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A scheme is presented that allows us to manipulate the spin-orbit coupling in calculations based on the Dirac
equation for spin-dependent potentials. To demonstrate its application, the spin and orbital magnetic moments
for the disordered alloy Fe0.20Ni 0.80 as well as the Kerr rotation angleuK of pure Ni have been calculated as a
function of the spin-orbit coupling strength. While the spin moment changes only slightly, the orbital moment
as well as the Kerr rotation angleuK increase almost linearly with the spin-orbit coupling strength.

INTRODUCTION

The importance of relativistic effects for the electronic
structure of solids was realized decades ago. Accordingly
various authors have generalized most methods of band-
structure calculation already in the 1960s@APW,1 OPW,2

KKR,3,4 and ASW~Ref. 5!#.
To avoid the increased technical and numerical require-

ments connected with these fully relativistic versions based
on the Dirac equation, a number of appropriate schemes have
been proposed that aimed to account at least for the relativ-
istic mass enhancement and the Darwin term.6–12 The spin-
orbit coupling ~SOC!, on the other hand, was either com-
pletely neglected or incorporated in an averaged way. By
getting rid of the symmetry-breaking effect of the SOC, these
so-called scalar relativistic schemes keep spin as a good
quantum number. This feature allows one to perform spin
polarized calculations for spin-magnetic systems accounting
at least for some of the relativistic effects in a very simple
way, i.e., by replacing just the subroutine to calculate the
radial wave functions while leaving all other parts of the
programs unchanged.

However, these scalar relativistic schemes obviously do
not allow us to study phenomena in magnetic solids that are
due to the symmetry breaking caused by the SOC. A concep-
tionally simple way to account for this demand is to deal
with SOC as a perturbation in the variational step of a con-
ventional band-structure scheme.13–17On the other hand, the
technical problems of dealing with the Dirac equation for an
isolated spin-dependent potential~single site problem! were
solved by various authors in the beginning of the 1980s.18–20

This development opened the way to derive corresponding
spin polarized relativistic~SPR! generalizations of the vari-
ous band-structure schemes@KKR,19,21 LMTO,22 and ASW
~Ref. 23!# allowing us to deal with spin polarization and all
relativistic effects on the same footing.

During the last years these SPR band-structure methods
have been applied with great success to study a great variety
of phenomena caused by SOC in magnetic solids~orbital
hyperfine fields and magnetic moments,24 magnetocrystalline
anisotropy,25 magnetic x-ray dichroism,26 magneto-optical
Kerr effect,27 spontaneous magnetoresistance anisotropy, and

anomalous Hall resistivity28!. The results of these studies are
in general very close to those obtained using a scalar relativ-
istic band-structure scheme that accounts for SOC in the
variational step. However, the great advantage of the SPR
methods is that they are open to any new development in the
field of density functional theory for magnetic systems. Fur-
thermore the SPR-KKR method can be combined straightfor-
wardly with the coherent potential approximation alloy
theory ~SPR-KKR-CPA! to deal with disordered alloys.29,30

The only real drawback of the SPR schemes is that it was
not possible so far to study the relationship of any physical
quantity and the SOC strength in a direct way. Using a varia-
tional scheme corresponding model calculations can be done
very easily by scaling the SOC matrix element.31,32In a SPR-
type calculation based on the Dirac equation this can be
achieved only by varying the speed of lightc. However, this
way all relativistic effects are modified. An approximate
scheme to circumvent this problem that requires only minor
changes in the programs is presented in the following to-
gether with some applications to demonstrate its usefulness.

I. DERIVATION OF APPROXIMATE RADIAL
DIFFERENTIAL EQUATIONS

To supply a basis for relativistic band-structure calcula-
tions for magnetic solids various authors33,34 suggested an
extension of nonrelativistic spin density functional theory by
using the Dirac Hamiltonian

HD5
c

i
a•“1

1

2
~b2I !1V~r !, ~1!

with the standard Dirac matricesa i andb.35 Here the poten-
tial V(r ) consists of the Hartree termVH(r ) and a contribu-
tion due to exchange and correlation splitted into a spin av-
eraged and spin-dependent part

V~r !5VH~r !1V̄xc~r !1Vspin~r !. ~2!

The spin-dependent part of theVspin(r ) behaves like a mag-
netic field that couples only to the spin of the electron. For
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this reason it may be combined with a possibly present ex-
ternal magnetic fieldBext(r ) as part of the effective field
Beff(r ),

Vspin~r !5bs•FBext~r !1
]Exc~r !

]m~r ! G5bs•Beff~r !. ~3!

To solve the Dirac equation for a solid the first step within
almost any band-structure scheme is to solve this equation
for a single isolated potential well~single site problem!. In
the following it is assumed that the potential terms occurring
in Eq. ~1! are spherically symmetric~muffin-tin or atomic
sphere approximation!, i.e., V(r )5V(r ) and Beff(r )
5Beff(r ) ẑ with V(r ) standing in the following for the spin-
independent part of the potential@see Eq.~3!#.

A solutionC(r ,E) to the single site Dirac equation cor-
responding to the Hamiltonian in Eq.~1! can be constructed
making the ansatz

C~r ,E!5(
L

CL~r ,E!5(
L

S gL~r ,E!xL~ r̂ !

i f L~r ,E!x2L~ r̂ ! D . ~4!

HereL and2L stand for (k,m) and (2k,m), respectively,
with k and m the spin-orbit and magnetic quantum
numbers.35 To simplify the notation we omit forC(r ,E),
CL(r ,E), gL(r ,E), and fL(r ,E) in Eq. ~4! and the follow-
ing an additional index that numbers the various independent
solutions to Eq.~1!.20 The functionsxL( r̂ ) that occur in Eq.
~4! are the conventional spin angular functions35

xL~ r̂ !5 (
ms561/2

C~ l 1
2 j ;m2ms ,ms!Yl

m2ms~ r̂ !xms
, ~5!

with the Clebsch-Gordon coefficientsC(l 1
2 j ;m2ms ,ms),

the complex spherical harmonicsY
l

ml ( r̂ ), and the Pauli spin
functionsxms

.

The ansatz forCL(r ,E) in Eq. ~4! results in the following
coupled set of radial differential equations for the major and
minor wave functionsg(r ,E) and f (r ,E), respectively,18–20

PL8 52
k

r
PL1FE2V

c2
11GQL

1
B

c2 (
L8

^x2Lus3ux2L8&QL8, ~6!

QL8 5
k

r
QL2@E2V#PL1B(

L8
^xLus3uxL8&PL8, ~7!

with P(r ,E)5g(r ,E)r andQ(r ,E)5c f(r ,E)r suppressing
the argumentsr andE. In principle one has a coupling of an
infinite number of partial wavesCL(r ,E) having the same
parity ~i.e.,D l5u l 82 l u50,2,4,. . . ) and thesame magnetic
quantum numbers (Dm5m82m50), i.e.,m is a good quan-
tum number. This general case has been studied by
Ackermann36 and recently by Jenkins and Strange in detail.37

Fortunately, in practice it is sufficient to restrict the coupling
to D l50 andDm50. Using the abbreviations

SL5
E2V

c2
111

B

c2
^x2Lus3ux2L&, ~8!

T5E2V, ~9!

and

BLL85B^xLus3uxL8&, ~10!

Eqs.~6! and ~7! may be written as

PL8 52
k

r
PL1SLQL , ~11!

QL8 5
k

r
QL2TPL1(

L8
BLL8PL8, ~12!

where at most two partial wavesCL(r ,E) are coupled~for
umu, l ).

Obviously there is no term in Eqs.~11! and ~12! that can
unambiguously be identified with the SOC. However, this
can be accomplished by inserting Eq.~11! into Eq.~12! lead-
ing to

~13!

For the paramagnetic case a corresponding second order dif-
ferential equation forQL(r ,E) is obtained by inserting Eq.
~12! into ~11! with l andk replaced byl̄ and2k, respec-
tively.

Comparing Eq.~13! with the radial Schro¨dinger equation
it can be seen that the last term on the right hand side has no
nonrelativistic counterpart and it is the only term that de-
pends on the SOC quantum numberk.10

To arrive at an approximate scheme that accounts for all
relativistic effects and allows to manipulate the SOC strength
we require that the corresponding wave function is deter-
mined by an equation identical in form to Eq.~13! with just
the SOC term modified. For this purpose we drop the re-
quirement thatC(r ,E) is a bispinor and instead of Eq.~4!
we make the ansatz

C~r ,E!5(
L

fL~r ,E!5(
L

gL~r ,E!xL~ r̂ !, ~14!

i.e., we are still working in theL representation. The spin-
angular functionsxL( r̂ ) @see Eq.~5!# are eigenfunctions of
the spin-orbit operatorK̂,35

K̂xL~ r̂ !52kxL~ r̂ !, ~15!

with

K̂511s–l, ~16!

where s and l are the spin and orbital angular momentum
operators, respectively. If we manipulate the SOC strength
by multiplying s•l with a scaling factorx, the functions
xL( r̂ ) are still eigenfunctions of the corresponding modified
spin-orbit operatorK̂x ,
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K̂xxL~ r̂ !52kxxL~ r̂ !, ~17!

where

K̂x511xs–l ~18!

and

kx5211x~11k!. ~19!

For x51 nothing changes at all, while forx50 one gets
kx521. This is just the value of the spin-orbit quantum
number fors states where there is no SOC. Therefore, re-
placing k in Eq. ~13! by kx switches the SOC off for any
partial wave if x50 and reduces or increases the SOC
strength else.

To solve the second order differential equation

PL9 5
l ~ l11!

r 2
PL2SLTPL1SL(

L8
BLL8PL8

1
SL8

SL
F ddr 2

1

r
1

kx11

r GPL ~20!

for the wave functionsPL(r ,E) we introduce the auxiliary
functionQL(r ,E) by the definition

QL5FPL8 1
kx

r
PLG 1SL

. ~21!

This allows us to derive a coupled set of first order differen-
tial equations which, after some simple transformations, are
given by

PL8 52
kx

r
PL1SLQL , ~22!

QL8 5
kx

r
QL2TPL1(

L8
BLL8PL8

1
l ~ l11!2kx~kx11!

r 2
1

SL
PL . ~23!

Apart from the last term in Eq.~23! these equations have the
same form as the original Eqs.~11! and~12!. Implementation
of the above scheme therefore requires only minor modifica-
tions of the programs.

However, one has to keep in mind thatQL(r ,E) defined
by Eq. ~21! has not the meaning of a minor component in a
bispinor formalism. For this reason the boundary conditions
which match the wave functions to the solutions outside the
sphere boundary have to be specified throughPL(r ,E)
alone.22 To set up the corresponding single sitet matrix
tLL8(E) used within the KKR formalism one therefore has to
replace the relativistic Wronskian~see Ref. 38! by its stan-
dard form gL(r ,E) j l8(r ,E)2gL8 (r ,E) j l(r ,E), where
j l(r ,E) is the spherical Bessel function. Furthermore one has
to keep in mind that for the evaluation of the matrix elements
of any operator it has to be transformed in such a way that no
coupling of major and minor component occurs. This ap-
plies, for example, to the operatora•A that describes the
interaction of electrons with the vector potentialA. In this
case, for example, the“•A form of the matrix elements can
be used.27

Finally, it should be noted that, in general, the results
obtained from Eqs.~22! and~23! are expected to be close to
those obtained if the approach of McLaren and Victoria
would be used.39 These authors start from the scalar-
relativistic equations of Koelling and Harmon8 and add the

FIG. 1. Fermi energyEF of Fe0.20Ni 0.80 as a function of the
scaling parametersx and (c0 /c)

2.

FIG. 2. Spin magnetic momentmspin and charge difference
Dq5qatom2qsolid of Fe ~top! and Ni ~bottom! in Fe0.20Ni 0.80 as a
function of the scaling parametersx and (c0 /c)

2, with qatom and
qsolid the charge for the free atom and in the solid, respectively.
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SOC term in its conventional form. Apart from working
throughout within a (l ,ml ,ms) representation their approach
ends up with a radial differential equation similar to Eq.~13!.

II. APPLICATIONS

The scheme presented above has been implemented as
part of a SPR-LMTO as well as a SPR-KKR program. Mak-
ing use of the coherent potential approximation~CPA! alloy
theory, the SPR-KKR method is applicable to disordered al-
loys in a rather straightforward way. In the following corre-
sponding results for Fe0.20Ni 0.80are presented that have been
obtained using a frozen potential stemming from a self-
consistent scalar-relativistic calculation.

Figures 1–3 show the Fermi energy and the spin and or-
bital magnetic moments of Fe and Ni, respectively, for the
SOC scaling parameterx varying from 0 to 2, i.e., from the
nonrelativistic to a superrelativistic situation. In addition, re-
sults are presented that have been obtained by varying the
speed of light to manipulate the impact of relativistic effects.
Because the leading relativistic corrections to the Schro¨-
dinger equation are proportional to 1/c2, these data are plot-
ted as a function of (c0 /c)

2 with c0 the correct speed of light
in vacuum.

As can be seen in Fig. 1, varyingx, i.e., just the SOC, has
only a very small influence on the Fermi energyEF . This
was to be expected from the fact that the SOC lifts degen-

eracies but leaves the center of gravity of the electronic
bands unchanged. Similar calculations for Co0.20Pd0.80
~where the components of the alloy system strongly differ in
their atomic numbers! show accordingly a larger impact on
EF . Increasing (c0 /c)

2 on the other hand causes, even for
Fe0.20Ni 0.80, the Fermi level to move to lower energies in a
pronounced way. The reason for this is that, starting from the
nonrelativistic limit, the mass velocity and Darwin terms,
which act effectively as an attractive potential, are gradually
switched on, thus moving all electronic states to lower ener-
gies. The changes of the Fermi level withx and (c0 /c)

2,
respectively, are accompanied by corresponding changes in
the spin magnetic momentmspin. Varying just the SOC via
x has nearly no impact onmspin—only a small change for the
both components can be observed. On the other hand
(c0 /c)

2 strongly affectsmspin due to the binding induced by
the relativistic effects which is more pronounced for thes
andp electrons than for thed electrons. As is demonstrated
in Fig. 2, for the system studied here, the primary conse-
quence of this is an internal charge rearrangement. This re-
distribution in turn is accompanied by a corresponding
change in the spin magnetic moment because of dominating
minority spin character at the Fermi energy.

Within a nonrelativistic description of electronic structure
the orbital angular moment in a solid is quenched and the
corresponding orbital magnetic momentmorb vanishes for
that reason. SOC causes this quenching to be uncomplete

FIG. 4. Magneto-optical Kerr rotation angleuK of pure Ni as a
function of the SOC strength scaling parameterx. The lower panel
gives the normalized rotation spectrauK /x.

FIG. 3. Orbital magnetic momentmorb of Fe ~top! and Ni ~bot-
tom! in Fe0.20Ni 0.80 as a function of the scaling parametersx and
(c0 /c)

2.
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leading to a finite orbital magnetic moment.
As can be seen in Fig. 3, the orbital magnetic moment

morb of Fe and Ni induced by SOC is nicely proportional to
x as well as to (c0 /c)

2. Although in alloys where the differ-
ence in the atomic numbers of the components is higher than
in case of Fe0.20Ni 0.80, e.g., for Co0.20Pd0.80, the deviation
from the linearity ofmorb(x) and also ofmorb(c0

2/c2) is more
pronounced, of course.

As for morb also the magneto-optical Kerr rotation angle
uK can be traced back to the symmetry breaking caused by
SOC. The results for pure Ni obtained using the SPR-LMTO
method demonstrate that again a nearly linear dependence of
uK on the SOC strength is found~see Fig. 4, top!. This result
is in full accordance with the findings of Oppeneeret al.31

From the ratiouK /x in Fig. 4 ~bottom! it can be seen that
deviations from proportionality occur primarily at low ener-
gies. Neglecting any contributions coming from the Drude
term, as done here, this range of energy is related to elec-
tronic transitions in the vicinity of the Fermi energyEF .
With increasing photon energy\v more and more transi-
tions involving states further away fromEF in energy con-
tribute to the spectrum leading obviously to some canceling
of the differences of the various normalizeduK /x spectra.

Manipulation of the SOC of just one component of a com-
pound can give valuable hints for the interpretation of its
Kerr rotation spectrum. This has been demonstrated by the
work of Sticht32 and also recently by Oppeneeret al.31 Using
a tight-binding scheme corresponding calculations have re-
cently been done for the magnetic x-ray dichroism~MXD ! at
the K edges of the pure elements Fe, Co, and Ni~Ref. 40!
manipulating the SOC strength of the final valencep andd
states separately. With the help of the above formalism this
type of model calculation can also be done using a SPR
band-structure method. For theL2,3 edges of Co and Pt in the

alloy Co80Pt20 no significant influence of SOC of one com-
ponent on the spectrum of the other via hybridization could
be found this way.41 This is in some contrast to the Kerr
rotation of compounds42 and ensures that concerning the role
of SOC the MXD is predominantly a site-specific phenom-
enon.

III. SUMMARY

A scheme has been presented to allow the direct manipu-
lation of the SOC strength within relativistic band-structure
calculations for magnetic systems leaving all other relativis-
tic effects unaffected. Its application has been demonstrated
by calculating the spin and orbital magnetic moments of Fe
and Ni in the disordered alloy Fe0.20Ni 0.80as well as the Kerr
rotation of pure Ni. As expected or found before, respec-
tively, the orbital magnetic moment and the Kerr rotation
varies nearly linearly with SOC strength. It is pointed out
that corresponding model calculations of magneto-optical
spectra in the visible or x-ray regime supply very helpful
information supporting the interpretation of the — in general
— very complex spectra.
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