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The energy band structure of an antidot array defined in a strip geometry of finite width is calculated as a
function of the magnetic field, in a parameter range typical of existing experiments, and with edge aspects
explicitly taken into account. The calculations are based on a hybrid recursive Green-function technique
specially adapted to problems of this type. The current densities associated with representative Bloch states are
calculated and visualized. At a given Fermi energy and in zero magnetic field, the set of propagating Bloch
states consists of fast states with essentially one-dimensional laminar type flow, channeling between rows of
antidots, and slower ones with a genuinely two-dimensional flow of vortex character. Simple physical argu-
ments are used to explain the existence of the different types of states. At low magnetic fields much of the
character of the zero-field states is retained. At magnetic fields sufficiently high that the classical cyclotron
diameter is close to the lattice constant of the array, the magnetobands correspond to edge states and to states
of the ‘‘runaway’’ type, in which electrons bounce off antidots in consecutive unit cells. Surprisingly, states
corresponding to electrons in classical orbits pinned around single antidots play only a minor role. With a
further increase of the magnetic field, essentially only edge states survive. In this high-field regime, states
beyond the edge states only exist in narrow energy bands, and these states correspond to bulk transport with
electrons hopping between quasilocalized states.

I. INTRODUCTION

During the past few years the study of electron magne-
totransport in lateral antidot superlattices has been a topic of
considerable interest, both from an experimental1–14 and a
theoretical15–22 point of view. Such superlattices are fabri-
cated by defining in the two-dimensional electron gas
~2DEG! periodic arrays of islands with strong repulsive po-
tential, called antidots. The initial motivation for studying
magnetotransport in such structures was the opportunity to
access the regime of the Hofstadter ‘‘butterfly’’ energy
spectrum.23 As the typical size of the lattice constant of an-
tidot lattices ranges from 150 nm to 1mm, the characteristic
effects of this spectrum are expected to be found in the easily
accessible field range below 1 T. Whatever the motivation,
the experimental studies of magnetotransport in antidot ar-
rays revealed a rich variety of sometimes unexpected effects.
In particular, a series of peaks in the diagonal magnetoresis-
tivity rxx were found. These are believed to occur when
commensurability conditions are fulfilled between the
superlattice period and the classical cyclotron radius
r c5\kF /eB at the Fermi momentum\kF .

Most of the theoretical work on magnetotransport in anti-
dot lattices has been based on classical mechanics. The clas-
sical explanation of the magnetoresistance maxima is that
electrons pinned in orbits around~or between! groups of
antidots are removed from the transport process and, there-
fore, do not contribute to the conductivity. This leads to an
increase inrxx . The picture was somewhat modified by
Fleischmann, Geisel, and Ketzmerick15 who showed that
regular pinned orbits play only a minor role in determining
the conductivity. Instead, chaotic~quasipinned! orbits,
trapped around or between groups of antidots for a long time,

cause the peaks in the magnetoresistance. As the theoretical
calculations fit the experimental data, the above picture was
widely accepted as correct.

However, Baskinet al.16 have pointed to a different
mechanism. They found, again on the basis of classical me-
chanics, that stable ‘‘runaway’’ trajectories rolling along dif-
ferent rows of the antidot lattice are responsible for an en-
hancement of the diagonalconductivity sxx . Runaway
trajectories were recently used by Schusteret al.12 in the
interpretation of their experiments. They found that the off-
diagonal terms of the resistivity tensor play an important role
and that pronounced maxima in the magnetoresistance corre-
spond not to minima in the conductance as one could expect,
but tomaxima, consistent with the existence of runaway tra-
jectories.

Quantum-mechanical calculations of the magnetoconduc-
tance of antidot lattices have been performed in Refs.
18,19,21,22. These calculations start from different versions
of the Kubo formula. The agreement between the theoretical
predictions of Ref. 21 and experimental data5 is almost quan-
titative. However, in contrast to the classical theories quoted
above, it is difficult to relate these conductivity results to
particular types of electron dynamics.

So far, most experimental and theoretical work has con-
centrated on essentiallymacroscopicstructures. In such sys-
tems the phase coherence lengthlf as well the elastic mean
free pathl e are much smaller than the size of the sample.
Thus, phase-breaking events destroy coherence, and bulk
magnetotransport can be described in the framework of
Drude-type models.24 Recently, magnetotransport inmesos-
copic lattices with total dimensions smaller than bothlf and
l e has been studied.

11Again, like in macroscopic samples, an
oscillatory structure was found in the magnetoresistance.
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However, phase coherence effects manifested themselves in
reproducible quantum fluctuations superimposed onto the
commensurate peaks.

With coherent transport through mesoscopic systems, the
Landauer-Bu¨ttiker25,26 formalism is the appropriate one for
the computation of linear transport coefficients. In a mag-
netic field, the incoming propagating modes are edge states27

localized at one of the edges of the sample. In the absence of
scatterers, the two-terminal as well as the Hall conductance
of the sample are simply proportional to the number of
propagating edge states. This highlights the fact that with
coherent transport in confined geometries, with or without
antidots, edge states should always be taken explicitly into
account. In an earlier publication28 we studied magnetotrans-
port through a confined array of antidots in the extreme
quantum limit, when the lattice constant of the antidot array
is of the order of the Fermi wavelength. The dependence of
the conductance on the Fermi energy and on the magnetic
field was analyzed on the basis of the band structure of the
corresponding infinite superlattice. This approach turned out
to be very successful for the interpretation of the two-
terminal conductanceG 2t of finite antidot arrays, since the
features ofG 2t could be directly attributed to contributions
from corrsponding minibands. Each of these minibands was
associated with a particular type of electron motion. In this
way, complex behavior of the conductance could be given a
direct physical interpretation. Thus, the main virtue of the
classical simulations, that of providing the physical mecha-
nisms underlying the conductance results, could be taken
into the quantum regime and, moreover, studied in the con-
fined geometry used in a typical experiment.

However, the results of Ref. 28 were limited to the ex-
treme quantum regime of small electron density and one or
two Landau levels in the leads. In contrast, existing experi-
ments on mesoscopic arrays of antidots in confined geom-
etries are performed in the semiclassical regime, where the
Fermi wavelengthlF is ~much! smaller than the period of
the superlattice. With the introduction of a hybrid between
two numerical techniques commonly used in this field, we
have been able to access the semiclassical regime. Thus, the
purpose of the present paper and its sequel29 ~hereafter re-
ferred to as paper II! is to extend our previous calculations to
the region of principal experimental interest. In this paper we
study the magnetic band structure and current densities of the
corresponding Bloch states. In Sec. II we develop the hybrid
Green-function technique for the calculation of the magneto-
band structure. That section will also serve as the theoretical
basis for paper II in this series. In Sec. III the band structure,
as it evolves with increasing magnetic field, is discussed.
Particular emphasis is given to the current density associated
with the different states. Section IV contains a brief summary
of the results obtained so far. On the basis of the results of
this paper, the two-terminal conductance of various lengths
of antidot lattices in a strip geometry will be discussed in
paper II.

II. THEORY

In this section we present the Green-function formalism
basic to our calculations. Under study are two-dimensional
~2D! systems confined in the transverse (n) direction, peri-

odic in the longitudinal (m) direction with periodL, and
placed in a perpendicular magnetic fieldB5 ẑB. It is conve-
nient to split the potential energy into two parts,vmn

conf and
vmn , wherevmn

conf is the confining potential, andvmn will be
used to describe the antidots. Lengths, likeL, will be mea-
sured in units of the lattice constanta of the underlying
tight-binding lattice, see Fig. 1. Choosing the Landau gauge
A5(2Ban,0,0) and following Peierls in incorporating the
magnetic field by a phase factor in the hopping amplitudes,
we arrive at the Schro¨dinger equationHC5EC, where the
matrix element̂ m,nuC&5cmn defines the probability am-
plitude to find the electron on site (m,n). The corresponding
tight-binding Hamiltonian reads

H5(
m,n

~ um,n&~e01vmn
conf1vmn!^m,nu2t$um,n&^m,n11u

1um,n&e2 iqn^m11,nu1H.c.%!. ~1!

Here t is the nearest-neighbor hopping amplitude at zero
magnetic field,e0 is the lattice site electron energy, and
q5eBa2/\. In our calculations we sete054t. Together
with the choice t5\2/2m* a2, with m* the effective
mass, this ensures that, in the continuum limit
@ma→x,na→y,a→0;cmn→c(x,y)#, the above tight-
binding approach yields the familiar Schro¨dinger equation in
the effective-mass approximation

\2

2m* F S ]

]x
2
ieBy

\ D 21 ]2

]y2Gc~x,y!

5@vconf~x,y!1v~x,y!2E#c~x,y!. ~2!

Note that with the gauge chosen, the magnetic unit cell~in
the x direction! coincides with the superlattice period
La→L. We require, furthermore, that the confining poten-
tial respects the discrete translational invariance of the super-
lattice. Thus, the Bloch theorem dictates that solutions of the
Schrödinger equation are of the form30

c~x,y!5eikxuk~x,y!;uk~x1L,y!5uk~x,y!. ~3!

A standard numerical method to study such problems is
the transfer matrix technique.31 In that approach one ex-
pands, for a givenx, the transverse wave function in the

FIG. 1. Schematic geometry of the periodical antidot lattice. The
dashed-line rectangle indicates the one-dimensional elementary unit
cell.
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eigenfunctions of the transverse motion~the transverse
modes!. After discretizing the geometry in the longitudinal
direction and matching the wave functions and their deriva-
tives on the boundaries of the segments, one arrives at a
system of coupled equations for the determination of the
transfer matrix, the rank of which is determined by the num-
ber,Nmodes, of transverse modes taken into account. Diago-
nalization gives eigenvalueska and eigenfunctionsca of ~2!.
However, this technique, at least in its simplest versions, is
plagued by numerical instability problems caused by compo-
nents growing exponentially during the iteration process
~see, for example, Ref. 32!.

An alternative, generally used in connection with tight-
binding models, is the recursive Green-function
technique.26,33,34It has the important virtue of numerical sta-
bility, in addition to being quite flexible. Its weakness is as-
sociated with the fact that the geometry must be discretized
in both transverse and longitudinal directions. This makes it
difficult to model wide or smoothly varying structures, since
the transverse number of sitesNsitesassociated with the wid-
est part of the geometry determines the rank of matrices to be
inverted a large number of times. Generally,Nsites@Nmodes,
making the recursive Green-function technique extremely
time consuming for complex geometries.

In our calculations we use a hybrid technique that takes
advantage of the strengths of both methods, while avoiding
their weaknesses. This technique has been introduced
earlier35 for the case of zero magnetic field. In this paper we
shall demonstrate its utility in the presence of a magnetic
field. In our hybrid approach, we use the local transverse
~field free! energy modes as a basis. This allows great flex-
ibility in modeling smooth geometries within a function
space of reasonable dimensionality. On the other hand the
recursive Green-function technique is used in the~dis-
cretized! longitudinal direction to determine the transfer ma-
trix. This eliminates numerical instability problems from the
calculation of the transfer matrix.

Rewrite the Schro¨dinger equation with Hamiltonian~1! in
the hybrid space-energy representation, passing from the dis-
crete transverse coordinaten to the continuous oney,
cmn→cm(y). At this point we introduce dimensionless
quantities. Lengths will be measured in units of the basic
length a, wave numbers in units ofa21, and energies in
units of t5\2/2m* a2 ~implying that t51). In these dimen-
sionless units, expand the wave function in the set of~real!
eigenfunctions$ f j

m(y)% generated by the~local in m) con-
tinuous Schro¨dinger equation

F2
]2

]y2
1vm

conf~y!G f jm~y!5« j
mf j

m~y!, ~4!

with « j
m the corresponding eigenvalue.

In this basis the matrix element

^m, j uC&5E dy fj
m~y!cm~y! ~5!

defines the probability amplitude to find an electron on slice
m in energy statej . The Hamiltonian~1! in hybrid represen-
tation reads

H5(
m

F(
i

N

um,i &~« i
m12!^m,i u1(

i j

N

um,i &v i j
m^m, j u

2(
i j

N

~ um,i &Vi j
m,m11^m11,j u1um11,i &Ui j

m11,m^m, j u!G ,
~6!

where

Ui , j
m11,m5E dy eiqyf i

m11~y! f j
m~y!, ~7a!

Vi , j
m,m115~Uj ,i

m11,m!* , ~7b!

v i , j
m 5E dy fi

m~y! f j
m~y!vm~y!. ~7c!

The set of transverse modes$ f j
m(y)% is restricted to theN

lowest ones, whereN is determined from the numerical ac-
curacy required. The Hamiltonian~6! has only nearest-
neighbor couplings in the longitudinalm direction. In the
transverse~‘‘energy’’ ! direction, the magnetic field couples
all statesi on slicem to all statesj on neighboring slices
m21 andm11. The strength of the coupling is defined by
the matrix elementsUi j

m11,m ,Vi j
m,m11 @Eqs. ~7a! and ~7b!#.

The presence of the potentialvm(y) causes mixing of the
states on a single slicem, with matrix elementsv i j

m @Eq.
~7c!#.

Consider one unit cell of the superlattice with the first
slice m51 and the last onem5L. Write down the total
Hamiltonian~6! in the form

H5Hcell1Hout1V . ~8!

HereHcell represents the unit cell under consideration, and
Hout the remainder of the superlattice, with the termV con-
taining all the couplings between the two,

V 52(
i j

~ u0,i &Vi j
0,1^1,j u1u1,i &Ui j

1,0^0,j u

1uL,i &Vi j
L,L11^L11,j u1uL11,i &Ui j

L11,L^L, j u!. ~9!

Introduce the Green functionG5(E2H cell)
21. We can

then write down the formal solution of the Schro¨dinger equa-
tion as

uccell&5GV ucout&, ~10!

with uccell& the wave function in the cell under consideration,
and ucout& that outside.

Let us introduce the notationcW m for the column vector
composed of matrix elements^m, j uC&;1< j<N. Using Eqs.
~10! and ~9! one can express the statescW 1 and cW L on the
boundaries of the cell by those on slices adjacent to the cell,

2cW 15G11U1,0cW 01G1LVL,L11cW L11 ,

~11!

2cW L5GL1U1,0cW 01GLLVL,L11cW L11 .
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Here GL,L8 is a shorthand notation for the matrix

^L,i uGuL8, j &, with similar definitons ofUm,m8 andVm,m8.
The actual calculation of theN3N matricesGm,m8 starts, in
standard fashion,26,34 from the matrix on the isolated slice
No. 1, and adds slices up to No.L by systematic use of the
Dyson equation. Equation~11! can be rewritten in terms of
the transfer matrixT relating the wave functions on the
slicesm5L11,L to those onm51,0,

S cW L11

cW L
D 5TS cW 1

cW 0
D , ~12!

where

T5S 2G1LVL,L11 0

GLLVL,L11 1 D
21S 1 G11U1,0

0 2GL1U1,0D ,
with 1 the unit matrix. Using the hybrid basis we can rewrite
the Bloch theorem~3! in the form

cW L1m5eiKLcW m . ~13!

Combining ~12! and ~13! we arrive at the 2N32N set of
equations

TS cW 1

cW 0
D 5S 1eiKL 0

0 1eiKL D S cW 1

cW 0
D , ~14!

which have 2N eigenvaluesKa
6 , 1<a<N; Ka

1 with corre-
sponding eigenfunctionsc1a

1 ,c0a
1 represent states propagat-

ing @]E/]K.0, Im(K)50# or decaying@ Im(K).0# to the
right, whereas Ka

2 with corresponding eigenfunctions
c1a

2 ,c0a
2 represent states propagating@]E/]K,0,

Im(K)50# or decaying@ Im(K),0# to the left. We shall
only consider structures that are symmetric around the line
y50. In that case,Ka

152Ka
2 . In the general case,

Ka
1(B)52Ka

2(2B).
Having calculated the eigenvalues and eigenfunctions of

the problem~14!, and knowing all the matricesG, one is
able to calculate the spatial distribution of the particle current
associated with the different Bloch states. Fundamentally, the
current in tight-binding models is associated with hopping
alongbonds.38 Nevertheless, for visualization purposes it is
more convenient to view the local particle current density
jmn as a vector associated withsites. The corresponding ex-
pression is derived in standard fashion from a combination of
the time-dependent Schro¨dinger and the continuity equation.
It reads, in units oft/a\,

jmn
1a52~ i /2!$ m̂cmn

a* @eiqncm11,n
a 2e2 iqncm21,n

a #

1 n̂cmn
a* @cm,n11

a 2cm,n21
a #2c.c.%, ~15!

wherecmn
a is the wave function~in real space representation!

associated with the eigenvalueKa , and m̂,n̂ are the unit
vectors in the longitudinal and transverse directions. Starting
from our hybrid basis we, in practice, constructcm

a (y) for
use in~15!, rather thancmn

a . In the continuous limit Eq.~15!
reduces to the standard definition of the current density in a
magnetic field.36

To conclude this section, let us briefly summarize the vir-
tues of the hybrid technique presented here. By using trans-
verse eigenfunctions as a basis we were able to confine our
function space to the minimum dimension necessary for the
problem at hand. In this way the computational effort is con-
siderably reduced in comparison with the original tight-
binding formulation. The Green-function approach adopted
in this section is numerically stable. In contrast, the standard
version of the transfer matrix technique~which uses the same
basis of transverse eigenstates! suffers from numerical stabil-
ity problems sufficiently serious to make calculations for
large-size structures with a strong modulation potential al-
most impossible.

Note that an alternative way of finding the Bloch solu-
tions in the case of 2D periodic potential is based on the
utilization of the finite-elements method.37 This method, al-
though numerically stable, requires essentially large-scale
computations on supercomputers, especially at high mag-
netic fields. The present method, based on recursive Green-
function techniques, requires only moderate computation fa-
cilities.

III. RESULTS AND DISCUSSION

A. System studied

In this section we examine the band structure and the
nature of various Bloch states in antidot arrays, using the
Green-function formalism developed in the previous section.
The antidot array is confined to a strip with hard walls and of
constant widthw, and is infinite in the longitudinal direction.
Already strips with four antidots across reveal the essential
physics in this context. We shall, consequently, restrict our-
selves to systems in which the one-dimensional unit cell of
the corresponding~super! lattice consists of four antidots;
see Fig. 1.

In the literature the antidot potential has been modeled by
a d-function potential,18 circular hard disks,16,17,19a square
potential,28,31,32 or a soft cosine-type potential.15,20–22 Pre-
sumably, the latter most adequately represents the experi-
mental situation, in which the potential landscape is defined
by gates sufficiently removed from the 2DEG to justify ne-
glect of higher Fourier components. In our calculations we
opt for the following pragmatic compromise: We model the
antidots by a square potential with height just above the
Fermi energy,V51.05EF . Because of the finite tunneling
probability this potential corresponds to ‘‘soft’’ antidots with
rounded corners. This is reflected in the current density pat-
terns. As a consequence, in the figures showing the current
distribution in various states, we shall draw the antidots as
rounded, in spite of the fact that, geometrically, they are
square. From a computational point of view the use of square
antidots greatly facilitates our recursive Green-function tech-
nique. These calculations start from the first slicem51 and
add more slices by systematic use of the Dyson equation. In
the general case of a varying potential, the iteration has to
proceed one slice at a time. If, however, the potential land-
scape is the same for each step in the antidot region, one can
calculate the Green function only for the first slice, and then
effectively ‘‘exponentiate’’ the process by successively using
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segments of 2,4, . . . ,2p slices as basic elements in the itera-
tion scheme.38 This trick greatly reduces the computation
time.

We choose the lattice constant of the antidot array as
La5250 nm, with the antidot size equal to the distance be-
tween antidots. These parameter values are close to those
used in the experiments of Schusteret al.11 In our calcula-
tions we divide one unit cell into 64 slices. This corresponds
to a lattice constanta'4 nm of the underlying tight-binding
lattice. With such a fine mesh, the tight-binding Hamiltonian
~1! gives a description essentially equivalent to that of the
continuum Schro¨dinger equation in the effective-mass ap-
proximation. It is the sheet electron density,ns
5EFm* /p\2 ~with m*50.067me for GaAs-GaxAl 12xAs
structures!, rather than the Fermi energiEF , which charac-
terizes the samples and is controlled in experiments on the
2DEG. For this reason, rather than presenting the dispersion
curves in the customary formE5E(K), we prefer the res-
caled equivalentns5ns(K) or its inverseK5K(ns).

B. Zero magnetic field

Figure 2~a! shows the calculated band structure of the
antidot lattice in zero magnetic field, in the reduced zone
representation (21,KL/p,1). The band structure consists
of a number of minibands. Between the various dispersion
relations, both crossings and anticrossings~with minigaps!
can be observed. In this complicated structure, we can quali-
tatively distinguish, at a given Fermi energy, dispersive~fast!
quasi free-electron states, less dispersive~slower! ones, and
almost dispersionless states. Due to the symmetry of the
structure, every state propagating to the right has a mirror
image propagating to the left. From here on we consider only
states propagating to the right.

In order to understand the physical nature of the various
Bloch states in the antidot superlattice, it is instructive to
study the corresponding particle current density. In the typi-
cal experimental range, let us choose the electron sheet den-
sity asns51.531015 m22 and examine all available Bloch

states. At this value ofns Fig. 2~a! shows that there are five
fast quasi-free-electron states~marked by arrows 2 through
6!, two slower ones~marked by arrows 7 and 8!, and one
almost dispersionless state~arrow 1!. States 2–4 and 5–6 are
almost degenerate and their dispersion curves are indistin-
guishable on the scale of the figure. Plots of the current den-
sity reveal the nature of these states; see Figs. 3 and 4. The
threefold degenerate states 2–4 correspond to ballistic trajec-
tories concentrated in the horizontal channels between two
neighboring rows of antidots. We shall denote states of this
kind ‘‘channeling’’ states. One example is shown in Fig. 3. In
the antidot lattice under consideration there are only three
equivalent paths of this type. This explains the threefold
degeneracy.~For example, with finitew, almostdegeneracy.
Note that in zero magnetic field, every Bloch state has a
current distribution symmetric around the central symmetry

FIG. 2. ~a! Band structure of
the antidot lattice in zero magnetic
field. ~b! The effect of lifting the
degeneracy of fast quasi-free-
electron states in a weak magnetic
field (B50.005 T!.

FIG. 3. The current density associated with state 2 in Fig. 2~a!.
In this and the other figures showing current densities associated
with various Bloch states, the antidots are shown with theireffective
shape, as rounded, rather than as purely geometric squares.
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axis.! Analogously, the twofold degenerate states 5 and 6
correspond to electrons channeling between the upper and
lower edges and the outer rows of antidots; see Fig. 4.

Before discussing the three remaining states, in which the
current distribution is truly two-dimensional, let us investi-
gate what happens to the five channeling states when a weak
field is switched on. These states are all pseudo-one-
dimensional in character. In a finite magnetic field, the de-
generacy between channeling states is formally lifted, and
each state will be located in a different channel between rows
of antidots. However, from a physical point of view, the five
different channeling states are essentially equivalent~the
hard wall boundaries will perturb this simplest picture some-
what!. With the Landau gauge used, the longitudinal wave
number@dimension~length)21# K5K/a and the transverse
coordinatey appear in the combinationK2y/ l B

2 . Thus, the
value of the parameterK simply fixes the transverse posi-
tion of the pseudo-one-dimensional state in question. Two
such states in neighboring channels are physically equivalent
and should have the same dispersion relation, but shifted by
DK5L/ l B

2 . This behavior is recognized in Fig. 2~b! where
five free particle parabolas, appearing as essentially straight
lines in the reduced zone representation, run parallel to one
another. The shift is quantitatively accounted for by the for-
mulaDKL/p5DKL/p5p21(L/ l B)

2 @the nondegeneracy
between the twofold and threefold degenerate states in Fig.
2~a! explains the slight variation in theK shift#.

Returning to the remaining states in zero magnetic field,
Fig. 5 shows the current density profile associated with the
state marked by the arrow 8 in Fig. 2~a!. This state has ap-
preciable dispersion, although its group velocity is somewhat
lower than that of the channeling states 2–6. The current
density still has a quasi-one-dimensional character but with
some admixture of vortex formation.39 In contrast to the
states 2–6, where the wave functions have no nodes in the
constrictions between antidots, the state under consideration
has one or two nodes there.

Deviations from the one-dimensional character are much
more pronounced for state 7 with a group velocity smaller
than that of state 8. In this case the wave function has two
nodes in most constrictions. The probability density is dis-

tributed equally in the horizontal and vertical channels be-
tween two neighboring rows of antidots and vortex flow is
now a prominent feature. Generally, the more nodes the
wave function has in the constrictions, the stronger the de-
viation from the one-dimensional character of the corre-
sponding current.

In the case of the almost dispersionless state 1 of Fig.
2~a!, the current completely loses its quasi-one-dimensional
character; see Fig. 6. The probability to find an electron in
some vertical channel is much higher than in a horizontal
one. In the horizontal constrictions the wave function has
typically three nodes.

To explain the origin of the different types of Bloch states
and the characteristic features of the current density, let us
consider electron transport in a single horizontal constriction
defined by two neighboring antidots in the unit cell. The
confinement by the antidot potential causes transverse quan-
tization. With hard wall confinement, the energy of the elec-
tron in an eigenstate of the constriction isE5(\2/

2m* )(ki
j 21k'

j 2), wherek'
j andki

j are the transverse and lon-
gitudinal wave numbers, andk'

j 5p j /d, with d the separa-

FIG. 4. The current density associated with state 5 in Fig. 2~a!. FIG. 5. The current density associated with state 8 in Fig. 2~a!.

FIG. 6. The current density associated with state 1 in Fig. 2~a!.
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tion between antidots. With the parameters chosen here, only
three transverse modes are propagating in the constriction.
The lowest~ground! transverse state has even parity and no
nodes. The next transverse states have odd parity and one
node, etc. As shown by Szafer and Stone,40 the state with the
transverse wave numberk'

j inside the constriction is mostly
coupled to outgoing modes with transverse wave numbers
close to 6k'

j ~with the spread given by the uncertainty
relation35!. From energy conservation this implies that longi-
tudinal wave numbers of outgoing states are close toki

j .
Thus, at the exit of the constriction, the angular distribution
of the electrons is roughly confined to a cone with an open-
ing angleb;tan21@k'

j /ki
j #. In other words, it strongly de-

pends on the subband indexj inside the constriction. For the
transverse ground state (j51), k'

1!ki
1 , and electrons are

ejected from the constriction with a small opening angleb.
The transverse states with one node (j52) has a larger
opening angle, and for thej53 state,k'

3;ki
3 , resulting in a

wide angular distribution.
The qualitative nature of the Bloch states in the antidot

lattice can be understood on the basis of the above analysis.
The quasi-one-dimensional channeling states~2–6! are
closely related to the transverse ground states in the constric-
tions, with their group velocity essentially determined by the
longitudinal velocity v5\ki

1/m* there. The narrow cone
ejected from constriction ground states explains the quasi-
one-dimensional character of these Bloch states. The slower
states~7 and 8! correspond to mixtures of transverse con-
striction modes with one or two nodes. The associated wide
opening anglesb lead to a considerable probability for the
electrons to be directed into the vertical channels between
antidots, with a resulting vortex character of the flow in these
Bloch states. Finally, the almost dispersionless state 1 has
two or three nodes in the horizontal constrictions. This cor-
responds to the highest propagating (j53) and lowest eva-
nescent (j54) mode there. Thus, one can view this Bloch
state as one built from bound states in the spacebetween
antidots, weakly coupled through the constrictions by slowly
propagating and evanescent modes.

C. Moderate magnetic fields

The magnetic field changes the band structure of an anti-
dot array. Nevertheless, some of the features of the Bloch
states, discussed above as characteristic for the case of zero
magnetic field, can be recognized up to moderate fields, i.e.,
fields for which the cyclotron diameter 2r c*La. The mag-
netic band structure of the antidot lattice atB50.255 T is
presented in Fig. 7~this corresponds to the magnetic field
when an electron classically encircles a group of four anti-
dots at ns51.531015 m22;2r c52La). Fig. 8 shows the
current density profile, associated with the state marked by
arrow 1 in Fig. 7. This state combines features we have al-
ready discussed for the zero-field case. Through the channel
marked A in Fig. 8, electrons propagate in a quasi-one-
dimensional fashion, whereas in channel B laminar and
vortex-type flow are equally prominent. A new type of flow
pattern, absent in the case of zero magnetic field, is the one
corresponding to rotation around an antidot~Fig. 8, upper
row of antidots!. We present the current density for one rep-
resentative state only. Current densities associated with the

rest of the states~except those marked by arrows 2 and 3!
exhibit very similar features in the sense that in each state
one can recognize quasi-one-dimensional flow, regions
where laminar and vortex aspects compete, and flow circu-
lating around an antidot~or in the space between antidots!.

The quasi-one-dimensional electron states~2 and 3! are
nothing but the familiar edge states located close to the upper
edge~right moving state! or lower edge~left moving state! of
the structure; see Fig. 9. These edge states are essentially
identical to those of a perfectly homogeneous strip~without
the antidot potential!. The transverse extent of an edge state
is of the order of the magnetic length,l B5(\/eB)1/2. When

FIG. 7. Magnetic band structure of the antidot lattice at
B50.255 T.~The classical cyclotron orbit encircles a group of four
antidots, 2r c52La at ns51.531015 m22.)

FIG. 8. The current density associated with state 1 in Fig. 7.
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l B is smaller than the distance between the boundary and the
nearest antidot row, the edge state does not ‘‘feel’’ the pres-
ence of the antidots and, consequently, its dispersion is the
same with and without antidots. Conversely, with largerl B or
with several edge states increasingly removed from the
boundary, some of the edge states existing in the homoge-
neous channel are blocked here by the presence of antidots.
Thus, the number of edge states in the antidot structure
equals the number of those edge states in the corresponding
homogeneous channel for which the transverse localization
length is less than the distance between the boundary and the
closest antidots. With an increasing magnetic field, the mag-
netic lengthl B decreases. Therefore, more edge states can be
accommodated in the space between the upper edge and the
upper row of antidots. The state closest to the upper edge is
the one with the lowest transverse energy, i.e., with the high-
est group velocity. Of the two edge states represented in Fig.
7 the one with the highest slope is clearly 2. Note that the
linearity of the dispersion curves for the edge states is only
apparent. The ‘‘lines’’ are small segments of essentially para-
bolic dispersion curves.

D. Magnetic field of the single-antidot resonance

Figure 10 shows the band structure of the antidot lattice at
B50.51 T, which corresponds to the case when the classical
cyclotron diameter equals the period of the antidot lattice
(2r c5La at ns51.531015 m 22). This is the parameter
range in which pronounced features have been observed in
the linear response of devices with an antidot lattice. These
features have often been attributed to electron orbits encir-
cling single antidots. From Fig. 10 it is clear that the energy
corresponding to preciselyns51.531015m22 is not a good
choice, since the number of Bloch states is exceptionally low
here. We choose, instead, to investigate the magnetic Bloch
states atns51.52531015 m22. The states marked by 1 and
2 are the edge states, with state 1 closer to the edge. The state
3 is a quasiedge state. It is located, like ordinary edge states,
close to the upper edge of the structure, but its transverse
extent is sufficiently large that the current distribution is
somewhat perturbed by the uppermost row of antidots, with
an admixture of vortex character. Surprisingly, only one state

~4! from the remaining set~4–8! is characterized by a rota-
tional flow around a single antidot; see Fig. 11. The current
density patterns associated with the states 5–8 are, on the
other hand, strikingly reminiscent of the classical ‘‘runaway’’
trajectories16 found in this parameter range, where electrons
channel between two rows of antidots by bouncing off suc-
cessive antidots down the channel; see Fig. 12. Here we
show the particle density flow for one selected state~5! only.
The remaining states~6–8! have the same character, but are
localized in different horizontal channels.

E. High magnetic fields

When the magnetic field is increased beyond the value
that corresponds to the classical commensurabilty ‘‘reso-

FIG. 9. The current density associated with state 2 in Fig. 7.

FIG. 10. Magnetic band structure of the antidot lattice at
B50.51 T. ~The classical cyclotron orbit encircles a single antidot,
2r c5La at ns51.531015 m22.)

FIG. 11. The current density associated with state 4 in Fig. 10.
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nance,’’ 2r c5La, the band structure undergoes significant
changes. Classically, with a cyclotron diameter smaller than
the superlattice period, one would expect an increasing frac-
tion of the electrons to get trapped around single antidots or
in the space between antidots. When 2r c,d, with d the
distance between antidots,all classical trajectories are com-
pletely localized, and transport is possible by means of skip-
ping orbits at the edges of the structure only. These classical
facts are reflected in the quantum-mechanical band structure,
which shows a drastic reduction of the number of propagat-
ing Bloch states in magnetic fieldsB.Bc , whereBc is the
magnetic field corresponding to the single antidot resonance,
2r c5La; see Fig. 13. Note that the majority of Bloch states
at B.Bc are edge states.

Figure 14~a! shows the dispersion relations atB50.765 T
@2r c5(2/3)La at ns51.531015 m22]. For comparison, we
present the band structure for a corresponding homogeneous
channel~without the antidot potential! in Fig. 14~b!. Most
edge states in the homogeneous strip have their counterparts
with an antidot lattice, only one of them is blocked by the
outer rows of antidots.

The remaining states in the antidot lattice are slow ones
with small dispersion~except the state 2, the origin of which
we shall discuss below!. The current density of state 1, rep-
resentative in this context, is shown in Fig. 15. The current
corresponds to some extent to counterclockwise electron ro-
tation around single antidots, but mostly to such motion in
the space between antidots. This indicates that the origin of
these minibands is quasi-bound states in the antidot array. In
this field region, transport through the antidot lattice re-
sembles that of the extreme quantum regime considered in
Ref. 28, where all minibands~except the edge states! were
associated with electrons trapped around single antidots or in
the space between antidots.

Finally, let us consider state 2, which has an appreciable
dispersion and a current density, Fig. 16, distinct from those
of the miniband states discussed so far. The origin of this
state can be understood as follows. In the homogeneous strip,
four magnetic edge states are allowed; see Fig. 14~b!. With
antidots present, one of them is blocked by the first row of
antidots. The total width of the system is sufficiently large
that direct backscattering to the opposite edge is completely

negligible. Scattering across the entire system is only pos-
sible via bulk states in the structure. If, at the given energy
and magnetic field, such states are absent, reflection is com-
pletely suppressed and the fourth ‘‘edge’’ state is forced to
strike a compromise between edge localization and transport
through the antidot array. The nature of this compromise is
displayed in Fig. 16. The deviation from strictly one-
dimensional motion is highlighted by the vortices between
the edge and the first row of antidots. On the other hand, the
basically one-dimensional character of this state is empha-
sized by the small band gap at the reduced zone boundaries
KL/p561 atns'1.4631015 m22.

For still higher magnetic fields when, for example,
2r c5(1/2)La, transport in the antidot lattice is essentially
only possible by edge-state propagation; see Fig. 17. In this
case the localization length; l B525 nm is much smaller
than the distance between neighboring antidots. Thus, the
coupling between bound states around or between antidots is
greatly suppressed. This is reflected in the appearance of a
few very narrow minibands with almost zero dispersion. It is

FIG. 12. The current density associated with state 5 in Fig. 10.

FIG. 13. The dependence on the magnetic field of the number of
propagating Bloch states in the antidot lattice for different sheet
electron densities~solid lines!. The dashed lines represent the num-
ber of propagating states in the corresponding homogeneous strip.
Bc is the magnetic field corresponding to the single antidot reso-
nance, 2r c5La.
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only in these narrow bands that the antidot array makes its
presence felt. As a result, one should expect that, in this
parameter region, the transport properties of antidot arrays
are almost indistinguishable from those of a perfect strip.

At this point it is natural to comment on similarities and
differences with respect to our previous work. In Ref. 28 we
studied transport in the extreme quantum regime, with one or
two Landau levels only, and with the Fermi wavelength of
the same order as the superlattice constant. In that regime the
complexities at low magnetic field, reminiscent of those aris-
ing from a description in terms of classical chaotic trajecto-
ries, are absent. On the other hand, at high fields the simi-
larities with our present results are striking. In both cases
edge transport dominates, with intermittent energy bands
representing bulk hopping between quasilocalized states. The
width of these bands is determined by the overlap of the
correponding states. In the present case, this overlap is con-
siderably smaller than in Ref. 28, simply because the ratio
l B /La is smaller.

F. Bloch states versus classical trajectories

A number of discussions of transport in antidot arrays are
based on an analysis of classical electron trajectories. This
strategy has been quite successful in describing the gross
features of transport through large arrays. Our approach is
similar in the sense that we can discuss detailed spatial as-
pects of the transport process. However, our starting point is
radically different in that we consider typical Bloch states for
coherent transport. Leaving aside the considerable complica-
tions added by the existence of a finite coherence length, the
connection between Bloch states and classical trajectories is,
in principle, clear: Classical electron trajectories are limiting
forms of moving wave packets that are judiciously chosen
linear combinations of Bloch states. In practice, one is far
from having a full understanding of the relations between the
two descriptions. In this context we restrict ourselves to a
few simple remarks.

For very low fields we find that transport is dominated by
a set of ‘‘channeling’’ Bloch states, with current density con-

FIG. 14. ~a! Magnetic band
structure of the antidot lattice at
B50.765 T @2r c5(2/3)La at
ns51.531015 m22#. ~b! Disper-
sion relations for corresponding
homogeneous strip.

FIG. 15. The current density associated with state 1 in Fig.
14~a!.

FIG. 16. The current density associated with state 2 in Fig.
14~a!.
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centrated in the channels between rows of antidots. Very
similar trajectories are found to dominate in the classical
regime.14,20 In the field range where the cyclotron diameter
matches the period of the antidot lattice, we do find Bloch
states that display rotational flow around single antidots.
~Note that states that describecompletelylocalized electrons
cannot exist as Bloch states.! But the most striking feature in
this field range is the existence of channeling Bloch states of
the runaway type, reflected periodically from antidots on one
side of the channel. This is consistent with the findings on
classical arrays by Baskinet al.,16 who stress the dominance
of runaway trajectories over pinned orbits. However, the pin-
ning effect in antidot lattices is manifested indirectly, by the
drastic reduction of the number of propagating Bloch states
in magnetic fieldsB.Bc .

Note that the detailed properties of the antidots are ex-
pected to be quite important for these effects, in both the
quantum and the classical case. We are not yet in a position
to discuss the influence of such details with confidence.
More work needs to be done on these aspects.

Finally, quantum edge states have, as is well known, their
counterpart in classical skipping orbits.

IV. SUMMARY

On the basis of an efficient hybrid numerical technique
we have, in this paper, studied the band structure of a regular
array of antidots, confined in they direction and infinite in
the x direction. In particular, we have investigated how this
band structure changes as the applied magnetic field is in-
creased, and how the character, as represented by their cur-
rent densities, of the corresponding Bloch states evolves. In a
sequel to this paper we shall use the results obtained here in
a discussion of the two-terminal conductance of finite antidot
arrays.
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