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Bending of a film-substrate system by epitaxy
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The curvature, strains, and stresses produced by the misfit of a film-substrate system of cubic crystals in
pseudomorphic epitaxy on cubif01) faces are found by a simple general procedure which minimizes the
total elastic strain energy of the system. The film thickness is not required to be small compared to the substrate
thickness, but the misfit and strain are assumed to be small so that linear elasticity theory can be used. The
deviations for finite film thickness from the usual limit of negligible film thickness differ from previous work.
The theory in the usual limit agrees well with a recent measurement of the bending of a system of up to seven
monolayers of Ge deposited on g@&i1) surface.

I. INTRODUCTION limit of small r=t;/t;. The complete relation for non-
negligibler, which will be called finiter, is not needed for
The theory of the bending of a film-substrate system is athe usual epitaxial system, but the derivation clarifies the
old problem dating back at least to 19b%wo distinct cases theory of the bending. Clarification is needed because recent
have been studied. In case 1, which is of interest for bendingapers have found different dependences thran that found
of electroplated systems, it is assumed that a stress field ere, due to neglect of the discontinuity in strain at the inter-
present in the film which forces the bending. The theoryface- The derivation also illustrates the power and simplicity
relates the radius of curvature of the systero the stress in ~ Of the energy-minimization procedure. _
the film so that a measureRlyields the value of that stress. [N Sec. Il the total elastic enerdyq, of the bent film-
Reference 1 assumes the film thickngsts small compared ~Substrate system is found in terms of the properties of the
to the substrate thickness. Later papers have generalized film and substrate and the paramet&nd 3. In Sec. Il
the theory to finite film thicknessés.In case 2 the film is  Etotal IS Mminimized with respect t&® and 8. Formulas forR,
assumed to be crystalline and has been deposited in pseudd-and the strain and stress fields are derived and compared
morphic epitaxy on a crystalline substrate. The curvature oWith previous work. In Sec. IV the relation between misfit
the system is driven by the misfit between the periodidi”d curvature is derived and shown to fit well in a recent
meshes of the crystal planes of the surfaces of the film anfieasuremefitof the curvature of a substrate crystal of
substrate. The theory then relatBsto the misfit!~® It is ~ Si(001) when a film of G€00D) is deposited in pseudomor-
convenient to refer to curvature produced in this way as epPhic epitaxy. Section V discusses these results and their ap-
itaxial bending. plication, and also the energy-minimization method and its
References 1-6 all develop the theory using the force anB0ssible extension to more general cases of epitaxy.
moment balance equations of equilibrium elasticity theory.
Recently a simple general method was applied to case 1 by Il. THE TOTAL ELASTIC ENERGY
du Tremolet and Peuzif,which minimizes the total elastic OF THE BENT SYSTEM
energy of the system with respect Rband a paramete . . . : :
Whicgygives the i)osition of the Pneutral” Iayer.pi.e. the I'gyer The ela}sth energy density of a strained cubic material of
where the bending strain vanishes. The theory of the bendin\éommev is given by

in Ref. 7 again assumés small compared tos. This paper Eq Cy

extends the method of Ref. 7 to case 2, but does not assume = 7(s§+ g5+ e2)+Ciere3tege1+E18))

that t;/t; is small. The development here does assume that

the misfit and the consequent strains are small, so that linear Caa. 5 5.

elastic relations can be used, and takes account of the dis- + 7(84+ e5teg). (1)
continuity in strain at the interface between film and sub-

strate. An explicit relation is found which expresses the ratioThe ;, i=1-6 are the strain components and thg, i,]

R/t in terms of the misfit and the ratids/tg and Y /Y ¢, =1-6, are the elastic constants in the reduced index form

whereY’ is a modified Young’s modulus. The relation be- defined by
tweenR and the stress in the film, which is the objective of
case 1 studies, is also obtained for geneyél. The rela- €17 8xxs» 82T 8yy, €37 &7z
tions found here for genera)/t, in both case 1 and case 2
differ from previous work.

The relation developed between curvature and misfit cam the system to be studied there are no shear components of
be verified in a system with known misfit and elastic con-strain: hence
stants. This verification is demonstrated here with a recent
measurement on an epitaxial system, although just in the e4=€e5=€4=0. 3

£4=28y;, &5=28;, €= 28xy- (2)
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Figure 1 shows symmetric bending in both thendy
directions. The origin of coordinates is in the neutral layer,
drawn dashed in the figure. Theaxis points downward, so
the radius of curvaturR shown in the figure is negative. The
neutral layer lies a fractiop of t; from the interface, so the
interface is az= — Bt;.

Because of the bending, the lengths of the layers change.
Between two layerd\z apart in either film or substrate we
have a change in the length of the layerfohz, where@ is
the angle subtended by the specimen at the center of curva-
ture, compared to the lengfg, so that the strain is

t

SUBSTRATE

[NEUTRAL LAYER |

—
—
e e

y // Az
Z=(|’B)is Aslz—ﬁ. (9
Thus in Fig. 1 withR<0, g, increases as i) aszincreases
y in both substrate and film.
At the interface there is a discontinuity &y since the
strain in the filme ! refers to the equilibrium state of the
FIG. 1. A film-substrate system with cubi©01) surfaces of  fjim whereas in the substrats refers to the substrate equi-
lengthl, width w, film thickness;, substrate thicknegs, bentwith  |ibrium. The condition for pseudomorphic epitaxy, which

negative radius of curvature in theandy directions,x, y, andz  fgrces the square mesh cells of film and substrate to coincide,
axes in crystal axis directions. The origin of coordinates is in thecan be written

neutral layer(dasheg which is at a distancgt, from the interface.

f fiy __ oS Si
The system consists of a rectangular film on a rectangular A(1ten)=ag(l+e), (19
substrate both of lengthand widthw with cubic (002) crys- wherea{) andaj are the sides of the equilibrium mesh cell
tal surfaces; the surfaces are in the plane andk, y, andz  of film and substrate, respectively, a@é{ ande?3' are the
are along the crystal axes, as shown in Fig. 1. strains at the interface indicated by the supersdrifthen
Since there are no applied forces in thelirection, the (10) can be written
stress in the direction vanishes, and gives the linear elastic
relation . G ay—ag
e1—(1+m)el'=m=———, (11
. _ -n- o
03=0,,=C1e11 &) +C1183=0; (4)
wherem is the misfit between film and substrate. Assuming
thatm<1, which corresponds to the strains being small and
c linear elastic theory applicable, we write the discontinuous
£3= — C_12(81+82)_ (5)  strain at the interface as
11

hence

fi_ _si
. . S =g;+m.

There will be stresses in theandy directions because the er=erTm (12
film and substrate will exert in-plane forces on each other.

Putting (5) into (1) and dropping the shear terms gives The total strain in film and substrate is the strain produced

by the misfit when the system is constrained to be flat plus

2 2 the strain due to bending. Thus
C1—

12
Ea=V T(81+82)2—(C11—012)8182 . (6
11

el(2)=mi—2/R, &(z2)=my—2/R, (13
If we now use the symmetry of cubi®01) surfaces so Wherem; andmg are the homogeneous strains due to misfit

that thex andy directions are equivalent and note that epi-in the flat system. Then fror12) atz= — gt
taxy will act symmetrically, i.e., isotropically, in these two

directions, then mi—mg=gh—eS'=m, (14)
£1=85; @ Minimization of the energy in the flat system
hence the elastic energy can be written EM0—v,v; (el™)2 4+ vy (e5M0) 2=V Yim?+ VY .m?
V(Ci—C1p) (it 21 Y |, , with respect tam; using (14) gives
Eo= e1=V e1=VY'e7,
Ci11 1—v ’
(8) Mms_ Ve (15)
YA 7

whereY is Young’s modulus and is Poisson’s ratio, both
along cubic axes. The abbreviatidi is conveniently intro-  wherey=Y /Y  andr=t/t;=V;/V,. Hence from(14) and
duced for the modified Young's modult¥§(1— v). (15
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m m'yr 16 1.0 E T T T T T T 1 T7T T T 2
M= Ty ™ 1 (16) 09 b ar \\\\ a E
r / ~ ]
The total elastic energl, of the bent system can be found osl ! l} —tg/mR > b [
; ; ; . E 1/ c-T TN E
by integrating(8) over z using(13): I // £
- Bt z\?2 2 N E
Etota= IW[Yf’ f ) dZ( m¢— ﬁ) 08 E Iy A \\:\\ ~ 3
—Bts—t; 0.5 ‘_” / \\ N
TEH SO
(1-Bts z\? ' <
+YgJ dzl mg— = 04 il E
—Btg R b 3
03[/ 3
=V Y [(Mg+aB)2+(me+ af)ar + a?r?/3] 02 %’ E
+VY[(Mmet aB)?— (mg+aB)a+a?/3], (17) 0,1E 3
WhereaEtS/R 0.0 L RS R T R S R R S R .
0 1 2

From (17)

d EtotaI: l d Etotal_
omg a dB '

(18)

hence at the minimum ofEy,,, where JE;./dB=0,
IE otafdM; also vanishes. Thus the minimum Bfyy is in-
dependent of the individual values of; and mg provided
(14) holds, but depends only om. It is convenient to put
m¢=m andm¢=0 in (17) for purposes of evaluating, « and
Eotal at the minimum, which will depend only op r, andm.

IIl. MINIMIZATION OF THE TOTAL ENERGY

A. Solution for @ and B

From (17), setting the derivative dE, With respect tax
to 0 gives

IEotal 2ar?
=ViY{|2(m+aB)B+(m+2aB8)r +
Ja 3
+VeYe2al B2~ B+3]=0; (19
hence
B rym(B+ri/2) Y
T B AR+ (B—B+13) Tt
—Yfl 20
=97 (20

Equations(19) and (20) are identical with the moment bal-

ance equation around the neutral axis. Setting the derivati

of E,qa With respect toB to 0 gives

£7Etotal ’ 2 2 .
B =ViY¢[2(m+aB)a+a ]+ VY a"(28—1)=0;
(21)
hence
rym
a=— 4 22)

(B+rI2)yr+(B—1/2)°

Equations(21) and (22) are identical with a force balance
equation. Equating20) and (22) and solving forg gives

r

FIG. 2. Plots of 8 (full lines) and —t{/mR (dashed linesas
functions ofr for y=1.5 (markeda), y=1.0 (markedb), andy=0.5
(markedc) from (23) and (24).

_2[14(r/4)(3+ yr?)

3 1+r ' 23
and putting(23) into (22) gives
t 6ymr(1+r
a=2= ymriler) (24)

R 1+4yr+6yr2+4yri+ %%

Keeping just the first-order correction irto the values of3
and « in the limit of smallr, (23) and(24) become

2 r
p=315) 2
S —6ymr[1+(1—4y)r]. (26)

R

Figure 2 plotsg and the reduced curvatuegm as func-
tions of r for several values ofy from (23) and (24). The
curvature is small for large andr small, while 8 remains
near 2/3 up to =1, and then rises and becomes greater than
1, which means there is no neutral layer in the substrate.
However, 8 from (23) is always positive and the neutral
layer never moves into the film, which would correspond to
negativeB. But one expects that at some langéhe neutral

VI%yer must be in the film, since now greater reduction of
energy is achieved by reducing the average strain in the film.
Clearly there is a second solution to the curvature calcula-
tion, which can be found by interchanging film and substrate
in the above calculation. The results of this calculation at
v=0.5 are shown in Fig. 3, whe®, is the first solution and
B, is the second solution. We defifi such thatB,t; is the
distance from the interface to the neutral layer. HefAge0
means that the neutral layer is now on the film side of the
interface. The reduced energigg(m?V,Y ), i=1,2, for the
two solutions are also plotted in Fig. 3, showing that the first
solution is more stable at small but atr >2.44 (1/r<0.41)
the second solution becomes more stable, as expected. How-
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FIG. 3. Plots of the paramete8, of the reduced curvature
a=alm=t4mR, and of the reduced total ener@./(m?V.Y}) FIG. 4. Cross section of film-substrate systemr &t0.5 and
for the two solutions for bending of a film-substrate system aty=0.5 with origin ofz at the neutral axis an@=0.62. The reduced
y=0.5. These three quantities are plotted againstp to r=1 total strainse f1/m in the film ande $/m in the substratésolid lineg
(dashed ling and then against d/for r=1 to . The negative and the reduced bending strainz/mR (dashed ling are shown.
values of8, mean the neutral layer is in the film. The first solution The reduced total strains show a unit discontinuity at the interface
is more stable up to=2.44 (1t=0.41) (dashed ling when the  and show unstrained layers at;=—1.07 and 0.27; the bending
second solution becomes the stable state. The reduced curwatureStrain vanishes at=0.
is the same for both solutions.

[Ref. 5, Eq.(16); Ref. 6, Eq.(16a]. The value in the limit

ever, the curvatures of both solutions are the same, as showns=0 is the same a&6), but the first-order correction inis
by the single curve for=t/mR different. In the moment balance equation around the mid-

In Fig. 4 the reduced total strairgs,/m) in film and sub- layer of the substrate far=0 g drops out, and the limiting
strate for the first solution mentioned aboverat0.5 and value oft/R is obtained directly without knowledge ¢.
vy=0.5 are shown over the cross section, along with théHence Refs. 5 and 6 find the correct limiting value(28)
bending straindashedl From Fig. 4 we see the unit discon- with a wrong equation fop.
tinuity in the reduced total strains at the interface, and that
the neutral layer, where the bending strain vanishes, is dif-
ferent from the unstrained layers, of which there are two in

B. Strains due to misfit

this case. At the interface, to first order in,
We can now compare the values@andR found here to
the values found in Refs. 4—6. Those references all use the i mt Bts _ +aB=m(1=5yr) (29
values ofg found in Ref. 4 by a moment balance equation. ST TR T 1Y yr ap= Y
In the present notation this value is
. Bts ymr
_ yAFn ey =Mg+ —=— +ap=—5yrm. (30

[Ref. 4, Eq.(7): Ref. 5, Eq.(7)] to compare with(23) and The ratio of the strains at the interface to first order is
(25). The formulas are quite different, even for sntalHow- .
ever, the valugg=3% from (25) in the limit r—0 is in agree- er 1
ment with Refs. 1 and 7. The error in the derivation(?7) ey Byr’
in Ref. 4 can be traced to the assumption that the strain in the
film is determined just by the curvature and hence overlook&rom (29)—(31) it follows that whernr — 0, R—, and all the
the discontinuity ofmin the strain at the interface as (h4). strain is in the film.

The value oft/R in Refs. 5 and 6 is different frornf24)
and is given by the following formulém has been dropped C. Stresses in the film
compared to It

(31)

The general solution with finite for the in-plane strain
s 6ymr(1+r) can be used to find the in-plane stress in the film, and hence
R 147w +6w2+3w3+3-2r2 gives a general solution for th_e case 1 problem, which seeks
Y Y Y 4 to relate stress and. The solution can then be compared to

=—6ymr1+(1—7vy)r] (28 previous work on case 1. Thus, frof@), (7), and(29),

—
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The relation(32) can be transformed usin@3) and (24), S 80
which give S 6ok
mfR+ [1+3yr2+4yr3—y2r2(4+3r+yr%)] s | MONOLAYER |
te - 6yr (L+r)(1+ yr) ’ 20 .
0 _
and (32) takes the form 5 200400 s(l)o 5501000
o YIS [L43yr2+4yr3— Y224+ 30+ 9] TIME fsec)

o= —
! 6rR (1+1)(1+9r) FIG. 5. Measured bendin@Ref. 8 produced by steady deposit
Y't of Ge on a S001) crystal at 500 °C. The change in the angular
—_— Ls[l_ (1+y)r]. (33)  separation of two laser beams reflected from the surface at points
6rkR 0.84 A apart is plotted inurad as a function of deposition time in

The form(33) can be compared with the results of Refs. 1, 2,3¢¢ The line with th? t.heoretical S'°p?.o'3ﬁmd/ sed(dashelis
and 7, which solve case 1 for the relation betwednandr. ~ 9rawn through the origin of the deposition.

Reference 1 finds, in the notation her N . . .
elerence ds, in the notation used here, wheret is time. We estimatel 6/dt using the following val-

. Yts ues of the parameter®, m, t, anddt;/dt are taken from
1= T &R (34 Ref. 8:
(Ref. 1), which may be called the Stoney formula for bend- b=0.84 cm,
ing due to stress. The relatidB4) is the limit of (33) with
r—0, but makes the error of using, in place ofY (. Ref- y=0.774 (Yge=1.41 Mbar, Yg=1.82 Mbay,
erence 7, which minimizes the total elastic energy to solve
case 1, finds for negligible the corrected Stoney formula m=—0.043, (39
Yt ts=10"2 cm
fi_ S*S S ’
91=~ R (35

dt; 1 ML 1.414 A e
=0.023x10"° cm/sec;

(Ref. 7, Eq. 1], which replace¥; by Y ;. Reference 2 does Jt T 613 sec 613 sec

not correct the error in the elastic constant, but makes a

correction for finite film thickness in the form hence(38) gives
. Yt 1+4yr+6yr2+47r3+ yr4 de rad
fi__ _Ss _ o
1= &R ot (36) ¢ =0-388— . (40)
(Ref. 2, Eq. 33 The result(36) again gives the Ref. 1 result . . ) ) .
for r—0, but gives corrections for finitewhich are different In '.:'g' 5 the line with slope given b§40) is drawn on the
from (33). experimental plot ofé(t). The line follows the measured

curve, especially for the thicker films of up to 7 ML. A
model that assumes bulk behavior of the film, as is done
here, should be more accurate for the thicker films. Above 7
ML the pseudomorphic epitaxy breaks down.

A recent experiment on an epitaxial system by Schell- The fit shown in Fig. 5 between measured bending and
Sorokin and Tromp provides an opportunity to test the the bending predicted by elasticity theory has also been
theory of epitaxial bending in the limit of small The bend- noted in Ref. 8. The stress measured by applying the cor-
ing of a G&001-Si(001) film-substrate system in pseudo- rected Stoney formulg35) to the measured curvatut800
morphic epitaxy for up to seven monolayéksL) of Ge was dyn/cm ML) is compared to the stress requir€@45 dyn/
measured optically. The experiment measured the change #n ML) to strain a G&O0Y) film by the misfit to S{001)
an angled between two laser beams reflected from the specit—0.043 using the bulk elastic constants of Ge. This com-
men at points a distandeapart as the Ge film was deposited. parison is equivalent to deriving the epitaxial relati@é) by
Equation(24) or (26) in the limit of smallr can be applied. putting o{=Ym from (32 into (35). Then (26) can be
Thus, using(26), applied as above to findé/dt.

IV. APPLICATION TO A MEASURED
EPITAXIAL BENDING

_ V. DISCUSSION AND CONCLUSIONS
S

The principal result of this energy-minimization analysis
de 6ymb dt is the relation(24) [or (26) for smallr] between the radius of
= _f' (38  curvatureR and the misfitm in epitaxial bending, which is

dt tg dt derived under the assumption of small misfit, and hence
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small strain, so that linear elasticity theory applies. The relafinite r provides also a new solution for the old problem of
tion (24) for generalr differs from previous work ®because bending due to stress in the filfoase 1 whenr is not small.
that work makes an error in the formula férdue to neglect The corrected Stoney formula for bending due to stress,
of the discontinuity in strain at the interface. The relation inwhere the correction is the replacementYaf by Y ¢, has
the limit of smallr (the Stoney formula for bending due to been found in many papefs.g., in Refs. 3, 7, 8, and 10
epitaxy) is contained in Ref. 5 as corrected in Ref. 6, but isHowever, the corrections for finite found here differ from
not clearly exhibited there because the form given for smalthose in previous work, e.g., compai&3) with (36).
r [their Eqg.(17a] omits the important elastic factor. The The energy-minimization method used here not only leads
experiment in Ref. 8 provides verification of the relation for easily to the curvature formula for finite but also permits
small r, including the factory, since the misfit is known immediate determination of the more stable state between
independently from crystal structure measurements. Applicathe two solutions for the curvature at a giverand y. The
tion of the Stoney formula for bending due to stress determethod is applied here to the simplest case of epifaxy
mines the stress in the film from the bending, but does notubic (001) surface$ but the method is simple enough to be
verify the relation unless an independent evaluation of theeadily applicable to more general types of pseudomorphic
stress has been made. epitaxy. Thus the method could be applied to epitaxial cur-
The corrections for finite are of practical importance in vature by a film epitaxial on an arbitrary surface of an arbi-
the calculation of the bending of a bimetallic strip, which istrary crystal structure when the film grows with a surface
a problem equivalent to the calculation of bending by epitaxinesh similar in shape to the substrate surface mesh. Among
ial misfit. Such strips are produced, for example, by electrothe complications in treating this more general epitaxy is the
plating and develop a misfit when changes in temperature acteed to use the elastic constant matrix of that surface in that
on the different coefficients of thermal expansion of the twostructure. The strains could first be calculated by the methods
metals. In these systems film and substrate are frequentlyf Ref. 11, which finds the strains in epitaxial films in cases
comparable in thickness and the finitecorrections are of general epitaxy when the substrate is so thick that it re-
needed, as discussed in Ref. 2. mains unstrained and flat. However, the methods must be
It is possible but difficult to produce epitaxial films with generalized to consider strains in the finite-thickness flat sub-
finite r if the mismatch is small, in which case the relation strate as well as in the film. Three components of out-of-
for curvature would require finite-corrections. Such an ex- plane strain will generally appear, including two shear
periment does not appear to have been done at this timstrains. Then the strains due to anisotropic bending must be
However, it is easy to produce epitaxial films with a substan-calculated with the elastic constants of that surface. In the
tial number of atomic layers, e.g., more than ten, whosdinear approximation the bending strain can be superposed
bending in surely dominated by bulk elastic coefficients. Theon the misfit strain for the flat substrate. The total energy
bulk relation (26) between mismatch and curvature would with that superposed strain would then have to be minimized
apply quantitatively and could be used with confidence towith respect to anisotropiR and g.
evaluate the product of the mismatch and the elastic constant
of the filmY ¢ from.the mea_sureﬂ curvaturg. The application ACKNOWLEDGMENTS
to the seven-atomic-layer film in Sec. IV is probably at the
lower limit of applicability of bulk elastic theory, since sur-  The author thanks Erik Klokholm for bringing this prob-
face relaxation effects generally extend two layers deep. lem to his attention and thanks him and A. J. Schell-Sorokin
The solution of the epitaxial bending probldpoase 2for  for discussions about it.
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