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Long-range Coulomb interaction between the edges of a Hall bar changes the nature of the gapless edge
excitations. Instead of independent modes propagating in opposite directions on each edge as expected for a
short-range interaction one finds elementary excitations living simultaneously on both edges, i.e., composed of
correlated density waves propagating in thesame directionon opposite edges. We discuss the microscopic
features of this Coulomb drag of excitations in the fractional quantum Hall regime within the framework of the
bosonic Chern-Simons Landau-Ginzburg theory. The dispersion law of these excitations is nonlinear and
depends on the distance between the edges as well as on the current that flows through the sample. The latter
dependence indicates a possibility of parametric excitation of these modes. The bulk distributions of the
density and currents of the edge excitations differ significantly for short- and long-range interactions.

I. INTRODUCTION

The integer and fractional quantum Hall effects~QHE!
occur in a two-dimensional electron gas placed in a strong
perpendicular magnetic field. Interesting phenomena can
take place at the edges of this gas. The simplest is related to
the edge currents that are instrumental in our understanding
of the transport properties of the QHE.1–4 The character of
the excitations in the quantum Hall system is also effected by
the presence of the edges. While the bulk excitations have a
finite gap the excitations that are localized near the edges are
found to be gapless. They are chiral, that is moving only in
one direction along the edge, and can be described by the
chiral Luttinger model5 provided one disregards their cou-
pling to other modes. Recently the possibility to probe the
structure of the fractional Hall states by studying the tunnel-
ing between edges attracted much attention.6,7

In this paper we study the edge excitations within the
framework of a bosonic Chern-Simons Landau-Ginsburg
~CSLG! theory. This theory8 was proposed as a useful
supplement and extension of Laughlin’s fully microscopic
many-body theory of the fractional QHE~FQHE!. Recently,
the edge effects were studied using this theory9 and Wen’s
results were rederived. Our goal is to investigate the effects
of the interedge interactions. In Ref. 10 unusual effects were
predicted due to this interaction that are related to the redefi-
nition of the gapless modes into a Bogoliubov transformed
combination of modes living on both edges and propagating
in the same direction. Our analysis goes one step further and
presents the microscopic picture of this phenomenon. We use
the realistic Coulomb interaction between the edges and de-
rive the modified modes and their density and current distri-
butions. These clearly indicate that one deals with the Cou-
lomb drag of excitations on one edge by the other. We derive
a nonlinear dispersion relation for the modified excitation
modes and find that it depends on the width of the Hall bar
and on the total current that flows through it. We point out
that the latter dependence opens the possibility of a paramet-
ric excitation of these modes.

II. STATIC SOLUTIONS FOR A SINGLE EDGE

The starting point of our analysis is the mean-field equa-
tions derived by minimizing the CSLG action for the frac-
tional quantum Hall effect.8 Using the polar decomposition
of the bosonic fieldf5Areiu and introducing the velocity
fields

v i5
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m
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e
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~ai1Ai !, ~1!

with the vector potentialA taken such as to produce a con-
stant magnetic field alongz, one obtains the hydrodynamic
form of these equations, which is more convenient for our
purpose,
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Here and throughout the paper length is measured in units of
the magnetic lengthl5A\c/eB, time in units of inverse
cyclotron frequencyvc5eB/mc, energy is normalized by
\vc , and the density by its bulk valuer̄5nB/f0 , where
n51/(2n11) is the filling factor. All the quantities apart of
u and a0 are gauge invariant and the latter appear in the
gauge invariant combination] tu2a0 . In order to correctly
reproduce the energetics of the noninteracting limit we have
followed Ref. 11 and included ad-function type repulsive
force @the term before the last in~2d!# with a strength of
2p\2/nm. Our confining potential is assumed to rise fast
enough to avoid the occurrence of an alternating sequence of
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compressible and incompressible strips along the edge.3,4

Apart from this requirement the detailed nature ofV(x) is of
no importance for our applications.

Our aim is to obtain the edge excitations as the random
phase approximation~RPA! modes of the theory, i.e., the
eigenmodes of the above equations linearized around a static
solution. We first consider a single edge. The translation in-
variance in they direction suggests looking for a static so-
lution in the form

u52x0y2m~x0!t, r5r~x!, vx50, vy5vy~x!,

a05a0~x!. ~3!

We assume for definiteness an infinitely high wall situated at
x<0 and accordingly set the density to zero at the wall. The
only gauge freedom that preserves the form of the above
solution is adding arbitrary constants tox0 andm. We fix this
freedom by requiring that the statistical potentialsa0 ,ai van-
ish at x50 and choosingA5(0,Bx,0). This assures that
solutions with different values ofx0 and m are not gauge
transforms of each other. Formallyx0 is the conserved mo-
mentum along the edge and its physical effect on the con-
densatef is similar to the guiding center coordinate of Lan-
dau levels—changing its value translatesf in the x
direction. Inserting the ansatz~3! into ~2a!–~2d! one finds a
set of coupled equations forr(x), vy(x), anda0(x) that we
have solved numerically. For a fixedx0 we have determined
the value ofm by requiring thatr approachesr̄ far from the
edge. Under this conditionm is the energy that is needed in
order to add a particle to the edge. Representative examples
of the density and current density profiles for solutions~3! in
the case of short-range interactionsU5(2p\2ls /
nm)d(r2r 8) are shown in Fig. 1. One finds aone-
parameter family of static solutionsdepending onx0 and
differing by the density of particles at the edge. Inserted in

~1! our boundary conditions and the ansatz~3! give the ve-
locity at the edge asvy(0)52x0 . Using this and the fact
that the velocity falls to zero in the bulk we integrate Eq.~2a!
and find that2x0 is theexcess chargeper unit length along
the edge relative to a steplike constant density profile.

For a Coulomb interactionU52pn21lc\vc /ur2r 8u
with lc5ne2/2pe l\vc and a constant neutralizing back-
ground extending up to the wall one obtains distributions
shown in Fig. 2. Compared to Fig. 1 the essential difference
is found in the large-x behavior of the solutions. Inserting the
following asymptotic forms for largex,

r~x!.12sgn~x0!exp~2ax!,

vy~x!.2sgn~x0!a
21exp~2ax!, ~4!

a0~x!.2m1lc112 sgn~x0!a
22exp~2ax!,

into Eqs.~2a!–~2d! one finds for the short-range interaction
that a5@2(ls11)22A(ls11)221#1/2. For the Coulomb
interaction the fields behave at large distances according to

r~x!.122lcx0 /x
2,

vy~x!.22lcx0 /x, ~5!

a0~x!.2m̃1112lcx0ln~x!.

These expressions exhibit a significant difference in the bulk
distribution of the currentJy(x)5r(x)vy(x) for short-range
and Coulomb interactions. In deriving these results we as-
sumed that the length of the sampleL is very large compared
to x0 and used the fact that the density of the solutions con-
sidered here does not depend on the coordinate along the
edge. Under such conditions one can integrate over they
coordinate in the interaction term to findn/2p*U(r
2r 8)@r(r )8 21#d2r 8 . 22lcx0 lnL 22lc*@r(x8) 21#ln(ux
2x8u)dx8. The first term is a constant that is absorbed into
the chemical potential while the second one is a potential of
a collection of charged wires.

An even more pronounced difference is found in the de-
pendence ofm on x0 , which is displayed in Fig. 3. Numeri-

FIG. 1. Density in units ofr̄ ~solid lines! and current density in
units of r̄vcl ~dashed lines! for the case of short-range interaction
with ls51. The highest curve in each set corresponds tox0522.
Consecutive curves differ byDx051. The reversal in the direction
of the current with increasingx0 manifests a transition from skip-
ping orbits to circular orbits on the rim of the Hall drop.

FIG. 2. Same as Fig. 1 for Coulomb interaction withlc51.
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cally we find that for the short-range interaction the chemical
potential tends to12 (ls11) for large positive values ofx0
and increases as the charges are pushed against the wall, i.e.,
for decreasingx0 . In the case of the Coulomb interaction the
leading contribution tom is given by22lcx0lnL. This term
corresponds to the electrostatic charging energy of the excess
charge (2x0) had it been uniformly distributed over a strip
of width l along the edge. Its change of sign atx050 reflects
the tendency of the system to remain neutral. The remaining
part of the chemical potentialm̃5m12lcx0lnL is due to the
kinetic energy and the deviation of the excess charge distri-
bution from that of a uniform strip. As one can observe from
Fig. 3 the dependence ofm̃ on x0 varies considerably as the
strength of the interaction is changed.

III. EXCITATIONS OF A SINGLE EDGE

Linearizing Eqs.~2a!–~2d! around one of the solutions~3!
we obtain the RPA equations

e i j ] idv j52dr, ~6a!

] t] idu2] tdv i2] ida05e iyvydr1e i jrdv j , ~6b!

] tdr52vy]ydr2] i~rdv i !, ~6c!

] tdu52vydvy1 f ~r,dr!1
]y
2dr

4r
1da02dr

2
n

2pE U~r2r 8!dr~r 8!d2r 8, ~6d!

where f denotes the part of the linearized ‘‘quantum pres-
sure’’ term, i.e., the second term on the right-hand side of
~2d!, containingx derivatives.

Our main method of solving Eqs.~6a!–~6d! will be to use
the continuous one-parameter family of static solutions de-
scribed above in order to find thegaplessbranch of the RPA
eigenmodes. The derivative of the solution~3! with respect
to x0 constitutes a static solution of the RPA equations~6a!–
~6d!. Motivated by this observation and concentrating on the
long-wavelength limit we set

dr5]x0r~x!cos~ky2vt !,

dvy5]x0vy~x!cos~ky2vt !,

da05]x0a0~x!cos~ky2vt !,

du52
1

k
sin~ky2vt !. ~7!

Clearly these density and velocity distributions are concen-
trated along the edge as illustrated in Figs. 4 and 5. As can be
seen by differentiating Eqs.~4! and ~5! with respect tox0 ,
for short-range interaction these distributions decay expo-
nentially into the bulk, while for the Coulomb interaction the
decay follows a power law. With the expression~8! for v
given below also the gauge invariant combination
] tdu2da0 vanishes far away from the edge. Inserting these
functions into Eq. ~6d!, using the fact that their
x-dependent parts are static solutions and neglecting the term
proportional tok2 we find that they indeed solve this equa-
tion, provided we choose properly the dispersion relation
v5v(k). In the case of the short-range interaction we find
directly

v52
l 2

\

]m

]x0
k~11kl !, ~8!

FIG. 3. The chemical potential at the edge as a function ofx0 for
short-range interaction withls51 ~solid line!. For the Coulomb
interaction we plotm̃5m12lcx0lnL in the caselc50.03 ~dashed
line!, which corresponds to the FQH regime and for comparison
also the caseslc51 ~dashed-dotted line! andlc53 ~dotted line!,
which may be relevant to integer quantum Hall samples.

FIG. 4. Profiles of density~solid line!, current density in they
direction ~dashed line!, and current density in thex direction
~dashed-dotted line! for gapless edge excitations in the case of
short-range interaction withls51. The profiles shown here are
around a static solution withx0521 and withkl51024. The den-
sity is normalized byr̄, the current densities byr̄vcl , anddJx is
multiplied by k215104.
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where we have restored the units of dimensions. In this ex-
pression we have included the second-order term ink, which
can be obtained after multiplying the first three fields in~7!
by 11kl. In the case of the Coulomb interaction after the
substitution of dr the last term in Eq.~6d! becomes
22lccos(ky2vt)*0

`dx8]x0r(x8)K0(ukuux2x8u) whereK0(x) is
the modified Bessel function. Working in the region
x!k21 and assuming thatk21 is much larger than the width
of the region where]x0r is appreciable we can use the ap-

proximation K0(ukuux2x8u)' ln(2e2g/ukuux2x8u) where g is
the Euler constant. As a result we find that Eq.~6d! is satis-
fied to first order ink when the dispersion law is modified by
an extra logarithmic term, cf. Refs. 12 and 13,

v52
l 2

\

]m̃

]x0
k1

n

p

e2

e\
k lnS 2e2g

uku l D . ~9!

Note thatm̃ rather thenm ~cf. Fig. 3! enters this expression
since only the logarithmic part of the interaction term is
present in this case.

Turning now to the linearized continuity equation~6c! we
find that in order to solve it the solution~7! should be supple-
mented by a velocity field in thex direction:

dvx5
1

r
~v]x0vy2k]x0a01v!sin~ky2vt !. ~10!

The corresponding current densitydJx5rdvx is of orderk
as compared to the current densitydJy . Using the boundary
conditions and the asymptotic behavior~4! of the fields for
short-range interaction it is easy to check that this current
vanishes on the wall (x50) as well as far away from it
(x→`). For the Coulomb interaction this expression for the
velocity is accurate only forx!k21. Although it vanishes on
the wall it has a long tail 2lck ln(2e

2g/ukux) as one ap-
proaches the distancesx;k21 ~cf. Fig. 5!. For x@k21 the
Bessel functionK0 decays exponentially and we expect a
crossover in the excitation profiles from the Coulomb power-

law behavior to an exponential decay. One can also check
that the other two equations in the linearized set are satisfied
up to first order ink.

For the short-range interaction the linearity of the disper-
sion relation and the fact that]m/]x0, 0 imply the chirality
of the waves. The wave velocity is determined by]m/]x0 ,
which plays the role of the renormalized velocity in the Lut-
tinger model treatment of the edge excitations. Microscopi-
cally this quantity is directly related to the compressibility
k of the edge, which can be viewed as a one-dimensional
system of length L and N52x0L r̄ particles with
k5L/N2(]m/]N)2152( r̄x0

2]m/]x0)
21. For x0.0 N is

minus the number of holes on the edge. The compressibility
vanishes when the edge of the static solution is far away
from the wall ~i.e., at large positivex0) for which case
v;k3, in agreement with Ref. 12. In the Coulomb case the
long-wavelength limit of the dispersion curve is dominated
by the logarithmic part so that although]m̃/]x0 can have
either sign the excitations are chiral as before.

IV. STATIC SOLUTIONS FOR A HALL BAR

We go on now to consider the case of a wide and long
Hall bar defined by hard walls atx56W/2. According to
our strategy we first show that again afamily of static solu-
tions of Eqs. ~2a!–~2d! exists. This will now be atwo-
parameterfamily, which we find by appropriately gluing to-
gether two solutions of the single wall case. Assuming that
the two solutions correspond to the values ofx0 and m,
which are (x1 ,m1) and (x2 ,m2), respectively, and denoting
the solutions by superscripts 1 and 2 we set

u52x1y2m1t ~short range!,

u52x1y2S m122lcx2 ln
L

WD t ~Coulomb!,

r5r~1!S x1
W

2 DQ~2x!1r~2!SW2 2xDQ~x!, ~11!

vx50, vy5vy
~1!S x1

W

2 D2vy
~2!SW2 2xD ,

a0~x!5a0
~1!S x1

W

2 D1a0
~2!SW2 2xD2a0

~2!~W!,

where Q is the step function and where we assumed
W!L. The gauge fixing in the present case is achieved
through the requirements thata0 vanishes on the left wall
and ay equals2W/2 there. The wayu is modified for the
Coulomb interaction reflects the change in the electrochemi-
cal potential of one edge due to the electrostatic potential
induced by the other. Inserting expressions~11! in the CSLG
equations~2a!–~2d! one finds that for the short-range inter-
action they are satisfied up to exponentially small terms if
W@a21, wherea is the decay constant of the single edge
static solution defined previously. In the Coulomb case the
set ~11! is a static solution accurate up to terms of the order
lcux1,2u/W, which we assume to be small. The quantization
of the Hall conductance is seen by integrating Eq.~2b! from

FIG. 5. Same as Fig. 4 for Coulomb interaction withlc51. The
inset shows the behavior ofdJx at larger distances from the wall.
dJx is multiplied byk21/105103.
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one edge to the other. Restoring the units of dimensions we
find that the total current through the bar is

I5n
e2

h Fa0S 2
W

2l D2a0SW2l D G
5n

e2

h F m̃12m̃2

e
12

r̄e

e
~x22x1!lnSWl D G[n

e2

h
VHall .

~12!

In the Coulomb case the logarithmic dependence on the
width of the bar indicates that for wide samples the current
flows predominantly in the bulk.

We note that the sum and the difference of the values of
x1 andx2 determine the charge of and the current through the
sample, respectively. In particularx152x2 corresponds to
the physically relevant neutral Hall bar. For the set of sym-
metric solutions withx15x2 the edge currents balance each
other while the asymmetric solutions (x1Þx2) represent a
system through which a net current is flowing.

V. EDGE EXCITATIONS IN A HALL BAR

Turning to the edge excitations in the Hall bar we can
now separately use the derivatives of the static solution~11!
with respect to eitherx1 or x2 to attempt forming gapless
modesà la Eq. ~7!, which will be concentratedon one or
another edgeof the bar and propagating each in an opposite
direction. However, this prescription fails to satisfy the RPA
equations in the case of the Coulomb interaction. Using, for
example, derivatives with respect tox1 and integrating the
linearized continuity equation gives a current in thex direc-
tion which, as was explained in the discussion following Eq.
~10! and presented in the inset of Fig. 5, does not vanish on
the right edge. We will now demonstrate that this problem is
cured if the zero mode fields]x0r, ]x0vy , and]x0a0 in the

ansatz~7! are taken as linear combinations]x1r1b]x2r,
etc., of the derivatives of the static solution~11!. This ansatz
will now describe coupled density waves on opposite edges
propagating in thesamedirection. Substituting such combi-
nations into Eq.~6d! and assumingk!W21 we find to first
order ink the dispersion relation that depends on the mixing
coefficientb,

v

k
52

]m̃1

]x1
12lcF ~11b!lnS 2e2g

uku D2b lnWG . ~13!

The currentrvx , Eq. ~10!, vanishes on the left wall by
construction. The value ofb is found by demanding that it
will also vanish on the right wall. This condition leads to a
quadratic equation inb giving the solutions

b652Z6~Z221!1/2

with

Z5
ln~2e2g/uku!2~1/4lc!~]m̃1 /]x11]m̃2 /]x2!

ln~2e2g/ukuW!
, ~14!

and corresponding dispersion relations

v652
1

2 S ]m̃1

]x1
2

]m̃2

]x2
D k62lck lnS 2e2g

ukuWD ~Z221!1/2.

~15!

In the case of the short-range interaction,lc→0, these solu-
tions tend tob50 and2` corresponding to modes concen-
trated on either the left or the right edge. The dispersion
relations of these modes are the expectedv
52(]m1 /]x1)k and v5(]m2 /]x2)k. As anticipated the
long-range Coulomb forces result in interedge interaction
that produces eigenmodes living simultaneously on both
edges. This phenomenon has been predicted in Refs. 14 and

FIG. 6. The mixing coefficientb1 for a Hall bar of width
W51000l and Coulomb interaction withlc50.3. The results are
shown for different values of the current through the bar:I50
~dotted line!, I55.4evc ~dashed line!, andI514evc ~solid line!.

FIG. 7. Dispersion relations for a Hall bar of widthW51000l
and Coulomb interaction withlc50.3. The relations are shown for
different values of the current through the bar:I50 ~dotted line!,
I51.8evc ~dashed-dotted line!, I55.4evc ~dashed line!, and
I514evc ~solid line!. For each of these cases the upper and lower
curves representv1 and uv2u, respectively.

7968 53DROR ORGAD AND SHIMON LEVIT



10 within the framework of the Luttinger model of the edge
excitations in the QHE. It can be interpreted as a Coulomb
drag of charges on one edge by the traveling density fluctua-
tions on the other. Indeedb6 are negative, showing that the
edges oscillate out of phase. The effect is the strongest for
k→0 whenb6 tend to216O(u lnku21/2). For a given mode
the direction of propagation of the excitation is determined
by the edge with the larger amplitude of charge fluctuations
while the presence of the other edge reduces the velocity. For
k increasing towardsW21 b1 decreases in magnitude while
b25b1

21 changes correspondingly in an opposite manner.
This behavior is demonstrated in Fig. 6. Simultaneously the
frequencies of the modes approach their single edge values,
indicating a decoupling of the edges in this limit.

For a neutral Hall bar sustaining a small current~i.e.,
small x1) Eq. ~12! may be used to approximate the current
~in dimensionless units! by I.2x1(]m̃1 /]x1)x150

24lcx1lnW. In this region we find numerically that
]m̃1 /]x1'a1bx1 wherea'21.510.75(lc1lc

2) andb is
a constant close to unity over the range oflc presented in
Fig. 3. These observations enable us to rewrite the dispersion
relations~15! in the following way:

v65vclkH bpn21

2lcln~W/ l !2a

I

evc

62lcAF lnS 2e2g

uku l D 2
a

2lc
G22 ln2S 2e2g

ukuWD J . ~16!

Using this form of the dispersion relations it is apparent that
when there is no current flowing in the bar the two modes
travel in opposite directions with equal velocities. For a non-
zero total current this symmetry is broken and one of the
modes is carried with the flow while the other is retarded by
it. In Fig. 7 we present dispersion curves for different values
of the current. For the range ofk used in this figure the
mixing between the edges is already quite small~cf. Fig. 6!
and the dispersion curves are close to the single edge disper-
sion relations. For a FQHE sample with a length of 1 mm the
typical frequency of these modes is of the order of a few
GHz and the relevant scale of the currents is determined by
evc.5mA. When the current through the bar is large com-
pared toevc the linear approximation used to derive~16! is
no longer applicable. In such cases one should use Eqs.~12!
and ~15! to obtain an implicit relation between the current
and the frequency. The dependence of the dispersion relation
on the current suggests the possibility of a parametric exci-
tation of these edge waves by driving an alternating current
through the sample. We will report on this mechanism else-
where.
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