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A two-dimensional system of interacting electrons is considered in a strong magnetic field in the fractional
guantum Hall regime, where the motion of the electrons is restricted to the lowest Landau level in the lowest
subband. Starting from a microscopic quantum-field theory we present a calculation of the electronic spectral
function A(€) for a single layer. From the original Coulomb interaction we separate an effective bosonic part,
which is treated exactly by resummation of Feynman diagrams. For the electron Green’s f@ction”'),
which is closely related té\(€), we derive an approximate formula that goes beyond perturbation theory and
is similar to the solution of an independent-boson model. The independent bosons are the collective excitations,
mainly magnetorotons. Constructing a bosonic spectral function with the main features of the collective
excitations by the single-mode approximation, we obtain a spectral fun&fienwith a double-peak structure
and a pseudogap at=u for low temperatures. From this result we derive the current-voltage characteristic
I (V) for the tunneling of electrons between two layers, which shows a tunneling pseudogap for low tempera-
tures and agrees with recent experiments.

[. INTRODUCTION t is small and interactions between the layers can be ne-
glected, then we can perform a linear-response calculation
In recent experiments® concerning the tunneling be- with respect td and write the tunneling current from the left
tween two layers of two-dimensional electron systems ario the right layer as
unusual current-voltage characteridt{®/) has been found at
low temperature§ <1 K if a strong perpendicular magnetic
field is applied. It is possible to produce samples that are
symmetric, so that both layers have nearly the same electron
densities and properties. The magnetic field has been chosen

to be so strong that the two electron layers are in the frac;are E is the area of the tunneling contact and

tional quantum Hall regime, where only the lowest La”dau/z(hc/eB)l’z is the magnetic length. Actually, the number

Ieve! in the lowest sqbband is occupied Wi'[.h a fractiom ~ of tunneling channels i®ly,=F/27/2. Here we have ex-
the interval 6<v<1 in each layer, respectively. The main pressed the tunneling current in terms of the electronic spec-
observation is a tunneling pseudogap in the current-voltagga| functions(Green'’s functionsA ., (¢) andA_(e) of elec-
characteristid (V) for low temperatures and high magnetic tron and hole excitations, respectively. The upper index
fields. The current is strongly suppressed for small voltages R means left or right layer and can be omitted because the
V and nearly zero in the intervalOV<2 mV. For higher two layers are made nearly eqdaf.
voltages! (V) has a peak with a finite width, which is related  Since the samples are very pure and the mobilities are
to the tunneling between the lowest Landau levels of thenigh, the effect is believed to arise from the strong correla-
lowest subbands. For much higher voltages there appegions in the two-dimensional electron systems in the frac-
more peaks and structureslifV/) which involve higher Lan- tional quantum Hall regime while disorder plays a minor
dau levels and higher subbands in the tunneling processole. Eisensteiret al” have shown that the interaction be-
However, we want to restrict our considerations to the tuntween the layers causes a small excitonic shift of [tHé)
neling between the lowest Landau levels of the lowest subpeak to lower voltages and thus is also subsidiary. Thus, the
bands and thus focus our attention on the first peak. A similamain part of the effect should arise from the strong correla-
experiment, which concerns the tunneling between a two-tions in a single layer which is described by the density of
dimensional electron layer and ra” doped substrate, has states (the electronic spectral function A(e)=A.(¢)
also reported a strong suppression of the zero-voltage tunnekA_(¢€) of the lowest Landau level. Indeed the suppression
ing conductance for strong magnetic fields and low temperaef the current for small voltagegthe tunneling pseudogap
tures. can be obtained from E@l.1) if the electronic spectral func-
Thus, for low temperatures and high magnetic fields wetion A(e) is strongly suppressed in the close vicinity of the
have one peak in the current-voltage characterlgty oc-  Fermi energyw. This means thaA(e) should consist of two
curring above an offsef,~2 mV, below which the tunnel- peakdga hole peald_(€) and an electron peak, (€)] sepa-
ing current is strongly suppresséminneling pseudogaplf rated by a pseudogap at u.
we assume that the two layers are separated by a high and According to Eisensteirt al® the double-peak structure
broad tunneling barrier so that the tunneling matrix elemenbf A(e€) can be explained easily on a qualitative level. Be-

2
(V)= —e;zj de[AR (e—eV)A- ()

—Al (e+eV)AR(e)] 1)
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cause of the strong correlations the two-dimensional electroapectrum for the self-energy to obtain a spectral function
liquids have a near ordering of the particles that is somewhaA(€) with double-peak structure and a pseudogag-aju.
similar to a Wigner crystal. Thus, for the tunneling processThus we must go beyond perturbation theory. In Sec. IV we
one has to take out one electron from a “lattice place” of onepresent a method for a resummation of the Feynman dia-
layer and put it into an “interstitial place” of the other layer. grams that is closely related to the way to solve the
This process costs a certain amount of energy, which prondependent-boson moddly field-theoretic means. We split
duces an energy gapi\2in the density of states. Assuming a the interaction between the electrons into a bosonic part with
very short time for the tunneling process, the empty latticeZ€f0 wave vector and a remaining part. While the original
place in the one layer will relax, and also the occupied inter_Coquml_) interaction is instantaneous, the separated bosonic
stitial place in the other layer will relax after a certain relax- Part is time dependent and contains retardation effects. We

ation time by emitting collective modes like magne- Prove some exact theorems mainly based on local gauge in-
tophonons. variance and particle conservation of the original interaction,

In order to bring these ideas to a quantitative level, Jowhich allow us to separate the bosonic part of the interaction

hansson and Kinarehave developed a theory based on an@S an expone_zntial_factor. Thus we can express thg electron
independent-boson mod&They consider the tunneling pro- Green’_s functionG in terms of the bosonic exponential fac_-
cess of a single electron from one layer into the other whildOr, Which can be calculated exactly, and a Green’s function
the interaction with the other electrons is modeled by arG, which depends only on the remaining part of the interac-
interaction with collective excitations, the magnetophononstion.
which are treated as independent bosons. Using the spectrum The bosonic interaction part is arbitrary at first and should
of the magnetophonons in a Wigner crystal as an input, JoP€¢ chosen and adjusted in such a way that the remaining
hansson and Kinaret calculated the current-voltage characteGreen’s functionG can be calculated perturbatively. This is
istic (V) and obtained a quite good qualitative and quanti-done in Sec. V. In a first-order self-consistent approximation
tative agreement with the experiments. However, while thave obtain a free Green’s function f@ with shifted energy,
model of Johansson and Kinaret seems to be an easy exphahile the bosonic part of the interaction is mainly an integral
nation and yields good results, it appears to be somewhaif the density-density correlation function over the wave
artificially constructed and adjusted to the particular physicalrector. In this way we obtain an electron Green'’s function
problem. Thus, it is necessary to find out why this model isG that has exactly the form of the solution of the
good and to justify the model within the framework of a independent-boson model. Here the independent bosons are
microscopic description. the collective excitations described by the density-density

Efros and PikuShave applied a model of a classical elec- correlation function. It turns out that the double-peak struc-
tron liquid on a two-dimensional lattice to calculate the specture of the spectral functioA(e) is produced by the bosonic
tral function A(e). They find the double-peak structure of exponential factor ofG if the collective excitations have
A(e) and the tunneling pseudogap I¢l), and their results  their main spectral weight at low energies below @45
agree with the experiments. The spectral funcii() has In Sec. VI we use the single-mode approximatitio deter-
also been calculated by numerical exact diagonalization ofnine the spectrum of the collective excitations. It turns out
the Schrdinger equation for finite particle numbers that the main spectral weight arises from the magnetorotons.
(N<9) 389 However, recent more extensive We then take this bosonic spectrum as an input and calculate
calculationd have shown that the double-peak structure ofthe electronic spectral functioh(e) and the current-voltage
A(e) with the pseudogap at the Fermi eneygys not found  characteristic 1(V). We find agreement with the
convincingly by this approach, probably because the particlexperiment$:2 While our theory and result are somewhat
number is too small. Aleiner, Baranger, and Glazfdrave  different, we mainly confirm the approach of Johansson and
considered the spectral functidx(e) of a two-dimensional Kinaref by a systematic approximation starting from a mi-
electron liquid in a weak magnetic field. Approximating the croscopic quantum-field theory.
collective excitations by a hydrodynamic model, they find a
pseudogap oA(e) even forv>1. Il. MICROSCOPIC THEORY AND THE RELATED

In this paper we consider the two-dimensional layer of FEYNMAN RULES
interacting electrons in a strong perpendicular magnetic field ] ) ) ) ]
on a microscopic level using the many-particle quantum-field Ve consider a two-dimensional system of interacting
theory'>*? The magnetic field should be so strong that the€lectrons moving in thecy plane, where a perpendicular
system is in the fractional quantum Hall regime with an oc-magnetic fieldB in z direction is applied. The system is
cupation fractionv in the interval 0<v»<1. We restrict the described by the Hamiltonian
motion of the electrons to the lowest Landau level and as-

sume spin polarization. Furthermore, we assume a high angj — dzri[ P, + EA )fp(r) 2+ py+ EA ),},(r) 2]
broad tunneling barrier so that the interaction between the 2m[|\™ ¢ YooV

layers can be neglected and the tunneling curté€kf) is 1

given by Eq.(1.1) in terms of single-layer electronic spectral + _J erJ d?r":[p(r) = pp]V(r—r")[p(r')—ppl:
functions. In Sec. Il we describe the microscopic system and 2

derive the Feynman rules. In Sec. Il we consider the pertur- (2.1

bation theory for the electron Green’s functi@and show - . _ .
that it fails even in the self-consistent version. The problenvhere ¢(r) and ¢*(r) are the fermion field operators and
arises from the Dyson equation, which requiredigerging  p(r) =" (r) ¢(r) is the operator of the electron density. The
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two colons :: mean that the product in between has to be
normal ordered with respect to the fermion operators. In cir- m m'

E — . )
cular gauge the vector potential is given Ay=— 3By and @ 7 St Go(+=7)
Ay= 2 Bx. The electrons interact via the Coulomb potential
V(r)=e?/|r|. The subtraction of the homogeneous density -k , \
pp=v/2m/? in the interaction term means that we assume a (B) v ¢ = — Ulkwr)
neutralizing positively charged background. We assume that
the electrons are spin polarized and that their motion is re- m m'
stricted to the lowest Landau level. Thus, we can expand the (c) \\_\./ = M_. (k)
fermion field operators in the form H

"k

«Z(r>=§ @m(1)em, «Z*(r)=§ er(Neh, (2.2

FIG. 1. Basic elements of the Feynman diagratasfree ferm-

. . o ] ion Green'’s function(b) interaction line, andc) 3 vertex connect-
wherec, andc,, are operators satisfying fermion commuta- jng fermion and interaction lines.

tion relations ande,(r) are the orthonormalized single-
particle basis functions of the lowest Landau level. The index The collective excitations are represented by the con-
m counts the degrees of freedom of the degeneracy of thgected density-density correlation function
lowest Landau level. In our considerations we need not R R
specify a particular choice of the degenerate single-particle Xpp(r =1, 7= 7" )=(T[p(r,7)p(r',7")])c, (2.7
functions o ,(r). - - - .

The per?L]J(rb)ation series expansion of the interacting elec¥Nere p(r.7)= ¢ (r,7)y(r,7). The Fourier-transformed
tron system in a strong magnetic field in terms of Feynmar{uncuon Xpp(K:£2n) is defined by

diagrams has been considered previously by Zheng and d2k 1

14 . . . _ .
MacDonan. We use .the formalism of many—partlcle’ pr(r’T):jWE el(kr =0 )pr(k,Qn), (2.9
guantum-field theory with temperature-dependent Green’s Q

functions'*215The object of basic interest is the fermion

g . wherek is the wave vector of the collective excitations and
Green’s function

Q,=2wn/h B are the bosonic Matsubara frequencies. In

Nl rra At analogy to(2.6) the spectral functiory” (k,e) of the collec-
G (7= 7') =(TLCr(7)Crye (7)), 23 jive excitations is defined by o
where is the temperature parameter that corresponds to an " (K
imaginary time and varies in the interval Y, (K, Q ):f deM. (2.9
O<r<#hpB=*#lksgT. By T[---] we understand the usual ppRTEn —ifiQ,+e

time-ordered product with respect to Since the magnetic T
field is homogeneous, the system is translationally invarianB
in the xy plane up to a phase factor in the wave function.
This implies that the fermion Green'’s functi@®.3) is pro-
portional to a unit matrix with respect to the degenerate de
grees of freedom,

he functionsG(7—7') andy,,(k,7— 7') can be calculated

y a perturbation series expansion in terms of Feynman dia-
grams. We now describe the rules and the basic elements by
which the diagrams can be constructed. In Fi@) Ive as-
sociate the free Green’s function

GO,mm’(T_ 7')=Onm [ 0(7—7")—n(e€p) ]
Xexp{—A " e~ p) (17— 1)}

Gm (7= 7")= 6 G(7— 7). (2.4

We define the Fourier-transformed Green’s funct®fw,,)

by (2.10
1 with a directed full line where is the single-particle energy
. =1 eBle=n is th
G(n==3 e oG 2 of the lowest Landau level anu(e)=1/¢e +1] is the
(7) ;n (@n) 29 Fermi distribution function. It is convenient to introduce the

o imaginary time-dependent interaction
wherew,= m(2n+1)/A B are the fermionic Matsubara fre-

guenciesG(w,) can be expressed in terms Afe) by the

spectral representation U(k,7— T,):V(k)ﬁ; o(r—7'+nhp), (211
A(e) which we identify in Fig. 1b) with a dashed line. Here
Glwn)= | de— o, +e—pm (2.6 v(k)=e2m/|k is the two-dimensional Fourier transform of

the Coulomb potential. The delta function {8.11) repre-
where u is the chemical potential. Thus, we can obtain thesents the fact that the Coulomb interaction is instantaneous.
spectral functiorA(e) from the electron Green’s function by However, our following considerations are not restricted to
an analytic continuation o65(w,) to continuous complex an instantaneous interaction. They remain valid also for a
frequencies. Finally, the current-voltage characterib{i¢) nontrivial time-dependent interactidd(k,7— 7') including
is obtained from(1.2). retardation effects as, e.g., the electron-phonon interaction.



7360 RUDOLF HAUSSMANN 53
X,p(K,7—7") are given by the sums of all possible diagrams
- with structures shown in Figs(@ and 2Zb), respectively.
(a)
Ill. FAILURE OF PERTURBATION THEORY

A

!
)
1
ks

\\ 1
\ |
: 1
For an interacting two-dimensional electron system in a
o strong magnetic field perturbation theory is problematic
B Q because of the degeneracy of the Landau levels. If the lowest
N Landau level is only partially filled with an occupation frac-
(b) S e Y tion v in the interval 0<»<1, the noninteracting ground
-7 state is degenerate and standard perturbation theory does not
1 T work for small temperatures. Let us assume th not too
close to 0 or 1. Then the average distance between the elec-
FIG. 2. Typical Feynman diagrams () the fermion Green's trons is of order of the magnetic lengtti=(%c/eB)Y2
function G(7— 7') and (b) the connected density-density correla- Hence the interaction energy per electron is of orefér’.
tion function x,,(k,7—7'). The quantum-field theory with temperature-dependent
Green's functions that we have described in Sec. Il is an
The full fermion lines and the dashed interaction lines areexpansion with respect to powers of the dimensionless pa-
connected Y a 3 vertex which is shown in Fig.(d). While  rametera=Be? /. (The factor 3=1kgT arises from the
in real space the 3 vertex is local, in our representation it isntegral overr for each vertey.Sincea must be small, this

associated with the matrix element perturbation theory is a high-temperature expansion that is
good for T>kg'e?//. However, the experimerts that
_ 2 % ikr measure the tunnel currehfV) are performed at low tem-
M i (k) f d°r @ (1) €™ @rme (). (212 peratures. It turns out that for these experiments the expan-

. . . sion parameter is of order~ 100 (where we take a dielec-
Since the particular representation of the degenerate degreﬁ constant e~13 into account so that standard
of freedomm is irrelevant, we do not need the explicit form yeryrhation theory truncated at finite order is not applicable.
Of M (k). Thus, we can omit the indices, m’ and con- Thus, in order to explain the experiments we must go
siderM (k) as a matrix. All we need are some formulas thatheyong perturbation theory. This means we must resum at
define the algebra pf these matrices. From any particular reaact 4 certain class of diagrarfws, if we are unlucky, even
resentation we derive all diagramg. One possibility is to express the electron
Green'’s functionG(w,) via the Dyson equation,
M (k1) - M(kp) =ex 3 k7 k,/ 2IM (ki +ka),
(2.133 G(wn)=1[—iho,+ e~ u—2(w,)], (3.9

in terms of the self-energ{ (w,). Summing over all self-
energy subdiagrams in the diagrams Yfw,), the self-
energy 2 (w,) becomes a functional of the exact electron
Green'’s function. Actually, the self-energy can be expressed
in terms of the functional derivative;'®

M(0)=1, (2.13b

TIM(K)]=[27/?] Y(2m)28(k), (2.130

wherex=k,+ik, is the col/n;plex representation of the wave
vector k and /= (%c/eB)"< is the magnetic length. The _
Feynman diagrams of the perturbation series are constructed 2 (wn) =~ 0P[G]/6G(wy), (3.2
in all possible ways from the basic elements of Fig. 1. Thewhere®[G] is a functional ofG(w,,) given by the series of
sums over the indicem of the degenerate degrees of free-all connected vacuum diagrams without self-energy subdia-
dom can be evaluated with the three formulagi3. For  grams, where the propagator lines are identified with the ex-
each 3 vertex we must perform an imaginary-time integralct G(w,). In this way the quantum-field theory becomes
Bdr/%, and for each dashed interaction line we must perself consistent. The electron Green’s functi®fw,) can be
form a wave-vector integrgld?k/(2)2. Finally, it turns out  determined by solving Eq$3.1) and (3.2) iteratively. Ap-
that all Hartree-type subdiagrams are canceled by the posproximations are made in the functiorb| G] by taking into
tively charged neutralizing background, if we chooseaccount only certain classes of diagrams. Thus the ladder
pp=vI27/? wherev=—G(7=—0) is the occupation frac- approximation and the random-phase approximatRRA)
tion of the lowest Landau level. are found by considering only ring diagrams with ladders or
In Fig. 2@ we show a typical diagram of the fermion with bubble chains, respectively.
Green’s functionG(7— 7'). It consists of one open fermion The self-consistent quantum-field theory has been suc-
line from 7’ to 7 and a certain number of closed fermion cessfully applied to Fermi liquids and superconductivity. Re-
loops that are connected in any possible way by dashed ireently, this theory has been found to be the appropriate ap-
teraction lines. In Fig. (b) we show a typical diagram of the proach to describe the crossover from BCS
connected density-density correlation function superconductivity to Bose-Einstein condensation in a
X,pp(K,7—7"), which consists of a certain number of closed strongly interacting electron liquit!. Thus, it is very chal-
fermion loops connected in any possible way by dashed inlenging to apply this approach also to the present problem of
teraction lines. Thus, the functionsG(7—7') and the two-dimensional electron system in the fractional quan-
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tum Hall regime. Unfortunately, it turns out that this ap- 1.5 .
proach fails too. We want to describe why and in which way
it fails. The identification of the propagator lines with the
exact Green'’s functio®(w,) implies that the self-consistent
perturbation series is no more a power serieg s that the
diagrams remain finite in the limiT—0, a—o. This is w L
already progress. However, it turns out that the diagrams are <
all of the same order so that we cannot make an approxima- 05 |-
tion for ®[G] but must sumall diagrams, which is an im-

possible task.

We have solved the self-consistent equatigd<) and 0.0 Lo
(3.2 numerically with functionalsb[ G] in ladder approxi- T4 -2 0
mation, in RPA, and in a combination of RPA with the e~ [e2/l]
particle-hole ladder. In all three cases we obtain qualitatively
similar results, so that we report here only about the RPA FIG. 3. The electronic spectral functig(e) in self-consistent
(because the RPA takes the screening of the Coulomb potefRPA for T=» («=0, dotted ling, T=kz e’/ (a=1, full line),
tial into account The explicit form of the self-consistent andT=0.01kg"e?// (a=100, dashed line
equations can be derived in a way similar to that of as it has
been done in Ref. 17 for SUperCOﬂdUCtiVity. The main Chang@quationi3_1)_(3_5) into a real-time and rea]-frequency rep-
is that here we must use the Feynman rules of Sec. Il and th@ésentation that deals directly with the spectral functions.
in this case no space variable occurs because the motion @fis can be done by using the Keldysh formaf&ns in
the electrons is restricted to the lowest Landau ledlel.a  thermal equilibrium. The resulting self-consistent equations
homogeneous system Fhe space dependence factonzes 380k formally similar to(3.1)—(3.5 and are not more com-
can be separatedThus, in RPA the self-energy can be writ- plicated. We have solved these latter equations also humeri-

10

ten as cally by iteration and Fourier transformation. It turns out that
S(7)=G(n)T(7), (3.3  for low temperature§ <kg 'e?// and a=1 the Matsubara
. . ) formalism combined with the analytic continuation works
whereI'(7) is the RPA vertex function given by better and is accurate while for high temperatures
d2k A (K) T=kg'e?/ anda=<1 the Keldysh formalism must be used.

> . (3.9 In the overlap region where~1 both methods yield nearly
(2m)= 1A (K)x(Qn) the same results for the spectral functions with an accuracy
Here, A (k) =(27/?) " lexp[— (1/2)k?/2V(K) is the effec- Of 103, Thus, we are able to solve the self-consistent equa-

F(Qn):27r/2f

tive interaction in Fourier representation and tions with a very high numerical accuracy fé(e) and
x"(€) in the parameter rangesOa=<1000.
x(1)=—=G(=7)G(7) (3.9 In Fig. 3 we show our results for the electronic spectral

is the particle-hole pair propagatdiVe note that the pair function A(e). We choose for convenience always-1/2.
propagatory(7) and the connected density-density correla-The rgsults remain qualitatively the same also for other oc-
tion function x,,(r,7) (2.7), are two different quantities that Cupation fractionsy not too close to 0 or 1 except that
should not be confusefdWe have solved the self-consistent A(€) is no more symmetric. Peculiarities at certain rational
equations(3.1) and (3.3—(3.5 numerically by iteration. To fractions v=p/q are not seen. Thus, for the intermediate
do this we need an efficient numerical Fourier transformatiortemperatureT=kglezl/’, which corresponds tar=1, we

to transform the functions from the imaginary-time represen-obtain one broad pedkull line). If we increase the tempera-
tation to the Matsubara-frequency representation. We haveire (decreaser) the peak becomes broader and lower. For
described such a numerical procedure in the Appendix of thg = 3kg &2/ (or a=< 1/3) the curve nearly does not change
second paper of Ref. 17. Then, to obtain the spectral funcyny more untilT= (or @=0) is reachedsee dotted ling
tions A(e) and x"(e) related toG(wy) and x(£}y) we per-  gince the peakdotted ling has a finite width, the self-
form a numerical analytic continuation using Paaeproxi- - consistent quantum-field theory turns out to be nontrivial
mation.[ x"(e) is defined by an equation analogous2d.]  gyen for infinite temperatures whewe=0. On the other

It turns out that for two identical layers the current—voltagehand' if we lower the temperatu below ks ‘6% where

characteristic(1.1) can be written exactly in terms of the W me into the regiom>1. th K becomes narrower
spectral functiony”(e) of the pair propagator as € come into the regio » (€ peak becomes narrowe
and higher, until it diverges at the Fermi energy u for

t2F T—0. This behavior is clearly shown in Fig. 3 by the dashed
(V)=e;—x"(eV). (3.6) line, which we calculated fof =0.0%kg *e?// and a=100.

The numerical result indicates a  divergence
One should note that”(e)=— x"(—€) is always antisym- A(e)~|e— u| Y2 for e close tou and forT=0, which can
metric so that (—V)=—1(V), as it should be. be derived also analytically from the self-consistent equa-
Since the numerical analytical continuation fails some-tions(3.1) and(3.3—(3.5) by considering the asymptotic be-
times and can give inaccurate resuléspecially for higher havior of the functions. This divergence contradicts the ex-
temperatures it is useful to transform the self-consistent perimental results® from which one expects thepposite
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FIG. 4. The spectral function of the particle-hole pair propagator ¥
x"(e) [directly related to the current voltage characteris(i¢) by FIG. 5. (a) Electronic spectral functioA(e) as expected from
(3.6)] in self-consistent RPA forT=o (a=0, dotted ling, the experiments. For simplicity we have assunredl/2 and mod-
T=kg'e?// (a=1, full line), and T=0.0k;'e?’// («=100, eledA(e) by two Gaussian peakéb) Spectral function of the self
dashed ling energyX"(€) obtained via the Dyson equatid@B.1) together with
(2.6) from A(€). The main feature is the very narrow peakeatu,

. hich is related to the pseudoga ate~pu.
for A(e): for low temperatures the electronic spectral func-" ! pseudogap/(e) at e~ u

tion A(e) should besuppressedlose toe=u and form a
pseudogap.

Thus, the self-consistent quantum-field theory fails for
low temperatures. It turns out that if we lower the tempera
ture more and moréwvherea>1 is increasedthe numerical
iteration procedure becomes unstable. This fact might b
viewed as an indication of the failure of the theory for low ; pseudogap dk(e) at e~ u: 3"(e€) has a very narrow
temperatures. To make the iteration convergent we must sloy, ., ate~y that is nearly a delta function. Alternatively,

it down, and thus we can solve the equations also for ver&n(e) can be determined from(e) by the self-consistent

low temperatl_Jres up tmz~_1000. In Fig. 4 We_Shc_’W t_he perturbation serie€3.2), which can be treated only approxi-
spectral function of the pair propagatef (), Wh.'Ch Is di- mately. To construct a successful self-consistent quantum-
rectly related to the_ current—_voltage charactenstﬁV) by field theory one must find fo®[ G] such an approximation
(3.6). The re:_;ults for intermediate and high temperat(ias that the resulting spectral functi®i’(€) looks at least quali-
and dotted lingseem to be rgasona}ble. However, the resu'&atively similar to that in Fig. ) with the essential features.
for low temperaturegsdashed line, withe =100 of the same However, any approximation we have trié@PA and ladder

order. as "14 the exp.erlmer)tsclearly contradicts the approximation was not successful. While we find the two
experiments:™* We predict that for low temperaturd§V) 0. peaks, fron(3.2) we never obtain the very narrow

diverges(;‘or smal(lj voltage_vh, while the experimgntsﬁhave peak of2"(€) at e~ u that is essential for the occurrence of
measured a pseudogap with a strong suppressidfMffor pseudogap iA(e).

small V. Thus we come to the conclusion that the self-
consistent quantum-field theory cannot explain the tunneling IV. BEYOND PERTURBATION THEORY: SEPARATION

experiments. , . . OF A BOSONIC FACTOR FROM THE ELECTRON
If the exact electron Green’s functicB(w,) is known, GREEN'S FUNCTION

one has two possibilities to calculate the related self-energy
3 (w,): first, the Dyson equatiofB.1) used in backward di- Now, we want to present an approach that goes beyond
rection and second, the self-consistent perturbation serigserturbation theory and covers the essential physics of the
(3.2). In an exact theory both equations must yield the sameffect. From the qualitative discussion of Eisensteiral.
result. By an analytical continuation we can state similarand the theory of Johansson and Kinaiehas become clear
equations for the electronic spectral functidie) and the that the independent-boson mdteff one electron in the
spectral function of the self-energy”(e).[Here 2"(e) is  two-dimensional layer coupled to the collective excitations
defined similarly toA(e) by an equation analogous (@2.6) seems to be the correct picture, in a very rough form, about
for the self-energy. It turns out that the relation betweenwhat is going on in the tunneling experiment. In this section
A(e) andX"(e) arising from the Dyson equation does not we present a special procedure of reordering the Feynman
depend on the temperaturé&rom the experimental findings diagrams of the perturbation series that can be viewed as the
it is believed that at low temperatures the exact electronidield-theoretic method of how to derive the exact solution of
spectral functiorA(e) has two broad peaks separated by athe independent-boson model. We develop this method for
pseudogap a&~ u. In Fig. 5a) a typical spectral function the two-dimensional interacting electron system in the frac-
A(e) of this kind is shown. For simplicity we modél(e) by  tional quantum Hall regime, which we have described in Sec.
two Gaussian peaks and assume the occupation fractidh In the next section we derive an approximate formula for
v=1/2 so thatA(€) is symmetric aroun&= . The Dyson the electron Green’s function that looks similar to the solu-

equation(3.1) can be handled easily and yields the exact
self-energy if the exact Green’s function is known. In this
way the spectral function of the self-enerf§(e) shown in
Fig. 5(b) is obtained. The curve in Fig(B) can be viewed as
the exact spectral functiok”(e) if Fig. 5(a) is exact.
%Iearly, this curve shows the main featureXf(¢) related
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- k -k -— k T 7! T
(@) T T T/\A/\/’t' L 7 \gr/ = @n)°5(k) 71-1Jd‘52AB(‘C1—Tz) ‘7 o
B T
Ty
(b) - Uk,t") = (2r)°5(k) AB(r—t") - U(k,t-1')

FIG. 7. Theorem 1: factorization of the 3 vertex with a wavy
FIG. 6. Separation of the interactiédashed linginto a bosonic line. This equation is valid under the two assumptions that the wavy

part (wavy line) and a remaining pardotted ling, shown(a) dia- line 2carries only zero momentunji.e., it is proportional to
grammatically andb) in terms of formulas. (2m)*4(k)] and thatAB({,=0)=0 [Eq. (4.2)].
tion of the independent-boson model. B(r—7'+nAaB)=B(7—7") for neZ. (4.6

The basic idea is to split the interactidi(k,7— 7') into
two contributions, a bosonic part An important function, which appears in our theorems, is

defined by the integral
—(2m)28(K)AB(7—1'), (4.0
which carries no momentum but is time dependent and may 1 ,zjf JT B
contain retardation effects, and a remaining part A(r=r)=zha "] dn | dnAB(r—)
U(k,7— 7"). Diagrammatically and in terms of the related ,
. . . . . T—T Tl

formulas this is shown in F'lg. eWe assume_that 3 vertices :ﬁ_ZJ dﬁf d7,AB(7,). 4.7)
are constructed with wavy lines and dotted lines as done with 0 0

the dashed line in Fig.(t).] The nontrivial part of the inter-

action is the bosonic partwavy line), which we want to  This function is also symmetric and because(4f2) also
separate from the perturbation series and treat exactly. Fgeriodic. HenceA®(7— 7') is also a bosonic function with
the proofs of the theorems in this section we need the folthe propertieg4.5 and (4.6). Evaluating the integral over
lowing two assumptions. First, in real space the bosorihe delta functions explicitly, we obtain

Green’s functiomAB(7— 7') (wavy line) should not depend

on the space coordinate. In Fourier space this assumption , . , I ks m
implies the factor (2)28(k) in (4.1), which means that the A®(7—7")=—A " A[r—7'|+4 fo dTlfo d7,B(72)
bosons carry no momentum. Secondly, we assume 4.8

hB ,
AB(QHZO):ﬁ—lf dr'AB(7—7')=0. 4.2 for O<7,7' <hp. .

0 Now, let us turn back to the Feynman diagrams of the
electron Green’s functionG(w,) and of the connected

While the original interactioridashed lingis instantaneous, . . X 4 .
9 \ 4 density-density correlation functigp,,(k,{,). We split the

the bosonic partwavy line) is nonlocal in time and contains . . . 4 .
partwavy ling interaction (dashed ling as described above into a boson

retardation effects. HoweveAB(7— 7') may contain also diated part lin® and - totted lina
instantaneous contributions that are delta functions in time_rl_ne lated partwavy lin€) and a remaining pattotted ing. -
hen we obtain Feynman diagrams consisting of fermion

Thus, it is convenient to introduce tlw®ntinuouscontribu- i hich ted b i d by dotted li
tion B(7— 7') from which all delta functions are separated, INés which areé connected by wavy finés and by dotted lines

' in any possible way. What changes in the diagrams of Fig. 2
defined by . . o
is that now two types of interaction lines occur, wavy and
+o dotted lines instead of the original dashed lines.
AB(7—7)=B(7—7')—2A >, #8(7— 7 +nhp). Let us now considea 3 vertex with two free electron
n:—OO

Green'’s functions and a wavy line. The two assumptions that
(4.3 we have made above allow us to prove Theorem 1, which
Here 2A is a constant which will later be identified as an States that the 3 vertex decomposes into a product of an
energy gap. While at the moment the continuous bosoniétegral of the bosonic functiodB(7—7") and a single
function B(’T_ 7-’) is arbitrary and may be anything, the con- electron Green’s function. In Flg 7 the theorem is formu-
stant 2\ is fixed by our second assumptiéh2) and must be lated in terms of Feynman diagrams. For the 3 vertex on the

chosen as left-hand side we write down the expression
-1 kb ip
20=171| TdrB(n=B(Q,=0). (44 h‘1J dry(2m)28(K)AB( 1 — 75)
0
In this way we can be sure thé#.2) is always satisfied. X Go(7— )M (—K)Go(7p—7'). 4.9
Since the interaction lines are not directed, we can assume
that the bosonic function is symmetric, Because of the factor (2)25(k) and the formuld2.13b we

B(r—7)=B(+ — 1) 4.5 can substitutévl (— k) — M (0) =1, which can be absorbed in

' one of the free Green’s functions. Then, insert{ggl0 for
(otherwise it could be symmetrized Furthermore, any the free fermion Green’s functions and reordering the terms,
bosonic Green'’s function is periodic in the imaginary time, we obtain
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= (2n)°8(k) -

FIG. 8. Cancellation of a fermion loop with one 3 vertex with a
wavy line andn further unspecified 3 vertices. The sum is taken
over all permutations of the position of the wavy line, while the
order of the remaining vertices is kept fixed.

) , (7 FIG. 9. Typical remaining diagrams ¢8) the fermion Green'’s
(2m)“8(K)1{ [0(7—7")—n(€p) 1A f d7AB(71—73) function G(7— ') and (b) the connected density-density correla-
7 tion function x,,,(k,7—7") after application of Theorem 2. Wavy
lines must be attached with both ends to an open fermion line and

hp U
—n(ey)[1— n(eo)]ﬁ‘1J dr,AB(7— 7-2)] hence can be present only in diagramgaf
0

1 , loops with more than one wavy line attached to it. In this
xex—h e p)(r=7)]. (4.10 Wa)F/) we arrive at the following t)rlleorem:
Our assumption4.2) implies that the second term in the = Theorem 2: Feynman diagrams that contain closed
curved brackets is zero. Parts of the first term can be confermion loops with wavy lineginteractionsAB) attached to
bined again to the free fermion Green'’s functi@10. Thus  them cancel due to the fact that the perturbation series sums
we obtain over all permutations of the 3 vertices on each fermion loop.
As a consequence, in the remaining diagrams no wavy
line is attached to closed fermion loops. This fact is shown in
Fig. 9 for the diagrams ofa) the fermion Green’s function
(4.1) G(7—7') and(b) the connected density-density correlation
function x,,(k,7—7"). While the fermion lines can be con-
ected by dotted interaction lines in any possible way, wavy

(277)25(k)ﬁ_1f7:d72AB(7'1—TZ)GO(T— ),

which in terms of Feynman diagrams is exactly the right-

hand side in Fig. 7, and the theorem is proven. We note th .
g P Ines, if they are present at all, must be attached t@pen

Theorem 1(and the following theoremss valid not only in U . L
our particular case where the motion of the electrons is re{-ﬁm:j'.on line W'mEOtg eniszs se_?n In F'iq't@' Powe%/_er,
stricted to the(degeneratelowest Landau level. It can be e diagrams of the density-density correlation funcfiig.

proven in general for any free Green’s function that can b .(b)] contain only closed Fermion loops but no open fermion

represented in diagonal form by afiyondegeneraesingle- ines. Hence_, in these diagrams the wavy lines drop out com-
particle states, where it is supposed that the 3 vertex is loc Iete!y. In this way we o_btaln an easy result for the dt?nsny—
in real space, which means that the interaction of the eleci€NSity correlation function. Let us denote Ry, (k,7—7')
trons is locally gauge invariant and the particle number isthe connected density-density cor_relatlon f“!"c“on of an ?IQC'
conserved. tron system where the electrons interact with the remaining
Next we consider a closed fermion loop withunspeci-  InteractionU(k,7—7'). The related Feynman diagrams con-
fied 3 vertices. We attach a wavy line to the loop via antain pnly dqtted mteraptmn Ilngs. Then, for the orlglnal
additional 3 vertex and sum over all permutations of thedensity-density correlation functiog,,(k,7—7’) we obtain
position of the wavy line while the order of the othar the relation
vertices is kept fixed. In this way we obtain a sum rof o~ ,
diagrams, which is shown in Fig. 8 in the first line. Applying Xpp(K 7= )= xpp(K, 7= 77), (4.13
Theorem 1 we separate the wavy line as a factor and arrive @fqer by order in perturbation theory by splitting the original
the second Il_ne in Fig. 8, while the expression in the C“rveqnteractionU(k,r— ') (dashed lingas shown in Fig. 6 and
brackets is given by applying Theorem 2 to the Feynman diagrams. Equation
- " (4.13 is valid also for higher-order density correlation func-
{ .}:ﬁ*lj dr’ AB(7— T')+ff1j dr'AB(7—1") tions because the related Feynman diagrams contain only
1 72 closed fermion loops. Thus, as an important result we find
_— that a density correlation function of any order is not affected
+... +h—1f dr'AB(7—17") by the separation of a zero—wave-vector bosonic part of the
n interaction(a wavy ling.
-0 4.12 Now we cpntinue wit_h the fermion Green’s function. To
’ ' handle the diagrams with wavy lines on the open fermion
Thus, the sum of the diagrams cancels. By iteration this conline [Fig. 9a)] we need further theorems. We consider an
sideration can be extended straightforwardly to fermionopen fermion line with one end of a wavy line attached to it
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1 2...n 1 2...n 00
T T+ 1 —< T Z Z T E : : E E o=

¥ § 5o TR

wavy lines 1 2 .-+
k K
To To . . . ;
H H i _ | . H H H H H
+ + . i 2 2 _ = exp { AD(T-T )} T 7
k 2 FIG. 11. Theorem 3: Exact treatment of the wavy lines that are
0

1 2...n connected with both ends to the open fermion line by separation of
Pob a bosonic exponential factor. The sum is taken over all permutations
of the ends of the wavy lines, which lead to topologically non-

equivalent diagrams. The order of the remaining vertices connected

) ) __ to dotted lines is kept fixed.
FIG. 10. Separation of a bosonic factor for an open fermion line

with one end of a wavy line attached to it amdunspecified 3
vertices. The sum is taken over all permutations of the position o
the wavy line, while the order of the remainimgvertices is fixed.

T
= @n)25(k) #" j'dr;,AB(ro-z;)) ¢ r<ieieiey
,tl

ﬁere 11! is an additional symmetry factor that arises be-
cause the permutation of tHewavy lines leads to no new
diagrams. Finally, we take the sum over the number of the
wavy lines| and obtain an exponential function for the

by a 3 vertex andh further unspecified vertices. We again .
bosonic factor,

sum over all permutations of the position of the wavy line
and keep the order of the remaining vertices fixed. Applying > 1
Theorem 1 we separate a bosonic factor = = o

.20 TAG(r=7)]' =exgAd(r=7)].  (4.1D

(277)25(k){ﬁ_1f d7oAB( 70— 70) Thus, we arrive at Theorem 3 which is stated diagrammati-
e cally in Fig. 11. Wavy lines that are attached to an open
m fermion line can be separated in terms of a bosonic factor
+7flj droAB(7o— 7o)+ - - - that is exactly given by4.17).
2 The remaining diagrams of the electron Green’s function
The1 shown in Fig. 9a) have exactly the form as the left-hand side
+7L71f d7eAB( 70— 70) of Theorem 3 in Fig. 11, where the unspecified vertices are
T” connected to closed fermion loops by dotted lines. Thus, we
- can treat the wavy lines exactly by separating the exponential
+ﬁ_lf , dTéAB(To—Tc'))] factor (4.17) while the second factor is a sum of Feynman
! diagrams that contain only dotted interaction lines but no
T wavy lines any more. Summing over all Feynman diagrams,
:(277)25(k)7flJ' drgAB(7o—79) (414  for the original one-particle electron Green’s function
T G(7—7'") we obtain the exact relation
and obtain the equation that is shown in Fig. 10. Next, we
also attach the second end of the wavy line to the open ferm- G(r— 7' )=exd AdD(7— T’)]é(T_ ), (4.18
ion line and sum over all permutations of the positions of .
both ends, which lead to topologically nonequivalent dia-whereA® (7— 7’) is defined by(4.7) andG(7—7’) is a new
grams. For the wavy line we must integrate okerso that ~ Green’s function of an electron system where the electrons
the factor (27)25(k) disappears. Since the wavy line is not interact via the remaining interactiod (k,7— ') [above
directed, its two ends are undistinguishable and we obtain aglpp(k,T_ ') was defined analogous]yThe Feynman dia-
extra symmetry factor 1/2. Thus, instead (df14) we then  grams ofG(7— ') are constructed only with dotted interac-

obtain the bosonic factor tion lines. Since the exponential factor is a power series of
L the separated bosonic interaction pavavy line), the right-
[T T, , hand side 0f4.18) is a reordering of the perturbation series.
- 2 _ — o
Zh erTOerTOAB(T‘) 7o) =AP(7= 1), Thus, for the electron Green’s function we have found a

(4.15  formula that goes beyond perturbation theory. This formula
] ] - ) ) (4.18 is a transformation formula for the electron Green’s
which can be identified with the functioA®(7—7') de-  fynction with an important property: the occupation fraction
fined in (4.7). Further generalizations are straightforward. If 5t the Jowest Landau level is not changed. Because of
we attach wavy lines to the one open fermion line and sum A®(r=0)=0, Eq.(4.18 implies
over all topologically nonequivalent permutations of the ends

of the wavy lines, we separate the bosonic factor =7 (4.19

1 f = —G(r=— Y=—G(r=— -
= A or v G(r=-0) and v G(r=-0). As a conse
[ [A®(r=7)]. (4.16 quence, the neutralizing positive background charge density
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pp cancels the Hartree diagrams in both cases, in the pertur-

bation series of5(7—7') and in that ofG(7— 7). (@) G(r-t) =  ———
Our method can be applied also to higher-order Green's
functions as, e.g., the two-particle Green'’s function. For each -k
open fermion line we obtain an exponential factdr17) (0 - Up(k,1=t') = eremeeeeerees o
from the wavy lines connected with both ends to the same
open fermion line. There will be also wavy lines that connect = " D) +oe--
two different open fermion lines. From these wavy lines we e’
obtain additional exponential factors, where the exponent is _
defined by a double integral similar to that(#.7) but with () () = iy +
four different imaginary times as integration boundaries. The I
resulting formulas for the higher-order Green’s functions are + ._<_._'<"_<_ O

similar to (4.18 but contain additional exponential factors.

FIG. 12. (a) Exact Green’s functioﬁ;(r— 7') identified as thick
propagator line(b) summation of all interaction diagrams with po-
larization insertions leading to the effective interaction identified as
thick dotted propagator line, ard) perturbation series of the self-

The main result of Sec. IV is the formul&.18), which energy>(7—7') up to second order in terms of irreducible dia-
allows a factorization of the electronic Green’s function 9rams with thick propagator lines and thick dotted interaction lines.

G(7—7'") into an exactly known bosonic exponential factor

V. OPTIMAL CHOICE OF THE BOSONIC INTERACTION
PART: APPROXIMATE DERIVATION OF AN
INDEPENDENT-BOSON MODEL

and a new Green's functioB(— 7'), which is given by a diagrams. A further resummation is possible with respect to
perturbation series in terms of th,e remaining interactiorP0|a”2at'0n subdiagrams of the interaction. As shown in Fig.
~ 12(b), we define the effective interactiddx(k,7—7'), as-

U(k,7—7'). Until now the bosonic functiorB(7—17"), X . . . :
which appears in the separation of the original interactionsoc'ated with a thick dotted line, as the sum of all diagrams

U(k,7— 7'), is arbitrary and4.18) is just an exact transfor- with two external dotted lines. In this way it is possible to
mation formula for the electron Green’s function. In Sec. llI expresshthe self ?ne@f“h_. T(,) In terms 01|‘.|rreduc(|jblﬁld||(aé
we have found that perturbation theory fails for the ori(‘:jinalgra'ﬁ.ns that contain only thick propagator lines and thick dot-
Green's functionG(7— 7'), because the expected electronicted m_teractlon lines. Up'to second order in the effective in-
spectral functionA(e) with a double-peak structure and a teraction the Feynman diagrams O_f the_self-energy are shown
pseudogap a¢~ u contradicts the results we have obtained"z1 f'g'thlz(g' EOne d.ShOUId have In Im(ljn(:) thtat beca}{usl_e .Of
by any feasible self-consistent approximation of the pertur-( 19 the Hartree diagram is canceled by the neutralizing

bation series. However, E¢4.18 enables us to transform positively charged backg_roujd. L
the problem to the new Green’s functié(r— ). Our task In_a flrst—order.app_rOX|mat|on thga self-energy is given by
is now to choose the bosonic functi@(r— ') in such a the first diagram in Fig. 12). Applying the Feynman rules

: f A w tain the relat nalytical expression
way that the new Green’s function can be evaluated succesS Sec e obta € related analytical expressio

fully by a perturbation series expansion. This means that the . d2k .

main nontrivial part of the spectral functioA(e), the S(r—7)=— f —— Uik, 7—7")
double-peak structure, must be contained in the bosonic ex- (2)

ponential factor, so that the spectral functidfe) of the new XM(=K)-G(7—7")-M(K)

Green’s function has aingle peakwith a small width. The
bosonic functionB(7—7') should be adjusted so tha( )
is as close as possible to a delta function &{d— ') is as
close as possible to a free Green’s function. -
Let us now consider the perturbation series of xex — zk?/?1G(7— 1), (5.3

G(7—1'). We perform as many resummations as we canyhere in the second line we have used the algebraic formulas
Thus, we start with the self-consistent perturbation theor)(z_lg_ Considering the Feynman diagrams of the perturba-
and expres$(w,) via the Dyson equation, tion series in Fig. 1) carefully, we can express the effec-
~ _ . = tive interactionU .4(k,7— 7') exactly in terms of the bare
Glwn) =1/[~ihwn+ o= pu=X(wn)], 5.0 interactionU(k,7— 7’) and the connected density-density
in terms of the self-energ¥(w,), which can be written as a correlation functiony,,,(k,7—7") by
functional derivative,

[k
——fWUefr( TT)

- - o~ o ") N _r_*2ﬁB hb

$(wn)= — 6D[E]/66(wp), (5.2 Ue(k,7—7")=U(k,7—7")—% fo dry . dry

where ®[G] is a functional of the exact Green’s function XU (K, 7= 1) X pp(K, 71— ) U (K, 73— 7').
G(wp). The Feynman diagrams &(7— 7') contain only

thick propagator lines, which are identified with the exact 54
Green’s functionG(7— 7') as it is shown in Fig. 1&). The  Now, on the right-hand side we want to replace the quantities
interactionU(k,7— 7') is represented by dotted lines in the with a tilde by quantities without a tilde. In the second term
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we can just omit the tilde for the following reasons. In Sec.
IV we have shown by4.13 that the density-density corre-
lation functions with a tilde and without a tilde are equal.
The two interactions in the second term (&f4) are repre-

sented by two external dotted lines in the Feynman diagrams

[Fig. 12b)], which are always connected with one end to
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~ d%k
2(7’_ T’): Vf (ZT)ZV(k)EXF[—%kZ/Z]

—(2v—1)A

> ho(r—1 +nhpB), (5.9

closed Fermion loops. Thus, applying Theorem 2 togethewhich after a Fourier transformation becomes a constant,

with the equation in Fig. @ we can just replace the two
external dotted lines by dashed lines. Hence, we may om
the tilde also on the interactions in the second ternfbof).
For the first term we use the equation in Figb)6and (4.3).
We remember that the original interactibi{k, 7— 7') is in-
stantaneous and expressed in terms of the Coulomb potent
V(k) by (2.11). Taking everything together, we then arrive at
the following formula for the effective interaction:

Ue(K,7— 7' )=V(K) D, £ 8(1— 7' +nhB)+(2m)25(K)

X

B(7—7')—2A, fié(r— 7' +nhp)
—V(K) x,pp(K, 7= 7")V(K). (5.5

Next we insert the effective interactia®.5) into the self-
energy(5.3) and obtain

- d?k
S(7— T’):—f—(ZW)ZV(k)exp[—%kz/Z]
XG(1— 1) hd(r— 7' +nhp)

+2A G(7—7)2 hé(r— 7 +nhp)
—B(7— T’)é(T—T')

d?k , ,
+f(2—w)zxpp(k,7—7 V(K]

xexy — $k2/?1G(7— ") (5.5

it d’k o
E(wn)=vf WV(k)exp{—gk /21— (2v—1)A.

(5.9

We insert this result of our first-order approximation into the
'Bk/son equatior(5.1) and obtain the Green'’s function

Glwy)=1/[—itiw,+ e~ ul, (5.10
which after a Fourier back transformation becomes

G(r—7")=[6(r—7")—n(ey)lex 1 (= ) (7—7')]
(5.11

in imaginary-time representation. Here

d2k 11,2 2
€1=€O—VJ WV(k)exr{—gk 7 ]+(2V—1)A
(5.12

is the renormalized energy amde,) is the related value of
the Fermi distribution function. Frorb.10 and(5.1]) it is
clearly seen that in our first-order approximation together
with the bosonic function(5.7) we obtain afree Green’s
function forG(r— 7') with a shifted energy5.12). There are
two contributions of the energy shift. The first one is the
Fock energy. The second one originates from the indepen-
dent bosons and is representedAy(The Hartree energy is
canceled by the neutralizing backgrounéor the related
spectral functiomA(e) we obtain a delta function,

(5.13

Thus, in our approximation, where we take only the first
diagram of the self-energy shown in Fig.(&Rinto account,
we have reached our goal as well as possible with the choice

A(e)= S(e—€q).

The first two terms are instantaneous in the imaginary time$5.7) for the bosonic functioB(7—'). The spectral func-
because of the delta functions. Thus, in these terms we cdion A(e) is a delta function, an@®(7— ') is a free Green’s

replaceG(7—7')—G(0). However, since the Green'’s func-
tion G(7— 7') has a jump atr— 7' =0, we must be careful.
The first term in(5.6) is the Fock self-energy. To take the
normal ordering of the fermion operators in the Hamiltonian
(2.1 into account, we must choose the value
G(—0)=—7v=—v. The second term arises from the inde-

function with shifted energy.
Now, from (4.18 and (5.11) we obtain the electron
Green’s function

Glr— ) =[8(r— 1) ~n(ep)ext ~h ey~ p) (7
+AD(7—7")] (5.19

pendent bosons. Since the wavy lines are not directed and the

bosonic functions are symmetric, we must choose the sy
metric  value (1/2)[G(+0)+G(—0)]=(1/2)(1—27)
=(1/2)(1—2v) in that term. The last two terms are non-
trivially imaginary-time dependent and contain retardation
effects. They cancel if we choose the bosonic function

d2k
B(r—7")= f (ZT)Zpr(k,T— )[V(K)]%exd — 5k2/72].
(5.7

Thus, we end up with an instantaneous self-energy,

b

where A®(7—7') is defined by(4.8) together with the
osonic functior(5.7). This result has exactly the form of the
solution of the independent-boson mo@ldh this model the
function B(7— 7') is the integral of the independent-boson
Green’s function weighted by the square of the electron-
boson interaction. If here one interprets,(k,7—7') as the
independent-boson Green'’s function and the Coulomb poten-
tial V(k) as the electron-boson interaction, t&fr— 7') in
(5.7) has exactly this form, where the exponential factor is an
additional weight factor arising from the projection to the
lowest Landau level. Thus, we can identify and interpret the
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collective excitations described by the density-density correbosonic functiorB(7— 7') in such a way that the noninstan-
lation function x,,(k,7—7") as theindependent bosons taneous terms of the self-energy are canceled order by order.
However, there is one difference. While in the independentWe believe that our approach is good at least to some extent,
boson model the bosons are assumed to be free, here thecause it provides a simple and intuitive explanation of the
collective excitations havénite lifetimesbecause the spec- effect and because it yields quantitative results for the tun-
tral function x/, (k,€) consists of peaks with finite widths. neling currenti (V) which agree with the experiments quite

It is straightforward and easy to find a Hamiltonian of anWell (see Sec. Vi _
independent-boson model which has the Green's function ONce we believe that our theory is reasonable, we can

. : . : Iculate the electron Green’s functi@(7—7') by Egs.
(5.19 as its solution. In this way we can say that with our €@ . : i ;
transformation formul&4.18 and our first-order approxima- (5.14), (4.8), and(5.7) if the density-density correlation func-

, AN . )
tion for G(7— ') we have found a systematic way of deriv- ;[:J?/\r/]e)épr(;HGaJ l)e\I/SelknOWH. The occupation fraction of the
ing approximately an independent-boson model from the mi-

croscopic quantum-field theory of the interacting electron v=—G(r—7'=—0)=n(e;) (5.15
system. Johansson and Kindreave started directly with an
independent-boson model to explain the tunneling
experiments—3 While the electronic part of their model is . . i :
quite similar to our result, they use magnetophonons of U result forv(u) is a continuous func_tlon of the chem|c:_;1I
Wigner crystal as an approximation for the collective excita—pOtentlaIM'.Thus’ our theory does not include the subtleties
tions in the strongly correlated electron liquid. There areOf the fractional quantum Hall effe¢EQHE) as, e.g., steps

some differences. However, our method mainly supports th%QderiﬂitﬁtzgsthemFgﬁl)E. selgr?:;/etgeria "; mti?l%r rtoulgmsalc;rl%at
approach of Johansson and Kinaret on a microscopic level P piay '

this deficiency of our theory is not very important. Inserting

The independent-boson model is a very intuitive way to . ; o ;
explain the tunneling experimehts and can be viewed as a (5.14 into (3.5 we obtain the particle-hole pair propagator

quantitative regilization of the qualitativ_e ideas rep_orted a_l- y(r—7)=v(1—v)exd 2Ad(r— )], (5.16
ready in the first paper on this experiment by Eisenstein

et al! However, this model is an approximation of the real which does not depend explicitly on the renormalized energy
physical problem. Thus, one has to find out how good thig5.12. Then from the Fourier transform&(w,) and
approximation is. Our method is based on a perturbation sex({2,) we determine the spectral functioAge) and x"(e)

rjes expansion of the transformed Green's functionby analytic continuations to real frequencies via Page
G(r—7'), so that we should consider the higher-order Feynroximation. Finally, from(3.6) we obtainl (V). In a recent

man diagrams of the self-ener§yr— 7') in Fig. 12c). First  Paper about moments of the spectral functiofits was

of all, if we would apply our method to the original pom;ed out that a measure of the tunneling pseudogap ce_m_be
independent-boson model with only one fermion sfatesn obtained from a sum rule of the current-voltage characteristic
all higher-order diagrams would cancel exactly. However, in' (V). Thus, from(3.6), (5.16, and (4.8) we can calculate

the present case we have many electrons in the degenerdtfés Sum-rule gap and obtain

lowest Landau level so that the higher-order diagrams are . _ -

nonzero. To get a feeling of the quality of the approximationeJ dVv V I(V) /J’ dv 1(V)

one should consider the second-order diagram in Figc)12 0 0

In the effective interactionf5.5) (the thick dotted ling the

bosonic functiorB(7— 7') defined by(5.7) provides that the _ f”dé ') f‘”de "e)

term related to the collective excitatioiithe last term is 0 X 0 X

canceled at least partially if the integral overs taken. How
perfect this cancellation is depends on the exponential
weight factor, which arises from the algebraic formula
(2.139 for the matrix elements of the 3 vertices. In the first- 5
order diagram of the self-energy in Fig. (€2the cancella- _ 5 7 _

tion is complete by the choio®.7). However, in the higher- =2k ﬁrA(D(T)|T:+°_2A' (5.1
order diagrams th&-dependent exponential factors depend_.. . . . .
sensitively on the topology of the diagrams. Hence, thesrl)gc(;;?rgrefﬁl:]gt?;t](s\/) tll’]nis(l.slt)JrlT? ﬁjfeonggé)uugn gle?::gtr?glcthe
second-order diagram yields a contribution to the self-energ seudogap oA(e). If A(e) has a double-peak structure as

which contains nontrivial time-dependent and retardation ef tod. then & i imatelv th diff f
fects. This contribution should be small so that in the secondEXPECt€d, then & IS approximately the energy dilierence o

- . the positions of the two peaks. Henck,is an important
order approximatioiG(7— 7') differs not too much from the . ; : .
, ;i ~ parameter in our theory. Insertir{§.7) into (4.4) we obtain
free Green’s function and the related spectral functige)

is simply given by the Fermi distribution function with the
renormalized energgs.12) as the argument. It turns out that

d
=~ (7] 0/ X(7=0)

is asingle peakwith a relatively small width. 11 d%
We have not proven explicitly if the noninstantaneous A== | —=—=x,,(K,Q,=0)[V(k)]%exd —3k>/?].
I ) : 2) (2m)="rP
contributions of the self-energy due to the higher-order dia- (5.19

grams are really small. It is not clear if these contributions
are small at all. In principle one can improve our approach tdiere x,,(k,{2,=0) is the thermodynamic susceptibility that
higher orders by constructing a perturbation series for thelescribes the linear response of the electron density on an
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applied external potential in thermal equilibrium. Thus, thenitudes(and it does not violate the assumptions of the theo-
guantity A in (5.18 can be interpreted as minus the changerems. From the free-electron Green'’s functi¢h10 we ob-

of the energy(the thermodynamic potentiabf the electron tain the free pair propagatoy(Q,)=pBr(1—)dq o and
system due to relaxation in an applied external potentiahence the RPA density-density correlation function

V(r) up to second order. The origin of this external potential

is the tunneling of an electron. If one electron tunnels into _ Br(1l-v)

the two—dimzensional layer, it then creates a Coulomb poten- Xpp(Kofdo) = 1+N(k)Br(1-v) 90,01
tial V(r)=e/|r| in its surrounding, which causes a relax- on p .

ation (ar)ld a c|h|ange of the electrgn density and hence a ré\fhergh(k) =,(27T/2) 1exp{—(1/2)k2/2}\/”(k) is the effep-
duction of the electrostatic correlation energy given byllV€ interaction. The related spectrurg,,(k,€) has its

(5.18. The exponential factor arises due to the fact that thidVeight atzero energyso that the present approximation is
additional electron must satisfy the Pauli exclusion principleS®mewhat oversimplified. We can now proceed V‘{'th Egs.
with the remaining electron§ln the Fock energy, the second (3-7: (4.8), and(5.14) to calculate the electron Green's func-

term in (5.12, the exponential factor appears for the samelion. Because of the simplicity db.19 all integrals can be
reasor evaluated exactly, and we obtain

Thus, on a rough scale, from our theory we can read off a N =LA -2 Y
gualitative explanation for the effect which is similar to that AB(r=1)= A7 Al 7= 7|+ A7 kg TA) (7= 7 )(5’ 20
of Eisensteiret al! and of Johansson and KinareAn elec- '
tron that tunneldnto the layer needs an additional energy Where
A to compensate the correlation energy before the system a2k [NK)2Br(1- 1)
can relax. In some sense one can say that the electron tunnels A=m/2 nomv (5.20)
into an interstitial place. Hence, thelectron peakof the (2m) 1+ N (k) Br(1-v)
spectral functiomA, (¢) is shifted to higher energies by.  5nq g=1/k,T. The analytic continuation to real times
An electron that tunnelsut ofthe layer leaves a hole which (Keldysh formalism can be done easily. Substituting
has a correlation energy A because of its opposite charge. .. g1 it in the Green’s function5.14) we obtain the real-

Hence, thehole peakof the spectral functiomA_(e) iS  ime Green's function§ . (t) andG_(t), the Fourier trans-
shifted to lower energies by A. As a result, the electronic  t,rms of which are the spectral functions

spectral functionA(e)=A,(e)+A_(e) has two peaks,

whose positions are separated approximately Ay Since A, (e)=(1—v)[278] Y2%exd — (e—[e,+A])?%/267],
the system relaxes into equilibrium within a certain time af- (5.2239
ter the tunneling process, the two peaks have finite widths,

which are determined by the explicit form of the spectrum A_(e)=v[2m5] Yeexd — (e—[e,—A])%/26%],
X,p(K,€) of the collective excitations. If the relaxation pro- (5.22h

cess is slow, then the two peaks will be well establishedy,ere 5=(2kgTA)¥2 Thus, we obtain an electronic spec-
OFherwise, in the case of a quick relaxation the two peak$yg| function A(€)=A, (€)+A_(e), which consists of two
will melt together into one peak. Gaussian peaks of width the positions of which are sepa-
Our theory yields a formula for the electron Green’s func- 4iaq by the sum-rule gap A2 At low temperatures
tion G(T— 7') which needs'the densit'y-(jensity correlation T<A/kg the width is quite smalls<2A, so thatA(e) has a
function pr(va_,T ) as an input. In principle, one can cal- e|established double-peak structure. However, in the
culate y,,(k,7— 7') by perturbation theory, e.g., in an RPA ;614 temperature limiT—0 the peaks becomé functions
approximation. The result, however, is not very accurate. Ifhocause of 5=(2kgTA)2—0 while the sum-rule gap
any apprt?ximation one must be very careful thatyy (7/2)e?/,/ becomes the Fock energy. This zero-
Xpp(K,7—7') has the right hydrodynamic behavior for small (o mnerature result is artificial and arises from the fact that we
k and small frequencies, imposed by t,he particle conservayaye assumed a spectrum of zero-energy collective excita-
tion. Explicitly this meansy,,(k=0,7—7")=constant S0 ions. According to the experiments(e) must have two
that the assumptions of the theorems in Sec. IV are satisfigg,,4q peaks also foF=0. Thus, in a more profound theory
and that the transition from the effective potent&H) to the we need a more realistic spectru,(k, ¢) of the collective
formula(5.5) is valid. We have found that the density-density excitations LA
correlation function calculated by self-consistenRPA ap- Since th.e input of the independent-boson model iskthe
proximation(as in Sec. I} yiolates this property and thus_is integral (5.7), thek dependence of the spectrum of the col-
not suc.cessfu'I[The result is an electr.on'lc spectral function lective excitations is not so important. More precisely, the
A(e) with a single peak that looks similar to the result of electron Green’s functio®(7— ') and the electronic spec-

Sec. lll in Fig. 3] In Sec. IV we have proven the equality . ;
Xop (K7 T’)=)”(pp(k,r— +') order by order in perturbation ';Le::cz%r;]ctlon A(e) depend only on the integrated spectral

theory. This implies that by our method we do not obtain a

(5.19

formula for the density-density correlation function that goes d2
beyond perturbation theory. B"(e)= | =—=x_,(k,e)[V(k)]?exd — 3k>/2].
) , . (2)2tee
The quantum-field theory does not yield a reliable result (5.23

for the density-density correlation function. Nevertheless, it
is instructive to do the standard RPA calculation, because iThus, we can play around with the independent-boson model
yields a simple result and some feeling for the order of magto find out whatB”(€) must qualitatively look like so that the



7370 RUDOLF HAUSSMANN 53

resultingA(e) fits the experiments. It turns out that the form A . d2k T
of A(e) is determined mainly by thenergyof the collective z([[P(f),K]m(r')]):f 2m)? e pof (k).
excitations, i.e., the energy at whi&i(e) has its main spec- 6.5

tral weight, while the precise form @&"(¢) is not so impor- A .

tant. We find that high-energy collective excitations produceiere K=H—uN is an operator related to the Hamiltonian
a single peak foA(e), while collective excitations with low H (2.1), of the system and the operator of the total particle
energiesc=<0.3A yield a double-peak structure for low tem- numberN. Inserting the single-mode approximati1) for
peratures. The electronic spectral functidie) with two  the spectral funCtiOD(Zp(k.E) into the sum ruleg6.3) and
broad peaks at low temperatures, as expected from the ex6.4), the energy integrals on the left-hand sides can be

periments, is obtained B”(€) has its main spectral weight evaluated trivially, and we obtain the formulas
in the interval 0<|e|<0.2A where 22~¢e%/. In the next

section we determine B"(e¢) by the single-mode a(k)=p0§(k) tant BE(k)/2], (6.6)
approximatioft® and then calculaté(e), x"(e), andl(V).

E(K)=pof(k)/a(k). (6.7)

Because of the factor tahBE(k)/2] these equations are the

generalizations of the formula of the single-mode energy in
In a simple approximation we can assume that for a giverRef. 13 to finite temperaturdgompare with(4.19 in the

wave vectork density waves approximately are collective second paper of Ref. 13 and note that $k) and f(k) we

modes with a single energi(k) and an infinite lifetime. use the same notation while oi(k) must be identified with

This means that for the spectral function of the collectiveA (k) in this papet. Thus, if S(k) andf(k) are known, with

excitations we make the ansatz these formulas we can calculaa¢k),E(k) and then obtain

" the spectral functionsy” (k,e) and B"(e) via (6.1) and
Xpp(K ) =a(k)[o(e—E(k))—o(e+E(K)], (6.1) (5.235.quuivaIent to(6?(1§p{§1re t)he equati(or)13 e
which is called single-mode approximation. The energy
E(k) and the spectral weight(k) are determined by sum  Xpp(K, 7)=a(k)({6(7)+ng[E(K)T}exd — 7~ *E(k)7]

VI. SINGLE-MODE APPROXIMATION
FOR THE COLLECTIVE EXCITATIONS

rules for )(;;p(k,e) and can be calculated according to the +{0(— )+ ng[E(K) Yex + 7~ *E(K) 1)
magnetoroton theory of collective excitations developed by '
Girvin, MacDonald, and Platzmar.In this theory all quan- (6.8

tities can be expressed in terms of the static structure factor

— 2 2
S(k), which is defined as the Fourier transform of the static Xpp(K,Q2n) =a(K)2E(K){(A Q) +[E(K)]T (6.9

correlation function of the densitp(r)= ¢ (r)(r) pro- in imaginary-time representation and Matsubara representa-
jected to the lowest Landau level tion, respectively, wherag(e) =1[ef<—1] is the Bose dis-
42K tribution function. From(6.8) and (5.7) we obtain the
S o(r’)) = k(=1 S(K). 6.2 bosonic functiorB(7), which we need as an input to calcu-
(p(p(r")) f (2m)? postk). (6.2 e the functiomd(+— ') by (4.8) and finally the fermion

Here the uniform particle density of the system Green’s functionG(7—7") by (5.14.

po=vl2m/? appears for convention of the normalization of ~_ Girvin, MacDonald, and Platzmahhave evaluated the

the static structure factor. Now, one can straightforwardlydOUbIe commu_tator on the left-hand side(6f5 and shown
prove the sum rule that- for densities_projected to the lowest La!"ndau level the

oscillator strengttf (k) can be expresseskactlyin terms of

1 " — the structure factoB(k). The resulting formula is given by
EJ de coth Bel2]x;, (K, €)= xp(K,7=0)=poS(k) (4.15 in the second paper of Ref. 13. We replace the expo-
(6.3 nential functions with imaginary arguments by sine and co-
sine functions and transform the momentum integration to

using the property thag,,(k, ) is antisymmetric ine. The 55 coordinates. Then we write the formula in the form

factor cothBe/2] is related to a fluctuation-dissipation theo-

rem which connects the dynamic susceptibiligy (k, €) - L L[ 2w o ,
with the dynamic structure factor. In a similar way a second f(K)=3(2m) fo quL deV(q)(2sin zqk/ “sing])
sum rule can be proven,

<[ S

o +S(VkZ+ g%+ 2kqcosp) ekacose ], (6.10
1 which is convenient for numerical evaluation. Here
—{— % E_xp,,(k,r) ) V(q)=2me?/q is the two-dimensional Fourier transform of
T==0 the Coulomb interaction potential. Because of the isotropy of

:Pof_(k) (6.4) the liquid state the structure factor and all other quantities
_ ' depend only on the absolute valke=|k| but not on the
wheref (k) is the oscillator strength defined by the Fourier direction of the wave vector. Thus, from now on we write
transform of the double commutator k instead ofk in the arguments of the functions. We perform
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first the integral over the angle and then the integral over
the radial wave numbeq. All functions are sufficiently
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where y is a parameter which is positive and depends in a
particle-hole symmetric way on. It turns out that the mode

smooth so that the numerical integrations cause no problemenergiesE(k) depend sensitively of for smallk. Thus, we

and are accurate.

Now, all we need to evaluate the quantitiegk), E(k),
and the spectral functio(6.1) is the static structure factor
S(k). Girvin, MacDonald, and Platzméh calculated the

must considery as an important parameter and choose it
appropriately. Expanding6.12 with respect tok up to
fourth order and comparing wit6.15 we obtain a third
equation for the coefficients,, given by

structure factor for fractional quantum Hall ground states

with occupation fractions’=1/3, 1/5, and some others by

two different methods, a Monte Carlo and a hypernetted-

chain calculation. Qualitativel$(k) has the following form:
for k—0 andk—oe it is zero, and for wave numbers around
k~/"1it has a single maximum. Since we nes() for all
occupation fractions in the interval 6<v<<1, mainly close

1 2v
— > (m+1)(m+2)c,= 1. (6.16
4 1_Vm:j_

odd

For simplicity we assume that only the first three coefficients

to v=1/2, we should establish an easy interpolation formulac, | c,, andcs are nonzero whilec,,=0 for m=7. Then

However, it turns out that the mode energyk) is very
sensitive on small details d(k). Thus, we must be very
careful in choosing an appropriate ansatz $k).
According to Girvin, MacDonald, and Platzmidnve start
with the pair-correlation functiong(r) of the “liquid”

(6.13, (6.14), and (6.16 are three linear equations which
determine the three coefficients, c;, andcs completely if

v is known. It turns out that with the above assumptiois

the only parameter of our theory which we can tune. Particle-
hole symmetry requires thagS(k) is a symmetric function

ground state, which can be expanded in terms of lowestof v aroundv=1/2 wherep,= v/27/?. Equation(6.15 im-

Landau-level eigenfunctions with angular momentomfor
the relative motion as

—r2j2/2 ‘ 2 I’2 " —r2i4,2
g(ry=1-e / +E Cmﬁ —>| € .
m=1 :

odd

(6.11)

Here thec,, with odd m=1,3,5, ... are coefficients which

plies that y=y(v) must be also symmetric in around
v=1/2. Since in our theory we are interested in occupation
fractionsv which are not too far away from=1/2, we can
assume in a lowest order approximation thais a constant
independent ofv. This assumption implies that the disper-
sion relation of the mode energiéfk) does not depend on
the occupation fractionv but only on the value ofy. We
have variedy in the interval 6 y<3 and determined the

represent the nontrivial correlations of the electronic groundiispersion relatioriE(k) numerically. We find a magnetoro-
state in the fractional quantum Hall regime. For a free electon minimum at wave numbeis~/ ! that agrees with the

tron gas it isc,,=0 for all m. Positive definiteness requires
cn,=—1 for all m. For a correlated state thg, are nonzero
but satisfy the limiting behavioc,,— 0 for m—«. By Fou-

results of Ref. 13. For smaller valugsthe magnetoroton
minimum becomes stronger, while for larger valueg be-
comes fainter and disappears fpe1.5. We find that for

rier transformation and projection to the lowest Landau levely=1.0 the dispersion relatioB(k) has the most reasonable
we find an equivalent expansion for the structure factoform and looks similar like that for=1/3 in Ref. 13. Thus,

which reads
S(K)=(1-v)e 2141 > cpln(k2/2)e ¥,
"oad
(6.12
whereL(z) are the Laguerre polynomials. Now, our strat-
egy is to find a good interpolation formula f8¢k) with only
a few nonzeroc,,. It turns out that charge neutrality and

for our purposey=1.0 seems to be the optimal choice. Ac-
tually, for the Laughlin ground states with occupation frac-
tions v=1/m wherem=3,5,7,. . ., theleading-order term
(6.15 of the structure factorS(k) can be determined
exactly*?%?lwhich impliesy= 1/4v. The resulting value of
v=0.75 for v=1/3 is very close to our choice.

Now, all we need as input for our theory is complete and
we can present our results. In the following calculations we

choose the occupation fraction=1/2. It turns out that the

perfect screening sum rules imply two restrictions on theresults are qualitatively similar also for other occupation

coefficientsc,,, which read®

> Cp=—3i(1-w), (6.13
"odd

> (m+1)c,=—i(1—v)lv.

"o

(6.19

Expandingg(k) for smallk in powers ofk?, the two restric-
tions imply that the terms proportional  andk? vanish.
Thus, for smalk up to leading order we have

S(K)=(1- )i y(K/?)%+. - ., (6.15

fractionsv in the interval G<v<<1 not too close to O or 1.
We choosey=1.0, determinec,, c3, Cg Via (6.13), (6.14),
(6.16), and obtain the structure fact8tk) from (6.12. Then

we proceed as described above and obtain the bosonic spec-
tral functionB"(€) by (6.1 and(5.23. The result is shown

in Fig. 13 as a full lineB"(¢€) is thek integrated effective
spectral function of the collective excitations, which we need
as the input for our independent-boson model. As it should
be, B"(€) is antisymmetric in the energy. One can clearly
see that the main spectral weight is located at the energy
0.1e?// (and also at-0.1e%//). In analogy to the sum-rule
gap 2A (5.17), which can be viewed as the average energy of
the spectral weighx”(€) of the pair propagator, we define
the average energy of the collective excitations
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FIG. 13. The spectral functioB”(€) of thek integrated collec-
tive excitations, defined by5.23), in single-mode approximation
for v=1/2 andT=0. The dashed line is the same but with the
functions in (6.1) replaced by Gaussian peaks of width
Ae=0.02%//. The main spectral weight arises from the magne
torotons and is located at the average endgy0.09%%/ /.

FIG. 14. The electronic spectral functigx(e) for v=1/2 and
T:0.0lkglezl/ obtained from(5.14), (4.8), and analytic continu-
ation usingB”(€) of Fig. 13, as input for the collective excitations.
The full and dashed line correspond to those in Fig. 13. One clearly

“sees the double-peak structure with the pseudogap=at. The
symmetry ofA(e) arounde= u is a speciality of the occupation
fraction v=1/2 and reflects particle-hole symmetry.

E= fo de eB'(e) /fo de B"(e) (6.17 ments: A(e) has two peaks separated by a pseudogap at
_ e=u wWhereu=¢€; ande, is given by(5.12. The left peak
and obtain the value E=0.09%%/. Since the with energiese<pu represents the hole excitations, and the
experiments;® which we want to explain with our theory, right peak with energies> u represents the electron excita-
are done at very low temperatur@s-0.01kg 'e?// so that  tions. HereA(e) is symmetric with respect te= . This
E/kgT~10, we have performed the calculations of thefact is a speciality of the occupation fractian=1/2 and
single-mode approximation at zero temperature. This mean®flects particle-hole symmetry. For other valueswothe
in (6.6) we have set tarnlil/2) BE(k)]~ tanh(5)1 in  spectral functiomA(¢€) is not symmetric. In this case the two
good approximation, so that the spectral weiglti) of the  peaks have different sizes, but the pseudogap=at. re-
collective excitations in(6.1) is identified with the structure mains.
factor a(k) = poS(K). It is known that the structure factor ~ From (3.5 or (5.16 we obtain the pair propagator
S(k) of the density projected to the lowest Landau level hasy(7—7') and by analytic continuation the related spectral
its main weight for wave numberk in the interval function x”(€). The result is shown in Fig. 15. Because of
0.5/ 1<k=2.57"1. On the other hand, the dispersion rela- (3.6) the spectral functiony”(e) is directly related to the
tion E(k) has a minimum with a positive gap in the samecurrent-voltage characteristi¢V) of the tunneling experi-
k interval which is called the magnetoroton minimum. Thus
we can say that the main contribution of the spectral function A A R B B
B”(e) comes from themagnetorotons
The single-mode approximatidi.1) is based on the an-
satz that the spectrum of the collective excitations with wave
numberk is a delta function located at the average energy —_
E(K). In reality there are several modes for e&cto that the =
peak ofX;p(k,e) at E(k) will be smeared out. To take this
effect into account to a certain extent, we have replaced the
8 functions in(6.1) by Gaussian peaks with a finite width
Ae=0.02%//, which is still small compared to the average L |
energy E=0.09%%//. The resulting spectral function oel——t o 1 . 1 1 . 1 .
B"(€) is shown in Fig. 13 as a dashed line. One clearly sees =2 A e [22/1] ! 2 3
that this spectral function of thie integrated collective exci-
tations is much smoother and somewhat more smeared out |G, 15. The spectral function of the pair propagatte) for
compared to the full line calculated withfunctions in(6.1), y=1/2 andT =0.01k; *e?// obtained from(3.5) or (5.16) and ana-
while the average enerdy is not changed. lytic continuation. The full and dashed line correspond to those in
We take the spectral functioB”(e) from Fig. 13 and Figs. 13 and 14. EquatiofB.6) allows us to compare the curve
determineB(7) via a formula analogous t2.9). Then we  directly with the current-voltage characteristi¢v) by proper re-
calculate the electronic Green'’s functi@{r— 7') by (5.14 scaling of both axes. Qualitatively our curve agrees quite well with
and(4.8) and obtain the electronic spectral functiage) by the experimental results in Refs. 1-8'(¢€) is always an antisym-
analytic continuation via Padapproximation. The result is metric function. For positivee we find one broa}d peak located at
shown in Fig. 14, where the full and dashed line correspond® average energy 2~1.0e// and a tunneling pseudogap at
to those in Fig. 13 We find what we expect from the experi-SMall energiegvoltages.
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ment by rescaling the two axes. Thus, we can easily compare —a-AEg . _
our curve in Fig. 15 with the experimental restifts by Ale)=e ""o(e—e)+ regularterms  (6.23
changing the variables and hence the scale on the two axds.the zero-temperature limit whege= €; ande; is given by
Qualitatively we find very good agreement with the experi-(5.12. While we identify the regular terms with the two
ments. Our curve has nearly the same shape as the expebroad peaks in Fig. 14, the delta function causes a sharp peak
mental curve. Foi"(e) [and hence folt (V)] we find one  ate=u. However, this sharp peak is strongly suppressed by
broad peak at a certain energyoltage and a tunneling  the exponential factoe */E. We believe that thes peak in
pseudogap at small energiemltages as it is in the experi- (g 21) is an artifact of the independent-boson model, which
m_ents. The scale of the horizontal axis in Fig. 15 is detershould not be present in an exact theory. At least for the
mined by the sum-rule gapA2as energy scale, which ac- fractional-quantum-Hall-effect fractions= p/q there is no
cording to (5.17) can be interpreted as average energys peak becausé(e) has a real gap(For other occupation
calculated withy"(e) as weight function, fractions v this is not proven so that in general we cannot
exclude the existence of a smallpeak) Thus for the valid-

2A=f de ex"(€) /J' de x"(e). (6.18 ity of our theory the weight factoe “E of the § peak must
0 0 be negligibly small. This means that the rafi¢E, the quo-
In the single-mode approximationA2is most easily evalu- tient of the average energy of the single-particle excita-

ated by(5.18 using(6.9), which yields tions (= half of the sum-rule ggpand the average energy of
’ the collective excitationgmagnetorotonsshould be large.

d’k 2a(k) 2% From our values of 2 and E we obtain the ratio
ZAZJ (2m)2 E(k) [V(k)]7e =7 ™. 619  A/E=5.0 for v=1/2, which implies a sufficiently small
. _ . weight factore “/E~0.007 of thes peak. Indeed, we have
From this formula we obtain the value\2=0.96// and  found out from our numerical calculations that the ratio

1'9152// for the full and dashed line, respectively, and for A /g should be about 5 or larger to observe the double-peak
v=1/2, which can be clearly identified as the average peacture with a pseudogap in the electronic spectral func-
position of y”(¢€) in Fig. 15. In a recent papethe sum-rule tion.

gap 2A has been related exactly to the ground-state energy. |nserting(6.20 into (5.16 we find that in the inner part of

Using an interpolation formula for the ground-state energyne - interval y(7) is the free pair propagator scaled by the

the value 2.,~0.6e%// has been found forv=1/2, . _2AJE . -
which is very accurate and can be viewed as nearly exaciex.pom:“m"':lI factoe - By analytic continuation we ob-

The experimental resdif 2Aexpwo.5e2// is even somewhat @in the implication on the spectral functigri(e), which is
smaller. Thus it turns out that our sum-rule gap is by a factor
of 1.6 or 1.9 too large compared to the exact or measured
value, respectively. However, since our theory contains a lot (6.22

of approximations which imply that the originally micro- Actually, in this function the singular term vanishes because
scopic theory is drastically reduced to an independent-bosofhe extra factore implies e5(e) =0. On the other hand, the
model, we cannot expect that our theory yields a quantita\'/veight factore‘ZA’E is the square of the weight factor of the

tively correct value for the S“”’!'f”'e gam2 On th? Other Jelta function inA(e) and hence much smaller. Thus, a sin-
hand, our value for & has the right order of magnitude, so gular behavior ak=0 in y"(€) and hence av=0 in the

that the disagreement is not so bad. current-voltage characteristi¢V), which could arise as an

In our theory the effect of the coll,ectlve e.XC'ta“O‘f."B‘"?‘g' artifact of the independent-boson model, does not appear. In
netorotony on the electronic Green’s functiof®.14) is in- Fig. 15 one clearly sees that(e) is smooth ate=0

cluded in the functiol®(7) in the exponent. We have cal- In our theory, which is an independent-boson model com-

Zlill)ated. this fljtnct|9n trrllumerlcqll}t/ bf@j;d fmgl that  pined with the single-mode approximation for the magne-
(7) is negative in the open interva /3 and zero torotons, we have one parameter that we can tune: the coef-

?t s _?lul?fifé'e;:q ?nd legf';f?r Xefgqurw tt)empera- ficient y of the leading term of the structure facts¢k) in
ures B e interva T<hp=flKg ecomes (6.15. Our optimal choice igy=1.0 (used for the curves in

very_large, and it tums out thai®(7) is ma"?'y constant in Figs. 13-15% We have performed our calculations also for
the inner part of the interval. We approximately find the . =
other values ofy. If y is decreased, thele becomes some-

alue .

val what larger andA somewhat smaller. The ratid/E de-
AD(7)~—A/E for #/E<+=<#B—H/E. 6.2 creases, and the peak of the current-voltage c_haractensuc

(7) [Efor AIE<T=hp—hl 6.29 I(V) or of x"(€) becomes somewhat broader while the tun-

[This value is obtained if we approximate the bosonic specheling pseudogap at small or ¢ becomes smaller. For

tral function B”(€) by two delta peaks located at energiessmaller y we soon get troubles with thé peak in A(e)

+E and —E. For T—0 the exact value is the spectral mo- because the exponential facer*’E is not small enough. On

ment— [gdeB”(€)/€*.] This fact implies thaG(7) in (5.14  the other hand, ify is increased, theE becomes somewhat

is nearly a free fermion Green's function in the inner part ofsmaller andA larger. The ratioA/E increases and can be

the 7 interval, but scaled with the exponential facer*/E. made easily as large as 100 if we chogse4.5. The peak of

By analytic continuation we find the implication on the elec-1(V) or x"(e) becomes sharper while the tunneling
tronic spectral function, which is pseudogap becomes somewhat larger. In the ultimate limit

X'(e)=v(l—v)e” 2A“555(.5) + regular terms.
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A/JE— where E—0 and A is kept fixed, the peaks of Wwhich are values similar to those given above. This fact tells
1(V), x"(€), andA(e) becomes functions forT=0. This  us that our interpolation of the structure fac&{k) seems to
limiting case has been considered at the end of Sec. V. Thee good.

related spectral functioA(e) is given by(5.22) in the limit We have performed the numerical calculations to obtain
5—0 for T=0. Comparingy”(e) with the experimental the curvesin Figs. 14 and 15 by using the Matsubara formal-
curve ofl (V) we find by considering the shape of the curvesiSm and analytic continuation to real frequencies. It is well

and especially the ratio of the peak width to the tunnelingknown that sometimes the analytic continuation is problem-

seudogan. that/E~5 and hencev~1.0 are the optimal atic and does not yield the correct results for the spectral
\F/)alues 9ap. &=L P functions. Thus we have performed the numerical calcula-

- : . tjons also with the Keldysh formalism, which deals directly
Surprisingly the differences between the dashed line ang ; ; : . :
: o ith spectral functions and avoids the analytic continuation.
the full line of A(e) and x"(€) in Figs. 14 and 15, respec- P y

. VAT i We have found nearly the same results fafe) and
tively, are very small, w_h|Ie in l_:lg._ 13 ,the dlfferen_ces for the ¥"(€), so we can be sure that our curves in Figs. 14 and 15
spectrum of the collective excitatiols'(e) are quite large. 5o quite accurate.

We remember that the dashed line in Fig. 13 has been calcu-

lated by smearing out thé functions in the single-mode

approximation (6.1) by Gaussian peaks of width VII. CONCLUSIONS

Ae=0.02%/. While the average enerdy=0.09%%//" of We have investigated the two-dimensional strongly corre-
the collective excitations remains fixed, smearing out theated electron system in the fractional quantum Hall regime
spectrumB”(€) causes a slight enhancement of the sum-ruleon a microscopic level using many-particle quantum-field
gap 2A from 0.96?// (full line) to 1.0%% / (dashed ling  theory. Due to the degeneracy of the lowest Landau level,
which means that the peaks Afe) and x”(€) are shifted a standard perturbation theory fails at low temperatures. The
little bit to higher energies. This effect, however, is very perturbation series can be improved by resummation of self-
small. Thus we arrive at the conclusion that the precise shapgnergy subdiagrams, which yields the self-consistent
of the spectrum of the collective excitatiofraagnetorotons quantum-field theory. While this self-consistent theory works
B”(E) has near|y no influence on the Shape of the curves 0$UCCESSfU”y for SUperCOﬂdUCtiVﬁ%,it fails for the fractiqnal
A(e€), x"(¢€), andI(V). The qualitative form of the current- guantum Hall system too, because all Feynman diagrams

voltage characteristit(V) is mainly determined by the pa- ha\_/re thel sarrrl]e ordirl. o g _
rameters A, E, and the temperature. o solve the problem, we have proposed a resummation

In our caleulations the parameters have the Valuegrocedure for the electron Green’s function, which, after a
1o, = 0 P > ) Certain approximation, ends up exactly in the solution of an
T=0.0kg"e’//, E~0.1e%/, and 2A~1.0e%//, which independent-boson model. To do this we separate a bosonic
means that we have the inequalyT<E<2A where each part with zero wave vector from the interaction, which can
inequality sign means a factor of about 10. We have alske treated exactly, and obtain a transformation formula for
changed the temperature. Once the temperature ihe electron Green's function that represents a resummation
TzO.JkglE or below, the pseudogaps Af€) andy”(e) are  of Feynman diagrams and goes beyond perturbation theory.
visible, and the curves nearly do not change any more if thd he separated bosonic interaction part plays the role of the

temperature is lowered more or if it is evéra=0. Hence the “independent bosons” and is identified with the collective
curves in Figs. 14 and 15, which are calculated for€Xcitations. Since our method yields no resummation for the

T=0.0k; 1e2//, represent nearly zero-temperature resultsdensity-density correlation function, we cannot calculate this

If the temperature comes close To- kglE or higher, the correlation function by field-theoretic means. A more sophis-

P . ticated theory for the collective excitations, which is called
pseudogaps oA(e) and x"(e) vanish. EventuallyA(e) be- 0 gingle-mode approximation, has been developed by

comes a single broad peakTt-kg 'E. _ Girvin, MacDonald, and Platzman.Using this method we
The results shown in Figs. 14 and 15 are obtained for th@jetermine thek integrated spectrum of the collective excita-
occupation fraction/=1/2. We have performed the calcula- tjons, which we need as an input for the independent-boson
tions also for other values of. The most drastic changes are model. It turns out that the main spectral weight comes from
observed inA(e). While the double-peak structure and the pe magnetorotons.
pseudogap ak=u remains, the sizes of the two peaks Thys, our theory is a combination of an independent-
change and\(¢) is no more symmetric aroung=u. Onthe  poson model with the single-mode approximation. We calcu-
other hand, the changes gf(e) and hence of the current- |ate the electronic Green’s function and obtain from this the
voltage characteristit(V) are small, ifv does not come too  electronic spectral functiom(e). The result is a spectral
close to O or 1. This observation agrees with the experimenfunction with a double-peak structure with a pseudogap at
tal finding!~2 that the influence of the occupation fraction e=pu (see Fig. 1% By a convolution(1.1) of the spectral
v onl(V) is small. Especially, nothing unusual is seen at thefunction A(e)=A, (e) +A_(€) the current-voltage charac-
rational fractionsy=p/q of the fractional quantum Hall ef- teristic 1(V) for the tunneling between two fractional quan-
fect. Forv=1/3 we have performed the calculations usingtum Hall layers is obtained that is directly related to the
the results of the single-mode approximation &(k) and  spectral function of the pair propagatef(e) by (3.6). Our
E(k) of Ref. 13(the coefficients, of Table | thereif. The  result forl (V) (see Fig. 15shows a strong suppressi¢inn-
resultingx”(e) is very similar to the curve in Fig. 15, while neling pseudoggpfor small voltages at low temperatures
we find 2A=0.9%%/, E=0.09%%/, and A/E=5.3, and agrees qualitatively quite well with the experiménts.
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The voltage scale is ruled by the sum-rule Y&aA. Our  Furthermore, our theory supports the approach of Johansson
value is by a factor 1.6 or 1.9 too large compared to the exacnd Kinaret on a microscopic level. These authors have con-
and experimental value. Since our theory contains many agstructed an independent-boson model directly by considering
proximations, this disagreement is not so bad. It turns outhe tunneling process of one electron and modeling the sur-
that the shape of the curves gf(e) and (V) is mainly  roundings bymagnetophononas the collective excitations
determined by the ratio between the characteristic energy df a Wigner crystal. The main progress of our method is that
the single-particle excitations and the average energyof ~ we derive the independent-boson model from the micro-
the collective excitationmagnetorotons while the precise scopic theory by a certain approximation, while the collec-
shape of the collective-excitation spectrum has nearly no intive excitations are theagnetorotonsf a liquid state in the
fluence. We obtain the valu®/E~5, which is also required fractional quantum Hall regime.

by the independent-boson model to produce a curve that
qualitatively agrees with the measurgd/).

Our theory explains the observations of the two-layer tun-
neling experiments as an effect of the electronic correlations | wish to thank Professor A. H. MacDonald for stimulat-
in a single layer while the interlayer interactions are ne- ing discussions and suggestions on this problem and for criti-
glected. It supports the qualitative picture for the origin of cal reading of the manuscript. | wish to thank the Deutsche
the pseudogap described already in Ref. 1, that a tunneldébrschungsgemeinschafldFG) for financial support. This
electron and the created hole must emit collective excitationsrork was also supported in part by the National Science
to relax and build up the correlations with the surroundingsFoundation under Grant No. DMR-9416906.
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