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Stability of multicharged vortices in a model of superflow
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In the framework of the nonlinear Sclinger equatiofNLSE) as a model of superflow we found that
multicharged vortices are very long-living objects, contrary to the accepted opinion. The lifetime of these
entities is inversely proportional to the dissipation rate which can be incorporated phenomenologically into
NLSE. We calculated unstable eigenvalues and corresponding eigenfunctions. The nonlinear stage of the
instability is studied numerically. We discuss the implications of our observation in the context of spin-up, flow
past a body, and turbulence experiments in a superfluid helium.

Quantum vortices play a crucial role in the dynamics of a The n-charged vortex solution is of the fofrf
strongly correlated system such as superflow or super- _
conductort=3 The vortices in superconductors carry a quant W=F(r)exdiné], ©)
of magnetic flux and the vortices in superfluid possess quan- . :
tized vorticity. The spinning up of the superfluid and theWTIere.r"9 are polta:_cotc))r(:]lna_tes.FTEe fur?c]:utFr(r) r;)as th;
magnetization of the type-Il superconductor is caused by th OZSVX'EQ 2/882pr 0 'COO E a;/kl]ors ;avrt orl arﬂ<oo"#:
development of an array of quantum vortic€&achenko ~-L—nrelor r—ee. Forthe entire intérval Sr €
lattice and Abrikosov lattice, correspondinbfy. solution is accessible only numerically. The constaniare
The common belief is that only the simplest, or single—kn()_v‘(’)n15;°£01son1_eo O\;agulzszl 1°f n, g, C“E:]?'Sgs'
charged vortices with the topological chargel are stable. a2;h' ’a3_f : n h ' e;cjc(see, e.g.,b ﬁ -2
That is the case for the well-known Ginzburg-Landau 2 € eerlerg%/ of the p—charge vorte; 5. avefs has
model? More complex multicharged vortices with the topo- n nR+C » Where R> 1. Is the outer cutoff radius of the
logical charge*n are known have higher energy and, there-/Ntegration ‘?‘”d the additive c_onstaﬁjtdoes not dep_end on
fore, decay intan single-charged or elementary vortices. In the topolog|cgl chgrgel. ObV'OUSIy. the state oh single-
this paper we show that, for the model of superflow near Zer8harged vortices is more energetically favorable than one

temperature, the decay time of the multicharged vortex CaH-charge_d vortex. _However, in such a dynam|ca[ system as
NLSE it is not obvious how the-charged vortex will decay

be arbitrarily large. As a result, if this model describes ad-, h fth i d other int |
equately the dynamics of superflow, one can expect to dete € présence ot the energy conservation and otherintegrals
of motion. One can expect the excess energy to be radiated

multicharged vortices in various experiments. Some indica d ; ; f the boundi i
tions of the existence of multicharged vortices can be foundWay due to transiormation of the bounding energy coupling

in several experiments on vortex nucleatddhwe will dis- of n single charges into the energy of the acoustic excita-

cuss here the possibility of creating multicharged vortices irﬂons. By virtue O.f the fact that 'the_ transformatlon of the
spin-up and flow past a body experiments. ounding energy into the acoustic field is a very slow pro-

For zero temperature, the well-established model of sucESS: We can expect the multiple vortex to be a metastable

erflow is the nonlinear Schadinger equatiofNLSE) in the ~ State of the NLSE. . . .
1|‘Oorm Wis ! ger equatiort Bi Although NLSE describes some important properties of

superflow (see, e.g., Ref. 31it cannot be an appropriate
G =i(V2W+W— |02, (1) model to describe the dissipation processes due to its Hamil-
tonian nature. In order to allow the dissipation we consider
where we rescaled time as-t/ty, space as—r/a, where the simplest possible generalization of the model
to=g/# is the characteristic time on the order of s, and
a=#/\2Mg is the so-called healing length which féHe GV =(e+i)(V2W+V—|¥|2P), 4
superfluid in the low-temperature limit is of the order of a
few A (g is the strength of the short-range interparticle po-
tential, M is the atomic mass ofHe). This equation in the

where the small phenomenological paramet&rl describes

the bulk dissipation of superflow towards the condensate. We

context of superfluid was obtained by Gross ang@ssume that thg dissipation ratas temperature dependent
and is the function of normal component density. The role of

Pitaevskii’® and is also widely used in nonlinear optics andth | t be plaved b Bidb at
other applicationS.The equation can be represented in the, € normal component may bé played by normae aloms.
Hamiltonian form We assume that the only channel for the bulk dissipation for

this condition (very low temperatureis the absorption of

0¥ =—i 6H/SV* (2) acoustic excitations of superflow by the normal component.
We would like to point out that this particular form of the
with the HamiltonianH = [dr[|VW |2+ |W|4/2—|¥|?]. dissipation term does not change the stationary solution of
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NLSE. This equation formally recalls the Pitaevskii- TABLE I. The values ofw andX; for n=m=2,3,4,5.
Ginzburg equation for a superfluid ne&rpoint-*3with the
dissipation rate: of the order one. We expect, therefore, thatn=m 2 3 4 5

the decay time of then-charged vortex will be strongly

S —0.4376 —0.6634 —-0.778 —0.842
affected by the bulk dissipation rate
. . . N 0.4241 0.658 0.777 0.842
In order to investigate the stability of thecharged vor-
tex with respect to small perturbations, we consider the per-
turbative solution in the form . 1 M2+ 2 omn
wbn=dran+ F&ram_ 2 am— 2 B
V=[F(r)+n(x,y,t)]exdiné], (5)
+(1-3F?%a,,

wheren is a complex function. Performing linearization with

respect toy we obtain the perturbative equation ) 1 m?+n? 2mn
—wan=diby+ F&rbm_ r2 bm— r2 an

dm=(e+i)

) n>  2in ) -
Vin— oz nt —z dgnt (1-2F%) n—F9* |. +(1-F?)b,,. 9)
(6)

Separating the real and imaginary partzpf a+ib and rep-
resenting the solution in the form

The solution of Eqs(9) consists of two steps. In the first step
we obtain numerically unperturbed functién Than we ap-
plied rational polynomial approximation of this numerically
obtained solution. Expressions for sevarare given in the
Appendix. On the second step we solved E(®. using
-y exp[)\t+im0](am(r)>, (7)  shooting-matching method. The conditions rat-» were
bm(r) satisfied demanding exponential decay @afb, i.e.,
(am.by) ~(1g)exg—pr], where B2=1+1—w? and
where\ stays for the growth rate of linear perturbations, g=w/(B?—2). Forr—0 we applied leading-order expan-
denotes the azimuthal number of the perturbations, andions ofa,b; (ay,,by)=s;r!""™+s,rin=m wheres, , are
(@m(r),by(r)) are real functions of . After simple algebra unknown two-component vectors which are used in the

[’

a
b

m=—o

we obtain matching procedure.
In order to obtain the numerical solution of E¢8) one
€entby, 1 m*+n? 2imn requires an initial assumption fes ands, ,. Because there
1+ €2 =dramt F’gfam_ ;2 @m~ — 2 PBm is no apparent idea how to choose them, we set our initial
values foro=—0.5 and, e.g.s;=1, s,=0. For this guess,
+(1-3F%ap, we started our matching-shooting procedure on a relatively
short intervalr g<<r <r,, with ry~0.05-0.1 andr.~2-3.
ebp—an, 1 m2+ n? 2imn Then we repeated the procedure increasing slowly the inter-
Tez—zar b+ Farbm_ r2 b+ ;2 &m val of integration using as an improved initial value the re-
sults from the previous step.
+(1-F%)by,. 8 The € correction can be obtained perturbatively as far as
an,b, and w are known. Representing the solution in the
The spectrum of the problert8) consists of the following form (am:bm):(a?n,b?n)+f(arln,blm)+"', A=iw +eNg

parts: (1) A continuous band, describing the extended per-+ ... and imposing the solvability conditions for the func-
turbation of the vortex far away from the core. This part oftigns al bl we obtain

the spectrum is linearly stable fe=0. (2) Three neutral
modes § =0) corresponding to the translation of the core in A= — 2w(adb2)/((a%)%+ (b)), (10)
x andy directions fn=*1) and the rotation of the phase
(m=0). (3) Adiscrete spectrum of exponentially localized where the scalar product is defined agab)
modes of Eqs(8) which exists fojm|=2. These modes are = [grdra(r)b(r).
responsible for the split of the multicharged core. The values ofw,\; for severalm,n are presented in

In order to find localized modes of E(B) we solved Eqs. Tables | and II. The localized eigenfunction for the solution
(8) numerically using a matching-shooting metd8dThe  of n=m=2 andn=m=3 is shown in Fig. 1. The most
procedure requires very high numerical precision in order taunstable mode occurs fon=n (it is energetically favorable
reproduce the solution in the interval of localization of theto split the multiple core tan single cores rather than to tear
eigenmode. It transpires that even double precision (16 digiteff only one core (see also Ref. J)0A single-charged vortex
after the decimal pointis not sufficient in the general case. does not possess an exponentially localized eigenfunction for
The problem is significantly simplified in the limit of small m=*1, and, therefore, is stable according our analysis. De-
€. Fore=0 Eqgs.( 8) are an anti-Hermitian problem. There- tailed proof of the stability for a single-charged vortex is
fore, all eigenvalue& are purely complex, i.eN=iw, w is  given in Ref. 10. The meaning of the core mode éet0 is
a real number. Replacing for simpliciby,—ib,,, we obtain  the rotation with the frequencyw of n single zeros of¥
the system of two real ordinary differential equations witharound the center of symmetry fixed at an infinitely small
the phase-space dimension equal to 4: distance.
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TABLE Il. The values ofw and\; for n=4 andm=0-4.

m 0 1 2 3 4
) 0 0 —0.1847 —0.4963 —0.778
Ng 0 0 0.1712 0.4844 0.777

Let us now discuss the result. We determined that the
lifetime T~1/Rex=1/(e\,) of the multicharged vortex di-
verges as decreases and is formally infinity for NLSE. For
the NLSE we have no exponential instability of the multi-
charged vortex. However we can expect a type of slower
instability mode in higher orders. In particular, generic per- FIG. 2. Gray-coded snapshots [oF (x,y)|? (zero is shown in
turbations may grow linearly with time. In this sense theblack, [¥[=1 in white) for double-charged vortexa)—(c); and
multicharged vortex is metastable and may exist for a siglfiple-charged(d)—(f) at the moments of timeta) t=1700; (b)
nificant period depending on initial perturbations. t=2000; (c) t=2500; (d) t=1700; () t=2000; and(f) t=2500.

The instability has a nonlinear character and originated "€ Parameters of the simulations are: The domain size<100
from the interaction between localized eigenmodes and then'ts: _number of FF‘_r_harmomc_s_lXElZ& €=0.001, boundary
continuous spectrum emitted by the vortex radiation. Thecondmons no-flux; |n|t|a}l condltl.ons were slightly perturbed
instability does not contradict the energy conservation bedouPle-charged vortex. Single vortices are presented by black spots,
cause the radiated waves and the localized modes contributtrée acoustic field is seen in gray shade.
to the energy with opposite signs. Indeed, simple analysi

shows that in the linear approximation the extended excit

afrhese vortices rotate around the center of symmetry with the
. . -~ “frequency Q) =4/d2.1® The frequency formally diverges at
tions of the formy=w(q)exligx] have the energy density sm?all d. >I/—|owever our analysci]s shgws that ?/ndeedgthe fre-

H~ fdg|w(q)|2g®>0, wherew(q) is the spectral density of e ,
the ifnit?zJII c(gr)u|ji?ions. On the o(tﬂgar hand ?he localized Zigen_quency remains finite and approaches the asymptotical value

modes of Eq(9) contribute to the Hamiltonian with the sign g);g: ng_? although its value remains rather high on the

opposite to extended modes. We observe that conservation 8f A morg étrikin henomenon occurs if we take into ac-

the Hamiltonian does not contradict simultaneous growth of triKing pne X o
ount the dissipation in Eq4), i.e., sete#0. Dissipation

localized and radiated modes. This process is similar to thga ses the vortices to repel. Aaain. for larae separation the
growth of waves with negative enerﬂfy. u vorl pel. Again, g p I

Our simulations with Eq.(4) confirm the results. The velocity of radial motion of the vorticess behaves as

simulations were performed in a rectangular domain by &~ €/d- E'ormally, repuI3|do_n b?comes mﬂlmt_e z%(thsmall Oll's_'
quasispectral split-step method based on fast-Fourier tran ances. However, according o our analysis thé repuision
form (FFT). We observed very long-living vortices.g., for vanishesat small distances and the radial velocity behaves as
€=0.001 the vortex remains unsplit until 1500 units of tjme U.Nd‘ld'dWh'Crl; ISI in the ordher tOf ﬂl;l gn our scaling IO];

A rotating vortex pair excites the acoustic waves radiate ime), and can be low enoug at small ©ne can speculate
away. In Fig. 2 one clearly sees the acoustic waves produc ﬁat an exte'rnal forpe could bring the VOI’tICES' together, and
by the decaying double-charged and triple-charged vorticednen they will remain as a double-charged object for a long

Let us discuss some important implications of our resultsiMe: Moreover, in the experimental measurements of the

The double-charged vortex is a limiting configuration of two quantized vorticity,” such multicharged vortices may result

single vortices for intervortex distanceé—0. It is well multiple and even fractional vorticitydue to transient
known that for large separatioms>1 such vortices can be effects.

modeled by point vortices in an ideal incompressible fluid. Another Important implication is th"?‘t multicharged vorti-.
ces are effective sources of acoustic waves. In the limit

e—0 a large part of the energy of threcharged vortex is
transferred to the acoustic excitations. One can speculate that
the acoustic field resulting from decaying of multicharged
vortices may create necessary conditions for initialization of
superfluid turbulencé’8

Let us consider applications of our theory for a system of
superflow in a rotating bucket. We performed numerical
0.05 . . . . .

simulations of Eq(4) coupled with a solid-body rotation of

=n=2
\m"' the normal fluid written by analogy with Ref. 12:
0.00 | )

---------------- GO =(e+)[(V=iv) 2P +¥—|¥[2r] (1)

0.006

m=n=
0.002

-0.002

e
-
-

-
-
o
g

-
-
o
—

with the velocity of normal flow ,=¢r, and {=const de-
2 4 6 scribes the vorticity of the normal flo¥. The simulations
r were performed in a circular vessel of radiRs As initial
FIG. 1. Reala,(r) (solid line and imaginaryb,,(r) (dashed conditions we took the state without vortices. We applied a
line) parts localized eigenmodes of Eg9) for m=n=2,3. quasispectral split-step method based on FFT for the rectan-

-0.05
0
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gular domain. The circular geometry was enforced by ramp-
ing the coefficient in front of the linear terd in Eq. (11) to
a large negative value away from the radius of the veRsel
In such a way we modeled the conditit= 0 at the circular
boundary. We indeed determined that beyond the threshold
of nucleation the vortices appear at the edges of the vessel as
multicharged aggregates. Our numerical simulation shows
the following possible mechanism for the creation of multi-
charged vortices. Initially, a single-charged vortex appears at
the edge of the vessel, and moves away. The moving vortex
suppresses the condensate amplitude in the region behind it,
which looks like a long tailsee Fig. 3 The tail initiates the
creation of the next vortex mainly in tail's location. The
newly created vortex moves along the tail with velocity
higher than that of the initial vortex. Thus, the vortices bound
each other and create a multicharged vortex. In relation to
Fig. 3, let us discuss the spin-up problem of superfluid He in
the framework of NLSE. At zere there is no mechanism to FIG. 3. The snapshot 6 (x.y)|? for Eq.( 11). The parameters
bring up the superflow into rotation due to momentum Con_of the éirﬁulations gre radius c;fythe ves;% 65'.an uf’:\l’ velocit
servation. Even if the vortices are generated at the boundarx _ ~ » ang ocity
they do not propagate into the vessel. The situation Changef the normal componer‘@t. 0.016 .ande 0.01. Inltlgl conditions

o . - Aew=1 plus small amplitude noise. Isolated vortices are seen as
at any e#0. Then, due to modulational instability of the

21 : .~ small black dots; multiple vortices are bold dots or black areas.
condensat@?! the vortices are created, and only one-sign
vortices will propagate into the interior. The natural question

. g . 0.34+0.0%?
here is whether it is the only system where the multicharged n=1 2_y2 .
vortices can be created. We conjecture that far enough from ’ 1+0.4r°+0.0%*’
the threshold one should find multicharged vortex pairs in
the flow wake of the body. 0.023 44+ 5053 %

n=2, F?=r* :
The authors are grateful to L. Kramer, S. Popp, and O. 14252 5377420 212.023 4"+ 5053 °
Stiller for fruitful discussions. The work of .LA. was sup-

ported in part by the Raschi Foundation. The support of the
Israel Science Foundation and Israeli-French Foundation is

kindly acknowledged. The work of V.S. was partially sup- 2_,6

n=3,

0.000 685 608 382

; .
ported by the Minevra Foundation and Minevra Center for 1+122.5%4+2233.6%+8.999 314 36°+r%’
Nonlinear Physics of Complex Systems.

n=4,
APPENDIX

, , . F2=r8(0.000 011 072 650 76r2)/(1+31 7352
Here we present a rational polynomial approximation for

unperturbed vortex solution of NLSE for=1,2,3,4 +17232.24+192.85°6+15.999 988 927 34 +r10) .
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