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We investigate wearless friction in a simple mechanical model called the Frenkel-Kontorova-Tomlinson
model. It combines the Frenkel-Kontorova model~i.e., a harmonic chain in a spatially periodic potential! with
the Tomlinson model~i.e., independent oscillators connected to a sliding surface in a fixed potential describing
the other surface!. We investigate static properties like the ground state, the metastable states, and static
friction, as well as the kinetic friction in the limit of quasistatic sliding. As in the Frenkel-Kontorova model the
behavior strongly depends on whether the ratio of lattice constants is commensurate or incommensurate. In the
incommensurate case, Aubry’s transition by breaking of analyticity also appears in the Frenkel-Kontorova-
Tomlinson model. The behavior depends strongly on the strength of the interaction between the sliding sur-
faces. For increasing interaction, we find three thresholds which denote the appearance of static friction, of
kinetic friction in the quasistatic limit, and of metastable states in that order. These are identical only in the
incommensurate case. In the commensurate case, static friction can be nonzero even though the kinetic friction
vanishes for sliding velocity going to zero.

I. INTRODUCTION

Dry friction is a phenomenon of everyday life. Since Cou-
lomb’s work its basic phenomenological laws are well
known:1 ~i! The friction force is independent of the area of
the sliding surface.~ii ! It is proportional to the load.~iii ! The
kinetic friction, i.e., the force to keep a body sliding at a
constant velocity, does not depend on the velocity and it is
less than or equal to the static friction, i.e., the force to start
sliding. On a macroscopic level, these laws are well under-
stood in terms of the Bowden-Tabor adhesion model,1,2

which is a macroscopic model based on the elastic and plas-
tic properties of the sliding bodies.

In spite of the simplicity of Coulomb’s laws, the sliding of
two solid bodies is a very complex phenomenon that oper-
ates mostly far away from thermal equilibrium. It involves
processes on various spatial and temporal scales, from mi-
croscopic to macroscopic~for an overview of the state of the
art see Ref. 2!. Also, deviations from Coulomb laws have
been found, which depend on the material of the sliding bod-
ies, the surface properties, the sliding history, and the me-
chanical environment. Up to now no generally accepted
theory exists which is able~i! to explain these deviations and
~ii ! to calculate friction forces from the bulk and surface
properties of the sliding bodies. However, in recent years
modern experimental technologies have made it possible to
study wearless friction between clean and atomically flat
surfaces.2 There is some hope that theoretical models will
lead to an understanding of such less complex systems.

The first attempt to explain Coulomb’s laws on the atomic
level was given by Tomlinson3 in his pioneering work in
1929. He considered the surface atoms as single independent
oscillators that are ‘‘plucked’’ by the atoms of the other sur-
face like a guitar string. Even quasistatic sliding~i.e., sliding
at an infinitesimally small velocity! will lead to plucking of
atoms if the stiffness of the interaction between a surface
atom and the bulk is smaller than the stiffness of the inter-
action between this atom and an atom from the other surface

at the moment of closest contact.4,5During plucking the atom
is assumed to jump abruptly from one equilibrium position to
another. Such jumps lead to vibrations of the jumping atom.
The kinetic energy of the vibrating atom is assumed to dis-
sipate totally into the bulk of the sliding bodies due to exci-
tation of some kind of waves. Thus finite friction is possible
even in the limit of zero sliding velocity, contrary to viscous
friction, which vanishes in the quasistatic limit. The assump-
tions that the jumps occur instantaneously and that the atoms
are uncoupled, i.e., a vibrating atom does not excite vibra-
tions of other atoms, lead to Coulomb’s third law.3,5

The easiest model for taking into account the coupling
between atoms is the Frenkel-Kontorova~FK! model,6 which
is a model of an adsorbed monolayer on an atomically flat
surface. It is a one-dimensional model with a chain of adsor-
bate atoms coupled linearly by nearest-neighbor interactions.
The chain interacts with a spatially periodic potential. The
FK model has also been used as a simple friction model.7,4,5

The static properties of this model strongly depend on the
ratio of the lattice constants of the adsorbate layer and the
substrate surface. Aubry has shown8 that, in the case of an
irrational ratio, the ground state can be shifted by an infini-
tesimally small force as long as the strength of the periodic
potential is below a critical value~the point of analyticity
breaking!. Thus the static friction is zero. This is true only in
the thermodynamic limit, i.e., in the case of an infinite num-
ber of adsorbate atoms.

There is some ambiguity in the literature concerning the
meaning of the termfrictionless. In the context of the FK
model frictionless means zero static friction. Another mean-
ing of frictionless found in the literature is a vanishing ki-
netic friction in the limit of infinitesimally slow sliding.4 Re-
cently this notion has been calledsuperlubricity,9,10which is
a misleading term because it doesnot imply that a finite
sliding velocity exists below which the kinetic friction is
zero. It should be emphasized that the two definitions of
frictionless arenot equivalent. Of course, zero static friction
implies zero kinetic friction if we believe in Coulomb’s third
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law. But a vanishing kinetic friction does not imply a van-
ishing static friction. This can be easily seen in the Tomlin-
son model: When the interaction of the oscillator with the
sliding surface is weak, it will not be plucked. Thus it can be
moved adiabatically without dissipation and the kinetic fric-
tion is zero. Nevertheless, the surfacepins the oscillator.
Therefore a finite force is necessary to depin it, which means
that the static friction is not zero. It is equal to the amplitude
of the oscillating sliding force in the case of adiabatic slid-
ing.

The main disadvantage of the FK model is that the atoms
are not coupled to the sliding body. One simple way to over-
come this disadvantage is to couple each atom harmonically
to a rigid body~see Fig. 1!. The resulting model we call the
Frenkel-Kontorova-Tomlinson~FKT! model because it is a
combination of the FK model and the Tomlinson model.

The FKT model is similar to the Burridge-Knopoff~BK!
model,11 which was proposed as a model of an earthquake
fault. The main difference is that in the BK model the inter-
action with the lower body is replaced by a phenomenologi-
cal dry friction law. Usually a velocity-weakening law is
chosen.12 For small sliding velocities, this model exhibits
avalanches~i.e., earthquakes!. For that reason the BK model
has become a popular model for the investigation of self-
organized criticality.12,13Also, solitonlike behavior has been
found.14

This paper is the first part of a series of papers investigat-
ing the FKT model. This part considers only the static prop-
erties. The forthcoming parts will be devoted to kinetic fric-
tion and stick-slip motion, respectively. This first part is
organized as follows: Section II introduces the FKT model.
Section III investigates the FKT model in the case of zero
driving force. In Sec. IV we calculate the static friction. The
kinetic friction in the quasistatic limit is considered in Sec. V.
We conclude with Sec. VI.

II. MODEL

The Frenkel-Kontorova-Tomlinson~FKT! model is a one-
dimensional lattice model for the atomic monolayer of the
surface of a soft body~upper body in Fig. 1! which slides on
a hard body~lower body in Fig. 1!. The monolayer is de-
scribed by a chain ofN particles with harmonic nearest-

neighbor interactions~coil springs!. The interaction of each
particle with the otherwise rigid upper body is also harmonic
~leaf springs!. The equilibrium positions of the particles due
to this interaction define a regular lattice where the lattice
constant is assumed to be the bulk lattice constant of the
upper body. The interaction of the particles with the lower
body is described by a spatially periodic external potential,
which defines a hard surface. The lower body is assumed to
be fixed whereas the upper body is movable. The model
assumes motions onlyparallel to the sliding surface.

The potential energy of the FKT model is

V~j1 , . . . ,jN ,xB!5
1

2(j51

N

~j j2j j21!
21

k

2(j51

N

j j
2

1
b

2p(
j51

N

cos2p~xB1c j1j j !2FxB .

~1!

Here c is the lattice constant of the upper body,xB is the
position of the upper body relative to the lower surface,j j is
the position of particlej relative to the supportxB1c j of its
leaf spring,k is the stiffness of the leaf springs,b is the
strength of the external potential that models the interaction
with the lower body, andF is the force applied to the upper
body. All variables and parameters are measured in dimen-
sionless units. They are based on the following independent
basic units: The length unit is the surface lattice constant of
the lower body, and the unit of the interaction strength is the
stiffness of the nearest-neighbor coupling. All other units can
be expressed in terms of these basic units.

We choose periodic boundaries

j j1N5j j . ~2!

This implies a rational upper lattice constantc becausecN
has to be an integer

c5
P

Q
, ~3!

whereP andQ are coprime, andQ is a divisor ofN.
For FÞ0 the potential energyV is not bounded from

below. Thus no ground state exists and all local minima cor-
respond to metastable states. Therefore, the system is always
in a nonequilibrium state. At finite temperature, the system
can escape from a metastable state to another metastable
state with lower energy. Thus the system creeps due to ther-
mal activation.15 In this paper we restrict ourselves to zero
temperature.

The FKT model is invariant against the following trans-
formations.

~i! Translationsby an integer multiple of the lattice con-
stant of the lower body generated by

xB→xB11. ~4a!

~ii ! Cyclic permutationsof the deformationsj j generated
by

FIG. 1. The Frenkel-Kontorova-Tomlinson~FKT! model where
xB is the position of the upper sliding body,F is the applied force,
c is the lattice constant of the surface of the upper sliding body,
k1 andk2 are the stiffness constants of the coil and the leaf springs,
respectively,j j is the position of particlej relative to the support of
its leaf spring, andb is the strength of the interaction with the
surface of the fixed rigid lower body. Its lattice constant defines the
length unit. The stiffness of the coil springs defines the unit of the
strength of interaction.
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xB→xB1c,
~4b!

j j→j j11 .

~iii ! Reflectionof the upper body atx50:

xB→2xB ,

j j→2j2 j , ~4c!

F→2F.

~iv! Rescalingsof the lattice constant, generated by

c→c11. ~4d!

~v! Inversionof the counting order:

c→2c,
~4e!

j j→j2 j .

These transformations leave the energy landscape invari-
ant, except for the fact that~4a! and ~4b! shift the potential
by a constant value proportional toF. The symmetries~4!
hold also for an arbitrary periodic potential, except for the
reflection symmetry~4c!, which holds only for potentials that
are invariant against reflection like the cosine potential in
~1!. The symmetries permit us to restrictc to the interval
@1/2,1#.

For k50 the FKT model becomes the FK model. For
k,b→` but b/k finite, or similarly by dropping the nearest-
neighbor interaction, the FKT model turns into the Tomlin-
son model of independent oscillators.

As in the case of the FK model, we expect a strong de-
pendence of the FKT model on whetherc is rational or irra-
tional. There are two extreme cases:~i! The most commen-
surate case,c51, and ~ii ! the most incommensurate case
given by the golden meanc5(A521)/250.618 . . . . In or-
der to treat the latter case we have to investigate a series of
FKT models with successively increasing numbers of par-
ticles. Since continued fractions are the optimum rational
approximations of irrational numbers, we take successive
pairs from the Fibonacci series 1,1,2,3,5,8,13, . . . in order to
approximate the golden mean.

III. FKT MODEL WITHOUT DRIVING

In this section we investigate the FKT model where the
external force is absent, i.e.,F50. Stationary states are the
extrema of~1!, which are solutions of

052]j j
V5j j111j j212~21k!j j1bsin2p~xB1c j1j j !,

~5a!

052]xBV5k(
j51

N

j j . ~5b!

It is important to note thatxB is not a free variable, because
a state that is stationary with respect to thej j need not be
stationary with respect toxB .

Because of the symmetries~4a!, ~4b!, and~4c! any solu-
tion can be generated from a solution with

xBPF0, 1

2QG . ~6!

For F50, the potential energy~1! of the FKT model is
bounded from below. Thus aground stateexists. It strongly
determines the static friction, as we will see below.

A. Ground state

In order to calculate the ground state, we start with the
trivial caseb50 where the energy surface is a paraboloid in
the N-dimensional configuration space defined by$j j%.
Equation~5b! defines a plane in this configuration space on
which the solution is situated. The absolute minimum of the
parabolic energy surface is atj j50. This solution automati-
cally fulfills ~5b!. ThusxB is arbitrary.

In the general case,bÞ0, the external potential adds some
corrugation onto the parabolic energy surface, which shifts
the absolute minimum a certain amount outside the origin.
By changingxB , this minimum can be moved into the plane
defined by~5b!. Thus, the ground-state positionxB

G of the
upper body is no longer arbitrary. The deformationsj j

G of the
absolute minimum in any direction cannot exceed half the
periodicity of the external potential:

uj j
Gu< 1

2 , j51, . . . ,N. ~7!

For small values ofb thej j
G’s are linear inb. Forb→` the

particles are situated in the local minima of the external po-
tential. In order to minimize the potential energy in the
springs, each particle will presumably sit in that potential
well that is directly underneath the support of the leaf spring
~see Fig. 1!. Thus we conjecture that, for the ground state,

Int~xB
G1c j1j j

G!5Int~xB
G1c j !, j51, . . . ,N ~8!

holds. The same property holds for the ground state of the
FK model,8 where c corresponds to the winding number.
Numerically we have not found any example demonstrating
the opposite. Furthermore, we found that any other state vio-
lates ~8!. Thus the ground state is uniquely defined by~8!.
Note that~7! and~8! are independent conditions. The ground
state is eithercommensurateor incommensuratedepending
on whetherc is rational or irrational.

Aubry has shown8 that the ground state of the FK model
can be uniquely described by ahull function. This concept
can also be applied to the FKT model. Thus we write

j j
G5gS~xB

G1c j !. ~9!

From Eq.~5a!, the hull functiongS is a solution of the delay
equation

05gS~x1c!1gS~x2c!2~21k!gS~x!

1bsin2p@x1gS~x!#, ~10!

wherex5xB
G1c j . Assuming that the ground state does not

break the symmetries~4! we get

gS~x11!5gS~x!52gS~2x!. ~11a!

The properties~7! and ~8! are equivalent to

ugS~x!u<1/2 ~11b!
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and

ugS~x!1x mod 121/2u<1/2, ~11c!

respectively.
Which values ofxB fulfill Eq. ~5b!? First we consider the

commensurate case. Because of the symmetries~4!, every
xB with xB mod(1/2Q)50 yields a stationary state. Numeri-
cally we find that the ground state is given by

xB
G5S 121nD 1Q , n integer. ~12!

In the incommensurate casexB is arbitrary. We can inter-
pret xB as aphasewhich is discrete for rational values ofc
and continuous for irrational ones. Below we will see that
this interpretation becomes very important for the construc-
tion of elementary defect solutions.

Figure 2 shows the hull functions of numerically calcu-
lated ground states for an incommensurate value ofc. We
clearly see that they fulfill the properties~11!. Figure 2 also
shows the phenomenon ofbreaking of analyticity, first dis-
covered by Aubry8 in the FK model. It means that in the
incommensurate case the hull function is no longer analytic
for b above a certain critical valuebc

S . The nonanalyticity is
caused by jumps that appear at certain points. The biggest
jump is atx50. It means that a kind of forbidden region has
emerged around the maxima of the external potential where
no particle is allowed to be. Due to the nearest-neighbor
interaction, jumps also appear atx5cn, n integer. The size
of the jumps decreases with increasing orderunu. Since the
hull function is a periodic function andc is an irrational
number, jumps occur in any neighborhood of any pointx
P@0,1#.

In the commensurate case onlyQ jumps occur. In Sec. V
we will see that, in any case, whether commensurate or in-
commensurate, the occurrence of jumps in the hull function
corresponds to the occurrence of kinetic friction in the qua-
sistatic limit.

It is possible to show as for the FK model that in the
incommensurate case a transition by breaking of analyticity
must exist. First we show that forb smaller than some
b1.0 the hull function is analytic. This statement is much
easier to prove than the similar statement for the FK model

where the Kolmogorov-Arnold-Moser~KAM ! theorem is
needed because of small denominators. In the FKT model we
do not have the small-denominator problem because for
b50 the dispersion has a gap. Thus we can apply the im-
plicit function theorem, which says that~10! has a unique
and analytic solution in a finite interval ofb around zero. In
leading order it reads

gS~x!5
sin2px

k1222cos2pc
b1O~b2!. ~13!

It fulfills ~11!. For b→` the last term dominates and the
solution has the form

gS~x!52x1
n~x!

2
, with n~x! integer, ~14!

where n(x) cannot be a constant becausegS has to be a
periodic function. Thus the hull function has at least one
jump. Again the implicit function theorem can be applied for
b21 around zero because cos 2p@x1gS(x)#5(21)n(x)Þ0. The
initial jumps of n(x) will be spread everywhere by the
mechanism described above.

In the Tomlinson limit of the FKT model~i.e., k,b→`)
we can discuss the hull function analytically because we can
drop the delay terms of~10!. We get the hull function
gS(x) in parametric form:

gS~t!5
b

k
sin 2pt, x~t!5t2gS~t!. ~15!

It is uniquely defined as long asb,k/(2p). For
b.k/(2p) three different values ofgS are possible, at least
around x50. The additional two values correspond to a
metastable state and an unstable saddle of a single Tomlinson
oscillator~see Fig. 3!. Thus they are not relevant for the hull
function, which describes the ground state. Furthermore,
they do not fulfill ~11c!.

This analysis suggests that the main jump and all addi-
tional jumps of the hull function~which are infinitesimally
small in the Tomlinson limit! are caused by the appearance

FIG. 2. The hull function gS(x) for k51 and
c5(A521)/2'144/233. Solid line:b50.4. Dotted line:b50.5.

FIG. 3. The hull functiongS(x) in the Tomlinson limit ~i.e.,
k,b→`) defined by~15! with b/k50.5. The solid line indicates
stable states of a single Tomlinson oscillator with fixed supportx.
Dashed-dotted and dotted lines indicate metastable states and un-
stable states, respectively. The squares denote the ground state of
the FKT model fork510, b55, andc521/34.
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of metastable states. In the following subsection we there-
fore discuss the question: What kind of metastable states
appear first and for which values ofb?

B. Metastable states

For small values ofb the corrugation is weak and the
ground state is still the only stationary stable state. Ifb is
larger than a critical valuebc

K , additional stationary states
emerge that have the following properties. They violate con-
dition ~8!. The matrix]2V/]j i]j j is positive definite, which
means that these states are stable against infinitesimal small
disturbances inj j , j51, . . . ,N. But they may be still un-
stable against infinitesimal small perturbations, which in-
cludes also disturbances inxB . If b exceeds a further thresh-
old bc

m>bc
K , the first of these states become stable.

The first metastable state will not be very different from
the ground state. It can be described by the ground state plus
a defect. But what kind of defect? Naively, one might expect
a defect caused by a single hopping of one particle to its
neighboring potential well. For the FK model it is known
that this is not the case.16 The elementary defect in the FK
model and in the FKT model too — as we will see below —
is aphase kinkthat separates two domains with ground states
corresponding to different phasesxB defined by~12! ~see
Fig. 4!. The phase of each domain is a kind of ‘‘virtual’’ body
position that would be the real position if the other domain
did not exist. In the FK model such a phase kink is a local-
ized deviation from the ground state, which means that the
kink energy does not depend on the sizeN of the system if
N is much larger than the size of the kink. On the other hand,
in the FKT model the energy of such a defect scales with
N because of thenonlocalcoupling of each particle via the
upper body. The nonlocality is expressed by condition~5b!,
which means that the real positionxB is the average over the
virtual ones weighted by the domain sizes~see Fig. 4!. Thus
the difference between the realxB and the virtualxB shifts
eachparticle out of its ground-state position even if it is far
away from the kink.

Another consequence of the nonlocal coupling is that we
cannot treat an infinitely extended FKT model because the
ratio of the domain sizes would not be defined. Thus we

consider a very large but finite system. Because of the peri-
odic boundaries, the numbers of kinks and antikinks have to
be equal.

The above-mentioned defect of one particle hopping into
the neighboring potential well corresponds to a pair of a kink
and an antikink that are as close together as possible. In the
following we argue that the first metastable state consists of
a pair of a kink and an antikink that are as far away as
possible, not because of the usual exponentially decreasing
kink-antikink interaction but because of the nonlocality. The
difference between the virtual values ofxB of the domain
states is 1/Q.

First we treat the Tomlinson limit, where the kink-
antikink interaction disappears because of the absence of the
nearest-neighbor interaction. Forb.k/(2p) and xB fixed,
each Tomlinson oscillator develops additional stationary
states because the hull functiongS(x) defined by~15! loses
its uniqueness. One of these additional states is metastable
for xB fixed ~see Fig. 4!. Nevertheless, forb just above
k/(2p) any state other than the ground state that fulfills the
nonlocality condition~5b! is still unstable whenxB is free. In
order to see this the most commensurate case~i.e., c51) is
treated in Appendix A. It turns out that the first metastable
kink-antikink state ~see Fig. 4! is indeed that one with
equally sized domains~see Fig. 5!. It appears forb.k/4.
Thus

bc
m5

k

4
, for c51. ~16!

This threshold also holds in general, not only in the Tomlin-
son limit, because the nearest-neighbor interaction only leads
to a finite kink size, but does not change the domain states.

For other values ofc we have found numerically that the
state with equally sized domains is always the first meta-
stable state. It has the following properties:~i!
xB mod(1/Q)50. ~ii ! All j j ’s fulfill ~7!. ~iii ! All j j ’s fulfill
~8! except for those for which the support of their leaf spring
~see Fig. 1! is directly above a maximum of the external
potential. The displacementj j is positive in one domain and
negative in the other. Thus in one domain everyQth particle
violates~8!.

FIG. 4. The first metastable states are kink-antikink pairs. They
separate domains with different ground states that are characterized
by ‘‘virtual’’ positions xB of the upper body. The upper part of the
figure gives an example forc51 in the Tomlinson limit.

FIG. 5. Phase diagram of the elementary kink-antikink pair for
c51 andN→`. The relative portion of one domain is denoted by
p.
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In the incommensurate case metastable states appear be-
yond the point of breaking of analyticity, i.e.,bc

m>bc
S . Nu-

merically we have some evidence thatbc
m5bc

S always holds,
as in the FK model.8

IV. STATIC FRICTION

Before investigating the static friction we have to clarify
the meaning of static friction in deterministic zero-
temperature models, such as the FKT model. We do this from
the point of view of nonlinear dynamics.

A. Definition of static friction

From the phenomenological point of view the static fric-
tion FS is defined as the smallest driving forceF that ini-
tiates sliding. That is, any forceF belowFS does not lead to
a relative motion of the surfaces. Thus, the static friction is
defined by theboundariesof F for which the stationary,
motionlessstate is stable. Therefore the static friction de-
pends on the internal state of the real contact area between
the sliding surfaces, which in the FKT model is determined
by the configuration of theN particles describing the surface
atoms of the upper body~see Fig. 1!. Since different states
may have different stability boundaries the static friction is
in general not uniquely defined. It will depend on thehistory
of the friction system, a well-known experimental fact. For
example, it was found15,17 that the static friction increases
with the sticking duration, i.e., the time during which the
sliding surfaces do not move~at least not on a macroscopic
level!.

In view of the nonuniqueness of the static friction the
question arises: Is a sound definition of static friction pos-
sible that does not depend on the history of the total friction
system? The answer to this question is positive and the ap-
propriate definition reads:The static friction FS is the small-
est driving force above which no stable stationary state ex-
ists. This definition is very similar to the definition of the
depinning force in models describing the pinning-depinning
transition of charge-density waves or interacting vortices in
type-II superconductors. In these models the dynamics is
usually treated in the overdamped limit, which has the fol-
lowing consequences. Assuming we start with a metastable
state and slowly increaseF, the state followsF adiabatically
until a certain value is reached where it annihilates with an
unstable state in a saddle-node bifurcation. Thus the system
depins locally and some degrees of freedom start to move. In
the case of overdamped dynamics the system will be trapped
by the next relative minimum of the energy surface in con-
figuration space. Thus for a slowly increasing driving force
F the system will follow a sequence of depinning events
where it locally relaxes into another pinned state. Eventually
the system globally depins. This happens at least when the
last state disappears.

Applied to friction we see that the above definition of the
static friction makes sense in the absence of inertia effects
both in the internal degrees of freedom and in the macro-
scopic sliding body. It is also independent of the history of
the friction system. The local reconfigurations may be inter-
preted asmicroslips17 that do not lead to sliding on a mac-
roscopic scale. It must, however, be realized that the study of

a massless sliding body is somewhat academic, and a discus-
sion of inertia effects will be crucial for a realistic treatment
of static friction. Here we emphasize the main difference
between models for pinning-depinning transitions, such as
the FK model, and models like the FKT model, namely, the
existence of a macroscopic sliding mass that interacts di-
rectly with many or even all internal degrees of freedom,
which is also responsible for thenonlocal coupling of the
internal degrees of freedom. For finite inertia we expect that
an unstable state does not evolve into another stable state but
rather leads to global sliding. Nevertheless,FS gives an up-
per bound for the actual static friction. It is calculated in the
next subsection. The static friction in the more realistic case
of finite inertia will be discussed elsewhere in the context of
stick-slip motion.

B. Static friction of the FKT model

In the previous subsection we have defined the maximum
static frictionFS as the driving forceF where the last sta-
tionary state disappears. The stationary states are the solu-
tions of

052]j j
V

5j j111j j212~21k!j j1b sin 2p~xB1c j1j j !,

~17a!

052]xBV5k(
j51

N

j j1F. ~17b!

Without solving~17! it is possible to give an overall upper
boundFS

max for the static frictionFS . Taking the sum over
~17a! and using~17b! we get

F52b(
j51

N

sin 2p~xB1c j1j j !, ~18!

from which it immediately follows thatuFu is always smaller
than

FS
max5Nb. ~19!

Starting with a stable, stationary state of the FKT model
without driving, what happens ifF is quasistatically
switched on? First,xj andxB will change adiabatically, i.e.,
they are smooth functions ofF. EventuallyF will reach a
value — the depinning force — where the state annihilates
with an unstable stationary state in a saddle-node bifurcation.
From physical intuition and from our numerical studies we
are convinced thatthe ground state of the FKT model has the
largest depinning force, which therefore defines the maximal
static friction force FS. We are able to prove this conjecture
only for c51 ~see Appendix B!, but it is consistent with the
above-mentioned experimental observations that the static
friction always increases with the sticking time. At the be-
ginning of sticking, just after a global sliding event, the con-
tact area will be in a metastable state. On a large time scale
where thermal agitation becomes important, the system will
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overcome the barrier and move into a more stable state. By
repetition of this process it will eventually reach the ground
state.

For c51 andc51/2 we are able to calculateFS analyti-
cally ~see Appendix B!. For other rational values ofc we
have calculatedFS numerically. We find the following prop-
erties:~i! The maximal static frictionFS as a function ofb
increases strictly monotonically.~ii ! Near zero it scales like

FS;bQ. ~20!

~iii ! For b→` it approachesFS
max. ~iv! For fixed values of

b it decreases with decreasing commensurability ofc. More
precisely: If we organize the rational numbers in a Farey
tree,18 we find that the static friction of some rational value
of c is less than the static friction of the parents of this
rational number in the Farey tree.

Figure 6 showsFS(b) for a sequence of rational values of
c, which approaches the golden mean (A521)/2. We see
that the sequence of curves converges to a curve with a sin-
gularity at the point of breaking of analyticitybc

S . For
b,bc

S the static frictionFS is exactly zero because the ana-
lyticity of the hull function~9! makes it possible to shift the
surface atoms of the upper body smoothly over the corru-
gated surface of the lower body. Thus a Goldstone mode
exists and no force is needed for sliding. As static friction
and the breaking of analyticity always appear together, we
change the meaning ofbc

S . In the followingbc
S denotes the

threshold above which the static friction is not zero. In the
commensurate casebc

S is equal to zero.
For b.bc

S , FS increases strictly monotonically withb.
Numerically we find a power law nearbc

S :

FS;~b2bc
S!a with a'2. ~21!

This behavior ofFS is similar to what is found for the de-
pinning force of the ground state of the FK model,19 except

that for the FK modela'3. We have checked that in the
FKT model the exponenta remains roughly 2 for values of
k down to 0.01. Thusa(k→0) is possibly not continuous at
k50.

V. KINETIC FRICTION IN THE QUASISTATIC LIMIT

In this section we analyze the case of vanishing kinetic
friction in the quasistatic limit, i.e., sliding velocityv→0.
The kinetic friction for arbitrary sliding velocities will be
calculated elsewhere.

The kinetic friction is the lateral force that is necessary to
keep the upper body at a constant velocityv. Thus, the block
positionxB is the control parameter contrary to Secs. III and
IV where the applied forceF was the control parameter.

Quasistatic sliding gives the system enough time to relax
into a stable state after an infinitesimal change ofxB . The
stationary states, which are solutions of~17a!, depend on
xB . From ~17b! follows the lateral force

F~xB!52k(
j51

N

j j~xB!, ~22!

which is necessary to keep the upper body at positionxB . In
the field of nanotribology2 this lateral force is often called
friction force ~for example, in the term ‘‘friction force mi-
croscopy’’! even though it is not of dissipative character as
we will see below. Kinetic friction has to be defined from the
work that is necessary to slide two interacting surfaces over a
finite distance. Thus the kinetic frictionFK is theaveraged
lateral force, i.e.,

FK52 lim
xB→`

k

xB
E
0

xB

(
j51

N

j j~x!dx. ~23!

As already mentioned in the Introduction, frictionless
sliding has attracted some attention in the literature. We em-
phasize that zero friction for afinite velocity is not possible
in open systems. The kinetic friction may vanish only for
sliding velocityv→0. Frictionless sliding simply means that
Coulomb’s law of constant kinetic friction is replaced by
some other~e.g., viscous! friction law where the kinetic fric-
tion vanishes forv→0.

What is the condition for vanishing kinetic friction in the
quasistatic limit? The answer is this: The state of the system
must follow the quasistatic change ofxB adiabatically. In this
case thej j ’s are functions ofxB . Thus the potential energy
~1! with F[0 becomes a continuous periodic function of
xB , i.e.,

Ṽ~xB![V@j1~xB!, . . . ,jN~xB!,xB#.

Using ~17! we get for the lateral force~22!,

F~xB!5]xBV5
dṼ

dxB
,

which is a conservative force oscillating around zero. Its av-
erage is zero, i.e.,FK50.

As long asb is small there exists only one solution of
~17a! for any value ofxB . It is given by the same hull func-
tion gS introduced in Sec. III A in order to characterize the

FIG. 6. Static frictionFS as a function ofb for k51 and for a
sequence of rational values ofc ~thin lines!, which converges to the
golden mean (A521)/2 ~thick line!.
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ground state~9! of the undriven system even in the commen-
surate case. The only difference is that nowxB is arbitrary.
For b.bc

K additional stationary states appear as already
noted in Sec. III B. The reason is that the hull functiongS is
no longer uniquely defined because the solutions of~10! de-
velop loops at values ofx that are integer multiples of
1/Q. The largest loop appears atx50 ~see also Fig. 3!. The
loops correspond to bistability intervals that are bounded by
saddle-node bifurcations. When we start with some state, the
quasistatic change ofxB moves the state adiabatically until a
saddle-node bifurcation is reached. At that point the system
has to rearrange itself into a new metastable state. During
this rearrangement the particles have to move over a finite
distance where they dissipate the energy, which is deter-
mined by the difference between the potential energy before
and after the rearrangement. ThusFKÞ0 for b.bc

K . As ad-
ditional states and kinetic friction in the quasistatic limit al-
ways occur together,bc

K also denotes the threshold below
which the kinetic friction vanishes forv→0.

For c51 and 1/2 we are able to calculatebc
K analytically

~see Appendix C!. For other values ofc this is possible only
numerically. Figure 7 shows numerical results ofbc

K as a
function of k for a sequence of rational values ofc ap-
proaching the golden mean. We find the following properties:
~i! bc

K as a function ofk increases strictly monotonic.~ii !
Near zero it scales as

bc
K;k1/Q. ~24!

~iii ! In the Tomlinson limitk→` it approachesk/(2p). ~iv!
For fixed values ofk it increases with decreasing commen-
surability of c.

In the incommensurate limitbc
K becomes finite in the limit

k→0. The valuebc
K(k→0) is '0.154, which cannot be

distinguished numerically from the value of the point of
breaking of analyticity of the FK model for the golden
mean.19 Thus bc

K(k→0)5bc
K(k50). Numerically we find

thatbc
K scales neark50 as

bc
K2bc

K~0!;kb with b' 1
2 . ~25!

In the incommensurate case the breaking of analyticity of
the hull function corresponds to the appearance of loops in
the solution of~10!. Thus,bc

K5bc
S , which is confirmed by

our numerical results. Therefore both static friction and ki-
netic friction in the quasistatic limit are zero. In the commen-
surate case, on the other hand, zero kinetic friction does not
imply zero static friction. In fact,FS is always unequal to
zero.

VI. CONCLUSION

In this paper we have introduced a simple model of wear-
less friction, the Frenkel-Kontorova-Tomlinson~FKT! model
~see Fig. 1!, a combination of the Frenkel-Kontorova~FK!
model and the Tomlinson model. Here we have investigated
only the static properties of the FKT model. The behavior of
the system strongly depends on~i! the strengthb of the in-
teraction between the sliding surfaces and~ii ! the commen-
surability of the surface lattices. There are three threshold
values ofb at which the behavior changes qualitatively.

The first threshold is denoted bybc
S . Below bc

S the static
friction is zero whereas abovebc

S it increases like a power
law and approachesFS

max5bN in the asymptotic limit. In the
commensurate case, where the ratioc of the lattice constants
of both sliding surfaces is rational,bc

S is zero. The exponent
of the power law is given by the denominator ofc. In the
incommensurate case,bc

S is finite and increases with the ratio
k of the stiffnesses of the leaf and coil springs~see Fig. 1!.
For the golden mean the exponent is roughly 2.

For b below the second threshold denoted bybc
K , the

kinetic friction FK is zero in the limit of quasistatic sliding
~i.e., sliding velocityv→0). That is, forb,bc

K the kinetic
friction behaves similarly to viscous friction. Forb.bc

K

Tomlinson’s basic dissipation mechanism leads to a finite
kinetic friction. Thereforebc

K is also the threshold above
which additional stationary states appear that are stationary
for fixed relative positions of the sliding bodies. The thresh-
old bc

K increases withk and is always larger than zero.
Therefore, in the commensurate case vanishing kinetic fric-
tion does not imply vanishing static friction. The FKT model
for b.bc

K is an example of a dry-friction system that dy-
namically behaves like a viscous fluid under shear even
though the static friction is not zero. This is a generic behav-
ior that strongly violates Coulomb’s third law.

The third threshold, denoted bybc
m , is important for the

precise meaning of the maximal static frictionFS . Below
this threshold the ground state of the undriven FKT model is
the only stable state. Forb.bc

m additional metastable states
appear. The first metastable state is characterized by equally
sized domains. The domain states are almost the ground state
but for different virtual positions of the sliding bodies~for an
example, see Fig. 5!. The bulk domain states differ from the
exact ground state because the real position is the average of
the virtual ones. In the commensurate case the gap in the
energy between the first metastable state and the ground state
is anextensivequantity, i.e., it is proportional to the number
of particles. This is a consequence of thenonlocalcharacter
of the FKT model.

Since the static friction is the force that is necessary to
start sliding, it depends on the state of the system. Therefore

FIG. 7. The thresholdbc
K as a function ofk for a sequence of

rational values ofc ~thin lines!, which converges to the golden
mean (A521)/2 ~thick line!.
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static friction is not uniquely defined forb.bc
m , but the

functionFS(b) introduced in Sec. IV gives an upper limit of
the actual static friction. It is defined as the smallest force
above which there exists no stable state. We have seen that
FS is given by the force required to depin the model from the
ground state.

The relation between these thresholds depends on whether
c is rational or irrational. For the commensurate case the
relation is

05bc
S,bc

K,bc
m . ~26!

For the incommensurate case it is

0,bc
S5bc

K5bc
m . ~27!

Concerning the static properties of the FKT model there
remain many open questions to be investigated. From the
mathematical point of view, a number of conjectures has
been presented in this paper for which we have strong nu-
merical evidence but no rigorous proof. For example, it is
evident from physical intuition that the ground state has the
largest depinning force. This has been found also in more
complex systems.20 It would be desirable to have a proof of
this conjecture at least for a certain class of models.

Although the FKT model is a very simplified model even
for atomically flat surfaces, we believe that it is able to
mimic some of the qualitative behavior of real systems. The
FKT model has the potential to become a prototypical model
for dry friction of atomically flat surfaces, such as the FK
model, for the commensurate-incommensurate transition and
charge-density waves.

The FKT model can be extended in various directions. An
important one would be the introduction of quenched ran-
domness due to unavoidable surface impurities because in
FK-like models it may destroy the frictionless state in the
incommensurate case.21
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APPENDIX A: THE FIRST METASTABLE STATE
IN THE TOMLINSON LIMIT FOR c51

For the Tomlinson limit~i.e., k,b→` but b/k finite! of
the undriven FKT model we drop the first two terms of the
potential~1!. Stationary states are solutions of

]xjV5kj j2bsin 2p~xB1c j1j j !50 ~A1!

and~5b!. A stationary state is stable if the second derivative
of the potentialDV is a positive definite matrix. It reads

DV[S D1 0 . . . 0 2k

0 D2 . . . 0 2k

A A � A A

0 0 . . . DN 2k

2k 2k . . . 2k Nk

D , ~A2!

where

Dj5k1Cj with Cj522pbcos 2p~xB1c j1j j !.
~A3!

It is positive definite if allDj ’s and detDV are positive.
After some algebraic operations one finds

detDV5kS )
j51

N

D j D (
j51

N
Cj

D j
. ~A4!

Thus the stability conditions read

(
j51

N
Cj

D j
.0 and Dj.0, j51, . . . ,N. ~A5!

A sufficient condition for stability is

Cj.0, j51, . . . ,N. ~A6!

For the casec51 we investigate the existence and stabil-
ity of solutions containing a kink and an antikink in more
detail. The solution has two domains wherej is uniform in
each domain. There areN6 particles withj6 fulfilling ~A1!
with N11N25N. The definitionp5N1 /N measures the
extent of the plus domain relative to the total extent of the
system. Because of~5b! it has to fulfill

pj11~12p!j250. ~A7!

The solution is stable ifpC1 /D11(12p)C2 /D2.0 and
D6.0. Eqs.~A1!, ~A7!, and

p
C1

D1
1~12p!

C2

D2
50 ~A8!

define implicitly b/k as an even function ofp21/2. The
numerical solution is shown in Fig. 5. The minimum at
p51/2 can be calculated analytically because~A7! implies
j252j1 . Furthermore,xB50 because of~A1! and there-
fore C6522pbcos2pj1 . Thus ~A8! reduces toC650,
which impliesj151/4. With ~A1! we getbc

m5k/4.

APPENDIX B: FS FOR c51 AND c51/2

In accordance with our conjecture that the static friction
FS is given by the depinning force of the ground state, we
solve the delay equation~10! for the hull functiongS . Using
~9! and ~17b! we get

F~xB!52k(
j51

N

gS~xB1c j !. ~B1!

The static frictionFS is determined by the maximum of
F(xB), which can be obtained by equating the extrema.
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First we calculateFS for c51. Because of the periodicity
of gS the delay equation turns into an algebraic equation

052kgS~x!1bsin 2p@x1gS~x!#. ~B2!

For F we get

F~xB!52kNgS~xB!52bNsin 2p@x1gS~x!#. ~B3!

The extrema ofF are also extrema ofgS . From~B2! follows

dgS
dx

5
2pbcos 2p@x1gS~x!#

k22pbcos 2p@x1gS~x!#
. ~B4!

The extrema are implicitly defined byx1gS5n/211/4, n
integer, which leads to

FS5bN. ~B5!

Thus FS is equal to the overall upper boundFS
max, which

proves our conjecture that the ground state has the largest
depinning force.

For the casec51/2 we introduceg1(x)[gS(x) and
g2(x)[gS(x11/2). In accordance with the symmetries
~11a! the delay equation~10! turns into a system of two
coupled algebraic equations,

052g2~x!2~21k!g1~x!1bsin 2p@x1g1~x!#,

052g1~x!2~21k!g2~x!2bsin 2p@x1g2~x!#. ~B6!

For F we get

F~xB!52
kN

2
@g1~xB!1g2~xB!#. ~B7!

It is not possible to give an analytic expression ofFS as an
explicit function ofb. But we are able to expressFS(b) in
parametric form, i.e.,FS(D) andb(D), where the parameter
D is defined by

D5g12g2 . ~B8!

Together with~B7! we can rewrite~B6!:

05
F

N
1bcos 2pS x2

F

kND sinpD,
052S 21

k

2DD1bsin 2pS x2
F

kND cospD. ~B9!

Eliminating x we get

F

FS
max56sinpDA12S ~41k!D

2bcospD D 2. ~B10!

In order to get the extrema ofF(xB) we differentiate~B9! in
x. UsingdF/dx[0, eliminatingdD/dx andx2F/(kN) we
get

b5
41k

2pcos2pD
A~pD1sinpDcospD !pD. ~B11!

Equations~B11! and~B10! defineFS(b) parametrically. Ex-
pansions into Taylor series aroundD50 andD51/2 yield

F

FS
max5

p

41k
b1O~b2!, ~B12!

and

F

FS
max512

41k

4
b211O~b22!, ~B13!

respectively.

APPENDIX C: bc
K FOR c51 AND c51/2

Loops appear in the solutions of~10! when the slope of
gS(x) becomes infinite. Forc51 the delay equation~10!
turns into the algebraic equation~B2!. Nearx50 we make
the ansatz

gS~x!5g8x1O~x2!, ~C1!

which yields

05@2kg812pb~11g8!#x1O~x2!. ~C2!

Equating the coefficient ofx1 equal to zero we get

g85
2pb

k22pb
. ~C3!

The slope ofgS(x) becomes infinite atx50 for b equal to

bc
K5

k

2p
. ~C4!

For the casec51/2 the delay equation~10! turns into the
system of algebraic equations~B6! for g1(x)[gS(x) and
g2(x)[gS(x11/2). Again we expandg1 and g2 in Taylor
series:

gi5gi8x1O~x2!, i51,2. ~C5!

Inserting this ansatz into~B6! and equating the coefficient of
x1 equal to zero leads to

~21k22pb!g1822g2852pb

22g181~21k12pb!g28522pb. ~C6!

The solution is

g1,25
2pb~2pb6k!

~41k!k2~2pb!2
. ~C7!

Thus the slope ofgS becomes infinite atx50 andx51/2 for
b equal to

bc
K5

A~41k!k

2p
. ~C8!
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