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Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties
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We investigate wearless friction in a simple mechanical model called the Frenkel-Kontorova-Tomlinson
model. It combines the Frenkel-Kontorova modiet., a harmonic chain in a spatially periodic potentiaith
the Tomlinson mode(i.e., independent oscillators connected to a sliding surface in a fixed potential describing
the other surfage We investigate static properties like the ground state, the metastable states, and static
friction, as well as the kinetic friction in the limit of quasistatic sliding. As in the Frenkel-Kontorova model the
behavior strongly depends on whether the ratio of lattice constants is commensurate or incommensurate. In the
incommensurate case, Aubry’s transition by breaking of analyticity also appears in the Frenkel-Kontorova-
Tomlinson model. The behavior depends strongly on the strength of the interaction between the sliding sur-
faces. For increasing interaction, we find three thresholds which denote the appearance of static friction, of
kinetic friction in the quasistatic limit, and of metastable states in that order. These are identical only in the
incommensurate case. In the commensurate case, static friction can be nonzero even though the kinetic friction
vanishes for sliding velocity going to zero.

[. INTRODUCTION at the moment of closest contdctDuring plucking the atom
is assumed to jump abruptly from one equilibrium position to
Dry friction is a phenomenon of everyday life. Since Cou-another. Such jumps lead to vibrations of the jumping atom.
lomb’s work its basic phenomenological laws are well The kinetic energy of the vibrating atom is assumed to dis-
known? (i) The friction force is independent of the area of sipate totally into the bulk of the sliding bodies due to exci-
the sliding surface(ii) It is proportional to the loadiii) The  tation of some kind of waves. Thus finite friction is possible
kinetic friction, i.e., the force to keep a body sliding at aeven in the limit of zero sliding velocity, contrary to viscous
constant velocity, does not depend on the velocity and it igriction, which vanishes in the quasistatic limit. The assump-
less than or equal to the static friction, i.e., the force to startions that the jumps occur instantaneously and that the atoms
sliding. On a macroscopic level, these laws are well underare uncoupled, i.e., a vibrating atom does not excite vibra-
stood in terms of the Bowden-Tabor adhesion mddel, tions of other atoms, lead to Coulomb’s third 13w
which is a macroscopic model based on the elastic and plas- The easiest model for taking into account the coupling
tic properties of the sliding bodies. between atoms is the Frenkel-Kontord#) model® which
In spite of the simplicity of Coulomb’s laws, the sliding of is a model of an adsorbed monolayer on an atomically flat
two solid bodies is a very complex phenomenon that opersurface. It is a one-dimensional model with a chain of adsor-
ates mostly far away from thermal equilibrium. It involves bate atoms coupled linearly by nearest-neighbor interactions.
processes on various spatial and temporal scales, from mihe chain interacts with a spatially periodic potential. The
croscopic to macroscopifor an overview of the state of the FK model has also been used as a simple friction mog2l.
art see Ref. R Also, deviations from Coulomb laws have The static properties of this model strongly depend on the
been found, which depend on the material of the sliding bodratio of the lattice constants of the adsorbate layer and the
ies, the surface properties, the sliding history, and the mesubstrate surface. Aubry has shdwhat, in the case of an
chanical environment. Up to now no generally acceptedrrational ratio, the ground state can be shifted by an infini-
theory exists which is abl@) to explain these deviations and tesimally small force as long as the strength of the periodic
(ii) to calculate friction forces from the bulk and surface potential is below a critical valuéthe point of analyticity
properties of the sliding bodies. However, in recent yeardreaking. Thus the static friction is zero. This is true only in
modern experimental technologies have made it possible tthe thermodynamic limit, i.e., in the case of an infinite num-
study wearless friction between clean and atomically flaber of adsorbate atoms.
surface€. There is some hope that theoretical models will There is some ambiguity in the literature concerning the
lead to an understanding of such less complex systems. meaning of the ternifrictionless In the context of the FK
The first attempt to explain Coulomb’s laws on the atomicmodel frictionless means zero static friction. Another mean-
level was given by Tomlinschin his pioneering work in ing of frictionless found in the literature is a vanishing ki-
1929. He considered the surface atoms as single independartic friction in the limit of infinitesimally slow slidind.Re-
oscillators that are “plucked” by the atoms of the other sur-cently this notion has been callsdperlubricity®° which is
face like a guitar string. Even quasistatic slidifig., sliding a misleading term because it doeet imply that afinite
at an infinitesimally small velocipywill lead to plucking of  sliding velocity exists below which the kinetic friction is
atoms if the stiffness of the interaction between a surfaceero. It should be emphasized that the two definitions of
atom and the bulk is smaller than the stiffness of the interfrictionless arenot equivalent. Of course, zero static friction
action between this atom and an atom from the other surfacenplies zero kinetic friction if we believe in Coulomb’s third
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neighbor interactionsgcoil springg. The interaction of each
particle with the otherwise rigid upper body is also harmonic
(leaf spring$. The equilibrium positions of the particles due
to this interaction define a regular lattice where the lattice
constant is assumed to be the bulk lattice constant of the
upper body. The interaction of the particles with the lower
body is described by a spatially periodic external potential,
which defines a hard surface. The lower body is assumed to
be fixed whereas the upper body is movable. The model
assumes motions onlyarallel to the sliding surface.

The potential energy of the FKT model is
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FIG. 1. The Frenkel-Kontorova-TomlinsdfKT) model where
Xg Is the position of the upper sliding body, is the applied force,
c is the lattice constant of the surface of the upper sliding body,
x, andk, are the stiffness constants of the coil and the leaf springs,
) . o "y . N N
respectivelyg; is the position of particlg relative to the support of 1 ,, K 5
its leaf spring, andb is the strength of the interaction with the V(&1, ... .én.Xp) = 521 (§—§&j-1)°+ 521 &
surface of the fixed rigid lower body. Its lattice constant defines the 1= 1=

length unit. The stiffness of the coil springs defines the unit of the b N

strength of interaction. + 2_2 cos2m(xg+Cj+ &) —Fxg.
mTi=1

law. But a vanishing kinetic friction does not imply a van- (1)

ishing static friction. This can be easily seen in the Tomlin-
son model: When the interaction of the oscillator with theHere ¢ is the lattice constant of the upper body, is the
sliding surface is weak, it will not be plucked. Thus it can beposition of the upper body relative to the lower surfageis
moved adiabatically without dissipation and the kinetic fric- the position of particlg relative to the suppontg+cj of its
tion is zero. Nevertheless, the surfapms the oscillator. |eaf spring, « is the stiffness of the leaf springb, is the
Therefore a finite force is necessary to depin it, which meanstrength of the external potential that models the interaction
that the static friction is not zero. It is equal to the amplitudewith the lower body, andr is the force applied to the upper
of the oscillating sliding force in the case of adiabatic slid-body. All variables and parameters are measured in dimen-
ing. sionless units. They are based on the following independent
The main disadvantage of the FK model is that the atom$asic units: The length unit is the surface lattice constant of
are not coupled to the sliding body. One simple way to overthe lower body, and the unit of the interaction strength is the
come this disadvantage is to couple each atom harmonicalltiffness of the nearest-neighbor coupling. All other units can
to a rigid body(see Fig. 1 The resulting model we call the be expressed in terms of these basic units.
Frenkel-Kontorova-TomlinsofFKT) model because it is a We choose periodic boundaries
combination of the FK model and the Tomlinson model.
The FKT model is similar to the Burridge-KnopafBK) Eon=6& 2)
model!! which was proposed as a model of an earthquake ! )
fault. The main difference is that in the BK model the inter- Thjs implies a rational upper lattice constanbecauseN
action with the lower body is replaced by a phenomenologihas to be an integer
cal dry friction law. Usually a velocity-weakening law is

chosen'? For small sliding velocities, this model exhibits P

avalanchegi.e., earthquakgsFor that reason the BK model c=—, ®)
has become a popular model for the investigation of self- Q

organized criticality>*3 Also, solitonlike behavior has been _ _ o

found4 whereP andQ are coprime, and) is a divisor ofN.

This paper is the first part of a series of papers investigat- ~0" F#0 the potential energy is not bounded from

ing the FKT model. This part considers only the static prop_below. Thus no ground state exists and all local minir_na cor-
erties. The forthcoming parts will be devoted to kinetic fric- '¢SPond to metastable states. Therefore, the system is always

tion and stick-slip motion, respectively. This first part is N @ nonequilibrium state. At finite temperature, the system
organized as follows: Section Il introduces the FKT model.C@n €scape from a metastable state to another metastable
Section 11l investigates the FKT model in the case of zercState With Ipwesr energy. Thus the system creeps due to ther-
driving force. In Sec. IV we calculate the static friction. The M&! activation® In this paper we restrict ourselves to zero

kinetic friction in the quasistatic limit is considered in Sec. V. t€mperature.

We conclude with Sec. VI. The_ FKT model is invariant against the following trans-
formations.
(i) Translationsby an integer multiple of the lattice con-
ll. MODEL stant of the lower body generated by

The Frenkel-Kontorova-TomlinsafrKT) model is a one-
dimensional lattice model for the atomic monolayer of the Xg—Xg+ 1. (4a)
surface of a soft bodyupper body in Fig. Lwhich slides on
a hard body(lower body in Fig. 2. The monolayer is de- (i) Cyclic permutationf the deformationg; generated

scribed by a chain ofN particles with harmonic nearest- by
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For F=0, the potential energyl) of the FKT model is
bounded from below. Thus ground stateexists. It strongly
determines the static friction, as we will see below.

(iii) Reflectionof the upper body ax=0:

XBH _XB,
§——&, (4¢) A. Ground state
e E In order to calculate the ground state, we start with the
— —r.

trivial caseb=0 where the energy surface is a paraboloid in
the N-dimensional configuration space defined bg,}.

(v) Rescalingeof the lattice constant, generated by Equation(5b) defines a plane in this configuration space on

c—c+1. (4d)  Which the solution is situated. The absolute minimum of the
parabolic energy surface is §t=0. This solution automati-
(v) Inversionof the counting order: cally fulfills (5b). Thusxg is arbitrary.
In the general casé# 0, the external potential adds some
C——¢C, corrugation onto the parabolic energy surface, which shifts
(49 the absolute minimum a certain amount outside the origin.
§—&-- By changingxg, this minimum can be moved into the plane

These transformations leave the energy landscape invarclj-eﬁm:“d by(5h). Thus, the ground-state posmo@ of the

ant, except for the fact thaia) and (4b) shift the potential UPPEr body is no longer arbitrary. The deformatigfisof the

by a constant value proportional f. The symmetrie4) abs_olu_tg minimum in any dlrectl_on cannot exceed half the

hold also for an arbitrary periodic potential, except for theper'Od'Clty of the external potential:

reflection symmetry4c), which holds only for potentials that |§_e| <l j=1 N @

are invariant against reflection like the cosine potential in == R

(1). The symmetries permit us to restrictto the interval ~ For small values ob the ;s are linear inb. Forb—c the

[1/2,1]. particles are situated in the local minima of the external po-
For k=0 the FKT model becomes the FK model. For tential. In order to minimize the potential energy in the

x,b— but b/« finite, or similarly by dropping the nearest- springs, each particle will presumably sit in that potential

neighbor interaction, the FKT model turns into the Tomlin- well that is directly underneath the support of the leaf spring

son model of independent oscillators. (see Fig. 1 Thus we conjecture that, for the ground state,
As in the case of the FK model, we expect a strong de- 6. . .G 6. . ]
pendence of the FKT model on whetheis rational or irra- Int(xg +cj+&7)=Int(xg +cj), j=1,...N (8

tional. There are two extreme casé3:The most commen- hqi4s The same property holds for the ground state of the
surate casec=1, and (ii) the most incommensurate case px model® where ¢ corresponds to the winding number.
given by the golden mear=(\5-1)/2=0.618 ... . Inor-  Numerically we have not found any example demonstrating
der to treat the latter case we have to investigate a series @ie opposite. Furthermore, we found that any other state vio-
FKT models with SUCCESSively ianeaSing numbers of parates (8) Thus the ground state is unique|y defined (B)/
ticles. Since continued fractions are the optimum rationaiote that(7) and(8) are independent conditions. The ground
approximations of irrational numbers, we take successivgtate is eithecommensurat@r incommensuratelepending

pairs from the Fibonacci series 1,1,2,3,5,8,13, ... in order t¢n whetherc is rational or irrational.
approximate the golden mean. Aubry has showhthat the ground state of the FK model
can be uniquely described byhall function This concept
Ill. FKT MODEL WITHOUT DRIVING can also be applied to the FKT model. Thus we write
In this section we investigate the FKT model where the £8=gg(xS+cj). 9
external force is absent, i.&=,=0. Stationary states are the J . . )
extrema of(1), which are solutions of From Eq.(538), the hull functiongs is a solution of the delay
equation
0=—0:V=§& 1+ & 1—(2+ k)& +bsin2m(xg+cj+ &),
R ‘ S e 0=gg(x+C) +gs(x—0) ~(2+ K)gs(X)
N +bsin2#[x+gg(X)], (10
0=—dy V= KEl &. (5b)  wherex=x5+cj. Assuming that the ground state does not
=

break the symmetrie@l) we get
It is important to note thatg is not a free variable, because
a state that is stationary with respect to #jeneed not be gs(X+1)=gg(X) = —gs(—X). (119
stationary with respect t®g . The propertieg7) and(8) are equivalent to
Because of the symmetri€d4a), (4b), and(4c) any solu-
tion can be generated from a solution with lgs(x)|<1/2 (11b
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FIG. 2. The hull function gg(x) for «=1 and FIG. 3. The hull functiongg(x) in the Tomlinson limit(i.e.,

c:(\/§—1)/2~144/233. Solid lineb=0.4. Dotted lineb=0.5. k,b— ) defined by(15) with b/x=0.5. The solid line indicates
stable states of a single Tomlinson oscillator with fixed support

and Dashed-dotted and dotted lines indicate metastable states and un-
stable states, respectively. The squares denote the ground state of
|gs(X)+x mod 1-1/2|<1/2, (119  the FKT model fork=10,b=5, andc=21/34.
respectively. where the Kolmogorov-Arnold-MosetKAM) theorem is

Which values ofg fulfill Eq. (Sb)? First we consider the  heeded because of small denominators. In the FKT model we
commensurate case. Because of the symmetgsevery 4o not have the small-denominator problem because for

Xg With Xxg mod(1/20) =0 yields a stationary state. Numeri- _ g the dispersion has a gap. Thus we can apply the im-

cally we find that the ground state is given by plicit function theorem, which says th#10) has a unique
1 1 and analytic solution in a finite interval @f around zero. In
xS = §+n o n integer. (120  leading order it reads
sin2mx
In the incommensurate cagg is arbitrary. We can inter- gs(X)= b+0O(b?). (13

pretxg as aphasewhich is discrete for rational values of K+2=2c0s27C

and continuous for irrational ones. Below we will see thatlt fulfills (11). For b—c the last term dominates and the
this interpretation becomes very important for the construcsolution has the form
tion of elementary defect solutions.

Figure 2 shows the hull functions of numerically calcu- _ n(x) ith .
lated ground states for an incommensurate value.oiVe gs(x)==x+ =, with n(x) integer, (14
clearly see that they fulfill the properti€sl). Figure 2 also

: P ... wheren(x) cannot be a constant becauge has to be a
shows the phenomenon bfeaking of analyticity first dis periodic function. Thus the hull function has at least one

covered by Aubr§ in the FK model. It means that in the jump. Again the implicit function theorem can be applied for
incommensurate case the hull function is no longer analyti )
d Y -1 around zero because cos{+gg(X)]=(—1)"W+0. The

for b above a certain critical valuaf. The nonanalyticity is . itial ¢ il b d h by th
caused by jumps that appear at certain points. The biggeg?' 1al jJumps o n_(x) Wit be spread everywhere by the
jump is atx=0. It means that a kind of forbidden region has mechanism described above.

: In the Tomlinson limit of the FKT modefi.e., xk,b— )

emerged around the maxima of the exteral potential Wheree can discuss the hull function analytically because we can
no particle is allowed to be. Due to the nearest-neighbo}N y y

interaction, jumps also appearatcn, n integer. The size drop t_he delay terms 9(10)' We get the hull function
of the jumps decreases with increasing orgér Since the 9s(x) in parametric form:
hull function is a periodic function and is an irrational b
number, jumps occur in any neighborhood of any point gs(7)= ;sin 2m7, X(1)=71—0g(7). (15
e[0,1].

In the commensurate case oryjumps occur. In Sec. VIt is uniquely defined as long ad<k/(2w). For
we will see that, in any case, whether commensurate or inb> «/(2) three different values ajg are possible, at least
commensurate, the occurrence of jumps in the hull functioraround x=0. The additional two values correspond to a
corresponds to the occurrence of kinetic friction in the quaimetastable state and an unstable saddle of a single Tomlinson
sistatic limit. oscillator(see Fig. 3. Thus they are not relevant for the hull

It is possible to show as for the FK model that in the function, which describes the ground state. Furthermore,
incommensurate case a transition by breaking of analyticitghey do not fulfill (11¢).
must exist. First we show that fdo smaller than some This analysis suggests that the main jump and all addi-
b,;>0 the hull function is analytic. This statement is muchtional jumps of the hull functiowhich are infinitesimally
easier to prove than the similar statement for the FK modesmall in the Tomlinson limjt are caused by the appearance
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FIG. 4. The first metastable states are kink-antikink pairs. They

separate domains with different ground states that are characterized FIG. 5. Phase diagram of the elementary kink-antikink pair for

by “virtual” positions xg of the upper body. The upper part of the ¢=1 andN—. The relative portion of one domain is denoted by
figure gives an example far=1 in the Tomlinson limit. p.

of metastable statedn the following subsection we there- consider a very large but finite system. Because of the peri-
fore discuss the question: What kind of metastable stategdic boundaries, the numbers of kinks and antikinks have to

appear first and for which values b® be equal.
The above-mentioned defect of one particle hopping into

the neighboring potential well corresponds to a pair of a kink
B. Metastable states and an antikink that are as close together as possible. In the
following we argue that the first metastable state consists of
S X , a pair of a kink and an antikink that are as far away as
ground state is still the onI|3</ stationary stable stateb I8 ossible, not because of the usual exponentially decreasing
larger than a critical valué: , additional stationary states kink-antikink interaction but because of the nonlocality. The
emerge that have the following properties. They violate condifference between the virtual values »§ of the domain
dition (8). The matrivaV/agiagj is positive definite, which  states is 1.
means that these states are stable against infinitesimal small First we treat the Tomlinson limit, where the kink-
disturbances ir¢;, j=1,... N. But they may be still un- antikink interaction disappears because of the absence of the
stable against infinitesimal small perturbations, which in-nearest-neighbor interaction. Fbe>«/(27) and xg fixed,
cludes also disturbancesxg . If b exceeds a further thresh- each Tomlinson oscillator develops additional stationary
old bI'=b¥, the first of these states become stable. states because the hull functigg(x) defined by(15) loses
The first metastable state will not be very different from its uniqueness. One of these additional states is metastable
the ground state. It can be described by the ground state piier Xg fixed (see Fig. 4 Nevertheless, fob just above
adefect But what kind of defect? Naively, one might expect «/(27) any state other than the ground state that fulfills the
a defect caused by a single hopping of one particle to it&ionlocality condition(5b) is still unstable whemg is free. In
neighboring potential well. For the FK model it is known order to see this the most commensurate ¢asgc=1) is
that this is not the casé.The elementary defect in the FK treated in Appendix A. It turns out that the first metastable
model and in the FKT model too — as we will see below — kink-antikink state (see Fig. 4 is indeed that one with
is aphase kinkhat separates two domains with ground stategqually sized domaingsee Fig. 3. It appears forb> «/4.
corresponding to different phaseg defined by(12) (see  Thus
Fig. 4). The phase of each domain is a kind of “virtual” body
position that would be the real position if the other domain
did not exist. In the FK model such a phase kink is a local- b=
ized deviation from the ground state, which means that the
kink energy does not depend on the siéef the system if
N is much larger than the size of the kink. On the other handThis threshold also holds in general, not only in the Tomlin-
in the FKT model the energy of such a defect scales wittson limit, because the nearest-neighbor interaction only leads
N because of th@onlocal coupling of each particle via the to a finite kink size, but does not change the domain states.
upper body. The nonlocality is expressed by condiiidb), For other values ot we have found numerically that the
which means that the real positiag is the average over the state with equally sized domains is always the first meta-
virtual ones weighted by the domain sizsge Fig. 4 Thus stable state. It has the following propertiesti)
the difference between the res} and the virtualxg shifts  xg mod(1Q)=0. (ii) All &’s fulfill (7). (iii) All &;’s fulfill
eachparticle out of its ground-state position even if it is far (8) except for those for which the support of their leaf spring
away from the kink. (see Fig. 1 is directly above a maximum of the external
Another consequence of the nonlocal coupling is that wepotential. The displacemed is positive in one domain and
cannot treat an infinitely extended FKT model because th@egative in the other. Thus in one domain evéth particle
ratio of the domain sizes would not be defined. Thus weviolates(8).

For small values ob the corrugation is weak and the

5 for c=1 16
g or c=1. (16)
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In the incommensurate case metastable states appear keemassless sliding body is somewhat academic, and a discus-
yond the point of breaking of analyticity, i.e0T'=bZ. Nu-  sion of inertia effects will be crucial for a realistic treatment
merically we have some evidence tltuﬂiz bf‘ always holds, of static friction. Here we emphasize the main difference
as in the FK modéf. between models for pinning-depinning transitions, such as

the FK model, and models like the FKT model, namely, the
existence of a macroscopic sliding mass that interacts di-
IV. STATIC FRICTION rectly with many or even all internal degrees of freedom

Before investigating the static friction we have to clarify Which is also responsible for theonlocal coupling of the
the meaning of static friction in deterministic zero- internal degrees of freedom. For finite inertia we expect that

temperature models, such as the FKT model. We do this frorA" unstable state does not evolve into another stable state but
the point of view of ,nonlinear dynamics. rather leads to global sliding. NevertheleBs, gives an up-
per bound for the actual static friction. It is calculated in the

next subsection. The static friction in the more realistic case
A. Definition of static friction of finite inertia will be discussed elsewhere in the context of

From the phenomenological point of view the static fric- Stick-slip motion.
tion Fg is defined as the smallest driving for€ethat ini-
tiates sliding. That is, any fordé below F g does not lead to B. Static friction of the FKT model
a relative motion of the surfaces. Thus, the static friction is
defined by theboundariesof F for which the stationary,
motionlessstate is stable Therefore the static friction de-
pends on the internal state of the real contact area betwe

In the previous subsection we have defined the maximum
static friction Fg as the driving force= where the last sta-
tionary state disappears. The stationary states are the solu-

the sliding surfaces, which in the FKT model is determined ns of
by the configuration of th&l particles describing the surface 0= —a.V
atoms of the upper bodfsee Fig. 1 Since different states g

may have different stability boundaries the static friction is

in general not uniquely defined. It will depend on thistory =&eat §am (2T )G b sin 2m(xgtcjt &),

of the friction system, a well-known experimental fact. For (179
example, it was found!’ that the static friction increases

with the sticking duration, i.e., the time during which the N

sliding surfaces do not mov@t least not on a macroscopic 0= —aXBV:KZl &+F. (17b
level). 1=

In view of the nonuniqueness of the static friction the
question arises: Is a sound definition of static friction pos- Without solving(17) it is possible to give an overall upper
sible that does not depend on the history of the total frictiorbound F&® for the static frictionFg. Taking the sum over
system? The answer to this question is positive and the ag178 and using(17b) we get
propriate definition readShe static friction ks is the small-
est driving force above which no stable stationary state ex- N
ists This definition is very similar to the definition of the F= —bz sin 2m(xg+Cj+ &), (18
depinning force in models describing the pinning-depinning =1
transition of charge-density waves or interacting vortices i
type-ll superconductors. In these models the dynamics
usually treated in the overdamped limit, which has the fol-
lowing consequences. Assuming we start with a metastable max
state and slowly increade, the state followd= adiabatically Fs~=Nb. (19
until a certain value is reached where it annihilates with an
unstable state in a saddle-node bifurcation. Thus the system Starting with a stable, stationary state of the FKT model
depins locally and some degrees of freedom start to move. Iwithout driving, what happens ifF is quasistatically
the case of overdamped dynamics the system will be trappegivitched on? Firstx; andxg will change adiabatically, i.e.,
by the next relative minimum of the energy surface in con-they are smooth functions &f. EventuallyF will reach a
figuration space. Thus for a slowly increasing driving forcevalue — the depinning force — where the state annihilates
F the system will follow a sequence of depinning eventswith an unstable stationary state in a saddle-node bifurcation.
where it locally relaxes into another pinned state. Eventuallyrrom physical intuition and from our numerical studies we
the system globally depins. This happens at least when thare convinced thahe ground state of the FKT model has the
last state disappears. largest depinning force, which therefore defines the maximal

Applied to friction we see that the above definition of the static friction force F;. We are able to prove this conjecture
static friction makes sense in the absence of inertia effectenly for c=1 (see Appendix B but it is consistent with the
both in the internal degrees of freedom and in the macroabove-mentioned experimental observations that the static
scopic sliding body. It is also independent of the history offriction always increases with the sticking time. At the be-
the friction system. The local reconfigurations may be inter-ginning of sticking, just after a global sliding event, the con-
preted agmicroslips’ that do not lead to sliding on a mac- tact area will be in a metastable state. On a large time scale
roscopic scale. It must, however, be realized that the study ofthere thermal agitation becomes important, the system will

'i‘%y_‘om which it immediately follows thalF| is always smaller
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that for the FK modela~3. We have checked that in the

0.25 ' ' ' FKT model the exponent remains roughly 2 for values of
x down to 0.01. Thusg(x—0) is possibly not continuous at
xk=0.
0.20 =
V. KINETIC FRICTION IN THE QUASISTATIC LIMIT
0.15 - In this section we analyze the case of vanishing kinetic
" friction in the quasistatic limit, i.e., sliding velocity — 0.
L The kinetic friction for arbitrary sliding velocities will be
0.10 1 1/2 - calculated elsewhere.
2/3 The kinetic friction is the lateral force that is necessary to
keep the upper body at a constant veloeityThus, the block
0.05 3/5 - positionxg is the control parameter contrary to Secs. Il and
B
IV where the applied forc& was the control parameter.
Quasistatic sliding gives the system enough time to relax
0.00 r T ' T into a stable state after an infinitesimal changexgf The
0.0 0.1 02 03 04 05 stationary states, which are solutions (@78, depend on
b bf Xg. From(17b) follows the lateral force
N
FIG. 6. Static frictionFs as a function ob for «=1 and for a F(xg)=— "E &(Xa), (22)
sequence of rational values ofthin lineg, which converges to the =1

golden mean (5-1)/2 (thick line) which is necessary to keep the upper body at positipnin

overcome the barrier and move into a more stable state. Bthe field of nanotribologd this lateral force is often called

repetition of this process it will eventually reach the ground%'ctlon fqrce (for exampl_e,_ in the ter_m _frlc_tlon force mi-
state. croscopy”) even though it is not of dissipative character as

. we will see below. Kinetic friction has to be defined from the
Forc=1 andc=1/2 we are able to calculates analyti- : . : .
. : work that is necessary to slide two interacting surfaces over a
cally (see Appendix B For other rational values af we

have calculatedr s numerically. We find the following prop- Eg?aﬁlfztigcieé Thus the kinetic frictioRy is the averaged
erties: (i) The maximal static frictiorFg as a function ofb o

increases strictly monotonicallyii) Near zero it scales like c (xaN
Fc=— lim —f & (x)dx. (23
Fs~b®. (20) « xgeXBlo =17
(iii) For b—o it approaches=g®. (iv) For fixed values of As already mentioned in the Introduction, frictionless

b it decreases with decreasing commensurabilitg.oMore  sliding has attracted some attention in the literature. We em-
precisely: If we organize the rational numbers in a Fareyphasize that zero friction for finite velocity is not possible
tree!® we find that the static friction of some rational value in open systems. The kinetic friction may vanish only for
of ¢ is less than the static friction of the parents of thissliding velocityv — 0. Frictionless sliding simply means that
rational number in the Farey tree. Coulomb’s law of constant kinetic friction is replaced by
Figure 6 showsg(b) for a sequence of rational values of some othefe.g., viscousfriction law where the kinetic fric-
¢, which approaches the golden meaq/ge 1)/2. We see tion vanishes fow —0.
that the sequence of curves converges to a curve with a sin- What is the condition for vanishing kinetic friction in the
gularity at the point of breaking of analyticityjf. For  quasistatic limit? The answer is this: The state of the system
b<b? the static frictionFg is exactly zero because the ana- must follow the quasistatic changexf adiabatically. In this
lyticity of the hull function(9) makes it possible to shift the case thetj's are functions okg. Thus the potential energy
surface atoms of the upper body smoothly over the corrutl) with F=0 becomes a continuous periodic function of
gated surface of the lower body. Thus a Goldstone mod&g: I-€.,
exists and no force is needed for sliding. As static friction ~
and the breaking of analyticity always appear together, we V(xg)=V[&1(Xa), - . . .En(Xp),Xa].
change the meaning &f?. In the following b denotes the  Using (17) we get for the lateral forc&22),
threshold above which the static friction is not zero. In the
commensurate cas® is equal to zero.
For b>b?, Fg increases strictly monotonically with. F(Xg)=0dxV= dxg'

Numerically we find a power law nemf': L . .
which is a conservative force oscillating around zero. Its av-

FSN(b—bf)a with a~2. (21) erage is Zero, |eEK:O - -
As long asb is small there exists only one solution of
This behavior ofFg is similar to what is found for the de- (173 for any value ofxg. It is given by the same hull func-
pinning force of the ground state of the FK modékxcept  tion gg introduced in Sec. Il A in order to characterize the
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In the incommensurate case the breaking of analyticity of
the hull function corresponds to the appearance of loops in
the solution of(10). Thus,bX=b3, which is confirmed by
our numerical results. Therefore both static friction and ki-
netic friction in the quasistatic limit are zero. In the commen-
surate case, on the other hand, zero kinetic friction does not
imply zero static friction. In factFg is always unequal to
zero.

VI. CONCLUSION

In this paper we have introduced a simple model of wear-
less friction, the Frenkel-Kontorova-Tomlins@RKT) model
(see Fig. 1, a combination of the Frenkel-Kontoroy&K)
model and the Tomlinson model. Here we have investigated

FIG. 7. The threshold$ as a function of« for a sequence of qnly the static properties of the FKT model. The behavior of
rational values ofc (thin lines, which converges to the golden e system strongly depends @i the strengthb of the in-
mean (/5—1)/2 (thick line). teraction between the sliding surfaces diiglthe commen-

surability of the surface lattices. There are three threshold

ground staté9) of the undriven system even in the commen-values ofb at which the behavior changes qualitatively.
surate case. The only difference is that neyvis arbitrary. The first threshold is denoted . Below b$ the static
For b>bg additional stationary states appear as alreadyriction is zero whereas aboveS it increases like a power
noted in Sec. Il B. The reason iS that the hu” funct@)g]is |aW and approachdégaxz bN in the asymptotic ||m|t In the

no longer uniquely defined because the solutiontl6f de-  commensurate case, where the ratiof the lattice constants
velop loops at values ok that are integer multiples of ot poth sliding surfaces is rationddS is zero. The exponent
1/Q. The largest loop appears 0 (see also Fig. BThe ot the nower law is given by the denominator @f In the

loops correspond to bistability intervals that are bounded by, . mmensurate caseS is finite and increases with the ratio

sadd!e-n(_)de bifurcations. When we start W'th some statg, th,s(: of the stiffnesses of the leaf and coil springee Fig. 1
guasistatic change of; moves the state adiabatically until a For the golden mean the exponent is roughly 2

saddle-node bifurcation is reached. At that point the system For b below the second threshold denoted lh)S/ the

has to rearrange itself into a new metastable state. DurinQinetic friction Fy is zero in the limit of quasistatic slidin
this rearrangement the particles have to move over a finitﬁ e lidin velgcit —.0). That is forbq< b the kineticg
distance where they dissipate the energy, which is deter:®: 9 yv—=1). that's, =~Dc .
mined by the difference between the potential energy befordiction behaves similarly to viscous friction. Fdr>bs
and after the rearrangement. THeg=0 for b>bX . As ad- Tomlinson’s basic dissipation mechanism leads to a finite
. c: . . .. K

ditional states and kinetic friction in the quasistatic limit al- Kinetic friction. Thereforeb; is also the threshold above
which additional stationary states appear that are stationary
for fixed relative positions of the sliding bodies. The thresh-
old b¥ increases with« and is always larger than zero.
Therefore, in the commensurate case vanishing kinetic fric-
numerically. Figure 7 shows numerical results &ff as a tion does not imply vanishing static friction. The FKT model

' for b> ch is an example of a dry-friction system that dy-

function of x for a sequence of rational values of ap- . . . .
proaching the golden mean. We find the following properties.nam'ca1I|y beha_\ves_ I_|ke a viscous ﬂw_d _under sh_ear even
LK . . . o though the static friction is not zero. This is a generic behav-
(i) b as a function ofx increases strictly monotonicii) . . L
Near zero it scales as ior that st.rongly violates Coulomb’s thqu law.
The third threshold, denoted tbf’, is important for the
precise meaning of the maximal static frictiéry. Below
bEW K12, (24 this threshold the ground state of the undriven FKT model is
the only stable state. Fdr>b{" additional metastable states
(iii) In the Tomlinson limitk— < it approache/(2). (iv) appear. The first metastable state is characterized by equally
For fixed values oi« it increases with decreasing commen- sized domains. The domain states are almost the ground state
surability of c. but for different virtual positions of the sliding bodiéer an
In the incommensurate IimiicK becomes finite in the limit example, see Fig.)5The bulk domain states differ from the
x—0. The valuebg(K—>0) is ~0.154, which cannot be exact ground state because the real position is the average of
distinguished numerically from the value of the point of the virtual ones. In the commensurate case the gap in the
breaking of analyticity of the FK model for the golden energy between the first metastable state and the ground state
mean'® Thus bX(k—0)=bK(x=0). Numerically we find IS anextensivejuantity, i.e., it is proportional to the number
that bCK scales neak=0 as of particles. This is a consequence of thenlocal character
of the FKT model.
Kok _ . Since the static friction is the force that is necessary to
be —bg(0)~«? with B~3. (29 start sliding, it depends on the state of the system. Therefore

ways occur togetherb? also denotes the threshold below
which the kinetic friction vanishes far—0.

Forc=1 and 1/2 we are able to calculdif analytically
(see Appendix € For other values of this is possible only
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static friction is not uniquely defined fdbo>bg', but the D, 0 ... 0 -«

function Fg(b) introduced in Sec. IV gives an upper limit of 0o D 0 —x

the actual static friction. It is defined as the smallest force 2

above which there exists no stable state. We have seen that Dv=| : : : N (A2)
Fsis given by the force required to depin the model from the 0 0 ... Dy —«

ground state.
The relation between these thresholds depends on whether
c is rational or irrational. For the commensurate case thgyhere

-k —k ... —k Nk

relation is
Dj=K+Cj with Cj=_2’7TbCOS 27T(XB+Cj+§J‘).
0=bS<bX<bM. (26) (A3)
It is positive definite if allD;’s and detDV are positive.
For the incommensurate case it is After some algebraic operations one finds
S_ KK N N c
0<b>=bs=b". 2 — _ =i
c=be=b¢ (27) detDV K(Jl;[l D,)le b, (A4)

Concerning the static properties of the FKT model thereThus the stability conditions read
remain many open questions to be investigated. From the
mathematical point of view, a number of conjectures has J. .
been presented in this paper for which we have strong nu- > D0 andD;>0, j=1,...N. (AS5)
merical evidence but no rigorous proof. For example, it is =1
evident from physical intuition that the ground state has the sufficient condition for stability is
largest depinning force. This has been found also in more
complex system€’ It would be desirable to have a proof of C;>0, j=1,...N. (AB)
this conjecture at least for a certain class of models.

Although the FKT model is a very simplified model even ~ For the case=1 we investigate the existence and stabil-
for atomically flat surfaces, we believe that it is able toity of solutions containing a kink and an antikink in more
mimic some of the qualitative behavior of real systems. Thedetail. The solution has two domains whefés uniform in
FKT model has the potential to become a prototypical modegach domain. There af¢.. particles with¢.. fufilling (A1)
for dry friction of atomically flat surfaces, such as the FK With N, +N_=N. The definitionp=N, /N measures the
model, for the commensurate-incommensurate transition angxtent of the plus domain relative to the total extent of the

N

charge-density waves. system. Because @bb) it has to fulfill
The FKT model can be extended in various directions. An
important one would be the introduction of quenched ran- pé++(1-p)§-=0. (A7)

domness due to unavoidable surface impurities because ifhe solution is stable ipC, /D, +(1—p)C_/D_>0 and
FK-like models it may destroy the frictionless state in thep ~ Egs.(A1), (A7), and
incommensurate cageé. - ’ '

po—+(1-p)5—=0 (A8)
. -
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APPENDIX A: THE FIRST METASTABLE STATE APPENDIX B: Fs FOR c=1 AND c=1/2

IN THE TOMLINSON LIMIT FOR  c=1 In accordance with our conjecture that the static friction
Fs is given by the depinning force of the ground state, we
solve the delay equatiofi0) for the hull functiongs. Using

(9) and (17b we get

For the Tomlinson limit(i.e., k,b—c but b/« finite) of
the undriven FKT model we drop the first two terms of the
potential(1). Stationary states are solutions of

N

35 \'= k&= bsin 2m(xg+cj+&)=0 (A1) F(xB)=—K21 gs(Xg+Cj). (B1)
=

and(5h). A stationary state is stable if the second derivativeThe static frictionFg is determined by the maximum of
of the potentiaDV is a positive definite matrix. It reads F(xg), which can be obtained by equating the extrema.
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First we calculatd-g for c=1. Because of the periodicity 4+ K :
of gg the delay equation turns into an algebraic equation b= m\/(WDJFSInﬁDCOSTFD)WD- (B1))
Equations(B11) and (B10) defineF¢(b) parametrically. Ex-
0= — kQgg(X) +bsin 2@ x+gg(X)]. (B2)  pansions into Taylor series arouid=0 andD =1/2 yield
For F we get
L b+ O(b? B12
Fgax_ A4+ K + ( )! ( )
F(xg)=— kNgs(Xg) = —bNsin 2a[x+gg(X)]. (B3) q
an
The extrema of are also extrema afs. From(B2) follows E 4t
K
—==1———b 1+ 0(b™?), (B13)

dgs_ 21bcos 2m[ x+gg(X)]
dx  k—2mhcos 2n[x+gg(x)]"

(B4)  respectively.

The extrema are implicitly defined by+gs=n/2+1/4, n

. pK — =
integer, which leads to APPENDIX C: b FOR c=1 AND c=1/2

Loops appear in the solutions ¢£0) when the slope of
gs(x) becomes infinite. Foc=1 the delay equatiori10)
turns into the algebraic equatidB2). Nearx=0 we make
the ansatz

Thus Fg is equal to the overall upper bourfl®, which

proves our conjecture that the ground state has the largest

depinning force. . gs(X)=g’'x+0O(x?), (C1
For the casec=1/2 we introduceg,(X)=gg(x) and

0,(X)=gg(x+1/2). In accordance with the symmetries

(119 the delay equation10) turns into a system of two

which yields

coupled algebraic equations, 0=[—«g'+27b(1+g")]x+0O(x?). (C2
Equating the coefficient ot equal to zero we get
0=20,(x)— (24 k)g1(x) + bsin 27[x+g(x)], 2b
0=2g,(X)— (24 k)go(X)—bsin 2m[x+g,(x)].  (B6) 9= (€3
For F we get The slope ofgg(x) becomes infinite at=0 for b equal to
F(xe) = — S 01(Xe)+ 0a(e)] (87)
Xg) = — —-[01(x Xg)]-
B 2 01(Xg) T 92(Xp ch:%- (Ca)
It is not possible to give an analytic expressionFafas an . )
explicit function ofb. But we are able to express(b) in For the case=1/2 the delay equatiofiL0) turns into the
parametric form, i.e Fg(D) andb(D), where the parameter System of algebraic equation®6) for gi(x)=gs(x) and
D is defined by 0,(X)=0g(x+1/2). Again we expandj; and g, in Taylor
series:
D=9:-0>. (B8)
gi=g/x+0(x?), i=1.2. (CH

Together with(B7) we can rewrite(B6):
Inserting this ansatz inttB6) and equating the coefficient of

F F . x! equal to zero leads to
0= N+bcos 2| X— N sinD,
Kk (2+ k—2mb)g;—29,=27b
F —2g! = —
0=- 2+g D + bsin qu(x— —N)cos;er. (B9) 291+ (2+ c+ 2mb) g, = —2mb. (Ce)
K The solution is
Eliminating x we get _ 2mb(2mb* k) cn
- | @790 9127 (4 ) k— (27D) 2
S +sinmD /1- 2bC08n'D> : (B10)  Thys the slope ofis becomes infinite at=0 andx=1/2 for
b equal to
In order to get the extrema &f(xg) we differentiate(B9) in
x. UsingdF/dx=0, eliminatingdD/dx andx— F/(xN) we bK— V(4+ )k
=

(C8)

get 27
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