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Coherent magnetotransport in confined arrays of antidots.
|. Dispersion relations and current densities
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The energy band structure of an antidot array defined in a strip geometry of finite width is calculated as a
function of the magnetic field, in a parameter range typical of existing experiments, and with edge aspects
explicitly taken into account. The calculations are based on a hybrid recursive Green-function technique
specially adapted to problems of this type. The current densities associated with representative Bloch states are
calculated and visualized. At a given Fermi energy and in zero magnetic field, the set of propagating Bloch
states consists of fast states with essentially one-dimensional laminar type flow, channeling between rows of
antidots, and slower ones with a genuinely two-dimensional flow of vortex character. Simple physical argu-
ments are used to explain the existence of the different types of states. At low magnetic fields much of the
character of the zero-field states is retained. At magnetic fields sufficiently high that the classical cyclotron
diameter is close to the lattice constant of the array, the magnetobands correspond to edge states and to states
of the “runaway” type, in which electrons bounce off antidots in consecutive unit cells. Surprisingly, states
corresponding to electrons in classical orbits pinned around single antidots play only a minor role. With a
further increase of the magnetic field, essentially only edge states survive. In this high-field regime, states
beyond the edge states only exist in narrow energy bands, and these states correspond to bulk transport with
electrons hopping between quasilocalized states.

[. INTRODUCTION cause the peaks in the magnetoresistance. As the theoretical
calculations fit the experimental data, the above picture was
During the past few years the study of electron magnewidely accepted as correct.
totransport in lateral antidot superlattices has been a topic of However, Baskinet all® have pointed to a different
considerable interest, both from an experiméntdland a mechanism. They found, again on the basis of classical me-
theoretical® 22 point of view. Such superlattices are fabri- chanics, that stable “runaway” trajectories rolling along dif-
cated by defining in the two-dimensional electron gasferent rows of the antidot lattice are responsible for an en-
(2DEG) periodic arrays of islands with strong repulsive po- hancement of the diagonatonductivity o,,. Runaway
tential, called antidots. The initial motivation for studying trajectories were recently used by Schusteml!? in the
magnetotransport in such structures was the opportunity tmterpretation of their experiments. They found that the off-
access the regime of the Hofstadter “butterfly” energy diagonal terms of the resistivity tensor play an important role
spectrunt> As the typical size of the lattice constant of an- and that pronounced maxima in the magnetoresistance corre-
tidot lattices ranges from 150 nm toum, the characteristic spond not to minima in the conductance as one could expect,
effects of this spectrum are expected to be found in the easilgut to maxima consistent with the existence of runaway tra-
accessible field range below 1 T. Whatever the motivationjectories.
the experimental studies of magnetotransport in antidot ar- Quantum-mechanical calculations of the magnetoconduc-
rays revealed a rich variety of sometimes unexpected effectsance of antidot lattices have been performed in Refs.
In particular, a series of peaks in the diagonal magnetoresis8,19,21,22. These calculations start from different versions
tivity p,, were found. These are believed to occur whenof the Kubo formula. The agreement between the theoretical
commensurability conditions are fulfilled between the predictions of Ref. 21 and experimental ddtaalmost quan-
superlattice period and the classical cyclotron radiuditative. However, in contrast to the classical theories quoted
r.="%ke/eB at the Fermi momenturfikg . above, it is difficult to relate these conductivity results to
Most of the theoretical work on magnetotransport in anti-particular types of electron dynamics.

dot lattices has been based on classical mechanics. The clas-So far, most experimental and theoretical work has con-
sical explanation of the magnetoresistance maxima is thatentrated on essentiallpacroscopicstructures. In such sys-
electrons pinned in orbits aroun@r betweeh groups of tems the phase coherence lengthas well the elastic mean
antidots are removed from the transport process and, theréee pathl, are much smaller than the size of the sample.
fore, do not contribute to the conductivity. This leads to anThus, phase-breaking events destroy coherence, and bulk
increase inp,,. The picture was somewhat modified by magnetotransport can be described in the framework of
Fleischmann, Geisel, and Ketzmeritkwho showed that Drude-type modelé! Recently, magnetotransport inesos-
regular pinned orbits play only a minor role in determining copic lattices with total dimensions smaller than béghand
the conductivity. Instead, chaoti¢quasipinnell orbits, |, has been studiett Again, like in macroscopic samples, an
trapped around or between groups of antidots for a long timegscillatory structure was found in the magnetoresistance.
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However, phase coherence effects manifested themselves in v ,

reproducible quantum fluctuations superimposed onto the T ~

commensurate peaks. ! . . V=1.05E_
With coherent transport through mesoscopic systems, the ! L' La=250nm @—/—;A

Landauer-Bttiker?®>?® formalism is the appropriate one for }
the computation of linear transport coefficients. In a mag- :
netic field, the incoming propagating modes are edge $fates !
localized at one of the edges of the sample. In the absence of } '

A N

scatterers, the two-terminal as well as the Hall conductance n

of the sample are simply proportional to the number of
propagating edge states. This highlights the fact that with
coherent transport in confined geometries, with or without
antidots, edge states should always be taken explicitly into
account. In an earlier publicatiéfwe studied magnetotrans- FIG. 1. Schematic geometry of the periodical antidot lattice. The
port through a confined array of antidots in the extremedashed-line rectangle indicates the one-dimensional elementary unit
quantum limit, when the lattice constant of the antidot arraycell.
is of the order of the Fermi wavelength. The dependence of
the conductance on the Fermi energy and on the magnetiedic in the longitudinal ) direction with periodL, and
field was analyzed on the basis of the band structure of thplaced in a perpendicular magnetic fide-zB. It is conve-
corresponding infinite superlattice. This approach turned outient to split the potential energy into two parté,?rﬁ‘f and
to be very successful for the interpretation of the two-v.,,, wherevS" is the confining potential, ang,, will be
terminal conductanc&; of finite antidot arrays, since the used to describe the antidots. Lengths, likewill be mea-
features of.55, could be directly attributed to contributions sured in units of the lattice constaat of the underlying
from corrsponding minibands. Each of these minibands wagight-binding lattice, see Fig. 1. Choosing the Landau gauge
associated with a particular type of electron motion. In thisA=(—Ban,0,0) and following Peierls in incorporating the
way, complex behavior of the conductance could be given anagnetic field by a phase factor in the hopping amplitudes,
direct physical interpretation. Thus, the main virtue of thewe arrive at the Schidinger equatiotHW¥ =EW, where the
classical simulations, that of providing the physical mecha-matrix elementm,n|¥)= ,, defines the probability am-
nisms underlying the conductance results, could be takeplitude to find the electron on siter(n). The corresponding
into the quantum regime and, moreover, studied in the contight-binding Hamiltonian reads
fined geometry used in a typical experiment.

However, the results of Ref. 28 were limited to the ex- conf
treme quantum regime of small electron density and one orH:% (Im,n)(€o+vimn +vma)(M,n|=t{|m,n)(m,n+1|
two Landau levels in the leads. In contrast, existing experi- ' _
ments on mesoscopic arrays of antidots in confined geom-  +|m,n)e~'9"(m+1n|+H.c}). (1)
etries are performed in the semiclassical regime, where the . . . .
Fermi wavelength\s is (much smaller than the period of Here t is the nearest-neighbor hopping amplitude at zero

the superlattice. With the introduction of a hybrid betweenMagnetic field,&, is the Iat.t|ce site electron energy, and
two numerical techniqgues commonly used in this field, Weq_zeBaz/h. In our cazlcula;uozns we Set,9:4t' Together
have been able to access the semiclassical regime. Thus, i the choice t=A%2m*a% with m* the effective
purpose of the present paper and its sejugereafter re- mass, this ensures that, in the contlnuum. limit
ferred to as paper liis to extend our previous calculations to [Ma&—X:na—y,a—0;¢m,—¢(x,y)], the above tight-
the region of principal experimental interest. In this paper wePinding approach yields the familiar Schifoger equation in
study the magnetic band structure and current densities of tH8€ effective-mass approximation

corresponding Bloch states. In Sec. Il we develop the hybridﬁz 9 ieBy|2
Green-function technique for the calculation of the magneto-—_ (_ — _> +
band structure. That section will also serve as the theoreticAd™” | | 9x h ay
basis for paper Il in this series. In Sec. Il the band structure, .
as it evolves with increasing magnetic field, is discussed. =[vM(x,y) +o(x,y) —EJg(xy). (2)
Particular emphasis is given to the current density associated , , L
with the different states. Section IV contains a brief summary Note t_hat \_N'th the_ga_uge chc_)sen, the magnetl_c umt(m?ll
of the results obtained so far. On the basis of the results gf'¢ X direction coincides with the superlattice period

this paper, the two-terminal conductance of various lengths@— -7~ We require, furthermore, that the confining poten-
of antidot lattices in a strip geometry will be discussed int|al_respects the discrete translatlo_nal invariance of the super-
paper II. lattice. Thus, the Bloch theorem dictates that solutions of the

Schralinger equation are of the fofth

H(X.y)

Il. THEORY P(x,y) =X Uu(X,y);u( X+ Zy)=u(xy). (3

In this section we present the Green-function formalism A standard numerical method to study such problems is
basic to our calculations. Under study are two-dimensionathe transfer matrix techniqu.In that approach one ex-
(2D) systems confined in the transvers® (direction, peri- pands, for a giverx, the transverse wave function in the
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eigenfunctions of the transverse motigthe transverse
mode$. After discretizing the geometry in the longitudinal H:E

N N
> Imiy(eM+2)(m,il+ > [m,iyo(m,j|
direction and matching the wave functions and their deriva- moL "

tives on the boundaries of the segments, one arrives at a N
system of coupled equations for the determination of the = _ > (|m,i>V{}‘*m“<m+ 1,j|+|m+ 1,i)U{}‘“*m<m,j|) ,
transfer matrix, the rank of which is determined by the num- i
ber, N oges Of transverse modes taken into account. Diago- (6)

nalization gives eigenvaluds, and eigenfunctiong,, of (2).

However, this technique, at least in its simplest versions, igvhere

plagued by numerical instability problems caused by compo-

nents growing exponentially during the iteration process m+1m_ iqysm+1 m

(see, for example, Ref. 32 Uil _f dy eV W), (79
An alternative, generally used in connection with tight-

binding models, is the recursive Green-function V{“J-'mﬂz(uf‘i“'m)*, (7b)

technique?®3324It has the important virtue of numerical sta- ' '

bility, in addition to being quite flexible. Its weakness is as-

sociated with the fact that the geometry must be discretized Uin?i:f dy () (y)vm(y). (70)

in both transverse and longitudinal directions. This makes it

difficult to model wide or smoothly varying structures, since The set of transverse mod@fs}"(y)} is restricted to theN

the transverse number of sithig;.sassociated with the wid- lowest ones, wher&l is determined from the numerical ac-

est part of the geometry determines the rank of matrices to beuracy required. The Hamiltonia6) has only nearest-

inverted a large number of times. Generali,es> Niodes neighbor couplings in the longitudinah direction. In the

making the recursive Green-function technique extremelyransverseg“energy”) direction, the magnetic field couples

time consuming for complex geometries. all statesi on slicem to all statesj on neighboring slices
In our calculations we use a hybrid technique that takesn—1 andm+ 1. The strength of the coupling is defined by

advantage of the strengths of both methods, while avoidinghe matrix e|ementyir?+lym,\/ﬂ?’m+l [Egs. (78 and (7b)].

their weaknesses. This technique has been introducethe presence of the potential,(y) causes mixing of the

earlief® for the case of zero magnetic field. In this paper westates on a single slice, with matrix elements]! [Eq.

shall demonstrate its utility in the presence of a magnetigz¢)).

field. In our hybrid approach, we use the local transverse consider one unit cell of the superlattice with the first

(field free) energy modes as a basis. This allows great fleXgjice m=1 and the last onen=L. Write down the total

ibility in modeling smooth geometries within a function Hamiltonian(6) in the form

space of reasonable dimensionality. On the other hand the

recursive Green-function technique is used in ftfués- H= o+ Hout+ 7. (8)

cretized longitudinal direction to determine the transfer ma-

trix. This eliminates numerical instability problems from the Here .7 represents the unit cell under consideration, and

calculation of the transfer matrix. T the remainder of the superlattice, with the termcon-
Rewrite the Schidinger equation with Hamiltoniafl) in  taining all the couplings between the two,

the hybrid space-energy representation, passing from the dis-

crete transverse coordinate to the continuous oney,

Umn— ¥m(y). At this point we introduce dimensionless

guantities. Lengths will be measured in units of the basic

7= —; (J0VYXLj|+]1i)U%o0,|

length a, wave numbers in units &%, and energies in LV L L+ L+ 1)UL . (9)
units oft=%2/2m* a? (implying thatt=1). In these dimen- . )
sionless units, expand the wave function in the sefred) Introduce the Green functioB=(E— 7 ,) ~. We can
eigenfunctions{fjm(y)} generated by thélocal in m) con- t_hen write down the formal solution of the ScHinger equa-
tinuous Schrdinger equation tion as
g2 | ¢cell> = 67/] ’ﬁout)a (10
conf, m _ .mem
- (;_y2+vm () |fi(y)=¢Ti(y), @ with | ) the wave function in the cell under consideration,
and| ¢, that outside.
with s}“ the corresponding eigenvalue. Let us introduce the notatiog, for the column vector
In this basis the matrix element composed of matrix elementm, j|¥);1<j<N. Using Egs.
(10) and (9) one can express the statgs and ¢, on the
_ . boundaries of the cell by those on slices adjacent to the cell,
<m,J|‘P>=f dy f'(y) ¥m(y) (5)

_ (Zl: Gllul'olZ0+ GlLvL,L+l(ZL+l’
defines the probability amplitude to find an electron on slice (1)

m in energy stat¢. The Hamiltonian(1) in hybrid represen- R . .
tation reads — i =G UM+ GV L
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Here GL’L/ is a shorthand notation for the matrix To conclude this SeCtion, let us br|Eﬂy summarize the vir-
(L,i|G|L",}), with similar definitons ofu™™ and V™™ tues of _the hybri(_i technique presented here. By using_ trans-
verse eigenfunctions as a basis we were able to confine our
function space to the minimum dimension necessary for the
problem at hand. In this way the computational effort is con-

Dyson equation. Equatiofll) can be rewritten in terms of siderably reducc_ed in_comparison Wi.th the original tight-
the transfer matrixT relating the wave functions on the Pinding formulation. The Green-function approach adopted
slicesm=L + 1L to those orm=1.0 in this section is numerically stable. In contrast, the standard

version of the transfer matrix techniqGghich uses the same

The actual calculation of thid X N matricesG™™ starts, in
standard fashiof®* from the matrix on the isolated slice
No. 1, and adds slices up to Nb.by systematic use of the

‘ZL+1 12/1 basis of transverse eigenstatssffers from numerical stabil-
- =T L7, (12 ity problems sufficiently serious to make calculations for
i o large-size structures with a strong modulation potential al-

most impossible.
Note that an alternative way of finding the Bloch solu-
(_GlLVL,LH 0)—1( 1 Glyto ) tions in the case of 2D periodic potential is based on the
T: )

where

iyt 1] Lo _gligo utilization of the finite-elements methdd.This method, al-
though numerically stable, requires essentially large-scale
with 1 the unit matrix. Using the hybrid basis we can rewrite computations on supercomputers, especially at high mag-

the Bloch theorent3) in the form netic fields. The present method, based on recursive Green-
function techniques, requires only moderate computation fa-
I em=e . (13)  cilities.
Combining (12) and (13) we arrive at the BIX2N set of
equations lIl. RESULTS AND DISCUSSION
g 1Kt 0 I A. System studied
T( I,Zo) :( 0 kﬂ“—)( *O)’ 14 In this section we examine the band structure and the

nature of various Bloch states in antidot arrays, using the
which have N eigenvalues<; , 1<a<N; K with corre-  Green-function formalism developed in the previous section.
sponding eigenfunctiong;, , g, represent states propagat- The antidot array is confined to a strip with hard walls and of
ing [dE/9K >0, Im(K)=0] or decaying[Im(K)>0] to the  constant widtlw, and is infinite in the longitudinal direction.
right, whereas K, with corresponding eigenfunctions Already strips with four antidots across reveal the essential
1.0, Tepresent states propagatind JE/JK<0,  physics in this context. We shall, consequently, restrict our-
Im(K)=0] or decaying[Im(K)<0] to the left. We shall selves to systems in which the one-dimensional unit cell of
only consider structures that are symmetric around the linéhe correspondindgsupej lattice consists of four antidots;
y=0. In that case,K/=—-K_. In the general case, see Fig. 1. _ _

K:(B)=—K,(—B). In the _I|terature t_hegan_tldot potennal_hasﬁga;egn modeled by
Having calculated the eigenvalues and eigenfunctions o 5-fur_1ct2|gg11 gzotentlai[, circular hard disks S
the problem(14), and knowing all the matrice§, one is Potential™***“or a soft cosine-type potenti&l**~%* Pre- _
able to calculate the spatial distribution of the particle currenfUmably, the latter most adequately represents the experi-
associated with the different Bloch states. Fundamentally, thE'ental situation, in which the potential landscape is defined
current in tight-binding models is associated with hoppingPy 9ates sufficiently removed from the 2DEG to justify ne-
along bonds®® Nevertheless, for visualization purposes it is 9l€ct of higher Fourier components. In our calculations we
more convenient to view the local particle current density©Pt for the following pragmatic compromise: We model the
jmn @s a vector associated wisites The corresponding ex- antldqts by a square potential with helght' just abovg the
pression is derived in standard fashion from a combination of €rMi energy,V=1.0%. Because of the finite tunneling
the time-dependent Schdimger and the continuity equation. probability this potential corresponds to “soft” antidots with

It reads. in units ot/a% rounded corners. This is reflected in the current density pat-

terns. As a consequence, in the figures showing the current

jme=—(i12){ Mygsreanyge —eTianye ] distribution in various states, we shall draw the antidots as
rounded in spite of the fact that, geometrically, they are

+ Nl i ne1— Ymn_1]—C.C}, (15  square. From a computational point of view the use of square

antidots greatly facilitates our recursive Green-function tech-
whereys, , is the wave functiortin real space representation nique. These calculations start from the first shoe 1 and
associated with the eigenvalu€,, and m,n are the unit add more slices by systematic use of the Dyson equation. In
vectors in the Iongitudinal and transverse directions. Startingqe genera| case of a Varying potentiaL the iteration has to
from our hybrid basis we, in practice, construgf(y) for  proceed one slice at a time. If, however, the potential land-
use in(15), rather thanyy,,. In the continuous limit Eq(15)  scape is the same for each step in the antidot region, one can
reduces to the standard definition of the current density in &alculate the Green function only for the first slice, and then
magnetic field® effectively “exponentiate” the process by successively using
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(a)  No magnetic field (B=0) (b) B=0.002 T

FIG. 2. (a) Band structure of
the antidot lattice in zero magnetic
field. (b) The effect of lifting the
degeneracy of fast quasi-free-
electron states in a weak magnetic
field (B=0.005 7).

n. (units_of 10"°m™?)

7 [ e T
14 HE T Y e e YT 1.4 B e e R

-1.0 -0.5 0.0 0.5 1.0 ) -0.5 0.0 0.5 1.0
KL/= KL/n

segments of 2,4 . . ,2° slices as basic elements in the itera- states. At this value afiy Fig. 2(a) shows that there are five
tion schemé® This trick greatly reduces the computation fast quasi-free-electron statémarked by arrows 2 through
time. 6), two slower onegmarked by arrows 7 and)8and one

We choose the lattice constant of the antidot array aalmost dispersionless sta@rrow 1). States 2—4 and 5—6 are
La=250 nm, with the antidot size equal to the distance bealmost degenerate and their dispersion curves are indistin-
tween antidots. These parameter values are close to thogeaishable on the scale of the figure. Plots of the current den-
used in the experiments of Schustgral! In our calcula- sity reveal the nature of these states; see Figs. 3 and 4. The
tions we divide one unit cell into 64 slices. This correspondghreefold degenerate states 2—4 correspond to ballistic trajec-
to a lattice constarda~4 nm of the underlying tight-binding tories concentrated in the horizontal channels between two
lattice. With such a fine mesh, the tight-binding Hamiltonianneighboring rows of antidots. We shall denote states of this
(1) gives a description essentially equivalent to that of thekind “channeling” states. One example is shown in Fig. 3. In
continuum Schrdinger equation in the effective-mass ap-the antidot lattice under consideration there are only three
proximation. It is the sheet electron densityps  equivalent paths of this type. This explains the threefold
=Egm*/ah? (with m*=0.067n, for GaAs-GgAl, ,As  degeneracy(For example, with finitav, almostdegeneracy.
structurey, rather than the Fermi enerfi-, which charac- Note that in zero magnetic field, every Bloch state has a
terizes the samples and is controlled in experiments on theurrent distribution symmetric around the central symmetry
2DEG. For this reason, rather than presenting the dispersion
curves in the customary forla=E(K), we prefer the res-
caled equivalenhs=ng¢(K) or its inverseK=K(ny).

B. Zero magnetic field

Figure Za) shows the calculated band structure of the
antidot lattice in zero magnetic field, in the reduced zone
representation{ 1<KL/w<1). The band structure consists
of a number of minibands. Between the various dispersion
relations, both crossings and anticrossirfggth minigaps
can be observed. In this complicated structure, we can quali-
tatively distinguish, at a given Fermi energy, dispersfes?
quasi free-electron states, less dispergstewel ones, and
almost dispersionless states. Due to the symmetry of the
structure, every state propagating to the right has a mirror
image propagating to the left. From here on we consider only
states propagating to the right.

In order to understand the physical nature of the various
Bloch states in the antidot superlattice, it is instructive to  FiG. 3. The current density associated with state 2 in Fig). 2
study the corresponding particle current density. In the typiin this and the other figures showing current densities associated
cal experimental range, let us choose the electron sheet dewith various Bloch states, the antidots are shown with tefective
sity asng=1.5X 10" m~2 and examine all available Bloch shape, as rounded, rather than as purely geometric squares.
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FIG. 4. The current density associated with state 5 in Fig). 2 FIG. 5. The current density associated with state 8 in Fig. 2

axis) Analogously, the twofold degenerate states 5 and @ributed equally in the horizontal and vertical channels be-
correspond to electrons channeling between the upper arff@een two neighboring rows of antidots and vortex flow is
lower edges and the outer rows of antidots; see Fig. 4. NOw a prominent feature. Generally, the more nodes the
Before discussing the three remaining states, in which th&/ave function has in the constrictions, the stronger the de-
current distribution is truly two-dimensional, let us investi- Viation from the one-dimensional character of the corre-
gate what happens to the five channeling states when a we&ROnding current. _ _ _
field is switched on. These states are all pseudo-one- In the case of the almost dispersionless state 1 of Fig.
dimensional in character. In a finite magnetic field, the de2(@), the current completely loses its quasi-one-dimensional
generacy between channeling states is formally lifted, angharacter; see Fig. 6. The probability to find an electron in
each state will be located in a different channel between row§ome vertical channel is much higher than in a horizontal
of antidots. However, from a physical point of view, the five On€. In the horizontal constrictions the wave function has
different channeling states are essentially equivalgne typically three nodes. _
hard wall boundaries will perturb this simplest picture some-  T0 explain the origin of the different types of Bloch states
what. With the Landau gauge used, the longitudinal wavednd the characteristic features of the current density, let us
number[dimension(length) 1] .%'=K/a and the transverse Cconsider electron transport in a single horizontal constriction
coordinatey appear in the combinatio%‘—y/lé. Thus, the deflned by two nelghb.orlng antld_ots in the unit cell. The
value of the parameterZ’ simply fixes the transverse posi- confinement by the antidot potential causes transverse quan-
tion of the pseudo-one-dimensional state in question. Tngzatlo.n. With hgrd wall confinement, the energy of thezelec-
such states in neighboring channels are physically equivalefon in_an eigenstate of the constriction &= (A"

and should have the same dispersion relation, but shifted b@m*)(kﬁ2+ kf), wherek] andk{ are the transverse and lon-
A2z = 7I13. This behavior is recognized in Fig(8 where  gitudinal wave numbers, arkl = 7j/d, with d the separa-
five free particle parabolas, appearing as essentially straight
lines in the reduced zone representation, run parallel to one
another. The shift is quantitatively accounted for by the for-
mulaAKL/ =A% %1 7= =~ %I1g)? [the nondegeneracy
between the twofold and threefold degenerate states in Fig.
2(a) explains the slight variation in thi€ shift].

Returning to the remaining states in zero magnetic field,
Fig. 5 shows the current density profile associated with the
state marked by the arrow 8 in Fig(a®. This state has ap-
preciable dispersion, although its group velocity is somewhat
lower than that of the channeling states 2—6. The current
density still has a quasi-one-dimensional character but with
some admixture of vortex formatiol.In contrast to the
states 2—6, where the wave functions have no nodes in the
constrictions between antidots, the state under consideration
has one or two nodes there.

Deviations from the one-dimensional character are much
more pronounced for state 7 with a group velocity smaller
than that of state 8. In this case the wave function has two
nodes in most constrictions. The probability density is dis- FIG. 6. The current density associated with state 1 in Fig). 2
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tion between antidots. With the parameters chosen here, only B=0 955 T
three transverse modes are propagating in the constriction. ’
The lowest(ground transverse state has even parity and no 16
nodes. The next transverse states have odd parity and one
node, etc. As shown by Szafer and Stéhthe state with the
transverse wave numbekt inside the constriction is mostly
coupled to outgoing modes with transverse wave numbers
close to k! (with the spread given by the uncertainty
relatior’®). From energy conservation this implies that longi-
tudinal wave numbers of outgoing states are closekﬁto
Thus, at the exit of the constriction, the angular distribution
of the electrons is roughly confined to a cone with an open-
ing angle,8~tan‘1[k1l/kﬁ]. In other words, it strongly de-
pends on the subband indginside the constriction. For the
transverse ground statg=1), ki<kH1, and electrons are
ejected from the constriction with a small opening angle

The transverse states with one node=Q) has a larger
opening angle, and for thie=3 statek? ~k, resulting in a
wide angular distribution.

The qualitative nature of the Bloch states in the antidot
lattice can be understood on the basis of the above analysis. 14 N s Ve A
The quasi-one-dimensional channeling stai@s-6) are -1.0 -0.5 0.0 0.5 1.0
closely related to the transverse ground states in the constric- KL/
tions, with their group velocity essentially determined by the
longitudinal velocityv=ﬁkH1/m* there. The narrow cone FIG. 7. Magnetic band structure of the antidot lattice at
ejected from constriction ground states explains the quasB=0.255 T.(The classical cyclotron orbit encircles a group of four
one-dimensional character of these Bloch states. The slowantidots, 2,=2La at ng=1.5x 10'®* m~2.)
states(7 and 8 correspond to mixtures of transverse con-

striction modes with one or two nodes. The associated Wid€agt of the stategexcept those marked by arrows 2 and 3
opening angleg lead to a considerable probability for the gypinit very similar features in the sense that in each state
electrons to be directed into the vertical channels betweeg,o can recognize quasi-one-dimensional flow, regions
antidots, with a resulting vortex character of the flow in thes€nare 1aminar and vortex aspects compete, and fllow circu-
Bloch states. Fmally, the alm_ost dlspersm_nlgss statg 1 hqating around an antiddor in the space between antidots
two or three nodes in the horizontal constrictions. This cor- e quasi-one-dimensional electron stat2sand 3 are
responds to the highest propagatirg=@) and lowest eva- pqthing but the familiar edge states located close to the upper

nescent (=4) mode there. Thus, one can view this Bloch gqge(right moving stateor lower edggleft moving statg of
state as one built from bound states in the spaetveen he structure; see Fig. 9. These edge states are essentially

antidots, yveakly coupled through the constrictions by slowlyijentical to those of a perfectly homogeneous stvifthout
propagating and evanescent modes. the antidot potential The transverse extent of an edge state
is of the order of the magnetic lengthy=(%/eB)¥2. When
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C. Moderate magnetic fields

The magnetic field changes the band structure of an anti-
dot array. Nevertheless, some of the features of the Bloch
states, discussed above as characteristic for the case of zero
magnetic field, can be recognized up to moderate fields, i.e.,
fields for which the cyclotron diameter2=La. The mag-
netic band structure of the antidot lattice Bi=0.255 T is
presented in Fig. Tthis corresponds to the magnetic field
when an electron classically encircles a group of four anti-
dots atng=1.5x10" m 2;2r.=2La). Fig. 8 shows the
current density profile, associated with the state marked by
arrow 1 in Fig. 7. This state combines features we have al-
ready discussed for the zero-field case. Through the channel
marked A in Fig. 8, electrons propagate in a quasi-one-
dimensional fashion, whereas in channel B laminar and
vortex-type flow are equally prominent. A new type of flow
pattern, absent in the case of zero magnetic field, is the one
corresponding to rotation around an antidbtg. 8, upper
row of antidot$. We present the current density for one rep-
resentative state only. Current densities associated with the FIG. 8. The current density associated with state 1 in Fig. 7.
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FIG. 9. The current density associated with state 2 in Fig. 7.

|5 is smaller than the distance between the boundary and the 1.4 et b e e e
nearest antidot row, the edge state does not “feel” the pres- -1.0 -0.5 0.0 0.5 1.0
ence of the antidots and, consequently, its dispersion is the KL/r

same with and without antidots. Conversely, with larggor

with several edge states increasingly removed from the FIG. 10. Magnetic band structure of the antidot lattice at
boundary, some of the edge states existing in the homogé=0.51 T.(The classical cyclotron orbit encircles a single antidot,
neous channel are blocked here by the presence of antido®.c=La atng=1.5x10" m™2.)

Thus, the number of edge states in the antidot structure o ) )

equals the number of those edge states in the correspondiff from the remaining set4—8) is characterized by a rota-
homogeneous channel for which the transverse localizatiofonal flow around a single antidot; see Fig. 11. The current
length is less than the distance between the boundary and tH€NSity patterns associated with the states 5-8 are, on the
closest antidots. With an increasing magnetic field, the magether ha.”dbSt“k'”g_W reminiscent of the classical “runaway”
netic lengthl ; decreases. Therefore, more edge states can geajectories® found in this parameter range, where electrons
accommodated in the space between the upper edge and tHRannel between two rows of antidots by bouncing off suc-
upper row of antidots. The state closest to the upper edge (ESSive antidots down the channel; see Fig. 12. Here we
the one with the lowest transverse energy, i.e., with the highShow the particle density flow for one selected staeonly.

est group velocity. Of the two edge states represented in Fig."€ remaining state§—8 have the same character, but are
7 the one with the highest slope is clearly 2. Note that thdocalized in different horizontal channels.

linearity of the dispersion curves for the edge states is only

apparent. The “lines” are small segments of essentially para- E. High magnetic fields

bolic dispersion curves. When the magnetic field is increased beyond the value

that corresponds to the classical commensurabilty “reso-
D. Magnetic field of the single-antidot resonance

Figure 10 shows the band structure of the antidot lattice at
B=0.51 T, which corresponds to the case when the classical
cyclotron diameter equals the period of the antidot lattice
(2r.=La at ng=1.5x10" m ~2). This is the parameter
range in which pronounced features have been observed in
the linear response of devices with an antidot lattice. These
features have often been attributed to electron orbits encir-
cling single antidots. From Fig. 10 it is clear that the energy
corresponding to precisely,=1.5x10**m~2 is not a good
choice, since the number of Bloch states is exceptionally low
here. We choose, instead, to investigate the magnetic Bloch
states an,=1.525< 10'®> m~2. The states marked by 1 and
2 are the edge states, with state 1 closer to the edge. The state
3 is a quasiedge state. It is located, like ordinary edge states,
close to the upper edge of the structure, but its transverse
extent is sufficiently large that the current distribution is
somewhat perturbed by the uppermost row of antidots, with
an admixture of vortex character. Surprisingly, only one state FIG. 11. The current density associated with state 4 in Fig. 10.
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FIG. 12. The current density associated with state 5 in Fig. 10.

Number of states

nance,” 2.=La, the band structure undergoes significant
changes. Classically, with a cyclotron diameter smaller than ©.0 05 1.0 s 2
the superlattice period, one would expect an increasing frac-
tion of the electrons to get trapped around single antidots or
in the space between antidots. When.2d, with d the
distance between antidotsll classical trajectories are com-
pletely localized, and transport is possible by means of skip-
ping orbits at the edges of the structure only. These classical
facts are reflected in the quantum-mechanical band structure,
which shows a drastic reduction of the number of propagat-
ing Bloch states in magnetic field>B_, whereB. is the
magnetic field corresponding to the single antidot resonance, S I E—— SUU——— S—— S
2r.=La; see Fig. 13. Note that the majority of Bloch states
at B>B, are edge states.

Figure 14a) shows the dispersion relationsBt=0.765 T o
[2r.=(2/3)La atng=1.5% 10' m~2]. For comparison, we FIG. 1_3. The dependen(_:e on the r_nagnetlf: field of _the number of
present the band structure for a corresponding homogeneoﬂ?pagat'ng Bl_och s_tat_es in the antidot I_attlce for different sheet
channel(without the antidot potentialin Fig. 14b). Most electron densmg$olld I|ne§. The dashed Ilngs represent the num-
edge states in the homogeneous strip have their counterpa@gr.Of propagating states in the corr_espondmg homogen_eous strip.
with an antidot lattice, only one of them is blocked by the °¢ is the Tagnetlc field corresponding to the single antidot reso-

. nance, 2.=La.
outer rows of antidots.

The remaining states in the antidot lattice are slow ones
with small dispersioriexcept the state 2, the origin of which negligible. Scattering across the entire system is only pos-
we shall discuss belowThe current density of state 1, rep- sible via bulk states in the structure. If, at the given energy
resentative in this context, is shown in Fig. 15. The currenand magnetic field, such states are absent, reflection is com-
corresponds to some extent to counterclockwise electron rgpletely suppressed and the fourth “edge” state is forced to
tation around single antidots, but mostly to such motion instrike a compromise between edge localization and transport
the space between antidots. This indicates that the origin ghrough the antidot array. The nature of this compromise is
these minibands is quasi-bound states in the antidot array. kisplayed in Fig. 16. The deviation from strictly one-
this field region, transport through the antidot lattice re-dimensional motion is highlighted by the vortices between
sembles that of the extreme guantum regime considered ifie edge and the first row of antidots. On the other hand, the
Ref. 28, where all minibandéxcept the edge stalewere  basically one-dimensional character of this state is empha-
associated with electrons trapped around single antidots or igsized by the small band gap at the reduced zone boundaries
the space between antidots. KL/7=+1 atng~1.46< 10" m 2.

Finally, let us consider state 2, which has an appreciable For still higher magnetic fields when, for example,
dispersion and a current density, Fig. 16, distinct from thos@r.=(1/2)La, transport in the antidot lattice is essentially
of the miniband states discussed so far. The origin of thionly possible by edge-state propagation; see Fig. 17. In this
state can be understood as follows. In the homogeneous stripase the localization length-1z=25 nm is much smaller
four magnetic edge states are allowed; see Figo)14Vith  than the distance between neighboring antidots. Thus, the
antidots present, one of them is blocked by the first row ofcoupling between bound states around or between antidots is
antidots. The total width of the system is sufficiently largegreatly suppressed. This is reflected in the appearance of a
that direct backscattering to the opposite edge is completeliew very narrow minibands with almost zero dispersion. It is

oTTTTT

Number of states

L




7984 I. V. ZOZOULENKO, FRANK A. MAAQ®, AND E. H. HAUGE 53

(a) B=0.765 T (b)

FIG. 14. (a) Magnetic band
. structure of the antidot lattice at
B=0.765 T [2r.=(2/3)La at
ng=1.5x10" m~2]. (b) Disper-
E sion relations for corresponding
homogeneous strip.
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only in these narrow bands that the antidot array makes its F. Bloch states versus classical trajectories

presence felt. As a result, one should expect that, in this A hymper of discussions of transport in antidot arrays are
parameter region, the transport properties of antidot arraygased on an analysis of classical electron trajectories. This
are almost indistinguishable from those of a perfect strip. strategy has been quite successful in describing the gross

_ At this point it is natural to comment on similarities and g5 res of transport through large arrays. Our approach is
differences with respect to our previous work. In Ref. 28 Wegjmijar in the sense that we can discuss detailed spatial as-

studied transport in the extreme quantum regime, with 0ne Qfe s of the transport process. However, our starting point is
two Landau levels only, and with the Fermi wavelength of o gically different in that we consider typical Bloch states for
the same order as the superlattice constant. In that regime thgp,erent transport. Leaving aside the considerable complica-
complexities at low magnetic field, reminiscent of those arisyjqng added by the existence of a finite coherence length, the
ing from a description in terms of classical chaotic trajecto-cynnection between Bloch states and classical trajectories is,
ries, are absent. On the other hand, at high fields the simjp, principle, clear: Classical electron trajectories are limiting

larities with our present resuIFs are striking. In both case§gyms of moving wave packets that are judiciously chosen
edge transport dominates, with intermittent energy bandgnear combinations of Bloch states. In practice, one is far

representing bulk hopping between quasilocalized states. The,m haying a full understanding of the relations between the

width of these bands is determined by the overlap of th&,q descriptions. In this context we restrict ourselves to a
correponding states. In the present case, this overlap is cogs,, simple remarks.

siderably smaller than in Ref. 28, simply because the ratio oy yery Jow fields we find that transport is dominated by
lg/La is smaller. a set of “channeling” Bloch states, with current density con-

FIG. 15. The current density associated with state 1 in Fig. FIG. 16. The current density associated with state 2 in Fig.
14(a). 14(a).
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(a) B=1.02 T (b) !

FIG. 17. (a) Magnetic band
structure of the antidot lattice at
B=1.02 T [2r.=(1/2)La at
ng=1.5x10"® m 2]. (b) Disper-
sion relations for corresponding
homogeneous strip.
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centrated in the channels between rows of antidots. Very Finally, guantum edge states have, as is well known, their
similar trajectories are found to dominate in the classicakounterpart in classical skipping orbits.
regime'*?° In the field range where the cyclotron diameter

matches the period of the antidot lattice, we do find Bloch IV. SUMMARY

states that display rotational flow around single antidots. On the basis of an efficient hybrid numerical technique
(Note that states that describempletelylocalized electrons we have, in this paper, studied the band structure of a regular
cannot exist as Bloch statg&ut the most striking feature in  array of antidots, confined in the direction and infinite in
this field range is the existence of channeling Bloch states athe x direction. In particular, we have investigated how this
the runaway type, reflected periodically from antidots on onéband structure changes as the applied magnetic field is in-
side of the channel. This is consistent with the findings orcreased, and how the character, as represented by their cur-
classical arrays by Baskiet al.® who stress the dominance rent densities, of the corresponding Bloch states evolves. In a
of runaway trajectories over pinned orbits. However, the pinsequel to this paper we shall use the results obtained here in
ning effect in antidot lattices is manifested indirectly, by thea@ discussion of the two-terminal conductance of finite antidot
drastic reduction of the number of propagating Bloch state@rrays.
in magnetic fieldB>B.
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