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The curvature, strains, and stresses produced by the misfit of a film-substrate system of cubic crystals in
pseudomorphic epitaxy on cubic~001! faces are found by a simple general procedure which minimizes the
total elastic strain energy of the system. The film thickness is not required to be small compared to the substrate
thickness, but the misfit and strain are assumed to be small so that linear elasticity theory can be used. The
deviations for finite film thickness from the usual limit of negligible film thickness differ from previous work.
The theory in the usual limit agrees well with a recent measurement of the bending of a system of up to seven
monolayers of Ge deposited on a Si~001! surface.

I. INTRODUCTION

The theory of the bending of a film-substrate system is an
old problem dating back at least to 1909.1 Two distinct cases
have been studied. In case 1, which is of interest for bending
of electroplated systems, it is assumed that a stress field is
present in the film which forces the bending. The theory
relates the radius of curvature of the systemR to the stress in
the film so that a measuredR yields the value of that stress.
Reference 1 assumes the film thicknesst f is small compared
to the substrate thicknessts . Later papers have generalized
the theory to finite film thicknesses.2,3 In case 2 the film is
assumed to be crystalline and has been deposited in pseudo-
morphic epitaxy on a crystalline substrate. The curvature of
the system is driven by the misfit between the periodic
meshes of the crystal planes of the surfaces of the film and
substrate. The theory then relatesR to the misfit.4–6 It is
convenient to refer to curvature produced in this way as ep-
itaxial bending.

References 1–6 all develop the theory using the force and
moment balance equations of equilibrium elasticity theory.
Recently a simple general method was applied to case 1 by
du Trémolet and Peuzin,7 which minimizes the total elastic
energy of the system with respect toR and a parameterb
which gives the position of the ‘‘neutral’’ layer. i.e., the layer
where the bending strain vanishes. The theory of the bending
in Ref. 7 again assumest f small compared tots . This paper
extends the method of Ref. 7 to case 2, but does not assume
that t f /ts is small. The development here does assume that
the misfit and the consequent strains are small, so that linear
elastic relations can be used, and takes account of the dis-
continuity in strain at the interface between film and sub-
strate. An explicit relation is found which expresses the ratio
R/ts in terms of the misfit and the ratiost f /ts andY f8/Ys8,
whereY8 is a modified Young’s modulus. The relation be-
tweenR and the stress in the film, which is the objective of
case 1 studies, is also obtained for generalt f /ts . The rela-
tions found here for generalt f /ts in both case 1 and case 2
differ from previous work.

The relation developed between curvature and misfit can
be verified in a system with known misfit and elastic con-
stants. This verification is demonstrated here with a recent
measurement on an epitaxial system, although just in the

limit of small r[t f /ts . The complete relation for non-
negligible r, which will be called finiter, is not needed for
the usual epitaxial system, but the derivation clarifies the
theory of the bending. Clarification is needed because recent
papers have found different dependences onr than that found
here, due to neglect of the discontinuity in strain at the inter-
face. The derivation also illustrates the power and simplicity
of the energy-minimization procedure.

In Sec. II the total elastic energyEtotal of the bent film-
substrate system is found in terms of the properties of the
film and substrate and the parametersR and b. In Sec. III
Etotal is minimized with respect toR andb. Formulas forR,
b, and the strain and stress fields are derived and compared
with previous work. In Sec. IV the relation between misfit
and curvature is derived and shown to fit well in a recent
measurement8 of the curvature of a substrate crystal of
Si~001! when a film of Ge~001! is deposited in pseudomor-
phic epitaxy. Section V discusses these results and their ap-
plication, and also the energy-minimization method and its
possible extension to more general cases of epitaxy.

II. THE TOTAL ELASTIC ENERGY
OF THE BENT SYSTEM

The elastic energy density of a strained cubic material of
volumeV is given by9

Eel

V
5
c11
2

~«1
21«2

21«3
2!1c12~«2«31«3«11«1«2!

1
c44
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The « i , i51–6 are the strain components and theci j , i , j
51–6, are the elastic constants in the reduced index form
defined by

«15«xx , «25«yy , «35«zz,

«452«yz , «552«zx , «652«xy . ~2!

In the system to be studied there are no shear components of
strain; hence

«45«55«650. ~3!
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The system consists of a rectangular film on a rectangular
substrate both of lengthl and widthw with cubic ~001! crys-
tal surfaces; the surfaces are in thex-y plane andx, y, andz
are along the crystal axes, as shown in Fig. 1.

Since there are no applied forces in thez direction, the
stress in thez direction vanishes, and gives the linear elastic
relation

s35szz5c12~«11«2!1c11«350; ~4!

hence

«352
c12
c11

~«11«2!. ~5!

There will be stresses in thex andy directions because the
film and substrate will exert in-plane forces on each other.
Putting ~5! into ~1! and dropping the shear terms gives

Eel5VFc112 2c12
2

2c11
~«11«2!

22~c112c12!«1«2G . ~6!

If we now use the symmetry of cubic~001! surfaces so
that thex andy directions are equivalent and note that epi-
taxy will act symmetrically, i.e., isotropically, in these two
directions, then

«15«2 ; ~7!

hence the elastic energy can be written

Eel5
V~c112c12!~c1112c12!

c11
«1
25V

Y

12n
«1
2[VY8«1

2,

~8!

whereY is Young’s modulus andn is Poisson’s ratio, both
along cubic axes. The abbreviationY8 is conveniently intro-
duced for the modified Young’s modulusY/(12n).

Figure 1 shows symmetric bending in both thex and y
directions. The origin of coordinates is in the neutral layer,
drawn dashed in the figure. Thez axis points downward, so
the radius of curvatureR shown in the figure is negative. The
neutral layer lies a fractionb of ts from the interface, so the
interface is atz52bts .

Because of the bending, the lengths of the layers change.
Between two layersDz apart in either film or substrate we
have a change in the length of the layer ofu Dz, whereu is
the angle subtended by the specimen at the center of curva-
ture, compared to the lengthRu, so that the strain is

D«152
Dz

R
. ~9!

Thus in Fig. 1 withR,0, «1 increases as in~9! asz increases
in both substrate and film.

At the interface there is a discontinuity in«1 since the
strain in the film« 1

f refers to the equilibrium state of the
film, whereas in the substrate« 1

s refers to the substrate equi-
librium. The condition for pseudomorphic epitaxy, which
forces the square mesh cells of film and substrate to coincide,
can be written

a0
f ~11«1

fi!5a0
s~11«1

si!, ~10!

wherea 0
f anda 0

s are the sides of the equilibrium mesh cell
of film and substrate, respectively, and« 1

fi and « 1
si are the

strains at the interface indicated by the superscripti. Then
~10! can be written

«1
fi2~11m!«1

si5m[
a0
s2a0

f

a0
f , ~11!

wherem is the misfit between film and substrate. Assuming
thatm!1, which corresponds to the strains being small and
linear elastic theory applicable, we write the discontinuous
strain at the interface as

«1
fi5«1

si1m. ~12!

The total strain in film and substrate is the strain produced
by the misfit when the system is constrained to be flat plus
the strain due to bending. Thus

«1
f ~z!5mf2z/R, «1

s~z!5ms2z/R, ~13!

wheremf andms are the homogeneous strains due to misfit
in the flat system. Then from~12! at z52bts

mf2ms5«1
fi2«1

si5m. ~14!

Minimization of the energy in the flat system

Etotal
~flat!5VfYf8~«1

f ~flat!!21VsYs8~«1
s~flat!!25VfYf8mf

21VsYs8ms
2

with respect tomf using ~14! gives

ms

mf
52

VfYf8

VsYs8
52gr , ~15!

whereg[Y f8/Ys8 andr[t f /ts5Vf /Vs . Hence from~14! and
~15!

FIG. 1. A film-substrate system with cubic~001! surfaces of
lengthl, widthw, film thicknesst f , substrate thicknessts , bent with
negative radius of curvature in thex and y directions,x, y, andz
axes in crystal axis directions. The origin of coordinates is in the
neutral layer~dashed!, which is at a distancebts from the interface.
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mf5
m

11gr
, ms52

mgr

11gr
. ~16!

The total elastic energyEtotal of the bent system can be found
by integrating~8! over z using ~13!:

Etotal5 lwFYf8E
2bts2t f

2bts
dzSmf2

z

RD 2
1Ys8E

2bts

~12b!ts
dzSms2

z

RD 2G
5VfYf8@~mf1ab!21~mf1ab!ar1a2r 2/3#

1VsYs8@~ms1ab!22~ms1ab!a1a2/3#, ~17!

wherea[ts/R.
From ~17!

]Etotal

]mf
5
1

a

]Etotal

]b
; ~18!

hence at the minimum ofEtotal, where ]Etotal/]b50,
]Etotal/]mf also vanishes. Thus the minimum ofEtotal is in-
dependent of the individual values ofmf andms provided
~14! holds, but depends only onm. It is convenient to put
mf5m andms50 in ~17! for purposes of evaluatingb, a and
Etotal at the minimum, which will depend only ong, r, andm.

III. MINIMIZATION OF THE TOTAL ENERGY

A. Solution for a and b

From ~17!, setting the derivative ofEtotal with respect toa
to 0 gives

]Etotal

]a
5VfYf8F2~m1ab!b1~m12ab!r1

2ar 2

3 G
1VsYs82a@b22b1 1

3 #50; ~19!

hence

a52
rgm~b1r /2!

rg~b21br1r 2/3!1~b22b11/3!
, r[

t f
ts
,

g[
Yf8

Ys8
. ~20!

Equations~19! and ~20! are identical with the moment bal-
ance equation around the neutral axis. Setting the derivative
of Etotal with respect tob to 0 gives

]Etotal

]b
5VfYf8@2~m1ab!a1a2r #1VsYs8a

2~2b21!50;

~21!

hence

a52
rgm

~b1r /2!gr1~b21/2!
. ~22!

Equations~21! and ~22! are identical with a force balance
equation. Equating~20! and ~22! and solving forb gives

b5
2

3

@11~r /4!~31gr 2!

11r
, ~23!

and putting~23! into ~22! gives

a[
ts
R

52
6gmr~11r !

114gr16gr 214gr 31g2r 4
. ~24!

Keeping just the first-order correction inr to the values ofb
anda in the limit of small r, ~23! and ~24! become

b.
2

3S12
r

4D , ~25!

ts
R

.26gmr@11~124g!r #. ~26!

Figure 2 plotsb and the reduced curvaturea/m as func-
tions of r for several values ofg from ~23! and ~24!. The
curvature is small forr large andr small, whileb remains
near 2/3 up tor51, and then rises and becomes greater than
1, which means there is no neutral layer in the substrate.
However, b from ~23! is always positive and the neutral
layer never moves into the film, which would correspond to
negativeb. But one expects that at some larger the neutral
layer must be in the film, since now greater reduction of
energy is achieved by reducing the average strain in the film.
Clearly there is a second solution to the curvature calcula-
tion, which can be found by interchanging film and substrate
in the above calculation. The results of this calculation at
g50.5 are shown in Fig. 3, whereb1 is the first solution and
b2 is the second solution. We defineb2 such thatb2ts is the
distance from the interface to the neutral layer. Henceb2,0
means that the neutral layer is now on the film side of the
interface. The reduced energiesEi /~m

2VsY s8), i51,2, for the
two solutions are also plotted in Fig. 3, showing that the first
solution is more stable at smallr, but atr.2.44 ~1/r,0.41!
the second solution becomes more stable, as expected. How-

FIG. 2. Plots ofb ~full lines! and 2ts/mR ~dashed lines! as
functions ofr for g51.5 ~markeda!, g51.0 ~markedb!, andg50.5
~markedc! from ~23! and ~24!.
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ever, the curvatures of both solutions are the same, as shown
by the single curve forā5ts/mR.

In Fig. 4 the reduced total strains~«1/m! in film and sub-
strate for the first solution mentioned above atr50.5 and
g50.5 are shown over the cross section, along with the
bending strain~dashed!. From Fig. 4 we see the unit discon-
tinuity in the reduced total strains at the interface, and that
the neutral layer, where the bending strain vanishes, is dif-
ferent from the unstrained layers, of which there are two in
this case.

We can now compare the values ofb andR found here to
the values found in Refs. 4–6. Those references all use the
values ofb found in Ref. 4 by a moment balance equation.
In the present notation this value is

b5 1
22

gr ~11r !

2~11gr !
. 1

2 ~12gr ! ~27!

@Ref. 4, Eq.~7!; Ref. 5, Eq.~7!# to compare with~23! and
~25!. The formulas are quite different, even for smallr. How-
ever, the valueb52

3 from ~25! in the limit r→0 is in agree-
ment with Refs. 1 and 7. The error in the derivation of~27!
in Ref. 4 can be traced to the assumption that the strain in the
film is determined just by the curvature and hence overlooks
the discontinuity ofm in the strain at the interface as in~14!.

The value ofts/R in Refs. 5 and 6 is different from~24!
and is given by the following formula~m has been dropped
compared to 1!:

ts
R

52
6gmr~11r !

117gr16gr 213gr 313g2r 2

.26gmr@11~127g!r # ~28!

@Ref. 5, Eq.~16!; Ref. 6, Eq.~16a!#. The value in the limit
r50 is the same as~26!, but the first-order correction inr is
different. In the moment balance equation around the mid-
layer of the substrate forr.0 b drops out, and the limiting
value of ts/R is obtained directly without knowledge ofb.
Hence Refs. 5 and 6 find the correct limiting value in~28!
with a wrong equation forb.

B. Strains due to misfit

At the interface, to first order inr,

«1
fi5mf1

bts
R

5
m

11gr
1ab.m~125gr !, ~29!

«1
si5ms1

bts
R

52
gmr

11gr
1ab.25grm. ~30!

The ratio of the strains at the interface to first order inr is

«1
fi

«1
si 52

1

5gr
. ~31!

From~29!–~31! it follows that whenr→0,R→`, and all the
strain is in the film.

C. Stresses in the film

The general solution with finiter for the in-plane strain
can be used to find the in-plane stress in the film, and hence
gives a general solution for the case 1 problem, which seeks
to relate stress andR. The solution can then be compared to
previous work on case 1. Thus, from~6!, ~7!, and~29!,

FIG. 3. Plots of the parameterb, of the reduced curvature
ā[a/m[ts/mR, and of the reduced total energyEtotal/(m

2VsYs8!
for the two solutions for bending of a film-substrate system at
g50.5. These three quantities are plotted againstr up to r51
~dashed line! and then against 1/r for r51 to `. The negative
values ofb2 mean the neutral layer is in the film. The first solution
is more stable up tor52.44 (1/r50.41) ~dashed line!, when the
second solution becomes the stable state. The reduced curvatureā
is the same for both solutions.

FIG. 4. Cross section of film-substrate system atr50.5 and
g50.5 with origin ofz at the neutral axis andb50.62. The reduced
total strains« 1

f /m in the film and« 1
s/m in the substrate~solid lines!

and the reduced bending strain2z/mR ~dashed line! are shown.
The reduced total strains show a unit discontinuity at the interface
and show unstrained layers atz/ts521.07 and 0.27; the bending
strain vanishes atz50.

53 7463BENDING OF A FILM-SUBSTRATE SYSTEM BY EPITAXY



s1
fi5

]~Etotal/V!

]«1
f 5Yf8«1

fi5Yf8Smf1
bts
R D . ~32!

The relation~32! can be transformed using~23! and ~24!,
which give

mfR

ts
1b52

@113gr 214gr 32g2r 2~413r1gr 3!#

6gr ~11r !~11gr !
,

and ~32! takes the form

s1
fi52

Ys8ts
6rR

@113gr 214gr 32g2r 2~413r1gr 3!#

~11r !~11gr !

.2
Ys8ts
6rR

@12~11g!r #. ~33!

The form~33! can be compared with the results of Refs. 1, 2,
and 7, which solve case 1 for the relation betweens 1

fi andR.
Reference 1 finds, in the notation used here,

s1
fi52

Ysts
6rR

~34!

~Ref. 1!, which may be called the Stoney formula for bend-
ing due to stress. The relation~34! is the limit of ~33! with
r→0, but makes the error of usingYs in place ofYs8 . Ref-
erence 7, which minimizes the total elastic energy to solve
case 1, finds forr negligible the corrected Stoney formula

s1
fi52

Ys8ts
6rR

~35!

~Ref. 7, Eq. 11!, which replacesYs by Ys8 . Reference 2 does
not correct the error in the elastic constant, but makes a
correction for finite film thickness in the form

s1
fi52

Ysts
6rR

114gr16gr 214gr 31gr 4

11r
~36!

~Ref. 2, Eq. 33!. The result~36! again gives the Ref. 1 result
for r→0, but gives corrections for finiter which are different
from ~33!.

IV. APPLICATION TO A MEASURED
EPITAXIAL BENDING

A recent experiment on an epitaxial system by Schell-
Sorokin and Tromp8 provides an opportunity to test the
theory of epitaxial bending in the limit of smallr. The bend-
ing of a Ge~001!-Si~001! film-substrate system in pseudo-
morphic epitaxy for up to seven monolayers~ML ! of Ge was
measured optically. The experiment measured the change in
an angleu between two laser beams reflected from the speci-
men at points a distanceb apart as the Ge film was deposited.
Equation~24! or ~26! in the limit of small r can be applied.
Thus, using~26!,

u5
b

R
52

6gmtfb

ts
2 , ~37!

du

dt
52

6gmb

ts
2

dtf
dt

, ~38!

wheret is time. We estimatedu/dt using the following val-
ues of the parameters~b, m, ts, and dtf /dt are taken from
Ref. 8!:

b50.84 cm,

g50.774 ~YGe8 51.41 Mbar, YSi8 51.82 Mbar!,

m520.043, ~39!

ts51022 cm,

dtf
dt

5
1 ML

6.13 sec
5
1.414 Å

61.3 sec
50.02331028 cm/sec;

hence~38! gives

du

dt
50.388

mrad

sec
. ~40!

In Fig. 5 the line with slope given by~40! is drawn on the
experimental plot ofu~t!. The line follows the measured
curve, especially for the thicker films of up to 7 ML. A
model that assumes bulk behavior of the film, as is done
here, should be more accurate for the thicker films. Above 7
ML the pseudomorphic epitaxy breaks down.

The fit shown in Fig. 5 between measured bending and
the bending predicted by elasticity theory has also been
noted in Ref. 8. The stress measured by applying the cor-
rected Stoney formula~35! to the measured curvature~800
dyn/cm ML! is compared to the stress required~845 dyn/
cm ML! to strain a Ge~001! film by the misfit to Si~001!
~20.043! using the bulk elastic constants of Ge. This com-
parison is equivalent to deriving the epitaxial relation~26! by
putting s 1

f 5Y f8m from ~32! into ~35!. Then ~26! can be
applied as above to finddu/dt.

V. DISCUSSION AND CONCLUSIONS

The principal result of this energy-minimization analysis
is the relation~24! @or ~26! for small r# between the radius of
curvatureR and the misfitm in epitaxial bending, which is
derived under the assumption of small misfit, and hence

FIG. 5. Measured bending~Ref. 8! produced by steady deposit
of Ge on a Si~001! crystal at 500 °C. The change in the angular
separation of two laser beams reflected from the surface at points
0.84 Å apart is plotted inmrad as a function of deposition time in
sec. The line with the theoretical slope 0.388mrad/sec~dashed! is
drawn through the origin of the deposition.

7464 53P. M. MARCUS



small strain, so that linear elasticity theory applies. The rela-
tion ~24! for generalr differs from previous work4–6 because
that work makes an error in the formula forb due to neglect
of the discontinuity in strain at the interface. The relation in
the limit of small r ~the Stoney formula for bending due to
epitaxy! is contained in Ref. 5 as corrected in Ref. 6, but is
not clearly exhibited there because the form given for small
r @their Eq. ~17a!# omits the important elastic factorg. The
experiment in Ref. 8 provides verification of the relation for
small r, including the factorg, since the misfit is known
independently from crystal structure measurements. Applica-
tion of the Stoney formula for bending due to stress deter-
mines the stress in the film from the bending, but does not
verify the relation unless an independent evaluation of the
stress has been made.

The corrections for finiter are of practical importance in
the calculation of the bending of a bimetallic strip, which is
a problem equivalent to the calculation of bending by epitax-
ial misfit. Such strips are produced, for example, by electro-
plating and develop a misfit when changes in temperature act
on the different coefficients of thermal expansion of the two
metals. In these systems film and substrate are frequently
comparable in thickness and the finite-r corrections are
needed, as discussed in Ref. 2.

It is possible but difficult to produce epitaxial films with
finite r if the mismatch is small, in which case the relation
for curvature would require finite-r corrections. Such an ex-
periment does not appear to have been done at this time.
However, it is easy to produce epitaxial films with a substan-
tial number of atomic layers, e.g., more than ten, whose
bending in surely dominated by bulk elastic coefficients. The
bulk relation ~26! between mismatch and curvature would
apply quantitatively and could be used with confidence to
evaluate the product of the mismatch and the elastic constant
of the filmY f8 from the measured curvature. The application
to the seven-atomic-layer film in Sec. IV is probably at the
lower limit of applicability of bulk elastic theory, since sur-
face relaxation effects generally extend two layers deep.

The solution of the epitaxial bending problem~case 2! for

finite r provides also a new solution for the old problem of
bending due to stress in the film~case 1! whenr is not small.
The corrected Stoney formula for bending due to stress,
where the correction is the replacement ofYs by Ys8, has
been found in many papers~e.g., in Refs. 3, 7, 8, and 10!.
However, the corrections for finiter found here differ from
those in previous work, e.g., compare~33! with ~36!.

The energy-minimization method used here not only leads
easily to the curvature formula for finiter, but also permits
immediate determination of the more stable state between
the two solutions for the curvature at a givenr andg. The
method is applied here to the simplest case of epitaxy@on
cubic ~001! surfaces#, but the method is simple enough to be
readily applicable to more general types of pseudomorphic
epitaxy. Thus the method could be applied to epitaxial cur-
vature by a film epitaxial on an arbitrary surface of an arbi-
trary crystal structure when the film grows with a surface
mesh similar in shape to the substrate surface mesh. Among
the complications in treating this more general epitaxy is the
need to use the elastic constant matrix of that surface in that
structure. The strains could first be calculated by the methods
of Ref. 11, which finds the strains in epitaxial films in cases
of general epitaxy when the substrate is so thick that it re-
mains unstrained and flat. However, the methods must be
generalized to consider strains in the finite-thickness flat sub-
strate as well as in the film. Three components of out-of-
plane strain will generally appear, including two shear
strains. Then the strains due to anisotropic bending must be
calculated with the elastic constants of that surface. In the
linear approximation the bending strain can be superposed
on the misfit strain for the flat substrate. The total energy
with that superposed strain would then have to be minimized
with respect to anisotropicR andb.
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