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In the framework of the nonlinear Schro¨dinger equation~NLSE! as a model of superflow we found that
multicharged vortices are very long-living objects, contrary to the accepted opinion. The lifetime of these
entities is inversely proportional to the dissipation rate which can be incorporated phenomenologically into
NLSE. We calculated unstable eigenvalues and corresponding eigenfunctions. The nonlinear stage of the
instability is studied numerically. We discuss the implications of our observation in the context of spin-up, flow
past a body, and turbulence experiments in a superfluid helium.

Quantum vortices play a crucial role in the dynamics of a
strongly correlated system such as superflow or super-
conductor.1–3 The vortices in superconductors carry a quant
of magnetic flux and the vortices in superfluid possess quan-
tized vorticity. The spinning up of the superfluid and the
magnetization of the type-II superconductor is caused by the
development of an array of quantum vortices~Tkachenko
lattice and Abrikosov lattice, correspondingly1,4!.

The common belief is that only the simplest, or single-
charged vortices with the topological charge61 are stable.
That is the case for the well-known Ginzburg-Landau
model.2 More complex multicharged vortices with the topo-
logical charge6n are known have higher energy and, there-
fore, decay inton single-charged or elementary vortices. In
this paper we show that, for the model of superflow near zero
temperature, the decay time of the multicharged vortex can
be arbitrarily large. As a result, if this model describes ad-
equately the dynamics of superflow, one can expect to detect
multicharged vortices in various experiments. Some indica-
tions of the existence of multicharged vortices can be found
in several experiments on vortex nucleation.5,6 We will dis-
cuss here the possibility of creating multicharged vortices in
spin-up and flow past a body experiments.

For zero temperature, the well-established model of su-
perflow is the nonlinear Schro¨dinger equation~NLSE! in the
form

] tC5 i ~¹2C1C2uCu2C!, ~1!

where we rescaled time ast→t/t0 , space asr→r /a, where
t05g/\ is the characteristic time on the order of 10211 s, and
a5\/A2Mg is the so-called healing length which for4He
superfluid in the low-temperature limit is of the order of a
few Å (g is the strength of the short-range interparticle po-
tential,M is the atomic mass of4He!. This equation in the
context of superfluid was obtained by Gross and
Pitaevskii,7,8 and is also widely used in nonlinear optics and
other applications.9 The equation can be represented in the
Hamiltonian form

] tC52 i dH/dC* ~2!

with the HamiltonianH5*dr @ u¹Cu21uCu4/22uCu2#.

Then-charged vortex solution is of the form7,8

C5F~r !exp@ inu#, ~3!

wherer ,u are polar coordinates. The functionF(r ) has the
following asymptotic behaviors:F'anr

n for r→0 and
F2'12n2/r 2 for r→`. For the entire interval 0,r,` the
solution is accessible only numerically. The constantsan are
known for some values of n, e.g., a150.583,
a250.153 101,a350.026 184 1, etc.~see, e.g., Ref. 10!.

The energy of the n-charged vortex behaves as
n2lnR1CR2, whereR@1 is the outer cutoff radius of the
integration and the additive constantC does not depend on
the topological chargen. Obviously the state ofn single-
charged vortices is more energetically favorable than one
n-charged vortex. However, in such a dynamical system as
NLSE it is not obvious how then-charged vortex will decay
in the presence of the energy conservation and other integrals
of motion. One can expect the excess energy to be radiated
away due to transformation of the bounding energy coupling
of n single charges into the energy of the acoustic excita-
tions. By virtue of the fact that the transformation of the
bounding energy into the acoustic field is a very slow pro-
cess, we can expect the multiple vortex to be a metastable
state of the NLSE.

Although NLSE describes some important properties of
superflow ~see, e.g., Ref. 11!, it cannot be an appropriate
model to describe the dissipation processes due to its Hamil-
tonian nature. In order to allow the dissipation we consider
the simplest possible generalization of the model

] tC5~e1 i !~¹2C1C2uCu2C!, ~4!

where the small phenomenological parametere!1 describes
the bulk dissipation of superflow towards the condensate. We
assume that the dissipation ratee is temperature dependent
and is the function of normal component density. The role of
the normal component may be played by normal3He atoms.
We assume that the only channel for the bulk dissipation for
this condition ~very low temperature! is the absorption of
acoustic excitations of superflow by the normal component.
We would like to point out that this particular form of the
dissipation term does not change the stationary solution of
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NLSE. This equation formally recalls the Pitaevskii-
Ginzburg equation for a superfluid nearL point12,13with the
dissipation ratee of the order one. We expect, therefore, that
the decay time of then-charged vortex will be strongly
affected by the bulk dissipation ratee.

In order to investigate the stability of then-charged vor-
tex with respect to small perturbations, we consider the per-
turbative solution in the form

C5@F~r !1h~x,y,t !#exp@ inu#, ~5!

whereh is a complex function. Performing linearization with
respect toh we obtain the perturbative equation

] th5~e1 i !S ¹2h2
n2

r 2
h1

2in

r 2
]uh1~122F2!h2F2h* D .

~6!

Separating the real and imaginary part ofh5a1 ib and rep-
resenting the solution in the form

S abD5 (
m52`

`

exp@lt1 imu#S am~r !

bm~r ! D , ~7!

wherel stays for the growth rate of linear perturbations,m
denotes the azimuthal number of the perturbations, and
„am(r ),bm(r )… are real functions ofr . After simple algebra
we obtain

l
eam1bm
11e2

5] r
2am1

1

r
] ram2

m21n2

r 2
am2

2imn

r 2
bm

1~123F2!am ,

l
ebm2am
11e2

5] r
2bm1

1

r
] rbm2

m21n2

r 2
bm1

2imn

r 2
am

1~12F2!bm . ~8!

The spectrum of the problem~8! consists of the following
parts: ~1! A continuous band, describing the extended per-
turbation of the vortex far away from the core. This part of
the spectrum is linearly stable fore>0. ~2! Three neutral
modes (l50) corresponding to the translation of the core in
x and y directions (m561) and the rotation of the phase
(m50). ~3! A discrete spectrum of exponentially localized
modes of Eqs.~8! which exists forumu>2. These modes are
responsible for the split of the multicharged core.

In order to find localized modes of Eq.~8! we solved Eqs.
~8! numerically using a matching-shooting method.14 The
procedure requires very high numerical precision in order to
reproduce the solution in the interval of localization of the
eigenmode. It transpires that even double precision (16 digits
after the decimal point! is not sufficient in the general case.
The problem is significantly simplified in the limit of small
e. For e50 Eqs.~ 8! are an anti-Hermitian problem. There-
fore, all eigenvaluesl are purely complex, i.e.,l5 iv, v is
a real number. Replacing for simplicitybm→ ibm , we obtain
the system of two real ordinary differential equations with
the phase-space dimension equal to 4:

vbm5] r
2am1

1

r
] ram2

m21n2

r 2
am2

2mn

r 2
bm

1~123F2!am ,

2vam5] r
2bm1

1

r
] rbm2

m21n2

r 2
bm2

2mn

r 2
am

1~12F2!bm . ~9!

The solution of Eqs.~9! consists of two steps. In the first step
we obtain numerically unperturbed functionF. Than we ap-
plied rational polynomial approximation of this numerically
obtained solution. Expressions for severaln are given in the
Appendix. On the second step we solved Eqs.~9! using
shooting-matching method. The conditions atr→` were
satisfied demanding exponential decay ofa,b, i.e.,
(am ,bm) ;(1,g)exp@2br#, where b2511A12v2 and
g5v/(b222). For r→0 we applied leading-order expan-
sions of a,b; (am ,bm)5s1r

un1mu1s2r
un2mu where s1,2 are

unknown two-component vectors which are used in the
matching procedure.

In order to obtain the numerical solution of Eqs.~9! one
requires an initial assumption forv ands1,2. Because there
is no apparent idea how to choose them, we set our initial
values forv520.5 and, e.g.,s151, s250. For this guess,
we started our matching-shooting procedure on a relatively
short intervalr 0,r,r e , with r 0'0.0520.1 andr e'223.
Then we repeated the procedure increasing slowly the inter-
val of integration using as an improved initial value the re-
sults from the previous step.

The e correction can be obtained perturbatively as far as
am ,bm andv are known. Representing the solution in the
form (am ,bm)5(am

0 ,bm
0 )1e(am

1 ,bm
1 )1•••, l5 iv 1el1

1••• and imposing the solvability conditions for the func-
tionsam

1 ,bm
1 we obtain

l152 2v^am
0 bm

0 &/^~am
0 !21~bm

0 !2& , ~10!

where the scalar product is defined aŝab&
5*0

`rdra(r )b(r ).
The values ofv,l1 for severalm,n are presented in

Tables I and II. The localized eigenfunction for the solution
of n5m52 and n5m53 is shown in Fig. 1. The most
unstable mode occurs form5n ~it is energetically favorable
to split the multiple core tom single cores rather than to tear
off only one core! ~see also Ref. 10!. A single-charged vortex
does not possess an exponentially localized eigenfunction for
m561, and, therefore, is stable according our analysis. De-
tailed proof of the stability for a single-charged vortex is
given in Ref. 10. The meaning of the core mode fore50 is
the rotation with the frequencyv of n single zeros ofC
around the center of symmetry fixed at an infinitely small
distance.

TABLE I. The values ofv andl1 for n5m52,3,4,5.

n5m 2 3 4 5

v 20.4376 20.6634 20.778 20.842
l1 0.4241 0.658 0.777 0.842
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Let us now discuss the result. We determined that the
lifetime T;1/Rel51/(el1) of the multicharged vortex di-
verges ase decreases and is formally infinity for NLSE. For
the NLSE we have no exponential instability of the multi-
charged vortex. However we can expect a type of slower
instability mode in higher orders. In particular, generic per-
turbations may grow linearly with time. In this sense the
multicharged vortex is metastable and may exist for a sig-
nificant period depending on initial perturbations.

The instability has a nonlinear character and originates
from the interaction between localized eigenmodes and the
continuous spectrum emitted by the vortex radiation. The
instability does not contradict the energy conservation be-
cause the radiated waves and the localized modes contribute
to the energy with opposite signs. Indeed, simple analysis
shows that in the linear approximation the extended excita-
tions of the formh5w(q)exp@iqx# have the energy density
H;*dquw(q)u2q2.0, wherew(q) is the spectral density of
the initial conditions. On the other hand, the localized eigen-
modes of Eq.~9! contribute to the Hamiltonian with the sign
opposite to extended modes. We observe that conservation of
the Hamiltonian does not contradict simultaneous growth of
localized and radiated modes. This process is similar to the
growth of waves with negative energy.15

Our simulations with Eq.~4! confirm the results. The
simulations were performed in a rectangular domain by a
quasispectral split-step method based on fast-Fourier trans-
form ~FFT!. We observed very long-living vortices~e.g., for
e50.001 the vortex remains unsplit until 1500 units of time!.
A rotating vortex pair excites the acoustic waves radiated
away. In Fig. 2 one clearly sees the acoustic waves produced
by the decaying double-charged and triple-charged vortices.

Let us discuss some important implications of our results.
The double-charged vortex is a limiting configuration of two
single vortices for intervortex distanced→0. It is well
known that for large separationsd@1 such vortices can be
modeled by point vortices in an ideal incompressible fluid.

These vortices rotate around the center of symmetry with the
frequencyV54/d2.16 The frequency formally diverges at
small d. However our analysis shows that indeed the fre-
quency remains finite and approaches the asymptotical value
v for d→0, although its value remains rather high on the
order of t0

21 .
A more striking phenomenon occurs if we take into ac-

count the dissipation in Eq.~4!, i.e., seteÞ0. Dissipation
causes the vortices to repel. Again, for large separation the
velocity of radial motion of the vorticesv behaves as
v;e/d. Formally, repulsion becomes infinite at small dis-
tances. However, according to our analysis the repulsion
vanishesat small distances and the radial velocity behaves as
v;el1d, which is in the order of 103e ~in our scaling of
time!, and can be low enough at smalle. One can speculate
that an external force could bring the vortices together, and
then they will remain as a double-charged object for a long
time. Moreover, in the experimental measurements of the
quantized vorticity,19 such multicharged vortices may result
in multiple and even fractional vorticity~due to transient
effects!.

Another important implication is that multicharged vorti-
ces are effective sources of acoustic waves. In the limit
e→0 a large part of the energy of then-charged vortex is
transferred to the acoustic excitations. One can speculate that
the acoustic field resulting from decaying of multicharged
vortices may create necessary conditions for initialization of
superfluid turbulence.17,18

Let us consider applications of our theory for a system of
superflow in a rotating bucket. We performed numerical
simulations of Eq.~4! coupled with a solid-body rotation of
the normal fluid written by analogy with Ref. 12:

] tC5~e1 i !@~¹2 ivn!
2C1C2uCu2C# ~11!

with the velocity of normal flowvn5zr , andz5const de-
scribes the vorticity of the normal flow.12 The simulations
were performed in a circular vessel of radiusR. As initial
conditions we took the state without vortices. We applied a
quasispectral split-step method based on FFT for the rectan-

FIG. 1. Realam(r ) ~solid line! and imaginarybm(r ) ~dashed
line! parts localized eigenmodes of Eq.~ 9! for m5n52,3.

FIG. 2. Gray-coded snapshots ofuC(x,y)u2 ~zero is shown in
black, uCu51 in white! for double-charged vortex~a!–~c!; and
triple-charged~d!–~f! at the moments of time:~a! t51700; ~b!
t52000; ~c! t52500; ~d! t51700; ~e! t52000; and~f! t52500.
The parameters of the simulations are: The domain size 1003100
units, number of FFT harmonics 1283128; e50.001, boundary
conditions no-flux; initial conditions were slightly perturbed
double-charged vortex. Single vortices are presented by black spots,
the acoustic field is seen in gray shade.

TABLE II. The values ofv andl1 for n54 andm5024.

m 0 1 2 3 4

v 0 0 20.1847 20.4963 20.778
l1 0 0 0.1712 0.4844 0.777
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gular domain. The circular geometry was enforced by ramp-
ing the coefficient in front of the linear termC in Eq. ~11! to
a large negative value away from the radius of the vesselR.
In such a way we modeled the conditionC50 at the circular
boundary. We indeed determined that beyond the threshold
of nucleation the vortices appear at the edges of the vessel as
multicharged aggregates. Our numerical simulation shows
the following possible mechanism for the creation of multi-
charged vortices. Initially, a single-charged vortex appears at
the edge of the vessel, and moves away. The moving vortex
suppresses the condensate amplitude in the region behind it,
which looks like a long tail~see Fig. 3!. The tail initiates the
creation of the next vortex mainly in tail’s location. The
newly created vortex moves along the tail with velocity
higher than that of the initial vortex. Thus, the vortices bound
each other and create a multicharged vortex. In relation to
Fig. 3, let us discuss the spin-up problem of superfluid He in
the framework of NLSE. At zeroe there is no mechanism to
bring up the superflow into rotation due to momentum con-
servation. Even if the vortices are generated at the boundary,
they do not propagate into the vessel. The situation changes
at any eÞ0. Then, due to modulational instability of the
condensate20,21 the vortices are created, and only one-sign
vortices will propagate into the interior. The natural question
here is whether it is the only system where the multicharged
vortices can be created. We conjecture that far enough from
the threshold one should find multicharged vortex pairs in
the flow wake of the body.
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APPENDIX

Here we present a rational polynomial approximation for
unperturbed vortex solution of NLSE forn51,2,3,4

n51, F25r 2
0.3410.07r 2

110.41r 210.07r 4
;

n52, F25r 4
0.023 4415053r 2

11252 537r 2120 212.023 44r 415053r 6
;

n53,

F25r 6
0.000 685 608 381r 2

11122.57r 412233.6r 218.999 314 39r 61r 8
;

n54,

F25r 8 ~0.000 011 072 650 761r 2!/~1131 735r 2

117 232.2r 41192.85r 6115.999 988 927 34r 81r 10! .
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FIG. 3. The snapshot ofuC(x,y)u2 for Eq. ~ 11!. The parameters
of the simulations are radius of the vesselR565; angular velocity
of the normal componentz50.016 ande50.01. Initial conditions
areC51 plus small amplitude noise. Isolated vortices are seen as
small black dots; multiple vortices are bold dots or black areas.
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