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Coulomb drag of edge excitations in the Chern-Simons theory
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Long-range Coulomb interaction between the edges of a Hall bar changes the nature of the gapless edge
excitations. Instead of independent modes propagating in opposite directions on each edge as expected for a
short-range interaction one finds elementary excitations living simultaneously on both edges, i.e., composed of
correlated density waves propagating in @mne directioron opposite edges. We discuss the microscopic
features of this Coulomb drag of excitations in the fractional quantum Hall regime within the framework of the
bosonic Chern-Simons Landau-Ginzburg theory. The dispersion law of these excitations is nonlinear and
depends on the distance between the edges as well as on the current that flows through the sample. The latter
dependence indicates a possibility of parametric excitation of these modes. The bulk distributions of the
density and currents of the edge excitations differ significantly for short- and long-range interactions.

I. INTRODUCTION Il. STATIC SOLUTIONS FOR A SINGLE EDGE

. : The starting point of our analysis is the mean-field equa-
The_ Integer a_nd fra_ct|onal quantum Hall effec_ﬁ@HE) tions derived by minimizing the CSLG action for the frac-
occur in a two-dimensional electron gas placed in a Strong o quantum Hall effect.Using the polar decomposition

perpendicular magnetic field. Interesting phenomena ca f th ic fieldd= i0 . . h loci
take place at the edges of this gas. The simplest is related g the bosonic fie o \/;e and introducing the velocity

the edge currents that are instrumental in our understanding

of the transport properties of the QHE! The character of e

the excitations in the quantum Hall system is also effected by V= di0+ (@ +A), (1)
the presence of the edges. While the bulk excitations have a

finite gap the excitations that are localized near the edges awgth the vector potentiah taken such as to produce a con-
found to be gapless. They are chiral, that is moving only instant magnetic field along, one obtains the hydrodynamic
one direction along the edge, and can be described by tHerm of these equations, which is more convenient for our
chiral Luttinger model provided one disregards their cou- purpose,

pling to other modes. Recently the possibility to probe the

structure of the fractional Hall states by studying the tunnel- €joivj=1—p, (28
ing between edges attracted much attenfion.

In this paper we study the edge excitations within the 9d 0= i dido= €jpvj, (2b)
framework of a bosonic Chern-Simons Landau-Ginsburg
(CSLG theory. This theor¥ was proposed as a useful dp=—di(pvi), (29
supplement and extension of Laughlin’s fully microscopic 5
many-body theory of the fractional QHEQHE). Recently, 90— 1.1 MJra V(-
the edge effects were studied using this th&amyd Wen's t 2ViT 3 P P
results were rederived. Our goal is to investigate the effects
of the interedge interactions. In Ref. 10 unusual effects were B Lf U(r—r")p(r)d2r’ 2d)
predicted due to this interaction that are related to the redefi- 2 P '

nition of the gapless modes into a Bogoliubov transformed ) ) )
combination of modes living on both edges and propagatindiiere and throughout the paper length is measured in units of
in the same direction. Our analysis goes one step further arileé magnetic length= y7c/eB, time in units of inverse
presents the microscopic picture of this phenomenon. We usgyclotron frequencyo.=eB/mc, energy is normalized by
the realistic Coulomb interaction between the edges and déw., and the density by its bulk value=vB/¢,, where

rive the modified modes and their density and current distriw=1/(2n+ 1) is the filling factor. All the quantities apart of
butions. These clearly indicate that one deals with the Coud and a, are gauge invariant and the latter appear in the
lomb drag of excitations on one edge by the other. We derivgauge invariant combinatio#.6—a,. In order to correctly

a nonlinear dispersion relation for the modified excitationreproduce the energetics of the noninteracting limit we have
modes and find that it depends on the width of the Hall bafollowed Ref. 11 and included &-function type repulsive
and on the total current that flows through it. We point outforce [the term before the last if2d)] with a strength of
that the latter dependence opens the possibility of a parame2r#%/vm. Our confining potential is assumed to rise fast
ric excitation of these modes. enough to avoid the occurrence of an alternating sequence of

0163-1829/96/53.2)/79646)/$10.00 53 7964 © 1996 The American Physical Society



53 COULOMB DRAG OF EDGE EXCITATIONS IN THE CHERN- ... 7965

FIG. 1. Density in units op (solid line9 and current density in FIG. 2. Same as Fig. 1 for Coulomb interaction witk=1.
units of pw¢l (dashed lingsfor the case of short-range interaction
with A¢=1. The highest curve in each set corresponds,te — 2. (1) our boundary conditions and the ansé& give the ve-
Consecutive curves differ bxo,= 1. The reversal in the direction locity at the edge as,(0)=—X,. Using this and the fact
of the current with increasing, manifests a transition from skip- that the velocity falls to zero in the bulk we integrate E2g)
ping orbits to circular orbits on the rim of the Hall drop. and find that—x, is theexcess chargper unit length along
the edge relative to a steplike constant density profile.
compressible and incompressible strips along the &dge. For a Coulomb interactionU =2mv Whodr—r'|
Apart from this requirement the detailed naturevgk) is of  with \.=ve?/2melfiw, and a constant neutralizing back-
no importance for our applications. ground extending up to the wall one obtains distributions
Our aim is to obtain the edge excitations as the randonhown in Fig. 2. Compared to Fig. 1 the essential difference

phase approximatioiRPA) modes of the theory, i.e., the isfound in the largec behavior of the solutions. Inserting the
eigenmodes of the above equations linearized around a stafigllowing asymptotic forms for large,

solution. We first consider a single edge. The translation in-
variance in they direction suggests looking for a static so- p(X)=1—sgr(Xq)exp( — ax),
lution in the form
vy(X)=—sgnXo)a ‘exp(— ax), (4)
0=—Xy—n(X)t, p=p(X), v,=0, vy=v,(%),
ag(X)=—pm+ A+ 1— sgrixo) e 2exp(— ax),

9= ao(X). ) into Egs.(2a—(2d) one finds for the short-range interaction
We assume for definiteness an infinitely high wall situated athat a=[2(A¢+1)—2y(As+1)2—1]¥2 For the Coulomb
x=<0 and accordingly set the density to zero at the wall. Thanteraction the fields behave at large distances according to
only gauge freedom that preserves the form of the above )
solution is adding arbitrary constantsxgand . We fix this p(X)=1=2\Xo /X",
freedom by requiring that the statistical potentiajsa; van-
ish atx=0 and choosingA=(0,Bx,0). This assures that vy(X)==2\eXo/X, (5)
solutions with different values ok, and . are not gauge
transforms of each other. Formalky is the conserved mo-
mentum along the edge and its physical effect on the conThese expressions exhibit a significant difference in the bulk
densatep is similar to the guiding center coordinate of Lan- distribution of the currend,(x) = p(x)v(x) for short-range
dau levels—changing its value translates in the x  and Coulomb interactions. In deriving these results we as-
direction. Inserting the ansat3) into (2a—(2d) one finds a  sumed that the length of the samplés very large compared
set of coupled equations f@i(x), v,(x), anday(x) that we  to X, and used the fact that the density of the solutions con-
have solved numerically. For a fixeg we have determined sidered here does not depend on the coordinate along the
the value ofu by requiring thatp approacheg far from the  edge. Under such conditions one can integrate overythe
edge. Under this conditiop is the energy that is needed in coordinate in the interaction term to finad/27[U(r
order to add a particle to the edge. Representative examplesr')[p(r)’ —1]d?r’ = —2X\Xq INL —2\JTp(x") —1]In(|x
of the density and current density profiles for soluti¢Bsin —x'|)dx’. The first term is a constant that is absorbed into
the case of short-range interactions) = (27 2\/ the chemical potential while the second one is a potential of
vm)S(r—r’) are shown in Fig. 1. One finds ane- a collection of charged wires.
parameter family of static solutiondepending onx, and An even more pronounced difference is found in the de-
differing by the density of particles at the edge. Inserted inpendence of on Xy, which is displayed in Fig. 3. Numeri-

ap(X)=—m+ 1+ 2\ XoIn(X).
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FIG. 3. The chemical potential at the edge as a functiox, é6r FIG. 4. Profiles of densitysolid ling), current density in thg

short-range interaction with ;=1 (solid line). For the Coulomb  direction (dashed ling and current density in thex direction
interaction we plotz= u+ 2\ XolnL in the case\,=0.03 (dashed  (dashed-dotted linefor gapless edge excitations in the case of
line), which corresponds to the FQH regime and for comparisorshort-range interaction withhg=1. The profiles shown here are
also the cases.=1 (dashed-dotted lineand A\ ;=3 (dotted ling, around a static solution witko= —1 and withk|=10"*. The den-
which may be relevant to integer quantum Hall samples. sity is normalized byp, the current densities byw.l, and 8J, is
multiplied by k~1=10"
cally we find that for the short-range interaction the chemical
potential tends tos(\¢+1) for large positive values oty Our main method of solving Eq&6a—(6d) will be to use
and increases as the charges are pushed against the wall, ithg continuous one-parameter family of static solutions de-
for decreasingg. In the case of the Coulomb interaction the scribed above in order to find tlgaplessbranch of the RPA
leading contribution tqu is given by— 2\ xoInL. This term  eigenmodes. The derivative of the soluti) with respect
corresponds to the electrostatic charging energy of the exce#s Xy constitutes a static solution of the RPA equati¢des —
charge (x,) had it been uniformly distributed over a strip (6d). Motivated by this observation and concentrating on the
of width | along the edge. Its change of signxgt=0 reflects  long-wavelength limit we set
the tendency of the system to remain neutral. The remaining

part of the chemical potential = u + 2\ XoINL is due to the 8p=dx,p(x)cogky—wt),
kinetic energy and the deviation of the excess charge distri-
bution from that of a uniform strip. As one can observe from 5vy=(9xovy(x)cos{ ky— wt),
Fig. 3 the dependence @f on x, varies considerably as the
strength of the interaction is changed. 5aozgxoao(x)cog(ky_ wt),
11l. EXCITATIONS OF A SINGLE EDGE 1.
60=— —sin(ky— wt). (7
Linearizing Eqs(2a—(2d) around one of the solutior(8) k
we obtain the RPA equations Clearly these density and velocity distributions are concen-
trated along the edge as illustrated in Figs. 4 and 5. As can be
€ijd 0vj=— dp, (63 seen by differentiating Eq$4) and (5) with respect toxg,
for short-range interaction these distributions decay expo-
310, 60— 9y6v;— d; 6ay= €yyv Op+ €pdv;,  (6b)  nentially into the bulk, while for the Coulomb interaction the
decay follows a power law. With the expressit8) for w
d16p=—vydyop—di(pdv;), (60 given below also the gauge invariant combination
d 66— dag vanishes far away from the edge. Inserting these
325p functions into Eq. (6d), using the fact that their
3;00=—vyov,+f(p,ép)+ Z— + dag— 6p x-dependent parts are static solutions and neglecting the term
P proportional tok? we find that they indeed solve this equa-
v tion, provided we choose properly the dispersion relation
- EJ U(r—r")ép(r")d?r’, (6d) o=w(k). In the case of the short-range interaction we find
directly
where f denotes the part of the linearized “quantum pres- 12 g
sure” term, i.e., the second term on the right-hand side of 0= — ——Mk(1+ k), (8)

(2d), containingx derivatives. i dXo
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; . K . . . ‘ ————] law behavior to an exponential decay. One can also check

1t e T T 1 that the other two equations in the linearized set are satisfied

o up to first order ink.

05t 7 1000 _ _ For thg short-range interaction the Ii_nearity of th_e d_isper—

' sion relation and the fact thag/dxo<< 0 imply the chirality

/ of the waves. The wave velocity is determined dyy/ 9xg,

\ which plays the role of the renormalized velocity in the Lut-

R tinger model treatment of the edge excitations. Microscopi-

- . cally this quantity is directly related to the compressibility

. T T x of the edge, which can be viewed as a one-dimensional

l , system of lengthL and N=-—x,Lp particles with

v k=LIN?(aulON) ~ 1= — (px3ul dxo) ~*. For xo>0 N is

A minus the number of holes on the edge. The compressibility

vanishes when the edge of the static solution is far away

from the wall (i.e., at large positivexy) for which case

2 A w~k3, in agreement with Ref. 12. In the Coulomb case the

i long-wavelength limit of the dispersion curve is dominated
by the logarithmic part so that althoughu/dx, can have
either sign the excitations are chiral as before.

-1}

FIG. 5. Same as Fig. 4 for Coulomb interaction with=1. The
inset shows the behavior @, at larger distances from the wall.

. - IV. STATIC SOLUTIONS FOR A HALL BAR
8J, is multiplied byk™1/10=10°.

We go on now to consider the case of a wide and long
where we have restored the units of dimensions. In this exHall bar defined by hard walls at=+W/2. According to
pression we have included the second-order terk) imhich  our strategy we first show that agairfamily of static solu-
can be obtained after multiplying the first three fieldSf  tions of Egs.(28—(2d) exists. This will now be atwo-
by 1+Kkl. In the case of the Coulomb interaction after the parameterfamily, which we find by appropriately gluing to-
substitution of §p the last term in Eq.(6d) becomes gether two solutions of the single wall case. Assuming that
—Zxccos((y—wt)fgodx’&xop(x’)Ko(lk||x—x’|) where Ko(x) is  the two solutions correspond to the valuesxgf and wu,
the modified Bessel function. Working in the region Which are &;,u;) and &z,u,), respectively, and denoting
x<k~! and assuming that™ ! is much larger than the width the solutions by superscripts 1 and 2 we set
of the region Where9xop is appreciable we can use the ap-
proximation Ko(|k|[x—x'|)=~In(2e”|K|[x—x'|) where vy is
the Euler constant. As a result we find that E&p) is satis-
fied to first order irk when the dispersion law is modified by
an extra logarithmic term, cf. Refs. 12 and 13,

0= —x,y— uqt (shortrangg,
L
0= —xly—(ul—zxcxz Inv—v)t (Coulomb,

w=

|1
Note thatu rather thenu (cf. Fig. 3 enters this expression

Iza,&kJrvezkl 2e "
Tooxg men '

9) p=p<1>(x+V5V @(—x)+p(2)(V§V—x)®(x), (11

since only the logarithmic part of the interaction term is v,=0, Uy:v(1> X+V_V _v<2><V_V_X ,

present in this case. Y 2 y 12
Turning now to the linearized continuity equatit6t) we

find that in order to solve it the solutigid) should be supple- NES W oW 2

mented by a velocity field in the direction: a(X)=ag | X+ 5 |+ag | 5 —X|—a5 (W),

_ where ® is the step function and where we assumed
5Ux:;(wf7xovy_kf9xoao+w)s'”(ky_ ot). (100 w<L. The gauge fixing in the present case is achieved
through the requirements that vanishes on the left wall
The corresponding current densiéj, = pdv, is of orderk  anda, equals—W/2 there. The way is modified for the
as compared to the current dens&y, . Using the boundary Coulomb interaction reflects the change in the electrochemi-
conditions and the asymptotic behavi@) of the fields for cal potential of one edge due to the electrostatic potential
short-range interaction it is easy to check that this curreninduced by the other. Inserting expressioh¥) in the CSLG
vanishes on the wallx=0) as well as far away from it equations2a—(2d) one finds that for the short-range inter-
(x—). For the Coulomb interaction this expression for theaction they are satisfied up to exponentially small terms if
velocity is accurate only fox<k~!. Although it vanishes on W>a "1, wherea is the decay constant of the single edge
the wall it has a long tail 2.k In(2e”"/|kjx) as one ap- static solution defined previously. In the Coulomb case the
proaches the distances-k ™! (cf. Fig. 5. Forx>k™ ! the  set(11) is a static solution accurate up to terms of the order
Bessel functionK, decays exponentially and we expect a\.|x; J/W, which we assume to be small. The quantization
crossover in the excitation profiles from the Coulomb power-of the Hall conductance is seen by integrating Ep) from
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one edge to the other. Restoring the units of dimensions we
find that the total current through the bar is

-0.05

i w w
V|| T 21) "Bl g
e[ ui—fpy _pe W e o018y ~
ZVF o +2?(X2—X1)|n |_ EVFVHaII- . /(_’. :
@ //, .
12 02| e
In the Coulomb case the logarithmic dependence on the v

width of the bar indicates that for wide samples the current  -casf -

flows predominantly in the bulk. -
We note that the sum and the difference of the values of L '

x, andx, determine the charge of and the current through the ~ 035 R 0 py= o

sample, respectively. In particular = —X, corresponds to kl

the physically relevant neutral Hall bar. For the set of sym-

metric solutions withx, =X, the edge currents balance each  F|G. 6. The mixing coefficient3, for a Hall bar of width

other while the asymmetric solution,(#Xx,) represent a W=1000 and Coulomb interaction with ;=0.3. The results are

system through which a net current is flowing. shown for different values of the current through the Ha#0

(dotted ling, 1 =5.4ew. (dashed ling andl = 14ew, (solid line).

V. EDGE EXCITATIONS IN A HALL BAR —

e
Turning to the edge excitations in the Hall bar we can ®@==— E(W_ %)ki 2Nk |n(w)(22—1)m-
now separately use the derivatives of the static solutidn ! 2
with respect to eithex; or x, to attempt forming gapless
modesa la Eqg. (7), which will be concentratedn one or In the case of the short-range interactiag;—0, these solu-
another edgef the bar and propagating each in an oppositetions tend tg3=0 and—« corresponding to modes concen-
direction. However, this prescription fails to satisfy the RPAtrated on either the left or the right edge. The dispersion
equations in the case of the Coulomb interaction. Using, forelations of these modes are the expected
example, derivatives with respect ¥ and integrating the =—(du1/dx;)k and w=(du,/dx;)k. As anticipated the
linearized continuity equation gives a current in thdirec-  long-range Coulomb forces result in interedge interaction
tion which, as was explained in the discussion following Eq.that produces eigenmodes living simultaneously on both
(10) and presented in the inset of Fig. 5, does not vanish ogdges. This phenomenon has been predicted in Refs. 14 and
the right edge. We will now demonstrate that this problem is
cured if the zero mode field&, p, d, vy, andd, ao in the

0 0 0

ansatz(7) are taken as linear combinatiodg p+ Bdy.p,

etc., of the derivatives of the static solutigtl). This ansatz
will now describe coupled density waves on opposite edges
propagating in thesamedirection. Substituting such combi-
nations into Eq(6d) and assuming<W ! we find to first
order ink the dispersion relation that depends on the mixing
coefficientg,

:
-1 0,
%,

g,
—y 3

2e
(1+ﬁ)|n(w) -8B InwW|. (13

RS

The currentpv,, Eg. (10), vanishes on the left wall by
construction. The value g8 is found by demanding that it
will also vanish on the right wall. This condition leads to a
guadratic equation i giving the solutions

B.=—Zx(Z*-1)1?

with

FIG. 7. Dispersion relations for a Hall bar of widiv= 1000
and Coulomb interaction with.=0.3. The relations are shown for
(14) different values of the current through the bk 0 (dotted ling,
|=1.8ew, (dashed-dotted line |=5.4ew, (dashed ling and
| =14ew, (solid line). For each of these cases the upper and lower
and corresponding dispersion relations curves represent,. and|w_|, respectively.

,_ In(2e" 1]k~ (UANo) (9 [9%y-+ 9] %)
B In(2e~ 7/ |k| W) :




53 COULOMB DRAG OF EDGE EXCITATIONS IN THE CHERN- ... 7969
10 within the framework of the Luttinger model of the edge Using this form of the dispersion relations it is apparent that
excitations in the QHE. It can be interpreted as a Coulomlwhen there is no current flowing in the bar the two modes
drag of charges on one edge by the traveling density fluctuaravel in opposite directions with equal velocities. For a non-
tions on the other. Indee@.. are negative, showing that the zero total current this symmetry is broken and one of the
edges oscillate out of phase. The effect is the strongest fahodes is carried with the flow while the other is retarded by
k—0 wheng.. tend to—1+0(|Ink"*/%). For a given mode it. In Fig. 7 we present dispersion curves for different values
the direction of propagation of the excitation is determinedaf the current. For the range & used in this figure the
by _the edge with the larger amplitude of charge fluctuationsmixing between the edges is already quite srtefll Fig. 6
while the presence of the other edge reduces the velocity. Fofyg the dispersion curves are close to the single edge disper-
k increasing toward " .. decreases in magnitude while gjq relations. For a FQHE sample with a length of 1 mm the
B-=pB." changes correspondingly in an opposite mannefy nica| frequency of these modes is of the order of a few
This behavior is demonstrated in Fig. 6. Simultaneously th5y; anq the relevant scale of the currents is determined by
_frec_]uenues of the ”?Odes approach t_helr _sm_gle_ edge value&)c:S uA. When the current through the bar is large com-
|nd||:cat|ng a decoupling of the ed_g_es in this limit. . pared toew, the linear approximation used to deri{k0) is
or a neutral Hall bar sustaining a S!“a” currgne., no longer applicable. In such cases one should use(Egs.

small x;) Eqg. (12) may be used to approximate the current ) A )
(in  dimensionless uniis by 1=2x;(3fi/0X)x —o and (15) to obtain an implicit relation betwgen thg currenF

, i i ) 1 and the frequency. The dependence of the dispersion relation
—~4)\Cx1InW. In this region we find numg:ncally Fhat on the current suggests the possibility of a parametric exci-
Ip1lox~a+bx, wherea~—1.5+0.750+\¢) andb is 400 of these edge waves by driving an alternating current

a constant close to uqity over the range)\prresente_d in . through the sample. We will report on this mechanism else-
Fig. 3. These observations enable us to rewrite the d'SperS'cWhere

relations(15) in the following way:

K bry~?! |
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