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Energies of the ground state and low-lying excited states of the two-dimensional electron gas have been
calculated by a transient-estimate Monte Carlo method. This is an exact fermion quantum Monte Carlo method
that systematically improves upon the results of a variational energy without imposing nodal constraints. We
focus upon the densityr s51, where our previous variational Monte Carlo calculation found qualitative differ-
ences in the effective mass from other theoretical approaches. Starting from a wave function with backflow and
two-body correlations, the best trial function in our previous variational study, we find a ground-state energy
only very slightly lower than the previously reported backflow fixed-node energy, reinforcing the conclusion
that backflow wave functions are quite accurate. The effective mass derived from excitation energies does not
differ significantly from the variational Monte Carlo results, giving a value ofm* /m50.9360.01, so we
conclude that the effective mass is indeed less than bare electron mass for a range of densities around
r s51.

I. INTRODUCTION

During the past three decades, the homogeneous two-
dimensional~2D! electron gas, realized at interfaces of some
semiconductor heterostructures, has attracted a great deal of
interest among both theorists and experimentalists.1 The pair
correlation function and correlation energies of the 2D elec-
tron gas were calculated by Jonson,2 using the dielectric
function formalism. The contributions of the ring diagrams
and the ladder diagrams to the ground-state energy have been
computed independently by several authors.3–5 Other ap-
proximate methods, such as one of using effective potential6

and correlated-basis function approach,7 have also been ap-
plied to investigate the ground-state properties of the system.
Ceperley8 first calculated, using Monte Carlo methods, upper
bounds to the ground-state energy with trial functions con-
sisting of the Slater determinant of single-body orbitals and
products of two-body correlation functions. Tanatar and
Ceperley,9 using these trial functions, performed diffusion
Monte Carlo ~DMC! calculations. Even though the DMC
method gives the exact ground-state energy for a system of
many bosons, it was used within the fixed-node
approximation10 for the ground state of the fermionic many-
body system. This approximation guarantees an upper bound
to the true ground-state energy, which is usually much better
than the variational one. One can systematically improve the
results in quantum Monte Carlo~QMC! by using a better
trial function.

Recently, we have reported DMC calculations of the
ground-state properties of the 2D electron gas, using im-
proved trial functions with backflow and three-body correla-
tions, in addition to two-body correlation.11 From the nu-
merical results, we have provided an analytic expression for

the correlation energy as a function of the density, which can
be used to give exchange-correlation potential in density-
functional calculations of inhomogeneous 2D electron sys-
tems. The compressibility measurement of Eisensteinet al.12

is found to be in good qualitative agreement with the one
calculated from our correlation energy.13

Following experimental work on the anomalous Lande´ g
factor14 and the effective massm* ~Ref. 15! in the Si inver-
sion layers, various approximate schemes16–23 have been
used to understand these phenomena microscopically. How-
ever, none of them could give quantitatively consistent re-
sults with the experiments. In a previous paper,24 we have
also applied the variational Monte Carlo~VMC! method to
calculate low-lying particle-hole excitations of the 2D elec-
tron gas. As far as excited states are concerned, this was one
of the few QMC calculations to date, among which are vi-
brational excited states of some molecules25 and band gaps
of model semiconductors26,27and solid hydrogen.28 From the
Fermi-liquid analysis29 of the particle-hole excitation ener-
gies, we determined the many-body effective mass and other
Fermi-liquid parameters. Our VMC calculations showed that
the effective mass in the 2D electron gas is less than bare
electron massm over a wide range of high densities,24

whereas other earlier analytic calculations produced the mass
greater thanm.19–23To confirm this result, here we shall go
beyond the variational method.

In this work, we intend to examine how crucial the fixed-
node approximation in our ground-state calculations is and
how much our estimates of Fermi-liquid parameters obtained
from the VMC calculations of the excitation energies depend
on the trial wave functions used. For these purposes, here,
we use a method, which can obtain, in principle, exact prop-
erties of both ground state and low-lying excited states. We
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follow the approach proposed by Ceperley and Bernu,30

which is a generalization of the transient-estimate method31

used for fermion Green’s function Monte Carlo. Actually, in
this calculation, the energy differences are always between
states of different momentum, so that a direct application of
the transient-estimate method is possible.

II. METHODOLOGY

All properties of the electron gas without magnetic fields
are determined only by the dimensionless density parameter
r s5a/a0 , where a0 is the Bohr radius,a51/Apr is the
radius of a circle that encloses one electron on the average,
andr is the number density. With energy units of Rydbergs
~Ry! and the length units ofa used here, the Hamiltonian of
the electron gas is

H52
1

r s
2 (
i51

N

¹ i
21

2

r s
(
i, j

1

ur i2r j u
1const, ~1!

where the const is the term due to the uniform background of
opposite charge. Ewald sums32 are used to calculate the long-
range potential.

Let us suppose that theN-electron HamiltonianH in Eq.
~1! has eigenvaluesEi and eigenfunctionsf i(R), where
R5(r1 ,r2 , . . . ,rN) is a 2N-dimensional vector. We begin
with applying a projection operatorC(H)5e2tH/2, wheret
is regarded as imaginary time, to a basis of known functions
$ f i(R)%. Then, the eigenstate, which has the lowest energy
and is not orthogonal tof i(R), dominates in the projected
basis functionf̃ i(R) at large timet. As will be shown in Sec.
III, we use a set of basis functions, which are not only or-
thogonal to each other, but are eigenfunctions of the total
momentum, which commutes with the projection operator
C(H). Therefore, f̃ i ’s are orthogonal to each other for all
projection times t. The energy estimate ofL i(t)
5H i i (t)/Ni i (t), where

Ni i ~ t !5^ f̃ i u f̃ i&5E dR1d R2f i* ~R2!^R2ue2tHuR1& f i~R1!

~2!

and

H i i ~ t !5^ f̃ i uHu f̃ i&5E dR1dR2f i* ~R2!

3^R2uHe2tHu R1& f i~R1! ~3!

is an upper bound to the true eigenvalueEi for all t. Further-
more,L i(t) converges monotonically and exponentially fast
to the exact energy eigenvalueEi :

lim
t→`

L i~ t !→Ei1O@e2t~EX2Ei !#, ~4!

whereEX is the energy of the next excited state with a non-
zero overlap with the basis functionf i .

In order to calculate the multidimensional integrals
Ni i (t) and Hi i (t), we will use diffusion Monte Carlo with
the importance-sampled Green’s function defined as

G~R2 ,R1 ;t ![CG~R2!^R2ue2tHuR1&CG
21~R1!. ~5!

The guiding functionCG , introduced to guide the random
walks to important regions of phase space, must be positive
everywhere the potential is finite, since the Green’s function
will be interpreted as a probability of moving a random walk
from one place to another. A Green’s function at timet can
be rewritten as a path integral ofk Green’s functions at time
argumentt5t/k:

G~Rk ,R0 ;t !5E dR1•••dRk21)
j51

k

G~Rj ,Rj21 ;t!. ~6!

For a sufficiently small time intervalt, the Green’s function
can be approximated by

G~R2 ,R1 ;t!5Gb~R2 ,R1 ;t!Gd~R2 ,R1 ;t! as t→0,
~7!

where the branching term is

Gb~R2 ,R1 ;t!5e2t/2@ELC~R2!1ELC~R1!#, ~8!

and the diffusion term is

Gd~R2 ,R1 ;t!5~4pDt!2Ne2@R22R12DtF~R1!#2/~4Dt!,
~9!

whereD5r s
22 , ELC(R)[HCG( R)/CG(R) is the local en-

ergy of the guiding function, and F(R)
[2CG

21(R)“CG(R) determines the drift velocity of the
random walk.

Using this Green’s functionG, Ni i , andH i i can be rewrit-
ten as

Ni i ~ t !5E dR1dR2Fi* ~R2!G~R2 ,R1 ;t !Fi~R1!P~R1!,

~10!

and

H i i ~ t !5
1

2E d R1dR2Fi* ~R2!$ELi* ~R2!

1ELi~R1!%G~R2 ,R1 ;t !Fi~R1!P~R1!, ~11!

where Fi(R)5 f i(R)/CG(R), P(R)5CG
2 (R), and

ELi(R)5Hf i(R)/ f i(R) is the local energy of a basis function
f i(R).
Suppose that one constructs a trajectory@R1 ,R2 ,•••,Rp#

by repeatedly sampling the diffusion Green’s function
Gd(Rk11 ,Rk ;t) with a small time step. We can estimate
Ni i (kt) and H i i (kt) by taking the averages over the
trajectory30 of the quantities

nii ~kt!5Fi* ~Rn1k!Wn,n1kFi~Rn! ~12!

and

hii ~kt!5 1
2 Fi* ~Rn1k!@ELi* ~Rn1k!

1ELi~ Rn!#Wn,n1kFi~Rn!, ~13!

where theweight is defined as
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Wn,n1k5 )
j5n

n1k21

Gb~Rj11 ,Rj ;t! ~14!

5expH 2t/2 (
j5n

n1k21

@ELC~Rj !1ELC~Rj11!#J .
~15!

Even though this method produces the exact eigenstates
of quantum many-body systems, it has an intrinsic problem:
as in the release-node methods for fermion ground states, its
statistical errors i(t) grows as the exponential of the differ-
ence between excited-state energyEi and the absolute
ground-state~i.e., Bose ground-state! energyE0:

30

s i~ t !}
et~Ei2E0!

Nc
1/2 , ~16!

whereNc is the number of configurations used. In order to
get exact energy estimates, the projection must converge be-
fore the statistical errors get too large. That is the reason why
this method is applicable only to low-lying excited states of
systems with not too-many particles. Note that the total en-
ergies,Ei or E0 , are proportional to the number of particles.
The method does produce smaller errors for the excitation
energy, since the excited states and the ground state are es-
timated from the same trajectory.

We have done the transient-estimate calculations only at
r s51, where our VMC effective masses with and without
backflow correlation are almost indistinguishable and are
less than the bare mass, unlike most of other previous ana-
lytic results.24 Since there is a clear distinction between our
VMC results and the previous values atr s51, it will suffice
to consider onlyr s51 to establish the basic result that
m*,m for a range ofr s much larger than in the previous
analytic work and more like one sees in three dimensions. In
addition to the computer time constraint, the fact that the
statistical error in this method grows exponentially as the
system size increases, requires us to do this calculation in the
smallest size that we considered for the previous calcula-
tions,N526.

As in Ref. 24, here we deal with the ground state and the
lowest particle-hole excitations of the system. The ground
state is considered as filled shells of the wave vectors al-
lowed by periodic boundary conditions. We consider excited
states, which consist of exciting a single electron from the
last occupied shell of the ground state to the first unoccupied
shell~see Fig. 1 of Ref. 24!. The way we construct trial wave
functions, either of the Slater-Jastrow or backflow type, is
shown in Ref. 24. The goal of the present work is to obtain
essentially exact energies for both the ground state and the
low-lying excited states.

As in the VMC calculations,24 we consider two different
excitations, spin-parallel excitations and spin-antiparallel
ones. The basis set$ f i(R)% consists of the ground state and
the spin-parallel excitations for one calculation and the spin-
antiparallel excitations for the other. We use the following
form for the guiding function:

CG
2 ~R!5a0C0

2~R!1(
a

uCa~R!u2, ~17!

whereC0 is the trial function for the ground state,Ca for
excited statea. The constanta0 is set to be equal to the
number of excitations considered for spin-parallel excitations
and to zero for spin-antiparallel excitations, as we discussed
in Ref. 24. This guiding function is non-negative and zero
only where all states under consideration have zeroes.

The properties of the guiding function are more important
for the transient-estimate calculations than for the VMC cal-
culations. This is because the weight of a random-walk tra-
jectory defined in Eqs.~12!–~15! depends exponentially on
the local energies of the guiding function
ELC(R)5HCG(R)/CG(R). Thus, fluctuations inELC(R)
propagate exponentially into the statistical errors of the ei-
genvalue estimatesL i(t). Difficulties arise especially if
ELC(R) is large and negative at a configurationR explored
by the trajectory. This would occur whereCG is small and
has a large negative kinetic energy:2¹2CG .

Ceperley and Alder31 considered this point in their
release-node calculations for the ground state, where they
chose CG to be a bosonic ground-state function
exp@2(i,j

N u(rij)#. This avoids difficulties in the local energy,
because the local energies are smooth and have little fluctua-
tions in the configuration space. However, we find that this
choice is not sufficient for our work, since it leads to large
statistical errors even at the variational, ort50, level without
the weight factors. Even though the statistical errors could, in
principle, be reduced with long runs, more efficient choices
for CG are available.

We have instead used the guiding functionCG in Eq.
~17!, which is close in magnitude to the variational fermion
functions. This choice was found in Ref. 24 to greatly reduce
the statistical fluctuations at the variational level; however, it
leads to much larger fluctuations in the weights. In our cal-
culations, we have found some cases where a trajectory ac-
quires an extremely large weight.2.23104 times the aver-
age weight. This occurs in cases whereCG becomes very
small. In those cases, a single trajectory dominates over the
entire finite set of trajectories, making the overall errors too
large. We have avoided these points by simply rejecting trial
moves in whichELC would become too negative. A choice

FIG. 1. The ground-state energies produced by the transient-
estimate method with the Slater-Jastrow~open triangles! and back-
flow wave functions~filled triangles! vs the projection time. The
calculation was done atr s51, for a system of 26 electrons. The
energies are in units of Ry per electron and the imaginary-time unit
is 0.02 Ry21. The dotted line and solid line show the Slater-Jastrow
and backflow fixed-node energies obtained in Ref. 11, respectively.
The error bars for the fixed-node energies are 0.0004 Ry for the
Slater-Jastrow one and 0.0003 Ry for the backflow one.
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of rejecting moves, withELC greater than 10 times its aver-
age value, led to good statistics for the transient-estimate
energies. We do not believe that this cutoff causes significant
bias, because the large weight occurs near the common nodal
points of all states and should not be particularly relevant to
the effective mass. However, this point needs to be further
clarified in future work.

III. GROUND-STATE ENERGY

We first calculate the exact ground-state energy of the
system and investigate how accurate our previous fixed-node
calculations were atr s51. Since the ground state has zero
total momentum, while the other states considered here have
finite nonzero momenta, the energy estimateL0(t) is deter-
mined by the diagonal termsH00(t) andN00(t), as explained
in the previous section. The open triangles of Fig. 1 show the
ground-state energyL0(t) at projection timet obtained from
the transient-estimate calculation with the Slater-Jastrow
functions being used as basis functions. This was done for
7.33106 steps with the time stept50.0005 Ry21. The num-
ber of configurations averaged to compute the energy at pro-
jection timekt is the number of steps minusk @see Eqs.~12!
and~13!#. The unit of projection time in Fig. 1 and hereafter
is 0.02 Ry21 and the energy unit is Ry per electron. As
expected,L0(0) is equal to the Slater-Jastrow variational
energy in Ref. 11 within the statistical error. We see that the
energy decreases as the projection time evolves. Around
t56, the transient-estimate energy is about the same as the
Slater-Jastrow fixed-node energy of20.3858(4) Ry per
electron, which was obtained from the finite-size scaling and
the Slater-Jastrow fixed-node energy forN558 in Ref. 11.
Even though we get lower energies at larger times, the sta-
tistical errors grow too fast even before reaching the back-
flow fixed-node energy20.3902(3), which is the best upper
bound to the true ground state known so far. In other words,
the error is too large to determine the energy as accurately as
the previous fixed-node DMC method.

With an improved basis function, we can start the simu-
lation nearer the true ground state. This might enable us to
get the converged energy, or the exact ground-state energy,
from the transient-estimate calculation before the error be-
comes very large. The filled triangles of Fig. 1 show the
ground-state energy produced with the backflow wave func-
tions. The runs consisted of 33106 steps and the time step
used for each step or trial move was 0.001 Ry21. Here, we
use the time step two times as big as in the Slater-Jastrow
calculation, which is possible because the guiding function
of Eq. ~17! consisting of the backflow functions has
smoother local energies. Once again,L0(0) corresponds to
the ~backflow! variational energy, which is far below the
Slater-Jastrow variational value. The energy approaches the
backflow fixed-node energy att56 and converges to
20.3910(12) Ry per electron aroundt59. This converged
value is slightly below the backflow fixed-node energy, but
the difference is on the order of the statistical error.

Table I summarizes the transient-estimate results for the
ground state of a system of 26 electrons atr s51. The VMC
and fixed-node DMC results shown in the table are from our
previous calculations in Ref. 11. We set ast1 the projection
time where we can obtain the lowest energy estimate before

the fast-growing statistical error kills our estimation. We
have found in Fig. 1 thatt1 is 930.02 Ry21 for both Slater-
Jastrow and backflow calculations.L0(t1) for the backflow
calculation is almost the same as the corresponding fixed-
node energy within the error, while for the Slater-Jastrow
calculation, it is in the middle of the Slater-Jastrow and back-
flow fixed-node energy. We conclude, from these calcula-
tions, that our backflow fixed-node energy is within 1023 Ry
of the exact ground-state energy at the densityr s51.

IV. EXCITED STATES AND EFFECTIVE MASS

Now we turn to the particle-hole excitations. Following
the Fermi-liquid analysis,29 the energy difference between
two excited statesa andb is given by

DEab5(
l51

~ f l
s6 f l

a!@2cos~ lua!1cos~ lub!#, ~18!

whereua(b) is the angle between particle momentumkp and
hole momentumkh in excitationa(b) and the1(2) sign
corresponds to parallel~antiparallel! spins between particle
and hole. As explained in Ref. 24, the effective mass is de-
termined by the first-order spin-symmetric componentf 1

s :

m*

m
5~12 1

4 r s
2Nf1

s!21. ~19!

If we neglect higher than second-order terms in Eq.~18!, it is
sufficient for the effective mass to consider excitations 1 and
4 in Fig. 1 of Ref. 24, becausef 1

s can be obtained by

Nf1
s5

NDE14
↑↑1NDE14

↑↓

2~2cosu11cosu4!
, ~20!

where DE14
↑↑(↑↓) is the energy difference between spin-

parallel ~-antiparallel! excitations 1 and 4. These excitations
have different nonzero total momenta from each other, so
that the excited-state wave functions, either Slater-Jastrow
type or backflow type, serve as diagonal basis functions at an
arbitrary projection time just like the ground-state functions
in the previous section. Since spin-parallel excitations are
considered along with the ground state, all spin-parallel re-
sults have been obtained from the same Monte Carlo trajec-
tories as in the corresponding ground-state calculations.

TABLE I. The results of the two transient-estimate calculations
for the ground-state energy, using the Slater-Jastrow and backflow
wave functions. The calculations were done atr s51, for a system
of 26 electrons. The variational~VMC! and fixed-node diffusion
Monte Carlo~FN-DMC! values were obtained from the finite-size
scaling and the corresponding results for 58 electrons in Ref. 11.
L0(t1) represents the lowest energy estimate before the statistical
error increases rapidly. The energies are in units of Ry per electron.

Slater-Jastrow Backflow

VMC -0.3694~4! -0.3839~4!

FN-DMC -0.3858~4! -0.3902~3!

L0(0) -0.3690~5! -0.3843~5!

L0(t1) -0.3880~13! -0.3910~12!
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Figure 2 shows the energies of spin-parallel excitations 1
and 4 at projection timet. From now on, the open triangles
represent the results from the Slater-Jastrow transient-
estimate calculations, while the filled triangles show the ones
from the backflow calculations. BothL1(t) andL4(t) do not
converge to asymptotic values in the Slater-Jastrow calcula-
tions before the statistical errors grow rapidly, as in the
ground-state calculations of Fig. 1. The best estimation of the
excited-state energies with reasonable error bars seems to
occur at t59, which is significantly higher than the con-
verged energy from the backflow transient-estimate calcula-
tion. From Fig. 2~a!, we clearly see thatL1(t) converges to
20.3707(8) Ry per electron att59 in the back-flow calcu-
lation. Even though it is less obvious, we conclude from Fig.
2~b! that L4(t) also reaches a converged value
20.3731(8) Ry per electron att59. These converged
excited-state energies are represented by the dotted lines.

The energy differences between the excitations depending
on timet are shown in Fig. 3. The correlated sampling tech-
nique described in Ref. 24 is used here to reduce statistical
fluctuations in the energy differences. The dotted line corre-
sponds to the Slater-Jastrow variational value and the solid
line to the backflow variational one from Ref. 24. It can be
seen that the energy differences att50 in both Slater-
Jastrow and backflow calculations are equal to the corre-
sponding variational result within the error. Like each indi-
vidual energy, we cannot see the convergence in the energy
difference with Slater-Jastrow basis functions. With backflow
basis functions, the energy differences hardly change from
the ~backflow! variational value until five units of the projec-
tion time.

The convergence problem with the Slater-Jastrow wave
functions gets worse for calculation of spin-antiparallel exci-
tations. Figure 4 shows the energies of spin-antiparallel ex-
citations 1 and 4 at timet. In the Slater-Jastrow calculation,

both excited-state energies keep decreasing, while the statis-
tical errors grow rapidly especially aftert56. With the back-
flow functions, bothL1(t) andL4(t) converge aftert1510
time units. The dotted lines show the converged energies,
L1(t1)520.3733(10) andL4(t1)520.3724(9) in units of
Ry per electron, in the backflow calculations.

The energy differencesNDL14(t) between two spin-
antiparallel excitations are plotted as a function of the time in
Fig. 5. As in Fig. 3, the dotted and solid lines represent the
Slater-Jastrow and backflow variational values,24 respec-
tively. We see that the energy difference with the Slater-
Jastrow function is zero, which is the Slater-Jastrow varia-
tional value proved in Ref. 24, until a large statistical
fluctuation makes the estimation meaningless. We did not
include the Slater-Jastrow data at timest.6 in Fig. 5, be-
cause their fluctuations reach beyond the limit of this graph.
The backflow calculations for the energy difference, shown

FIG. 2. Spin-parallel excitation energies produced by the
transient-estimate method with the Slater-Jastrow~open triangles!
and backflow functions~filled triangles! vs the projection time.~a!
and ~b! correspond to excitations 1 and 4 in Fig. 1 of Ref. 24,
respectively. The dotted lines show the asymptotic values in the
backflow calculations of each excitation energy.

FIG. 3. The energy difference between two spin-parallel excita-
tions 1 and 4 in Fig. 1 of Ref. 24 obtained by the transient-estimate
method with the Slater-Jastrow~open triangles! and backflow basis
functions ~filled triangles! vs the projection time. The dotted and
solid lines correspond to the Slater-Jastrow and backflow VMC
energy differences of Ref. 24, respectively.

FIG. 4. Spin-antiparallel excitation energies produced by the
transient-estimate method with the Slater-Jastrow~open triangles!
and backflow basis functions~filled triangles! vs the projection
time. The dotted lines show the asymptotic values in the backflow
calculations of each excitation energy.~a! and ~b! correspond to
excitations 1 and 4 in Fig. 1 of Ref. 24, respectively.
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as the filled triangles, show very little difference from the
corresponding variational result up to the convergence time
t159 for the individual excitations.

We have seen so far that the transient-estimate calculation
of both spin-parallel and -antiparallel excitations with the
Slater-Jastrow trial function does not converge before large
statistical uncertainties make meaningful estimations impos-
sible. The Slater-Jastrow trial functions are not accurate
enough for this method to work. With the backflow function,
we have found that the transient-estimate energies for the
excited states converge well below the variational values be-
fore the statistical errors become large. However, the energy
differences change very little, if any, up to the convergence
times from the corresponding variational results. This im-
plies that our effective mass obtained in Ref. 24 from the
VMC calculations is correct, at least atr s51.

Since we have calculated the energy differences between
excitations 1 and 4 as the projection timet evolves, we can
estimate the effective mass through Eqs.~19! and ~20! as a
function of timet. This is plotted in Fig. 6. As can be seen,

the Slater-Jastrow transient-estimate mass, denoted by the
open triangles, increases toward the backflow VMC value
until the errors explode att56. On the other hand, the back-
flow transient-estimate masses remain virtually equivalent to
the backflow variational one untilt59, when the excited-
state energies reach their asymptotic values~see Figs. 2 and
4!. After that, the large statistical fluctuations dominate our
estimation. We conclude from Fig. 6 that the effective mass
obtained in Ref. 24 with the backflow VMC method, is con-
firmed to be accurate atr s51 by the transient-estimate cal-
culations. This leaves the effective mass atr s51 less than
m.

V. CONCLUSIONS

Transient-estimate calculations have been done atr s51
for 26 electrons, to get more accurate energies of both
ground state and low-lying excited states without any ap-
proximation. We have used two different types of initial basis
functions, Slater-Jastrow and backflow wave functions. The
Slater-Jastrow calculations do not converge to the exact en-
ergies for both ground state and excited states before the
error bars grow, because of the fermion sign problem. This
reflects that the wave functions are relatively inaccurate and
hence require a too large projection time to reach the true
eigenstates.

With the backflow wave functions, we have found that the
energies converge after a projection time of about 0.2 Ry21

and the converged energy is in good agreement with the
previous fixed-node calculation with an accuracy of 0.001
Ry/electron. This implies that the nodal surfaces of the back-
flow wave function are close enough to those of the exact
ground-state wave function that the fixed-node method gives
a very accurate energy atr s51. Future work should still
check the accuracy at lower densities. The uncertainties of
the exact ground-state energy might further be reduced by
using the maximum entropy extrapolation of an imaginary-
time correlation functionN00(t) in Eq. ~2!, the details of
which are described in Ref. 33.

For particle-hole excitations shown in Fig. 1 of Ref. 24,
the backflow transient-estimate calculations have also pro-
duced converged energy values atr s51, which are signifi-
cantly below the corresponding variational energies. How-
ever, the energy differences between these excitations hardly
change from the variational results. Thus, the effective mass
computed from the energy differences is essentially un-
changed from the backflow VMC calculations presented in
Ref. 24 as beingm* /m50.9360.01. Even though these
transient-estimate calculations are done only for 26 elec-
trons, it was shown in Ref. 24 that our approach to determin-
ing the effective mass from the excited-state energy differ-
ences does not depend much on the system size. In other
words, an accurate QMC calculation of the effective mass
shows that it is less than the bare electron mass atr s51,
unlike most of the previous results obtained with various
analytic approximations.

In general, one expectsm*,m for some range of small
r s in the high-density regime, because exchange dominates

FIG. 6. The effective mass determined by the transient-estimate
method vs the projection time. The filled triangles represent the
backflow transient-estimate masses and the open triangles the
Slater-Jastrow transient-estimate masses. The dotted line and solid
line show the masses obtained by the VMC method with the Slater-
Jastrow and backflow wave functions, respectively. The error bars
for the VMC masses are 0.007 for Slater-Jastrow and 0.01 for back-
flow.

FIG. 5. The energy difference between two spin-antiparallel ex-
citations 1 and 4 in Fig. 1 of Ref. 24 obtained by the transient-
estimate method with the Slater-Jastrow~open triangles! and back-
flow basis functions~filled triangles! vs the projection time. The
dotted line corresponds to the Slater-Jastrow variational value,
which is zero as explained in Ref. 24. The solid line represents the
backflow variational value in Ref. 24.
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over correlation at high density, giving an attractive interac-
tion that decreases as a function of angle and a negativef 1

s

parameter. Explicit high-density expansions in three dimen-
sions show this behavior.29 In fact, all the previous results in
two dimensions either obviously show23 or can be extrapo-
lated tom*,m at very smallr s . The difference here is that
the density range ofm*,m found in our 2D QMC calcula-
tions is greater than that found in the other theoretical ap-
proaches. It more closely resembles Rice’s results34 for the
3D electron gas.
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