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Manipulation of the spin-orbit coupling using the Dirac equation for spin-dependent potentials
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A scheme is presented that allows us to manipulate the spin-orbit coupling in calculations based on the Dirac
equation for spin-dependent potentials. To demonstrate its application, the spin and orbital magnetic moments
for the disordered alloy R Niggoas well as the Kerr rotation angy of pure Ni have been calculated as a
function of the spin-orbit coupling strength. While the spin moment changes only slightly, the orbital moment
as well as the Kerr rotation angl increase almost linearly with the spin-orbit coupling strength.

INTRODUCTION anomalous Hall resistivity). The results of these studies are
in general very close to those obtained using a scalar relativ-

The importance of relativistic effects for the electronic istic band-structure scheme that accounts for SOC in the
structure of solids was realized decades ago. Accordinglyariational step. However, the great advantage of the SPR
various authors have generalized most methods of bandnethods is that they are open to any new development in the
structure calculation already in the 196psPwW,! opw?  field of density functional theory for magnetic systems. Fur-
KKR,3* and ASW(Ref. 5]. thermore '_[he SPR-KKR method can be combi_ned §traightf0r-

To avoid the increased technical and numerical requireWardly with the coherent potential approximation alloy
ments connected with these fully relativistic versions basedn€ory (SPR-KKR-CPA to deal with disordered alloys:*
on the Dirac equation, a number of appropriate schemes have The only real drawback of the SPR schemes is that it was
been proposed that aimed to account at least for the relatiilot Possible so far to study the relationship of any physical
istic mass enhancement and the Darwin t&7.The spin- quantlty and the SOC stre_ngth in a direct way. Using a varia-
orbit coupling (SOQ), on the other hand, was either com- tional scheme corr_espondmg mode[ calculatmgs can be done
pletely neglected or incorporated in an averaged way. Bye'y easily by scaling the SOC matrix eleméhf. Ina SPR-
getting rid of the symmetry-breaking effect of the SOC, thesdYP€ calculation based on the Dirac equation this can be
so-called scalar relativistic schemes keep spin as a god@chieved only by varying the speed of lightHowever, this
quantum number. This feature allows one to perform spiv@y all relativistic effects are modified. An approximate
polarized calculations for spin-magnetic systems accountin§cheme to circumvent this problem that requires only minor
at least for some of the relativistic effects in a very simplechanges in the programs is presented in the following to-
way, i.e., by replacing just the subroutine to calculate thedether with some applications to demonstrate its usefulness.
radial wave functions while leaving all other parts of the
programs unchanged. o , . DERIVATION OF APPROXIMATE RADIAL

However, these scalar relativistic schemes obviously do DIFFERENTIAL EQUATIONS
not allow us to study phenomena in magnetic solids that are
due to the symmetry breaking caused by the SOC. A concep- To supply a basis for relativistic band-structure calcula-
tionally simple way to account for this demand is to dealtions for magnetic solids various authttd* suggested an
with SOC as a perturbation in the variational step of a conextension of nonrelativistic spin density functional theory by
ventional band-structure schere!” On the other hand, the using the Dirac Hamiltonian
technical problems of dealing with the Dirac equation for an
isolated spin-dependent potentiaingle site problemwere c 1
solved by various authors in the beginning of the 19608° Hp=7a V4 (B=1)+V(r), ()

This development opened the way to derive corresponding

spin polarized relativisti¢<SPR generalizations of the vari-
ous band-structure schemg¢éKR,'%?* LMTO,?? and ASW
(Ref. 23] allowing us to deal with spin polarization and all
relativistic effects on the same footing.

During the last years these SPR band-structure method®
have been applied with great success to study a great variety _
of phenomena caused by SOC in magnetic solmi®bital V(1) =Vy(r) + V(1) +Vepidr). (2
hyperfine fields and magnetic momefitsnagnetocrystalline
anisotropy,> magnetic x-ray dichroisr}, magneto-optical The spin-dependent part of th&,{r) behaves like a mag-
Kerr effect?’ spontaneous magnetoresistance anisotropy, andetic field that couples only to the spin of the electron. For

with the standard Dirac matrices and 3.%° Here the poten-
tial V(r) consists of the Hartree termy(r) and a contribu-
tion due to exchange and correlation splitted into a spin av-
aged and spin-dependent part
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this reason it may be combined with a possibly present ex- T=E-V, (9)
ternal magnetic fieldB(r) as part of the effective field
Beﬁ(r)v and
Ve (1= B | By )+<9Exc(r) Bo-BudD). (3 Baa=B(xaloslxar), (10
spi 0" | Bex am(r) 7 Pett Egs.(6) and(7) may be written as

To solve the Dirac equation for a solid the first step within «
almost any band-structure scheme is to solve this equation P\=——P,+S,Qx, (1)
for a single isolated potential welkingle site problem In r
the following it is assumed that the potential terms occurring
in Eq. (1) are spherically symmetriémuffin-tin or atomic
sphere approximation i.e., V(r)=V(r) and Bgx(r)
=Bx(r)z with V(r) standing in the following for the spin-
independent part of the potentfaee Eq(3)]. where at most two partial waveb , (r,E) are coupledfor
A solution W (r,E) to the single site Dirac equation cor- |#[<I).

responding to the Hamiltonian in E¢L) can be constructed ~ Obviously there is no term in Eqéll) and(12) that can
making the ansatz unambiguously be identified with the SOC. However, this

can be accomplished by inserting Efjl) into Eq.(12) lead-
ga(r,E)xa(r) ) ing to
ifA(r,E)x—a(F))

Here A and— A stand for ,u) and (— k, ), respectively,
with « and wu the spin-orbit and magnetic quantum Sifd 1 «k+1
numbers® To simplify the notation we omit for¥(r,E), t5 T P,.
W, (r,E), gA(r,E), andf (r,E) in Eq. (4) and the follow- aperro o
ing an additional index that numbers the various independent soc
solutions to Eq(1).2° The functionsy, (f) that occur in Eq.
(4) are the conventional spin angular functiths For the paramagnetic case a corresponding second order dif-
ferential equation foQ,(r,E) is obtained by inserting Eqg.
XA(F):m _21/2 C(/%j ;M—mSyms)Y’/kmS(f)Xmsy (5) Ei%/i)l;nto (12) with | and « replaced byl and — «, respec-
e :
. - L Comparing Eq(13) with the radial Schrdinger equation
with the Clebsch-Gordon cogﬁmmg@(/éj '4~Ms,Ms), it can be seen that the last term on the right hand side has no
the complex spherical harmoni®§* (), and the Pauli spin  nonrelativistic counterpart and it is the only term that de-
functions y_. pends on the SOC quantum numbet®
The ansatz foW ,(r,E) in Eq. (4) results in the following To arrive at an approximate scheme that accounts for all
coupled set of radial differential equations for the major andelativistic effects and allows to manipulate the SOC strength
minor wave functiong(r,E) andf(r,E), respectively®=2°  we require that the corresponding wave function is deter-
mined by an equation identical in form to Ed.3) with just

, K
QAZFQA_TPA_"E Baa'Pars (12
A’

\P(r,E)=; \PA(r,E)=; ( 1(1+1)

Pf/\ 7‘2 PA_SATPA+SAE BAA'PA’
A

(13

, K - the SOC term modified. For this purpose we drop the re-
PA=— ?PA“L c2 +1)1Qa quirement that¥ (r,E) is a bispinor and instead of E¢)
we make the ansatz
B
+?E (X-alog|x-a)Qar, (6) .
A’ V(RE)=2 on(nE)=2 aa(r B, (14

Q/,\ZEQA_[E_V]PA+ B>, (xaloslxa)Par, (7)  i-e., we are still working in the\ representation. The spin-
r A’ angular functions(A(Fz [see Eq.(5)] are eigenfunctions of
with P(r,E)=g(r,E)r andQ(r,E)=cf(r,E)r suppressing the spin-orbit operatoK, *
the arguments andE. In principle one has a coupling of an

infinite number of partial wave¥ ,(r,E) having the same Kxa(r)=—=xxa(r), (19
parity (i.e., Al=[I"—1|=0,2,4,...) and thesame magnetic ;ith

quantum numbersNu=pu’ — u=0), i.e.,u is a good quan-

tum number. This general case has been studied by R=1+s-|, (16)

Ackermanri® and recently by Jenkins and Strange in detail.
Fortunately, in practice it is sufficient to restrict the couplingwheres and| are the spin and orbital angular momentum

to Al=0 andA x=0. Using the abbreviations operators, respectively. If we manipulate the SOC strength
by multiplying s-I with a scaling factorx, the functions
E-V B r ill ei i ' ifi
B had xa(r) are still eigenfunctions of the corresponding modified
S\t 02<X*A|03|X*A>’ ® spin-orbit operatoK,
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where

and

For x=1 nothing changes at all, while for=0 one gets

ky=—1. This is just the value of the spin-orbit quantum
number fors states where there is no SOC. Therefore, re-
placing « in Eq. (13) by «, switches the SOC off for any

Rx)(A(F): - KXXA(F)I

Ky=1+xs1

K= — 1+ X(1+ k).

17
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FIG. 2. Spin magnetic momenkg,, and charge difference
AQ=Qaion— dsoiig Of Fe (top) and Ni (bottom) in Fey,Niggo as a

partial wave if x=0 and reduces or increases the SOCiction of the scaling parametexsand (€/c)2, With glu, and

strength else.

To solve the second order differential equation

, 1d+1)

AT r2
S\[d 1
Y
Spyldr r

for the wave functions,(r,E) we introduce the auxiliary

Ky t1

P

r

function Q, (r,E) by the definition

Qn=

Ky 1
P+ TPA

S_A .

PA—S\TP,+S,>, Byr/Py
A!

(20

(21)

Osolig the charge for the free atom and in the solid, respectively.

Apart from the last term in Eq23) these equations have the
same form as the original Eq4.1) and(12). Implementation
of the above scheme therefore requires only minor modifica-
tions of the programs.

However, one has to keep in mind thaf (r,E) defined
by Eg.(21) has not the meaning of a minor component in a
bispinor formalism. For this reason the boundary conditions
which match the wave functions to the solutions outside the
sphere boundary have to be specified througk(r,E)
alone?? To set up the corresponding single sttematrix
tya/(E) used within the KKR formalism one therefore has to
replace the relativistic Wronskiafsee Ref. 38by its stan-
dard form g,(r,E)j/(r,E)—gp(r,E)j(r,E), where

This allows us to derive a coupled set of first order differen-j(r,E) is the spherical Bessel function. Furthermore one has
tial equations which, after some simple transformations, ar¢o keep in mind that for the evaluation of the matrix elements

given by

’ Kx
Pr=— TPA+SAQA1

’ Kx
QAZTQA_TPA+E BaarPar
A’

)— Kx(Kx+1) 1

I(1+1
+

r

2

Sa

Pa.

(22

(23

of any operator it has to be transformed in such a way that no
coupling of major and minor component occurs. This ap-
plies, for example, to the operatar- A that describes the
interaction of electrons with the vector potental In this
case, for example, th€ - A form of the matrix elements can
be used”’

Finally, it should be noted that, in general, the results
obtained from Eqgs(22) and(23) are expected to be close to
those obtained if the approach of McLaren and Victoria
would be used® These authors start from the scalar-
relativistic equations of Koelling and Harmband add the
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FIG. 3. Orbital magnetic moment,,, of Fe (top) and Ni (bot- FIG. 4. Magneto-optical Kerr rotation angé of pure Ni as a
tom) in Fey ,dNiggo as a function of the scaling parametersnd  function of the SOC strength scaling parameteiThe lower panel
(co/c)2. gives the normalized rotation specifa/x.

SOC term in its conventional form. Apart from working €racies but leaves the center of gravity of the electronic
throughout within a ,m, ,m,) representation their approach bands unchanged. Similar calculations for (Ggdy g0

ends up with a radial differential equation similar to E3).  (where the components of the alloy system strongly differ in
their atomic numbejsshow accordingly a larger impact on

Er. Increasing ¢,/c)? on the other hand causes, even for
FeyoNiggo, the Fermi level to move to lower energies in a
The scheme presented above has been implemented pronounced way. The reason for this is that, starting from the
part of a SPR-LMTO as well as a SPR-KKR program. Mak-nonrelativistic limit, the mass velocity and Darwin terms,
ing use of the coherent potential approximati{@PA) alloy  which act effectively as an attractive potential, are gradually
theory, the SPR-KKR method is applicable to disordered alswitched on, thus moving all electronic states to lower ener-
loys in a rather straightforward way. In the following corre- gies. The changes of the Fermi level withand (c,/c)?,
sponding results for Re,dNi o gpare presented that have been respectively, are accompanied by corresponding changes in
obtained using a frozen potential stemming from a selfthe spin magnetic moments,. Varying just the SOC via
consistent scalar-relativistic calculation. x has nearly no impact on,—only a small change for the
Figures 1-3 show the Fermi energy and the spin and oboth components can be observed. On the other hand
bital magnetic moments of Fe and Ni, respectively, for the(cy/c)? strongly affectsupi, due to the binding induced by
SOC scaling parametervarying from 0 to 2, i.e., from the the relativistic effects which is more pronounced for the
nonrelativistic to a superrelativistic situation. In addition, re-andp electrons than for thd electrons. As is demonstrated
sults are presented that have been obtained by varying the Fig. 2, for the system studied here, the primary conse-
speed of light to manipulate the impact of relativistic effects.quence of this is an internal charge rearrangement. This re-
Because the leading relativistic corrections to the Schrodistribution in turn is accompanied by a corresponding
dinger equation are proportional toct/ these data are plot- change in the spin magnetic moment because of dominating
ted as a function ofd,/c)? with ¢, the correct speed of light minority spin character at the Fermi energy.
in vacuum. Within a nonrelativistic description of electronic structure
As can be seen in Fig. 1, varying i.e., just the SOC, has the orbital angular moment in a solid is quenched and the
only a very small influence on the Fermi energy. This  corresponding orbital magnetic moment,,, vanishes for
was to be expected from the fact that the SOC lifts degenthat reason. SOC causes this quenching to be uncomplete

Il. APPLICATIONS
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leading to a finite orbital magnetic moment. alloy CoggPt,g no significant influence of SOC of one com-

As can be seen in Fig. 3, the orbital magnetic momenponent on the spectrum of the other via hybridization could
tom Of Fe and Ni induced by SOC is nicely proportional to be found this way?! This is in some contrast to the Kerr
x as well as to ¢,/c)?. Although in alloys where the differ- rotation of compound$ and ensures that concerning the role
ence in the atomic numbers of the components is higher thadf SOC the MXD is predominantly a site-specific phenom-
in case of Fg,Niggg €.9., for CqoPdygo, the deviation enon.
from the linearity ofuy,(X) and also of,uorb(célcz) is more
pronounced, of course.

As for wq, also the magneto-optical Kerr rotation angle
0 can be traced back to the symmetry breaking caused by A scheme has been presented to allow the direct manipu-
SOC. The results for pure Ni obtained using the SPR-LMTOlation of the SOC strength within relativistic band-structure
method demonstrate that again a nearly linear dependence @dlculations for magnetic systems leaving all other relativis-
6k on the SOC strength is four{dee Fig. 4, top This result  tic effects unaffected. Its application has been demonstrated
is in full accordance with the findings of Oppenesral3* by calculating the spin and orbital magnetic moments of Fe
From the ratiofy /x in Fig. 4 (bottom it can be seen that and Niin the disordered alloy kgdNiggoas well as the Kerr
deviations from proportionality occur primarily at low ener- rotation of pure Ni. As expected or found before, respec-
gies. Neglecting any contributions coming from the Drudetively, the orbital magnetic moment and the Kerr rotation

term, as done here, this range of energy is related to eledaries nearly linearly with SOC strength. It is pointed out

tronic transitions in the vicinity of the Fermi enerds . that tcorr_es&ondl_ngblmodel calculapons of rlnagnetor-lolpt;c?l
With increasing photon energyo more and more transi- spectra In the VISIDIE or x-ray regime supply very heipiu

tions involving states further away frof in energy con- information supporting the interpretation of the — in general

tribute to the spectrum leading obviously to some canceling very complex spectra.

of the differences of the various normalizég/x spectra.
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