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Energies of the ground state and low-lying excited states of the two-dimensional electron gas have been
calculated by a transient-estimate Monte Carlo method. This is an exact fermion quantum Monte Carlo method
that systematically improves upon the results of a variational energy without imposing nodal constraints. We
focus upon the density;= 1, where our previous variational Monte Carlo calculation found qualitative differ-
ences in the effective mass from other theoretical approaches. Starting from a wave function with backflow and
two-body correlations, the best trial function in our previous variational study, we find a ground-state energy
only very slightly lower than the previously reported backflow fixed-node energy, reinforcing the conclusion
that backflow wave functions are quite accurate. The effective mass derived from excitation energies does not
differ significantly from the variational Monte Carlo results, giving a valuendf/m=0.93+0.01, so we
conclude that the effective mass is indeed less than bare electron mass for a range of densities around
rs=1.

[. INTRODUCTION the correlation energy as a function of the density, which can
be used to give exchange-correlation potential in density-
During the past three decades, the homogeneous twdunctional calculations of inhomogeneous 2D electron sys-
dimensional2D) electron gas, realized at interfaces of sometems. The compressibility measurement of Eisensteiml 12
semiconductor heterostructures, has attracted a great dealisffound to be in good qualitative agreement with the one
interest among both theorists and experimentalidise pair  calculated from our correlation enerdy.
correlation function and correlation energies of the 2D elec- Following experimental work on the anomalous Largle
tron gas were calculated by Jonsomsing the dielectric factort* and the effective mass* (Ref. 15 in the Si inver-
function formalism. The contributions of the ring diagramssion layers, various approximate scheffie€ have been
and the ladder diagrams to the ground-state energy have begged to understand these phenomena microscopically. How-
computed independently by several authorsOther ap- ever, none of them could give quantitatively consistent re-
proximate methods, such as one of using effective poténtialsults with the experiments. In a previous pafiewe have
and correlated-basis function approddave also been ap- also applied the variational Monte CarffgMC) method to
plied to investigate the ground-state properties of the systengalculate low-lying particle-hole excitations of the 2D elec-
Ceperle first calculated, using Monte Carlo methods, uppertron gas. As far as excited states are concerned, this was one
bounds to the ground-state energy with trial functions conof the few QMC calculations to date, among which are vi-
sisting of the Slater determinant of single-body orbitals andorational excited states of some molecéieand band gaps
products of two-body correlation functions. Tanatar andof model semiconducto?$?’and solid hydrogeR® From the
Ceperley’ using these trial functions, performed diffusion Fermi-liquid analysi® of the particle-hole excitation ener-
Monte Carlo(DMC) calculations. Even though the DMC gies, we determined the many-body effective mass and other
method gives the exact ground-state energy for a system dfermi-liquid parameters. Our VMC calculations showed that
many bosons, it was used within the fixed-nodethe effective mass in the 2D electron gas is less than bare
approximatior® for the ground state of the fermionic many- electron massn over a wide range of high densitié,
body system. This approximation guarantees an upper bountghereas other earlier analytic calculations produced the mass
to the true ground-state energy, which is usually much bettegreater tharm.'°=23To confirm this result, here we shall go
than the variational one. One can systematically improve thbeyond the variational method.
results in quantum Monte Carl@QMC) by using a better In this work, we intend to examine how crucial the fixed-
trial function. node approximation in our ground-state calculations is and
Recently, we have reported DMC calculations of thehow much our estimates of Fermi-liquid parameters obtained
ground-state properties of the 2D electron gas, using imfrom the VMC calculations of the excitation energies depend
proved trial functions with backflow and three-body correla-on the trial wave functions used. For these purposes, here,
tions, in addition to two-body correlatidd. From the nu-  we use a method, which can obtain, in principle, exact prop-
merical results, we have provided an analytic expression foerties of both ground state and low-lying excited states. We

0163-1829/96/5@1)/73767)/$10.00 53 7376 © 1996 The American Physical Society



53 TRANSIENT-ESTIMATE MONTE CARLO IN THE TWO- ... 7377

follow the approach proposed by Ceperley and Beéfhu, The guiding function®, introduced to guide the random

which is a generalization of the transient-estimate method walks to important regions of phase space, must be positive

used for fermion Green’s function Monte Carlo. Actually, in everywhere the potential is finite, since the Green’s function

this calculation, the energy differences are always betweewill be interpreted as a probability of moving a random walk

states of different momentum, so that a direct application ofrom one place to another. A Green'’s function at timean

the transient-estimate method is possible. be rewritten as a path integral bfGreen’s functions at time
argumentr=t/k:

IIl. METHODOLOGY .

All properties of the electron gas without magnetic fields G(Rk,Roit):J dR; - - .dele G(R,Ri_1;7). (6)
are determined only by the dimensionless density parameter i=1

re=alag, Wherea, is the Bohr radiusa=1/\/mp is the
radius of a circle that encloses one electron on the averag
andp is the number density. With energy units of Rydbergs
(Ry) and the length units od used here, the Hamiltonian of
the electron gas is

gor a sufficiently small time intervat, the Green’s function
can be approximated by

G(R;,R;;7)=Gp(Ry,R;;7)Gy(Ry,Ry;7)  as 7—0,

()
N
1 2 . .
He _ = 2 Vi2+ . 2 = +const, i where the branching term is
~ ~ Tt
s si=hi Gp(Ry, Ry 7) =€~ "2ELw(Ry) +ELy(Ry)] ®)
where the const is the term due to the uniform background of
opposite charge. Ewald sufisire used to calculate the long- and the diffusion term is
range potential.
Let us suppose that thé-electron HamiltoniarH in Eq. Gy(R,,Ry;7)=(47D 7-)*Ne*[R2*R1*DTF(Rl)]Z/(4DT),
(1) has eigenvalue€; and eigenfunctionsp;(R), where 9)
R=(rq,rs, ... ry) is a 2N-dimensional vector. We begin

with applying a projection operat@®@(H)=e""'2, wheret =~ WhereD=r_?, E 4(R)=HW¢( R)/¥(R) is thelocal en-
is regarded as imaginary time, to a basis of known functiongrgy ~of  the  guiding  function, and F(R)
{f,(R)}. Then, the eigenstate, which has the lowest energy=2V ' (R)V¥(R) determines the drift velocity of the
and is not orthogonal té;(R), dominates in the projected random walk.

basis functiorf;(R) at large timet. As will be shown in Sec. Using this Green’s functio, N;;, andH;; can be rewrit-
I, we use a set of basis functions, which are not only or-ten as

thogonal to each other, but are eigenfunctions of the total
momentum, which commutes with the projection operator B * )

C(H). Therefore,f,’s are orthogonal to each other for all N”(t)_J dRydRFT (R2)G(Re, RySDFi(RyP(Ry),
projection times t. The energy estimate ofA;(t) (10
= Hii (t)/N“ (t), Where

and
Ni(O)=(Fi|f)= | dRyd Ryf* (R)(RsJe ™R,) (R 1
(1) =(filfi) f 10 Roff (Rp)(Ro|e ™ |Rp) fi(Ry) Hii(t)zzjdRldRzFi*(Rz){Efi(Rz)
2
and +ELi(RD}G(Ry, Ry DFi(R)P(Ry),  (11)
L . where F(R)=f,(R)/¥s(R), P(R)=VZ(R), and
Hii(t):<fi|H|fi>:f dR R, (Rp) E,.(R)=H1,(R)/f.(R) is the local energy of a basis function
_ fi(R).
X(Ro|He ™| Ry)fi(Ry) 3 Suppose that one constructs a trajec{dy,R, - - - ,Ry]

is an upper bound to the true eigenvaleor all t. Further-  BY repeatec.ily sampling the diffusion Green's function
more, A;(t) converges monotonically and exponentially fast Ga(Rk+1,R;7) with a small time step. We can estimate
to the exact energy eigenvali: N;i(k7) and H;(kr) by taking the averages over the
trajectory® of the quantities

lim Aj(t)—E;+O[e "Ex "B, 4

toe N;i (K7) =F{ (Ry11) Wi n1+kFi(Ry) 12
whereEy is the energy of the next excited state with a non-5,4
zero overlap with the basis functidn.

In order to calculate the multidimensional integrals - .

N;i(t) and H;(t), we will use diffusion Monte Carlo with hii (k7)= 2 F{ (Rn+ i) LELi (Ra+k)
the importance-sampled Green’s function defined as +ELi( Ry) IWo s kFi(Ry), (13

G(Ry,Ri)=W(R)(Ryle ™MRY)W (Ry).  (5)  where theweightis defined as
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n+k—1
Wi n+k= ]._[ Gp(Rj+1,Rj:7) (14 -0.365——————1— —
J=n -0.3707 .
n+k-1 z -0.3751 i
—exp — 72 2, [ELy(R)+ELw(Ri41)]1;. ~-0.380F & 1
J=n s L a
< -0.385%.a ... . S, S =
(15 Ry e N A 57X ‘E
-0.390 Adoig ki Al
Even though this method produces the exact eigenstates 0395 ¢

of quantum many-body systems, it has an intrinsic problem: 0 5 10 15
as in the release-node methods for fermion ground states, its
statistical erroro;(t) grows as the exponential of the differ- _ )
ence between excited-state ener§y and the absolute FIG. 1. The ground-state energies produced by the transient-

round-statdi.e., Bose ground-statenergyE -30 estimate method with the Slater-Jastr@pen trianglesand back-
g ¢ g * 9o flow wave functions(filled triangleg vs the projection time. The
el(Ei~Eo) calculation was done at;=1, for a system of 26 electrons. The
oi(t)ox Wz_’ (16) gnergies are in units of Ry per electron. and the imaginary-time unit
c is 0.02 Ry 1. The dotted line and solid line show the Slater-Jastrow

whereN.. is the number of confiqurations used. In order tOand backflow fixed-node energies obtained in Ref. 11, respectively.
erei\; 1S the number of configurations u ) The error bars for the fixed-node energies are 0.0004 Ry for the

get exact energy estimates, the projection must converge b%Tater-\]astrow one and 0.0003 Ry for the backflow one.
fore the statistical errors get too large. That is the reason why
this method is applicable only to low-lying excited states ofwhere ¥, is the trial function for the ground statd,,, for
systems with not too-many particles. Note that the total enexcited statew. The constanty, is set to be equal to the
ergies,E; or Eq, are proportional to the number of particles. number of excitations considered for spin-parallel excitations
The method does produce smaller errors for the excitatioand to zero for spin-antiparallel excitations, as we discussed
energy, since the excited states and the ground state are @s-Ref. 24. This guiding function is non-negative and zero
timated from the same trajectory. only where all states under consideration have zeroes.

We have done the transient-estimate calculations only at The properties of the guiding function are more important
rs=1, where our VMC effective masses with and without for the transient-estimate calculations than for the VMC cal-
backflow correlation are almost indistinguishable and areulations. This is because the weight of a random-walk tra-
less than the bare mass, unlike most of other previous angectory defined in Eqs(12)—(15) depends exponentially on
lytic results®* Since there is a clear distinction between ourthe  local  energies of the guiding  function
VMC results and the previous valuesrgt=1, it will suffice  E, (R)=HY5(R)/¥5(R). Thus, fluctuations irE, (R)
to consider onlyrs=1 to establish the basic result that propagate exponentially into the statistical errors of the ei-
m* <m for a range ofrg much larger than in the previous genvalue estimates\;(t). Difficulties arise especially if
analytic work and more like one sees in three dimensions. IfE (R) is large and negative at a configuratiBnexplored
addition to the computer time constraint, the fact that thepy the trajectory. This would occur whetg is small and
statistical error in this method grows exponentially as thehas a large negative kinetic energyVw¥.
system size increases, requires us to do this calculation in the Ceperley and Aldét considered this point in their
smallest size that we considered for the previous calcularelease-node calculations for the ground state, where they
tions, N=26. chose ¥ to be a bosonic ground-state function

As in Ref. 24, here we deal with the ground state and thexf — = u(r;)]. This avoids difficulties in the local energy,
lowest particle-hole excitations of the system. The grounthecause the local energies are smooth and have little fluctua-
state is considered as filled shells of the wave vectors alions in the configuration space. However, we find that this
lowed by periodic boundary conditions. We consider excitecthoice is not sufficient for our work, since it leads to large
states, which consist of exciting a single electron from thestatistical errors even at the variationalter0, level without
last occupied shell of the ground state to the first unoccupieghe weight factors. Even though the statistical errors could, in
shell(see Fig. 1 of Ref. 24 The way we construct trial wave principle, be reduced with long runs, more efficient choices
functions, either of the Slater-Jastrow or backflow type, isfgr ¥ are available.
shown in Ref. 24. The goal of the present work is to obtain  \\e have instead used the guiding functigns in Eq.
essentially exact energies for both the ground state and tha7), which is close in magnitude to the variational fermion
low-lying excited states. _ _ functions. This choice was found in Ref. 24 to greatly reduce

As in the VMC calculations; we consider two different the statistical fluctuations at the variational level; however, it
excitations, spin-parallel excitations and spin-antiparalleleads to much larger fluctuations in the weights. In our cal-
ones. The basis s¢f;(R)} consists of the ground state and cyations, we have found some cases where a trajectory ac-
the spin-parallel excitations for one calculation and the spingyires an extremely large weight2.2x 10* times the aver-
antiparallel excitations for the other. We use the foIIowingage weight. This occurs in cases whekg, becomes very

form for the guiding function: small. In those cases, a single trajectory dominates over the
entire finite set of trajectories, making the overall errors too
‘I’é(R)=ao‘1’(2)(R)+E v (R)|2, (17) large. We haye avoided these points by simply rejectingl trial
a moves in whichE, 4 would become too negative. A choice
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of rejecting moves, witle, ¢ greater than 10 times its aver- TABLE I. The results of the two transient-estimate calculations
age value, led to good statistics for the transient-estimatér the ground-state energy, using the Slater-Jastrow and backflow
energies. We do not believe that this cutoff causes significarfyave functions. The calculations were done gt 1, for a system
bias, because the large weight occurs near the common nodd] 26 electrons. The variationgd/MC) and fixed-node diffusion
points of all states and should not be particularly relevant td#onte Carlo(FN-DMC) values were obtained from the finite-size

the effective mass. However, this point needs to be furthescaling and the corresponding results for 58 electrons in Ref. 11.
clarified in future work ’ Ao(ty) represents the lowest energy estimate before the statistical

error increases rapidly. The energies are in units of Ry per electron.

Ill. GROUND-STATE ENERGY Slater-Jastrow Backflow
We first calculate the exact ground-state energy of th&/MC -0.36944) -0.38394)
system and investigate how accurate our previous fixed-nodeN-DMC -0.38584) -0.39023)
calculations were ats=1. Since the ground state has zero A,(0) -0.36905) -0.38435)
total momentum, while the other states considered here havg(t,) -0.388@13 -0.391@12)

finite nonzero momenta, the energy estimatgt) is deter-

mined by the diagonal ternidyy(t) andNg(t), as explained

in the previous section. The open triangles of Fig. 1 show théhe fast-growing statistical error kills our estimation. We

ground-state energy,(t) at projection time obtained from  have found in Fig. 1 that; is 9x0.02 Ry for both Slater-

the transient-estimate calculation with the Slater-Jastrowastrow and backflow calculation&q(t;) for the backflow

functions being used as basis functions. This was done fatalculation is almost the same as the corresponding fixed-

7.3x 1P steps with the time step=0.0005 Ry 1. The num- node energy within the error, while for the Slater-Jastrow

ber of configurations averaged to compute the energy at prasalculation, it is in the middle of the Slater-Jastrow and back-

jection timek is the number of steps minkgsee Eqs(12)  flow fixed-node energy. We conclude, from these calcula-

and(13)]. The unit of projection time in Fig. 1 and hereafter tions, that our backflow fixed-node energy is within 2Ry

is 0.02 Ry ! and the energy unit is Ry per electron. As of the exact ground-state energy at the density1.

expected,Ay(0) is equal to the Slater-Jastrow variational

energy in Ref. 11 within the statistical error. We see that the IV. EXCITED STATES AND EFFECTIVE MASS

energy decreases as the projection time evolves. Around ) o )

t=6, the transient-estimate energy is about the same as the NOw we turn to the particle-hole excitations. Following

Slater-Jastrow fixed-node energy ef0.3858(4) Ry per the Fermi-liquid analysi&® the energy difference between

electron, which was obtained from the finite-size scaling andwo excited statesr and 3 is given by

the Slater-Jastrow fixed-node energy f#=58 in Ref. 11.

Even though we get lower energies at larger times, the sta- _ S, fayr _

tistical errors grow too fast even before reaching the back- ABap Z’l (fP=fH{~codlfa) +cosl )], (18)

flow fixed-node energy- 0.39043), which is the best upper ] )

bound to the true ground state known so far. In other wordsVhered,g is the angle between particle momentigyand

the error is too large to determine the energy as accurately d¥le momenturrk, in excitationa(8) and the+(—) sign

the previous fixed-node DMC method. corresponds to parallébntiparalle] spins between particle
With an improved basis function, we can start the Simu_and hole. As eXplained in Ref. 24, the effective mass is de-

lation nearer the true ground state. This might enable us t&rmined by the first-order spin-symmetric compongt

get the converged energy, or the exact ground-state energy,

from the transient-estimate calculation before the error be-

comes very large. The filled triangles of Fig. 1 show the

ground-state energy produced with the backflow wave func-

tions. The runs consisted oP3L0° steps and the time step |f we neglect higher than second-order terms in @), it is

used for each step or trial move was 0.001 RyHere, we sufficient for the effective mass to consider excitations 1 and

use the time step two times as big as in the Slater-Jastrod in Fig. 1 of Ref. 24, becausig can be obtained by

calculation, which is possible because the guiding function

of Eq. (17) consisting of the backflow functions has s NA E],+NAE];

smoother local energies. Once agahy(0) corresponds to Nfl:z(_cosgl+ cod,)’ (20

the (backflow) variational energy, which is far below the

Slater-Jastrow variational value. The energy approaches thghere AEH(”) is the energy difference between spin-

backflow fixed-node energy at=6 and converges to parallel(-antiparalle) excitations 1 and 4. These excitations

—0.3910(12) Ry per electron aroute9. This converged have different nonzero total momenta from each other, so

value is slightly below the backflow fixed-node energy, butthat the excited-state wave functions, either Slater-Jastrow

the difference is on the order of the statistical error. type or backflow type, serve as diagonal basis functions at an
Table | summarizes the transient-estimate results for tharbitrary projection time just like the ground-state functions

ground state of a system of 26 electrons at 1. The VMC  in the previous section. Since spin-parallel excitations are

and fixed-node DMC results shown in the table are from ourconsidered along with the ground state, all spin-parallel re-

previous calculations in Ref. 11. We settashe projection  sults have been obtained from the same Monte Carlo trajec-

time where we can obtain the lowest energy estimate befortries as in the corresponding ground-state calculations.

*

m
= (1= griN) (19
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) -0.355- , .
- r a4 % ] FIG. 3. The energy difference between two spin-parallel excita-
8;0'365‘& Aa, sy A 4 i tions 1 and 4 in Fig. 1 of Ref. 24 obtained by the transient-estimate
< -0.375F " 2 ‘é“*‘i'é‘é'?'"_ method with the Slater-Jastro@pen trianglesand backflow basis
R b functions (filled triangles vs the projection time. The dotted and
-0.385L . . solid lines correspond to the Slater-Jastrow and backflow VMC
Y 5 ¢ 10 15 energy differences of Ref. 24, respectively.

both excited-state energies keep decreasing, while the statis-
tical errors grow rapidly especially after 6. With the back-
flow functions, bothA ;(t) and A4(t) converge aftet;=10

o b time units. The dotted lines show the converged energies
and (b) correspond to excitations 1 and 4 in Fig. 1 of Ref. 24, = _ ; - !
respectively. The dotted lines show the asymptotic values in thé\l(tl)_ —0.3733(10) and\ 4(t,) = —0.3724(9) in units of

backflow calculations of each excitation energy. Ry per electron, in the backflow calculations. ,
The energy differencetNAA 4(t) between two spin-

) ) ) o antiparallel excitations are plotted as a function of the time in
Figure 2 shows the energies of spin-parallel excitations ¥ig 5 As in Fig. 3, the dotted and solid lines represent the
and 4 at projection time. From now on, the open triangles sater-Jastrow and backflow variational valéésespec-
represent the results from the Slater-Jastrow transientively. We see that the energy difference with the Slater-
estimate calculations, while the filled triangles show the On€Jastrow function is zero, which is the Slater-Jastrow varia-
from the backflow calculations. Both, (t) andA4(t) donot  tional value proved in Ref. 24, until a large statistical
converge to asymptotic values in the Slater-Jastrow calculgtuctuation makes the estimation meaningless. We did not
tions before the statistical errors grow rapidly, as in theinclude the Slater-Jastrow data at tintes6 in Fig. 5, be-
ground-state calculations of Fig. 1. The best estimation of theause their fluctuations reach beyond the limit of this graph.

excited-state energies with reasonable error bars seems fe backflow calculations for the energy difference, shown
occur att=9, which is significantly higher than the con-

verged energy from the backflow transient-estimate calcula-

FIG. 2. Spin-parallel excitation energies produced by the
transient-estimate method with the Slater-Jasttopen triangles
and backflow functiongfilled triangles vs the projection time(a)

tion. From Fig. Za), we clearly see thaA ;(t) converges to -0.350 — . —)
—0.3707(8) Ry per electron a9 in the back-flow calcu- C @ 7
lation. Even though it is less obvious, we conclude from Fig. 7 0380 % ]
2(b) that A4(t) also reaches a converged value ;_0.370{. PR ]
—0.3731(8) Ry per electron at=9. These converged < RARLEESEEEEE 3 Adgiddd
excited-state energies are represented by the dotted lines. -0.380f ]
The energy differences between the excitations depending - l ]
on timet are shown in Fig. 3. The correlated sampling tech- -0.390 ————— '
nique described in Ref. 24 is used here to reduce statistical -0.350 —r .
fluctuations in the energy differences. The dotted line corre- - ®) 4
sponds to the Slater-Jastrow variational value and the solid - '0-35°'AAA ]
line to the backflow variational one from Ref. 24. It can be ~ £a,2 a5 ]
seen that the energy differences tat0 in both Slater- 3,'0'370_--------‘---@- & 4;;;;3
Jastrow and backflow calculations are equal to the corre- <_0'380_ % 1
sponding variational result within the error. Like each indi- L ]
vidual energy, we cannot see the convergence in the energy -0.390 — L '
difference with Slater-Jastrow basis functions. With backflow 0 o 10 15

basis functions, the energy differences hardly change from

the (backflow variational value until five units of the projec- g, 4. spin-antiparallel excitation energies produced by the

tion time. transient-estimate method with the Slater-Jasttopen triangles
The convergence problem with the Slater-Jastrow wavend backflow basis functionéfilled triangles vs the projection

functions gets worse for calculation of spin-antiparallel exci-time. The dotted lines show the asymptotic values in the backflow

tations. Figure 4 shows the energies of spin-antiparallel exealculations of each excitation energg and (b) correspond to

citations 1 and 4 at timé In the Slater-Jastrow calculation, excitations 1 and 4 in Fig. 1 of Ref. 24, respectively.
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the Slater-Jastrow transient-estimate mass, denoted by the

200 —————7 77— open triangles, increases toward the backflow VMC value
I until the errors explode dt=6. On the other hand, the back-
_ 1ot T ATl flow transient-estimate masses remain virtually equivalent to
:: 0.00 A%M}tglwll | the backfloyv variational_one unttl=_9, when thg excited-
4 ek P 79 l state energies reach their a_sy_mptot|c val(_.m Flgs._ 2 and
z -1.00 - %%ffT J | 4). After that, the large statistical fluctuations dominate our
I estimation. We conclude from Fig. 6 that the effective mass
200 b o obtained in Ref. 24 with the backflow VMC method, is con-
0 5 10 15 firmed to be accurate at=1 by the transient-estimate cal-

culations. This leaves the effective massrat1 less than

FIG. 5. The energy difference between two spin-antiparallel ex/M-
citations 1 and 4 in Fig. 1 of Ref. 24 obtained by the transient-
estimate method with the Slater-Jastr(mpen trianglesand back-
flow basis functiondfilled triangles vs the projection time. The V. CONCLUSIONS
dotted line corresponds to the Slater-Jastrow variational value,

which is zero as explained'in Ref. 24. The solid line represents the Transient-estimate calculations have been done,atl
backflow variational value in Ref. 24. for 26 electrons, to get more accurate energies of both
ground state and low-lying excited states without any ap-
proximation. We have used two different types of initial basis
as the filled triangles, show very little difference from the fynctions, Slater-Jastrow and backflow wave functions. The
corresponding variational result up to the convergence tim&|ater-Jastrow calculations do not converge to the exact en-
t,=9 for the individual excitations. ergies for both ground state and excited states before the

We have seen so far that the transient-estimate calculatio&ror bars grow, because of the fermion sign problem. This

of both spln-pargllel anq -antiparallel excitations with thereflects that the wave functions are relatively inaccurate and
Slater-Jastrow trial function does not converge before Iarg?]ence require a too large projection time to reach the true

statistical uncertainties make meaningful estimations impos-

. . ; i tates.
sible. The Slater-Jastrow trial functions are not accuratg'ger.]S .
enough for this method to work. With the backflow function, With the backflow wave functions, we have found that the

we have found that the transient-estimate energies for thBN€rgies converge after a projection time of about 0.21Ry
excited states converge well below the variational values be2nd the converged energy is in good agreement with the
fore the statistical errors become large. However, the energirévious fixed-node calculation with an accuracy of 0.001
diﬁerences Change Very ||tt|e, if any7 up to the Convergenc y/e|eCtr0n. Th|S ImplleS that the nOdal Surfaces Of the baCk'
times from the corresponding variational results. This im-flow wave function are close enough to those of the exact
plies that our effective mass obtained in Ref. 24 from theground-state wave function that the fixed-node method gives
VMC calculations is correct, at least at=1. a very accurate energy at=1. Future work should still

Since we have calculated the energy differences betweetheck the accuracy at lower densities. The uncertainties of
excitations 1 and 4 as the projection timevolves, we can the exact ground-state energy might further be reduced by
estimate the effective mass through E(@s) and (20) as a  using the maximum entropy extrapolation of an imaginary-
function of timet. This is plotted in Fig. 6. As can be seen, time correlation functionNyy(t) in Eq. (2), the details of

which are described in Ref. 33.
For particle-hole excitations shown in Fig. 1 of Ref. 24,

100 ] the backflow transient-estimate calculations have also pro-
% ] duced converged energy valuesrat 1, which are signifi-
g 0.95 _-H- i 14 Ll I ] cantly below the corresponding variational energies. How-
= 0_904.-4.-?. ........ 1IT ] ever, the energy differences between these excitations hardly
= change from the variational results. Thus, the effective mass
B 0.85 L 1 computed from the energy differences is essentially un-
. ta changed from the backflow VMC calculations presented in
0.80 I S Ref. 24 as beingn*/m=0.93+0.01. Even though these
0 5 10 15 transient-estimate calculations are done only for 26 elec-

trons, it was shown in Ref. 24 that our approach to determin-

FIG. 6. The effective mass determined by the transient-estimaté'9 the effective mass from the excited-state engrgy differ-
method vs the projection time. The filled triangles represent the®Nce€S does not depend much on the system size. In other
backflow transient-estimate masses and the open triangles tt¥0rds, an accurate QMC calculation of the effective mass
Slater-Jastrow transient-estimate masses. The dotted line and sofflows that it is less than the bare electron massatl,
line show the masses obtained by the VMC method with the Slatetinlike most of the previous results obtained with various
Jastrow and backflow wave functions, respectively. The error bar@nalytic approximations.
for the VMC masses are 0.007 for Slater-Jastrow and 0.01 for back- In general, one expects* <m for some range of small
flow. rs in the high-density regime, because exchange dominates
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