTENTIAL

G(r,r')=

— d?K G(r,r'), Al
V. CONCLUSIONS 472 ) irstaz K(r.r) (AD)

In this paper, we have presented an approach, based on ) ) ) ,
the embedding Green-function technique, to calcuadténi- and using the two—d|menspnal Bloch properties of the wave
tio the isolated adsorption properties. We solve a selffunctions, the Green function at the wave vedtorcan be
consistent Schdinger equation in the density functional €xpanded in a Fourier series:
LDA framework in a localized regiofthe embedded regiopn
containing the adsorbate and that part of the substrate mostly
perturbed by it. In this approach, we take into account the 1
effect of the solid via a nonlocal energy dependent potentialGk(R,z;R’,z') = KZ Gi'(z,2")exdi(K,-R—K,-R")],
defined on the surface of the embedded rediembedding My
potentia). This potential acts as a boundary condition on the (A2)
solution within the embedded region, within which the solu-
tion is unconstrained and where any suitable basis set may bghereK ,=K+G,, R=(x,y) is the component af parallel
used. This is different from several other treatments wher&o the surface an@,, is a surface reciprocal-lattice vector.
the Dyson equation is usé@?!and where the corresponding We expand the coefficienB{”(z,z') on a suitable basis set,
boundary conditions enter in a basis set expansion througtier example, plane waves, in a region of defhin the
out the localized region. normal direction:
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01,... _ o the previous equations. Note that in any numerical calcula-
Gk (z,2')= > GE(n,n")eknzeknZ - (A3)  tion, a finite basis set expansion is used. While a good choice
n,n’ of the basis can well approximate any continuous function, it
with kn=n7-r/f) andD>D. This choice is to avoid any con- cannot correctly describe a discontinuity. For this reason, we
straints or particular boundary conditions at the limits of theh@ve splitG(r,r”) into a first partGgn(r,r’) and a second
region inz direction. oneG(r,r")—Ggindr,r'). Gsingr.r'’), which is known ana-
The Green function in EqA1) can now be written lytically, has the same singular behaviors @ér,r’). The
matrix elements ofGgj,(r,r’), calculated in terms of our
basis set, are known analytically.

1
G(r,r')=—s d?K > > GEY(n,n’)
47 JFirstBZ v
APPENDIX B: ADSORPTION ENERGY
xexfi(K, -R+k,2)] Since the Fermi energy of the embedded system is pinned
to that of the substrate, and charge is allowed to flow in and
xexd —i(K, R’ +k.z')]. (Ad) out of the embedded volume, we determine the total energy

using a DF-LDA functional describing a grand-canonical

]
To build up the embedding potential from the Green functionensemblé’
of the clean surface, it is useful to expand the E&) in
spherical waves. Using the well known expansion,

E
£p)= | " dE Er(E)- | ot puln)V )

ek =472 i7j (kDYF(QOYL(Q),  (A5)
) +3f dgrf g PP
and expanding the Green function [&. (9)] 2R3 R? [r—r’|
+ jR3d3r pel(r)sxc(Pel(r))_Eself
G(rs,r9 =2 T YL (Q)Y](Q), (A6)
L,L’

—E,:( fR3d3r pe|(r)—N). (B1)

we obtain the following for the matrix elements:

) Apart from terms, which are found in the usual energy func-
To=4i""" f d?K >, >, GE¥(n,n’) tionals, this includes an additional term correcting for devia-
O mran tions from charge neutrality. The Andersen force thedrem

XAk )i (k. —a)Y*(Qr VY (O ' A7 may be used to show that the energy determined with this
JoKun@)] - (Kunr @)Y kﬂ”) Ll kvn’) (A7) expression is correct to first order in the difference between
Here,an=[(K+G#)2+ kﬁ]l/Z_ the unperturbed density and the actual density beyond the
The 'simplest periodic substrate is the jellium surface thafmbedding surface, and so properties obtained from the
is invariant for any translation parallel to the surface. In thisfunctional are less sensitive to the size of the embedded

. . 0
case, the onlyG, vector that survives i€3,=0, and the volume:

Brillouin zone extends t&?. With some algebra, the matrix [N our system, we treat an atom withvalence electrons,
elements of the Green function of the jellium clean surfacdnteracting with a semi-infinite jellium substrate. So that
can be written in the following way: Eseir bECOMES

D=4 [ K S, G (ko) 1
R? n.n’ K Eselfzingdsr Pion(MNVeord ), (B2

xj/,(kOH/a)Y’[(QkOH)YL,(QkOH,), (A8)  where pi,(r)=Z6(r—R,) is the positive charge of the
5 o1 _ ) pseudoatom an¥..{r) is defined in Eqs(19) and(20).
wherekon,=[K*+k,]7“ The matrix elements of the deriva- e are interested in the interaction energy, i.e., the differ-
tive of the Green functiod’, [see Eq.(11)] are obtained ence between the energy of the whole system, surface
essentially in the same way. adatom, and the energies of both isolated system, i.e., that of
It is useful to stress that the Green function and its derivaelean surfac&® and that of the isolated atoE. Within the

tive exhibit a cusp and a discontinuity, respectively, when itshypothesis that the potentials and the charge distribution out-
arguments coincider&r'). This is characteristic of the em- side the embedding sphere are unaffected with respect to the
bedding potential. This suggests, or better requires, us tonperturbed situation, we obtain the following interaction
treat analytically the singular part of the Green function inenergy:
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p(r )p( )

| r—

H dE EaO(E)—fd?’rpel(r 04N+ = fd3f cle"¢ fd?’rpe.(r c(pe|(r))}

_EF< fR3d3r[pe|(r)—pg|(r)]—Z

f=Eo - Eat={ [ o Eoe)~ [ &t puriVentrr 5 [ or [ et + | @ pln)etput ) Esen]

—Eat (B3)

All quantities with the superscript O refer to the clean surface. The atomic effgyan be determinated by a standard
procedure in the embedding region. As mentioned in the text, the integrals involving the density ob$Etgshe band
structure pajtneed more attention, because the individual states change throughout the whole system:

= = E Er = E
f dE E[a(E)—aO(E)]=f dE EAa(E)=[Ef de Ao(e) —f dEJ de Ac(e), (B4)
and using the definition in Eq$28),
Ep
=EFAN(EF)—f dE AN(E). (B5)
The last integral in Eq(B3) can be transformed, using the definitions in Sec. IlI:
Er
fR3d3r[pe|(r)—p‘)e|(r)]=f_ dE Ao(E)=AN(Ep). (B6)
Finally, the interaction energy can be written in the following way:
) Er 3 o [, PP [
£=EeZ— | dEAN(E)- d r Pel(r)veﬁ(r)+ d d _—r,|+ |d I pel(r)exc(pel(r)) = E ser
0 0
) (r)p (r')
[ @ pbiovean - 5 [ o [ S [ el - e ®7)
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