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A two-dimensional system of interacting electrons is considered in a strong magnetic field in the fractional
quantum Hall regime, where the motion of the electrons is restricted to the lowest Landau level in the lowest
subband. Starting from a microscopic quantum-field theory we present a calculation of the electronic spectral
functionA(e) for a single layer. From the original Coulomb interaction we separate an effective bosonic part,
which is treated exactly by resummation of Feynman diagrams. For the electron Green’s functionG(t2t8),
which is closely related toA(e), we derive an approximate formula that goes beyond perturbation theory and
is similar to the solution of an independent-boson model. The independent bosons are the collective excitations,
mainly magnetorotons. Constructing a bosonic spectral function with the main features of the collective
excitations by the single-mode approximation, we obtain a spectral functionA(e) with a double-peak structure
and a pseudogap ate'm for low temperatures. From this result we derive the current-voltage characteristic
I (V) for the tunneling of electrons between two layers, which shows a tunneling pseudogap for low tempera-
tures and agrees with recent experiments.

I. INTRODUCTION

In recent experiments1–3 concerning the tunneling be-
tween two layers of two-dimensional electron systems an
unusual current-voltage characteristicI (V) has been found at
low temperaturesT&1 K if a strong perpendicular magnetic
field is applied. It is possible to produce samples that are
symmetric, so that both layers have nearly the same electron
densities and properties. The magnetic field has been chosen
to be so strong that the two electron layers are in the frac-
tional quantum Hall regime, where only the lowest Landau
level in the lowest subband is occupied with a fractionn in
the interval 0,n,1 in each layer, respectively. The main
observation is a tunneling pseudogap in the current-voltage
characteristicI (V) for low temperatures and high magnetic
fields. The currentI is strongly suppressed for small voltages
V and nearly zero in the interval 0<V&2 mV. For higher
voltagesI (V) has a peak with a finite width, which is related
to the tunneling between the lowest Landau levels of the
lowest subbands. For much higher voltages there appear
more peaks and structures inI (V) which involve higher Lan-
dau levels and higher subbands in the tunneling process.
However, we want to restrict our considerations to the tun-
neling between the lowest Landau levels of the lowest sub-
bands and thus focus our attention on the first peak. A similar
experiment,4 which concerns the tunneling between a two-
dimensional electron layer and an1 doped substrate, has
also reported a strong suppression of the zero-voltage tunnel-
ing conductance for strong magnetic fields and low tempera-
tures.

Thus, for low temperatures and high magnetic fields we
have one peak in the current-voltage characteristicI (V) oc-
curring above an offsetV0'2 mV, below which the tunnel-
ing current is strongly suppressed~tunneling pseudogap!. If
we assume that the two layers are separated by a high and
broad tunneling barrier so that the tunneling matrix element

t is small and interactions between the layers can be ne-
glected, then we can perform a linear-response calculation
with respect tot and write the tunneling current from the left
to the right layer as

I ~V!52e
t2F

\l 2E de@A1
R ~e2eV!A2

L ~e!

2A1
L ~e1eV!A2

R ~e!# ~1!

where F is the area of the tunneling contact and
l 5(\c/eB)1/2 is the magnetic length. Actually, the number
of tunneling channels isNF5F/2pl 2. Here we have ex-
pressed the tunneling current in terms of the electronic spec-
tral functions~Green’s functions! A1(e) andA2(e) of elec-
tron and hole excitations, respectively. The upper indexL or
R means left or right layer and can be omitted because the
two layers are made nearly equal.1–3

Since the samples are very pure and the mobilities are
high, the effect is believed to arise from the strong correla-
tions in the two-dimensional electron systems in the frac-
tional quantum Hall regime while disorder plays a minor
role. Eisensteinet al.2 have shown that the interaction be-
tween the layers causes a small excitonic shift of theI (V)
peak to lower voltages and thus is also subsidiary. Thus, the
main part of the effect should arise from the strong correla-
tions in a single layer which is described by the density of
states ~the electronic spectral function! A(e)5A1(e)
1A2(e) of the lowest Landau level. Indeed the suppression
of the currentI for small voltages~the tunneling pseudogap!
can be obtained from Eq.~1.1! if the electronic spectral func-
tion A(e) is strongly suppressed in the close vicinity of the
Fermi energym. This means thatA(e) should consist of two
peaks@a hole peakA2(e) and an electron peakA1(e)# sepa-
rated by a pseudogap ate5m.

According to Eisensteinet al.1 the double-peak structure
of A(e) can be explained easily on a qualitative level. Be-
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cause of the strong correlations the two-dimensional electron
liquids have a near ordering of the particles that is somewhat
similar to a Wigner crystal. Thus, for the tunneling process
one has to take out one electron from a ‘‘lattice place’’ of one
layer and put it into an ‘‘interstitial place’’ of the other layer.
This process costs a certain amount of energy, which pro-
duces an energy gap 2D in the density of states. Assuming a
very short time for the tunneling process, the empty lattice
place in the one layer will relax, and also the occupied inter-
stitial place in the other layer will relax after a certain relax-
ation time by emitting collective modes like magne-
tophonons.

In order to bring these ideas to a quantitative level, Jo-
hansson and Kinaret5 have developed a theory based on an
independent-boson model.6 They consider the tunneling pro-
cess of a single electron from one layer into the other while
the interaction with the other electrons is modeled by an
interaction with collective excitations, the magnetophonons,
which are treated as independent bosons. Using the spectrum
of the magnetophonons in a Wigner crystal as an input, Jo-
hansson and Kinaret calculated the current-voltage character-
istic I (V) and obtained a quite good qualitative and quanti-
tative agreement with the experiments. However, while the
model of Johansson and Kinaret seems to be an easy expla-
nation and yields good results, it appears to be somewhat
artificially constructed and adjusted to the particular physical
problem. Thus, it is necessary to find out why this model is
good and to justify the model within the framework of a
microscopic description.

Efros and Pikus7 have applied a model of a classical elec-
tron liquid on a two-dimensional lattice to calculate the spec-
tral function A(e). They find the double-peak structure of
A(e) and the tunneling pseudogap ofI (V), and their results
agree with the experiments. The spectral functionA(e) has
also been calculated by numerical exact diagonalization of
the Schro¨dinger equation for finite particle numbers
(N<9).8,9 However, recent more extensive
calculations9 have shown that the double-peak structure of
A(e) with the pseudogap at the Fermi energym is not found
convincingly by this approach, probably because the particle
number is too small. Aleiner, Baranger, and Glazman10 have
considered the spectral functionA(e) of a two-dimensional
electron liquid in a weak magnetic field. Approximating the
collective excitations by a hydrodynamic model, they find a
pseudogap ofA(e) even forn@1.

In this paper we consider the two-dimensional layer of
interacting electrons in a strong perpendicular magnetic field
on a microscopic level using the many-particle quantum-field
theory.11,12 The magnetic field should be so strong that the
system is in the fractional quantum Hall regime with an oc-
cupation fractionn in the interval 0,n,1. We restrict the
motion of the electrons to the lowest Landau level and as-
sume spin polarization. Furthermore, we assume a high and
broad tunneling barrier so that the interaction between the
layers can be neglected and the tunneling currentI (V) is
given by Eq.~1.1! in terms of single-layer electronic spectral
functions. In Sec. II we describe the microscopic system and
derive the Feynman rules. In Sec. III we consider the pertur-
bation theory for the electron Green’s functionG and show
that it fails even in the self-consistent version. The problem
arises from the Dyson equation, which requires adiverging

spectrum for the self-energyS to obtain a spectral function
A(e) with double-peak structure and a pseudogap ate'm.
Thus we must go beyond perturbation theory. In Sec. IV we
present a method for a resummation of the Feynman dia-
grams that is closely related to the way to solve the
independent-boson model6 by field-theoretic means. We split
the interaction between the electrons into a bosonic part with
zero wave vector and a remaining part. While the original
Coulomb interaction is instantaneous, the separated bosonic
part is time dependent and contains retardation effects. We
prove some exact theorems mainly based on local gauge in-
variance and particle conservation of the original interaction,
which allow us to separate the bosonic part of the interaction
as an exponential factor. Thus we can express the electron
Green’s functionG in terms of the bosonic exponential fac-
tor, which can be calculated exactly, and a Green’s function
G̃, which depends only on the remaining part of the interac-
tion.

The bosonic interaction part is arbitrary at first and should
be chosen and adjusted in such a way that the remaining
Green’s functionG̃ can be calculated perturbatively. This is
done in Sec. V. In a first-order self-consistent approximation
we obtain a free Green’s function forG̃ with shifted energy,
while the bosonic part of the interaction is mainly an integral
of the density-density correlation function over the wave
vector. In this way we obtain an electron Green’s function
G that has exactly the form of the solution of the
independent-boson model. Here the independent bosons are
the collective excitations described by the density-density
correlation function. It turns out that the double-peak struc-
ture of the spectral functionA(e) is produced by the bosonic
exponential factor ofG if the collective excitations have
their main spectral weight at low energies below 0.15e2/l .
In Sec. VI we use the single-mode approximation13 to deter-
mine the spectrum of the collective excitations. It turns out
that the main spectral weight arises from the magnetorotons.
We then take this bosonic spectrum as an input and calculate
the electronic spectral functionA(e) and the current-voltage
characteristic I (V). We find agreement with the
experiments.1–3 While our theory and result are somewhat
different, we mainly confirm the approach of Johansson and
Kinaret5 by a systematic approximation starting from a mi-
croscopic quantum-field theory.

II. MICROSCOPIC THEORY AND THE RELATED
FEYNMAN RULES

We consider a two-dimensional system of interacting
electrons moving in thexy plane, where a perpendicular
magnetic fieldB in z direction is applied. The system is
described by the Hamiltonian

Ĥ5E d2r
1

2m H US px1 e

c
AxD ĉ~r !U21US py1 e

c
AyD ĉ~r !U2J

1
1

2E d2r E d2r 8:@ r̂~r !2rb#V~r2r 8!@ r̂~r 8!2rb#:

~2.1!

where ĉ(r ) and ĉ1(r ) are the fermion field operators and
r̂(r )5ĉ1(r )ĉ(r ) is the operator of the electron density. The
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two colons :: mean that the product in between has to be
normal ordered with respect to the fermion operators. In cir-

cular gauge the vector potential is given byAx52 1
2By and

Ay5
1
2 Bx. The electrons interact via the Coulomb potential

V(r )5e2/ur u. The subtraction of the homogeneous density
rb5n/2pl 2 in the interaction term means that we assume a
neutralizing positively charged background. We assume that
the electrons are spin polarized and that their motion is re-
stricted to the lowest Landau level. Thus, we can expand the
fermion field operators in the form

ĉ~r !5(
m

wm~r !ĉm , ĉ1~r !5(
m

wm* ~r !ĉm
1 , ~2.2!

whereĉm and ĉm
1 are operators satisfying fermion commuta-

tion relations andwm(r ) are the orthonormalized single-
particle basis functions of the lowest Landau level. The index
m counts the degrees of freedom of the degeneracy of the
lowest Landau level. In our considerations we need not
specify a particular choice of the degenerate single-particle
functionswm(r ).

The perturbation series expansion of the interacting elec-
tron system in a strong magnetic field in terms of Feynman
diagrams has been considered previously by Zheng and
MacDonald.14 We use the formalism of many-particle
quantum-field theory with temperature-dependent Green’s
functions.11,12,15The object of basic interest is the fermion
Green’s function

Gmm8~t2t8!5^T@ ĉm~t!ĉm8
1

~t8!#&, ~2.3!

wheret is the temperature parameter that corresponds to an
imaginary time and varies in the interval
0<t<\b5\/kBT. By T@•••# we understand the usual
time-ordered product with respect tot. Since the magnetic
field is homogeneous, the system is translationally invariant
in the xy plane up to a phase factor in the wave function.
This implies that the fermion Green’s function~2.3! is pro-
portional to a unit matrix with respect to the degenerate de-
grees of freedom,

Gmm8~t2t8!5dmm8G~t2t8!. ~2.4!

We define the Fourier-transformed Green’s functionG(vn)
by

G~t!5
1

b(
vn

e2 ivntG~vn! ~2.5!

wherevn5p(2n11)/\b are the fermionic Matsubara fre-
quencies.G(vn) can be expressed in terms ofA(e) by the
spectral representation

G~vn!5E de
A~e!

2 i\vn1e2m
. ~2.6!

wherem is the chemical potential. Thus, we can obtain the
spectral functionA(e) from the electron Green’s function by
an analytic continuation ofG(vn) to continuous complex
frequencies. Finally, the current-voltage characteristicI (V)
is obtained from~1.1!.

The collective excitations are represented by the con-
nected density-density correlation function

xrr~r2r 8,t2t8!5^T@ r̂~r ,t!r̂~r 8,t8!#&c , ~2.7!

where r̂(r ,t)5ĉ1(r ,t)ĉ(r ,t). The Fourier-transformed
functionxrr(k,Vn) is defined by

xrr~r ,t!5E d2k

~2p!2
1

b(
Vn

ei ~kr2Vnt!xrr~k,Vn!, ~2.8!

wherek is the wave vector of the collective excitations and
Vn52pn/\b are the bosonic Matsubara frequencies. In
analogy to~2.6! the spectral functionxrr9 (k,e) of the collec-
tive excitations is defined by

xrr~k,Vn!5E de
xrr9 ~k,e!

2 i\Vn1e
. ~2.9!

The functionsG(t2t8) andxrr(k,t2t8) can be calculated
by a perturbation series expansion in terms of Feynman dia-
grams. We now describe the rules and the basic elements by
which the diagrams can be constructed. In Fig. 1~a! we as-
sociate the free Green’s function

G0,mm8~t2t8!5dmm8@u~t2t8!2n~e0!#

3exp$2\21~e02m!~t2t8!%

~2.10!

with a directed full line wheree0 is the single-particle energy
of the lowest Landau level andn(e)51/@eb(e2m)11# is the
Fermi distribution function. It is convenient to introduce the
imaginary time-dependent interaction

U~k,t2t8!5V~k!\(
n

d~t2t81n\b!, ~2.11!

which we identify in Fig. 1~b! with a dashed line. Here
V(k)5e22p/uku is the two-dimensional Fourier transform of
the Coulomb potential. The delta function in~2.11! repre-
sents the fact that the Coulomb interaction is instantaneous.
However, our following considerations are not restricted to
an instantaneous interaction. They remain valid also for a
nontrivial time-dependent interactionU(k,t2t8) including
retardation effects as, e.g., the electron-phonon interaction.

FIG. 1. Basic elements of the Feynman diagrams:~a! free ferm-
ion Green’s function,~b! interaction line, and~c! 3 vertex connect-
ing fermion and interaction lines.
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The full fermion lines and the dashed interaction lines are
connected by a 3 vertex which is shown in Fig. 1~c!. While
in real space the 3 vertex is local, in our representation it is
associated with the matrix element

Mmm8~k!5E d2rwm* ~r !eikrwm8~r !. ~2.12!

Since the particular representation of the degenerate degrees
of freedomm is irrelevant, we do not need the explicit form
of Mmm8(k). Thus, we can omit the indicesm, m8 and con-
siderM (k) as a matrix. All we need are some formulas that
define the algebra of these matrices. From any particular rep-
resentation we derive

M ~k1!•M ~k2!5exp@ 1
2k1* k

2
l 2#M ~k11k2!,

~2.13a!

M ~0!51, ~2.13b!

Tr@M ~k!#5@2pl 2#21~2p!2d~k!, ~2.13c!

wherek5kx1 iky is the complex representation of the wave
vector k and l 5(\c/eB)1/2 is the magnetic length. The
Feynman diagrams of the perturbation series are constructed
in all possible ways from the basic elements of Fig. 1. The
sums over the indicesm of the degenerate degrees of free-
dom can be evaluated with the three formulas of~2.13!. For
each 3 vertex we must perform an imaginary-time integral
*0

\bdt/\, and for each dashed interaction line we must per-
form a wave-vector integral*d2k/(2p)2. Finally, it turns out
that all Hartree-type subdiagrams are canceled by the posi-
tively charged neutralizing background, if we choose
rb5n/2pl 2 wheren52G(t520) is the occupation frac-
tion of the lowest Landau level.

In Fig. 2~a! we show a typical diagram of the fermion
Green’s functionG(t2t8). It consists of one open fermion
line from t8 to t and a certain number of closed fermion
loops that are connected in any possible way by dashed in-
teraction lines. In Fig. 2~b! we show a typical diagram of the
connected density-density correlation function
xrr(k,t2t8), which consists of a certain number of closed
fermion loops connected in any possible way by dashed in-
teraction lines. Thus, the functionsG(t2t8) and

xrr(k,t2t8) are given by the sums of all possible diagrams
with structures shown in Figs. 2~a! and 2~b!, respectively.

III. FAILURE OF PERTURBATION THEORY

For an interacting two-dimensional electron system in a
strong magnetic fieldB perturbation theory is problematic
because of the degeneracy of the Landau levels. If the lowest
Landau level is only partially filled with an occupation frac-
tion n in the interval 0,n,1, the noninteracting ground
state is degenerate and standard perturbation theory does not
work for small temperatures. Let us assume thatn is not too
close to 0 or 1. Then the average distance between the elec-
trons is of order of the magnetic lengthl 5(\c/eB)1/2.
Hence the interaction energy per electron is of ordere2/l .
The quantum-field theory with temperature-dependent
Green’s functions that we have described in Sec. II is an
expansion with respect to powers of the dimensionless pa-
rametera5be2/l . ~The factorb51/kBT arises from the
integral overt for each vertex.! Sincea must be small, this
perturbation theory is a high-temperature expansion that is
good for T@kB

21e2/l . However, the experiments1–3 that
measure the tunnel currentI (V) are performed at low tem-
peratures. It turns out that for these experiments the expan-
sion parameter is of ordera;100 ~where we take a dielec-
tric constant e'13 into account! so that standard
perturbation theory truncated at finite order is not applicable.

Thus, in order to explain the experiments we must go
beyond perturbation theory. This means we must resum at
least a certain class of diagrams~or, if we are unlucky, even
all diagrams!. One possibility is to express the electron
Green’s functionG(vn) via the Dyson equation,

G~vn!51/@2 i\vn1e02m2S~vn!#, ~3.1!

in terms of the self-energyS(vn). Summing over all self-
energy subdiagrams in the diagrams ofS(vn), the self-
energyS(vn) becomes a functional of the exact electron
Green’s function. Actually, the self-energy can be expressed
in terms of the functional derivative,11,16

S~vn!52dF@G#/dG~vn!, ~3.2!

whereF@G# is a functional ofG(vn) given by the series of
all connected vacuum diagrams without self-energy subdia-
grams, where the propagator lines are identified with the ex-
act G(vn). In this way the quantum-field theory becomes
self consistent. The electron Green’s functionG(vn) can be
determined by solving Eqs.~3.1! and ~3.2! iteratively. Ap-
proximations are made in the functionalF@G# by taking into
account only certain classes of diagrams. Thus the ladder
approximation and the random-phase approximation~RPA!
are found by considering only ring diagrams with ladders or
with bubble chains, respectively.

The self-consistent quantum-field theory has been suc-
cessfully applied to Fermi liquids and superconductivity. Re-
cently, this theory has been found to be the appropriate ap-
proach to describe the crossover from BCS
superconductivity to Bose-Einstein condensation in a
strongly interacting electron liquid.17 Thus, it is very chal-
lenging to apply this approach also to the present problem of
the two-dimensional electron system in the fractional quan-

FIG. 2. Typical Feynman diagrams of~a! the fermion Green’s
function G(t2t8) and ~b! the connected density-density correla-
tion functionxrr(k,t2t8).
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tum Hall regime. Unfortunately, it turns out that this ap-
proach fails too. We want to describe why and in which way
it fails. The identification of the propagator lines with the
exact Green’s functionG(vn) implies that the self-consistent
perturbation series is no more a power series ina so that the
diagrams remain finite in the limitT→0, a→`. This is
already progress. However, it turns out that the diagrams are
all of the same order so that we cannot make an approxima-
tion for F@G# but must sumall diagrams, which is an im-
possible task.

We have solved the self-consistent equations~3.1! and
~3.2! numerically with functionalsF@G# in ladder approxi-
mation, in RPA, and in a combination of RPA with the
particle-hole ladder. In all three cases we obtain qualitatively
similar results, so that we report here only about the RPA
~because the RPA takes the screening of the Coulomb poten-
tial into account!. The explicit form of the self-consistent
equations can be derived in a way similar to that of as it has
been done in Ref. 17 for superconductivity. The main change
is that here we must use the Feynman rules of Sec. II and that
in this case no space variable occurs because the motion of
the electrons is restricted to the lowest Landau level.~In a
homogeneous system the space dependence factorizes and
can be separated.! Thus, in RPA the self-energy can be writ-
ten as

S~t!5G~t!G~t!, ~3.3!

whereG(t) is the RPA vertex function given by

G~Vn!52pl 2E d2k

~2p!2
l~k!

11l~k!x~Vn!
. ~3.4!

Here,l(k)5(2pl 2)21exp$2 (1/2)k2l 2%V(k) is the effec-
tive interaction in Fourier representation and

x~t!52G~2t!G~t! ~3.5!

is the particle-hole pair propagator.@We note that the pair
propagatorx(t) and the connected density-density correla-
tion functionxrr(r ,t) ~2.7!, are two different quantities that
should not be confused.# We have solved the self-consistent
equations~3.1! and ~3.3!–~3.5! numerically by iteration. To
do this we need an efficient numerical Fourier transformation
to transform the functions from the imaginary-time represen-
tation to the Matsubara-frequency representation. We have
described such a numerical procedure in the Appendix of the
second paper of Ref. 17. Then, to obtain the spectral func-
tionsA(e) andx9(e) related toG(vn) andx(Vn) we per-
form a numerical analytic continuation using Pade´ approxi-
mation.@x9(e) is defined by an equation analogous to~2.9!.#
It turns out that for two identical layers the current-voltage
characteristic~1.1! can be written exactly in terms of the
spectral functionx9(e) of the pair propagator as

I ~V!5e
t2F

\l 2x9~eV!. ~3.6!

One should note thatx9(e)52x9(2e) is always antisym-
metric so thatI (2V)52I (V), as it should be.

Since the numerical analytical continuation fails some-
times and can give inaccurate results~especially for higher
temperatures!, it is useful to transform the self-consistent

equations~3.1!–~3.5! into a real-time and real-frequency rep-
resentation that deals directly with the spectral functions.
This can be done by using the Keldysh formalism18,19 in
thermal equilibrium. The resulting self-consistent equations
look formally similar to~3.1!–~3.5! and are not more com-
plicated. We have solved these latter equations also numeri-
cally by iteration and Fourier transformation. It turns out that
for low temperaturesT&kB

21e2/l anda*1 the Matsubara
formalism combined with the analytic continuation works
better and is accurate while for high temperatures
T*kB

21e2/l anda&1 the Keldysh formalism must be used.
In the overlap region wherea;1 both methods yield nearly
the same results for the spectral functions with an accuracy
of 1023. Thus, we are able to solve the self-consistent equa-
tions with a very high numerical accuracy forA(e) and
x9(e) in the parameter range 0<a&1000.

In Fig. 3 we show our results for the electronic spectral
function A(e). We choose for convenience alwaysn51/2.
The results remain qualitatively the same also for other oc-
cupation fractionsn not too close to 0 or 1 except that
A(e) is no more symmetric. Peculiarities at certain rational
fractions n5p/q are not seen. Thus, for the intermediate
temperatureT5kB

21e2/l , which corresponds toa51, we
obtain one broad peak~full line!. If we increase the tempera-
ture ~decreasea) the peak becomes broader and lower. For
T*3kB

21e2/l ~or a&1/3) the curve nearly does not change
any more untilT5` ~or a50) is reached~see dotted line!.
Since the peak~dotted line! has a finite width, the self-
consistent quantum-field theory turns out to be nontrivial
even for infinite temperatures wherea50. On the other
hand, if we lower the temperatureT below kB

21e2/l where
we come into the regiona.1, the peak becomes narrower
and higher, until it diverges at the Fermi energye5m for
T→0. This behavior is clearly shown in Fig. 3 by the dashed
line, which we calculated forT50.01kB

21e2/l anda5100.
The numerical result indicates a divergence
A(e);ue2mu21/2 for e close tom and forT50, which can
be derived also analytically from the self-consistent equa-
tions ~3.1! and~3.3!–~3.5! by considering the asymptotic be-
havior of the functions. This divergence contradicts the ex-
perimental results1–3 from which one expects theopposite

FIG. 3. The electronic spectral functionA(e) in self-consistent
RPA for T5` (a50, dotted line!, T5kB

21e2/l (a51, full line!,
andT50.01kB

21e2/l (a5100, dashed line!.
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for A(e): for low temperatures the electronic spectral func-
tion A(e) should besuppressedclose toe5m and form a
pseudogap.

Thus, the self-consistent quantum-field theory fails for
low temperatures. It turns out that if we lower the tempera-
ture more and more~wherea.1 is increased! the numerical
iteration procedure becomes unstable. This fact might be
viewed as an indication of the failure of the theory for low
temperatures. To make the iteration convergent we must slow
it down, and thus we can solve the equations also for very
low temperatures up toa;1000. In Fig. 4 we show the
spectral function of the pair propagatorx9(e), which is di-
rectly related to the current-voltage characteristicI (V) by
~3.6!. The results for intermediate and high temperatures~full
and dotted line! seem to be reasonable. However, the result
for low temperatures~dashed line, witha5100 of the same
order as in the experiments! clearly contradicts the
experiments.1–4 We predict that for low temperaturesI (V)
diverges for small voltagesV, while the experiments have
measured a pseudogap with a strong suppression ofI (V) for
small V. Thus we come to the conclusion that the self-
consistent quantum-field theory cannot explain the tunneling
experiments.

If the exact electron Green’s functionG(vn) is known,
one has two possibilities to calculate the related self-energy
S(vn): first, the Dyson equation~3.1! used in backward di-
rection and second, the self-consistent perturbation series
~3.2!. In an exact theory both equations must yield the same
result. By an analytical continuation we can state similar
equations for the electronic spectral functionA(e) and the
spectral function of the self-energyS9(e).@Here S9(e) is
defined similarly toA(e) by an equation analogous to~2.6!
for the self-energy. It turns out that the relation between
A(e) andS9(e) arising from the Dyson equation does not
depend on the temperature.! From the experimental findings
it is believed that at low temperatures the exact electronic
spectral functionA(e) has two broad peaks separated by a
pseudogap ate'm. In Fig. 5~a! a typical spectral function
A(e) of this kind is shown. For simplicity we modelA(e) by
two Gaussian peaks and assume the occupation fraction
n51/2 so thatA(e) is symmetric arounde5m. The Dyson

equation~3.1! can be handled easily and yields the exact
self-energy if the exact Green’s function is known. In this
way the spectral function of the self-energyS9(e) shown in
Fig. 5~b! is obtained. The curve in Fig. 5~b! can be viewed as
the exact spectral functionS9(e) if Fig. 5~a! is exact.
Clearly, this curve shows the main feature ofS9(e) related
to the pseudogap ofA(e) at e'm: S9(e) has a very narrow
peak ate'm that is nearly a delta function. Alternatively,
S9(e) can be determined fromA(e) by the self-consistent
perturbation series~3.2!, which can be treated only approxi-
mately. To construct a successful self-consistent quantum-
field theory one must find forF@G# such an approximation
that the resulting spectral functionS9(e) looks at least quali-
tatively similar to that in Fig. 5~b! with the essential features.
However, any approximation we have tried~RPA and ladder
approximation! was not successful. While we find the two
broad peaks, from~3.2! we never obtain the very narrow
peak ofS9(e) at e'm that is essential for the occurrence of
the pseudogap inA(e).

IV. BEYOND PERTURBATION THEORY: SEPARATION
OF A BOSONIC FACTOR FROM THE ELECTRON

GREEN’S FUNCTION

Now, we want to present an approach that goes beyond
perturbation theory and covers the essential physics of the
effect. From the qualitative discussion of Eisensteinet al. 1

and the theory of Johansson and Kinaret5 it has become clear
that the independent-boson model6 of one electron in the
two-dimensional layer coupled to the collective excitations
seems to be the correct picture, in a very rough form, about
what is going on in the tunneling experiment. In this section
we present a special procedure of reordering the Feynman
diagrams of the perturbation series that can be viewed as the
field-theoretic method of how to derive the exact solution of
the independent-boson model. We develop this method for
the two-dimensional interacting electron system in the frac-
tional quantum Hall regime, which we have described in Sec.
II. In the next section we derive an approximate formula for
the electron Green’s function that looks similar to the solu-

FIG. 4. The spectral function of the particle-hole pair propagator
x9(e) @directly related to the current voltage characteristicI (V) by
~3.6!# in self-consistent RPA forT5` (a50, dotted line!,
T5kB

21e2/l (a51, full line!, and T50.01kB
21e2/l (a5100,

dashed line!.

FIG. 5. ~a! Electronic spectral functionA(e) as expected from
the experiments. For simplicity we have assumedn51/2 and mod-
eledA(e) by two Gaussian peaks.~b! Spectral function of the self
energyS9(e) obtained via the Dyson equation~3.1! together with
~2.6! from A(e). The main feature is the very narrow peak ate'm,
which is related to the pseudogap ofA(e) at e'm.
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tion of the independent-boson model.
The basic idea is to split the interactionU(k,t2t8) into

two contributions, a bosonic part

2~2p!2d~k!DB~t2t8!, ~4.1!

which carries no momentum but is time dependent and may
contain retardation effects, and a remaining part
Ũ(k,t2t8). Diagrammatically and in terms of the related
formulas this is shown in Fig. 6.@We assume that 3 vertices
are constructed with wavy lines and dotted lines as done with
the dashed line in Fig. 1~c!.# The nontrivial part of the inter-
action is the bosonic part~wavy line!, which we want to
separate from the perturbation series and treat exactly. For
the proofs of the theorems in this section we need the fol-
lowing two assumptions. First, in real space the boson
Green’s functionDB(t2t8) ~wavy line! should not depend
on the space coordinate. In Fourier space this assumption
implies the factor (2p)2d(k) in ~4.1!, which means that the
bosons carry no momentum. Secondly, we assume

DB~Vn50!5\21E
0

\b

dt8DB~t2t8!50. ~4.2!

While the original interaction~dashed line! is instantaneous,
the bosonic part~wavy line! is nonlocal in time and contains
retardation effects. However,DB(t2t8) may contain also
instantaneous contributions that are delta functions in time.
Thus, it is convenient to introduce thecontinuouscontribu-
tion B(t2t8) from which all delta functions are separated,
defined by

DB~t2t8!5B~t2t8!22D (
n52`

1`

\d~t2t81n\b!.

~4.3!

Here 2D is a constant which will later be identified as an
energy gap. While at the moment the continuous bosonic
functionB(t2t8) is arbitrary and may be anything, the con-
stant 2D is fixed by our second assumption~4.2! and must be
chosen as

2D5\21E
0

\b

dtB~t!5B~Vn50!. ~4.4!

In this way we can be sure that~4.2! is always satisfied.
Since the interaction lines are not directed, we can assume
that the bosonic function is symmetric,

B~t2t8!5B~t82t! ~4.5!

~otherwise it could be symmetrized!. Furthermore, any
bosonic Green’s function is periodic in the imaginary time,

B~t2t81n\b!5B~t2t8! for nPZ. ~4.6!

An important function, which appears in our theorems, is
defined by the integral

DF~t2t8!5
1

2
\22E

t8

t

dt1E
t8

t

dt2DB~t12t2!

5\22E
0

t2t8
dt1E

0

t1
dt2DB~t2!. ~4.7!

This function is also symmetric and because of~4.2! also
periodic. HenceDF(t2t8) is also a bosonic function with
the properties~4.5! and ~4.6!. Evaluating the integral over
the delta functions explicitly, we obtain

DF~t2t8!52\21Dut2t8u1\22E
0

t2t8
dt1E

0

t1
dt2B~t2!

~4.8!

for 0<t,t8<\b.
Now, let us turn back to the Feynman diagrams of the

electron Green’s functionG(vn) and of the connected
density-density correlation functionxrr(k,Vn). We split the
interaction ~dashed line! as described above into a boson
mediated part~wavy line! and a remaining part~dotted line!.
Then we obtain Feynman diagrams consisting of fermion
lines which are connected by wavy lines and by dotted lines
in any possible way. What changes in the diagrams of Fig. 2
is that now two types of interaction lines occur, wavy and
dotted lines instead of the original dashed lines.

Let us now consider a 3 vertex with two free electron
Green’s functions and a wavy line. The two assumptions that
we have made above allow us to prove Theorem 1, which
states that the 3 vertex decomposes into a product of an
integral of the bosonic functionDB(t2t8) and a single
electron Green’s function. In Fig. 7 the theorem is formu-
lated in terms of Feynman diagrams. For the 3 vertex on the
left-hand side we write down the expression

\21E
0

\b

dt2~2p!2d~k!DB~t12t2!

3G0~t2t2!M ~2k!G0~t22t8!. ~4.9!

Because of the factor (2p)2d(k) and the formula~2.13b! we
can substituteM (2k)→M (0)51, which can be absorbed in
one of the free Green’s functions. Then, inserting~2.10! for
the free fermion Green’s functions and reordering the terms,
we obtain

FIG. 6. Separation of the interaction~dashed line! into a bosonic
part ~wavy line! and a remaining part~dotted line!, shown~a! dia-
grammatically and~b! in terms of formulas.

FIG. 7. Theorem 1: factorization of the 3 vertex with a wavy
line. This equation is valid under the two assumptions that the wavy
line carries only zero momentum@i.e., it is proportional to
(2p)2d(k)# and thatDB(Vn50)50 @Eq. ~4.2!#.
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~2p!2d~k!1H @u~t2t8!2n~e0!#\
21E

t8

t

dt2DB~t12t2!

2n~e0!@12n~e0!#\
21E

0

\b

dt2DB~t12t2!J
3exp@2\21~e02m!~t2t8!#. ~4.10!

Our assumption~4.2! implies that the second term in the
curved brackets is zero. Parts of the first term can be com-
bined again to the free fermion Green’s function~2.10!. Thus
we obtain

~2p!2d~k!\21E
t8

t

dt2DB~t12t2!G0~t2t8!,

~4.11!

which in terms of Feynman diagrams is exactly the right-
hand side in Fig. 7, and the theorem is proven. We note that
Theorem 1~and the following theorems! is valid not only in
our particular case where the motion of the electrons is re-
stricted to the~degenerate! lowest Landau level. It can be
proven in general for any free Green’s function that can be
represented in diagonal form by any~nondegenerate! single-
particle states, where it is supposed that the 3 vertex is local
in real space, which means that the interaction of the elec-
trons is locally gauge invariant and the particle number is
conserved.

Next we consider a closed fermion loop withn unspeci-
fied 3 vertices. We attach a wavy line to the loop via an
additional 3 vertex and sum over all permutations of the
position of the wavy line while the order of the othern
vertices is kept fixed. In this way we obtain a sum ofn
diagrams, which is shown in Fig. 8 in the first line. Applying
Theorem 1 we separate the wavy line as a factor and arrive at
the second line in Fig. 8, while the expression in the curved
brackets is given by

$•••%5\21E
t1

tn
dt8DB~t2t8!1\21E

t2

t1
dt8DB~t2t8!

1•••1\21E
tn

tn21
dt8DB~t2t8!

50. ~4.12!

Thus, the sum of the diagrams cancels. By iteration this con-
sideration can be extended straightforwardly to fermion

loops with more than one wavy line attached to it. In this
way we arrive at the following theorem:

Theorem 2: Feynman diagrams that contain closed
fermion loops with wavy lines~interactionsDB) attached to
them cancel due to the fact that the perturbation series sums
over all permutations of the 3 vertices on each fermion loop.

As a consequence, in the remaining diagrams no wavy
line is attached to closed fermion loops. This fact is shown in
Fig. 9 for the diagrams of~a! the fermion Green’s function
G(t2t8) and ~b! the connected density-density correlation
functionxrr(k,t2t8). While the fermion lines can be con-
nected by dotted interaction lines in any possible way, wavy
lines, if they are present at all, must be attached to anopen
fermion line withboth ends, as seen in Fig. 9~a!. However,
the diagrams of the density-density correlation function@Fig.
9~b!# contain only closed Fermion loops but no open fermion
lines. Hence, in these diagrams the wavy lines drop out com-
pletely. In this way we obtain an easy result for the density-
density correlation function. Let us denote byx̃rr(k,t2t8)
the connected density-density correlation function of an elec-
tron system where the electrons interact with the remaining
interactionŨ(k,t2t8). The related Feynman diagrams con-
tain only dotted interaction lines. Then, for the original
density-density correlation functionxrr(k,t2t8) we obtain
the relation

xrr~k,t2t8!5x̃rr~k,t2t8!, ~4.13!

order by order in perturbation theory by splitting the original
interactionU(k,t2t8) ~dashed line! as shown in Fig. 6 and
applying Theorem 2 to the Feynman diagrams. Equation
~4.13! is valid also for higher-order density correlation func-
tions because the related Feynman diagrams contain only
closed fermion loops. Thus, as an important result we find
that a density correlation function of any order is not affected
by the separation of a zero–wave-vector bosonic part of the
interaction~a wavy line!.

Now we continue with the fermion Green’s function. To
handle the diagrams with wavy lines on the open fermion
line @Fig. 9~a!# we need further theorems. We consider an
open fermion line with one end of a wavy line attached to it

FIG. 8. Cancellation of a fermion loop with one 3 vertex with a
wavy line andn further unspecified 3 vertices. The sum is taken
over all permutations of the position of the wavy line, while the
order of the remainingn vertices is kept fixed.

FIG. 9. Typical remaining diagrams of~a! the fermion Green’s
function G(t2t8) and ~b! the connected density-density correla-
tion function xrr(k,t2t8) after application of Theorem 2. Wavy
lines must be attached with both ends to an open fermion line and
hence can be present only in diagrams of~a!.
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by a 3 vertex andn further unspecified vertices. We again
sum over all permutations of the position of the wavy line
and keep the order of the remaining vertices fixed. Applying
Theorem 1 we separate a bosonic factor

~2p!2d~k!H \21E
t1

t

dt08DB~t02t08!

1\21E
t2

t1
dt08DB~t02t08!1•••

1\21E
tn

tn21
dt08DB~t02t08!

1\21E
t8

tn
dt08DB~t02t08!J

5~2p!2d~k!\21E
t8

t

dt08DB~t02t08! ~4.14!

and obtain the equation that is shown in Fig. 10. Next, we
also attach the second end of the wavy line to the open ferm-
ion line and sum over all permutations of the positions of
both ends, which lead to topologically nonequivalent dia-
grams. For the wavy line we must integrate overk, so that
the factor (2p)2d(k) disappears. Since the wavy line is not
directed, its two ends are undistinguishable and we obtain an
extra symmetry factor 1/2. Thus, instead of~4.14! we then
obtain the bosonic factor

1

2
\22E

t8

t

dt0E
t8

t

dt08DB~t02t08!5DF~t2t8!,

~4.15!

which can be identified with the functionDF(t2t8) de-
fined in ~4.7!. Further generalizations are straightforward. If
we attachl wavy lines to the one open fermion line and sum
over all topologically nonequivalent permutations of the ends
of the wavy lines, we separate the bosonic factor

1

l !
@DF~t2t8!# l . ~4.16!

Here 1/l ! is an additional symmetry factor that arises be-
cause the permutation of thel wavy lines leads to no new
diagrams. Finally, we take the sum over the number of the
wavy lines l and obtain an exponential function for the
bosonic factor,

(
l50

`
1

l !
@DF~t2t8!# l5exp@DF~t2t8!#. ~4.17!

Thus, we arrive at Theorem 3 which is stated diagrammati-
cally in Fig. 11. Wavy lines that are attached to an open
fermion line can be separated in terms of a bosonic factor
that is exactly given by~4.17!.

The remaining diagrams of the electron Green’s function
shown in Fig. 9~a! have exactly the form as the left-hand side
of Theorem 3 in Fig. 11, where the unspecified vertices are
connected to closed fermion loops by dotted lines. Thus, we
can treat the wavy lines exactly by separating the exponential
factor ~4.17! while the second factor is a sum of Feynman
diagrams that contain only dotted interaction lines but no
wavy lines any more. Summing over all Feynman diagrams,
for the original one-particle electron Green’s function
G(t2t8) we obtain the exact relation

G~t2t8!5exp@DF~t2t8!#G̃~t2t8!, ~4.18!

whereDF(t2t8) is defined by~4.7! andG̃(t2t8) is a new
Green’s function of an electron system where the electrons
interact via the remaining interactionŨ(k,t2t8) @above
x̃rr(k,t2t8) was defined analogously.# The Feynman dia-
grams ofG̃(t2t8) are constructed only with dotted interac-
tion lines. Since the exponential factor is a power series of
the separated bosonic interaction part~wavy line!, the right-
hand side of~4.18! is a reordering of the perturbation series.
Thus, for the electron Green’s function we have found a
formula that goes beyond perturbation theory. This formula
~4.18! is a transformation formula for the electron Green’s
function with an important property: the occupation fraction
of the lowest Landau level is not changed. Because of
DF(t50)50, Eq. ~4.18! implies

n5 ñ ~4.19!

for n52G(t520) and ñ52G̃(t520). As a conse-
quence, the neutralizing positive background charge density

FIG. 10. Separation of a bosonic factor for an open fermion line
with one end of a wavy line attached to it andn unspecified 3
vertices. The sum is taken over all permutations of the position of
the wavy line, while the order of the remainingn vertices is fixed.

FIG. 11. Theorem 3: Exact treatment of the wavy lines that are
connected with both ends to the open fermion line by separation of
a bosonic exponential factor. The sum is taken over all permutations
of the ends of the wavy lines, which lead to topologically non-
equivalent diagrams. The order of the remaining vertices connected
to dotted lines is kept fixed.
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rb cancels the Hartree diagrams in both cases, in the pertur-
bation series ofG(t2t8) and in that ofG̃(t2t8).

Our method can be applied also to higher-order Green’s
functions as, e.g., the two-particle Green’s function. For each
open fermion line we obtain an exponential factor~4.17!
from the wavy lines connected with both ends to the same
open fermion line. There will be also wavy lines that connect
two different open fermion lines. From these wavy lines we
obtain additional exponential factors, where the exponent is
defined by a double integral similar to that in~4.7! but with
four different imaginary times as integration boundaries. The
resulting formulas for the higher-order Green’s functions are
similar to ~4.18! but contain additional exponential factors.

V. OPTIMAL CHOICE OF THE BOSONIC INTERACTION
PART: APPROXIMATE DERIVATION OF AN

INDEPENDENT-BOSON MODEL

The main result of Sec. IV is the formula~4.18!, which
allows a factorization of the electronic Green’s function
G(t2t8) into an exactly known bosonic exponential factor
and a new Green’s functionG̃(t2t8), which is given by a
perturbation series in terms of the remaining interaction
Ũ(k,t2t8). Until now the bosonic functionB(t2t8),
which appears in the separation of the original interaction
U(k,t2t8), is arbitrary and~4.18! is just an exact transfor-
mation formula for the electron Green’s function. In Sec. III
we have found that perturbation theory fails for the original
Green’s functionG(t2t8), because the expected electronic
spectral functionA(e) with a double-peak structure and a
pseudogap ate'm contradicts the results we have obtained
by any feasible self-consistent approximation of the pertur-
bation series. However, Eq.~4.18! enables us to transform
the problem to the new Green’s functionG̃(t2t8). Our task
is now to choose the bosonic functionB(t2t8) in such a
way that the new Green’s function can be evaluated success-
fully by a perturbation series expansion. This means that the
main nontrivial part of the spectral functionA(e), the
double-peak structure, must be contained in the bosonic ex-
ponential factor, so that the spectral functionÃ(e) of the new
Green’s function has asingle peakwith a small width. The
bosonic functionB(t2t8) should be adjusted so thatÃ(e)
is as close as possible to a delta function andG̃(t2t8) is as
close as possible to a free Green’s function.

Let us now consider the perturbation series of
G̃(t2t8). We perform as many resummations as we can.
Thus, we start with the self-consistent perturbation theory
and expressG̃(vn) via the Dyson equation,

G̃~vn!51/@2 i\vn1e02m2S̃~vn!#, ~5.1!

in terms of the self-energyS̃(vn), which can be written as a
functional derivative,

S̃~vn!52dF̃@G̃#/dG̃~vn!, ~5.2!

where F̃@G̃# is a functional of the exact Green’s function
G̃(vn). The Feynman diagrams ofS̃(t2t8) contain only
thick propagator lines, which are identified with the exact
Green’s functionG̃(t2t8) as it is shown in Fig. 12~a!. The
interactionŨ(k,t2t8) is represented by dotted lines in the

diagrams. A further resummation is possible with respect to
polarization subdiagrams of the interaction. As shown in Fig.
12~b!, we define the effective interactionŨeff(k,t2t8), as-
sociated with a thick dotted line, as the sum of all diagrams
with two external dotted lines. In this way it is possible to
express the self energyS̃(t2t8) in terms of irreducible dia-
grams that contain only thick propagator lines and thick dot-
ted interaction lines. Up to second order in the effective in-
teraction the Feynman diagrams of the self-energy are shown
in Fig. 12~c!. ~One should have in mind that because of
~4.19! the Hartree diagram is canceled by the neutralizing
positively charged background.!

In a first-order approximation the self-energy is given by
the first diagram in Fig. 12~c!. Applying the Feynman rules
of Sec. II we obtain the related analytical expression

S̃~t2t8!52E d2k

~2p!2
Ũeff~k,t2t8!

3M ~2k!•G̃~t2t8!•M ~k!

52E d2k

~2p!2
Ũeff~k,t2t8!

3exp@2 1
2k

2l 2#G̃~t2t8!, ~5.3!

where in the second line we have used the algebraic formulas
~2.13!. Considering the Feynman diagrams of the perturba-
tion series in Fig. 12~b! carefully, we can express the effec-
tive interactionŨ eff(k,t2t8) exactly in terms of the bare
interaction Ũ(k,t2t8) and the connected density-density
correlation functionx̃rr(k,t2t8) by

Ũeff~k,t2t8!5Ũ~k,t2t8!2\22E
0

\b

dt1E
0

\b

dt2

3Ũ~k,t2t1!x̃rr~k,t12t2!Ũ~k,t22t8!.

~5.4!

Now, on the right-hand side we want to replace the quantities
with a tilde by quantities without a tilde. In the second term

FIG. 12. ~a! Exact Green’s functionG̃(t2t8) identified as thick
propagator line,~b! summation of all interaction diagrams with po-
larization insertions leading to the effective interaction identified as
thick dotted propagator line, and~c! perturbation series of the self-
energy S̃(t2t8) up to second order in terms of irreducible dia-
grams with thick propagator lines and thick dotted interaction lines.
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we can just omit the tilde for the following reasons. In Sec.
IV we have shown by~4.13! that the density-density corre-
lation functions with a tilde and without a tilde are equal.
The two interactions in the second term of~5.4! are repre-
sented by two external dotted lines in the Feynman diagrams
@Fig. 12~b!#, which are always connected with one end to
closed Fermion loops. Thus, applying Theorem 2 together
with the equation in Fig. 6~a! we can just replace the two
external dotted lines by dashed lines. Hence, we may omit
the tilde also on the interactions in the second term of~5.4!.
For the first term we use the equation in Fig. 6~b! and~4.3!.
We remember that the original interactionU(k,t2t8) is in-
stantaneous and expressed in terms of the Coulomb potential
V(k) by ~2.11!. Taking everything together, we then arrive at
the following formula for the effective interaction:

Ũeff~k,t2t8!5V~k!(
n

\d~t2t81n\b!1~2p!2d~k!

3FB~t2t8!22D(
n

\d~t2t81n\b!G
2V~k!xrr~k,t2t8!V~k!. ~5.5!

Next we insert the effective interaction~5.5! into the self-
energy~5.3! and obtain

S̃~t2t8!52E d2k

~2p!2
V~k!exp@2 1

2k
2l 2#

3G̃~t2t8!(
n

\d~t2t81n\b!

12D G̃~t2t8!(
n

\d~t2t81n\b!

2B~t2t8!G̃~t2t8!

1E d2k

~2p!2
xrr~k,t2t8!@V~k!#2

3exp@2 1
2k

2l 2#G̃~t2t8! ~5.5!

The first two terms are instantaneous in the imaginary times
because of the delta functions. Thus, in these terms we can
replaceG̃(t2t8)→G̃(0). However, since the Green’s func-
tion G̃(t2t8) has a jump att2t850, we must be careful.
The first term in~5.6! is the Fock self-energy. To take the
normal ordering of the fermion operators in the Hamiltonian
~2.1! into account, we must choose the value
G̃(20)52 ñ52n. The second term arises from the inde-
pendent bosons. Since the wavy lines are not directed and the
bosonic functions are symmetric, we must choose the sym-
metric value (1/2)@G̃(10)1G̃(20)#5(1/2)(122ñ)
5(1/2)(122n) in that term. The last two terms are non-
trivially imaginary-time dependent and contain retardation
effects. They cancel if we choose the bosonic function

B~t2t8!5E d2k

~2p!2
xrr~k,t2t8!@V~k!#2exp@2 1

2k
2l 2#.

~5.7!

Thus, we end up with an instantaneous self-energy,

S̃~t2t8!5FnE d2k

~2p!2
V~k!exp@2 1

2k
2l 2#

2~2n21!DG(
n

\d~t2t81n\b!, ~5.8!

which after a Fourier transformation becomes a constant,

S̃~vn!5nE d2k

~2p!2
V~k!exp@2 1

2k
2l 2#2~2n21!D.

~5.9!

We insert this result of our first-order approximation into the
Dyson equation~5.1! and obtain the Green’s function

G̃~vn!51/@2 i\vn1e12m#, ~5.10!

which after a Fourier back transformation becomes

G̃~t2t8!5@u~t2t8!2n~e1!#exp@2\21~e12m!~t2t8!#
~5.11!

in imaginary-time representation. Here

e15e02nE d2k

~2p!2
V~k!exp@2 1

2k
2l 2#1~2n21!D

~5.12!

is the renormalized energy andn(e1) is the related value of
the Fermi distribution function. From~5.10! and ~5.11! it is
clearly seen that in our first-order approximation together
with the bosonic function~5.7! we obtain afree Green’s
function forG̃(t2t8) with a shifted energy~5.12!. There are
two contributions of the energy shift. The first one is the
Fock energy. The second one originates from the indepen-
dent bosons and is represented byD. ~The Hartree energy is
canceled by the neutralizing background.! For the related
spectral functionÃ(e) we obtain a delta function,

Ã~e!5d~e2e1!. ~5.13!

Thus, in our approximation, where we take only the first
diagram of the self-energy shown in Fig. 12~c! into account,
we have reached our goal as well as possible with the choice
~5.7! for the bosonic functionB(t2t8). The spectral func-
tion Ã(e) is a delta function, andG̃(t2t8) is a free Green’s
function with shifted energy.

Now, from ~4.18! and ~5.11! we obtain the electron
Green’s function

G~t2t8!5@u~t2t8!2n~e1!#exp@2\21~e12m!~t2t8!

1DF~t2t8!# ~5.14!

where DF(t2t8) is defined by ~4.8! together with the
bosonic function~5.7!. This result has exactly the form of the
solution of the independent-boson model.6 In this model the
function B(t2t8) is the integral of the independent-boson
Green’s function weighted by the square of the electron-
boson interaction. If here one interpretsxrr(k,t2t8) as the
independent-boson Green’s function and the Coulomb poten-
tial V(k) as the electron-boson interaction, thenB(t2t8) in
~5.7! has exactly this form, where the exponential factor is an
additional weight factor arising from the projection to the
lowest Landau level. Thus, we can identify and interpret the
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collective excitations described by the density-density corre-
lation function xrr(k,t2t8) as the independent bosons.
However, there is one difference. While in the independent-
boson model the bosons are assumed to be free, here the
collective excitations havefinite lifetimesbecause the spec-
tral functionxrr9 (k,e) consists of peaks with finite widths.

It is straightforward and easy to find a Hamiltonian of an
independent-boson model which has the Green’s function
~5.14! as its solution. In this way we can say that with our
transformation formula~4.18! and our first-order approxima-
tion for G̃(t2t8) we have found a systematic way of deriv-
ing approximately an independent-boson model from the mi-
croscopic quantum-field theory of the interacting electron
system. Johansson and Kinaret5 have started directly with an
independent-boson model to explain the tunneling
experiments.1–3 While the electronic part of their model is
quite similar to our result, they use magnetophonons of a
Wigner crystal as an approximation for the collective excita-
tions in the strongly correlated electron liquid. There are
some differences. However, our method mainly supports the
approach of Johansson and Kinaret on a microscopic level.

The independent-boson model is a very intuitive way to
explain the tunneling experiments1–3 and can be viewed as a
quantitative realization of the qualitative ideas reported al-
ready in the first paper on this experiment by Eisenstein
et al.1 However, this model is an approximation of the real
physical problem. Thus, one has to find out how good this
approximation is. Our method is based on a perturbation se-
ries expansion of the transformed Green’s function
G̃(t2t8), so that we should consider the higher-order Feyn-
man diagrams of the self-energyS̃(t2t8) in Fig. 12~c!. First
of all, if we would apply our method to the original
independent-boson model with only one fermion state,6 then
all higher-order diagrams would cancel exactly. However, in
the present case we have many electrons in the degenerate
lowest Landau level so that the higher-order diagrams are
nonzero. To get a feeling of the quality of the approximation
one should consider the second-order diagram in Fig. 12~c!.
In the effective interaction~5.5! ~the thick dotted line! the
bosonic functionB(t2t8) defined by~5.7! provides that the
term related to the collective excitations~the last term! is
canceled at least partially if the integral overk is taken. How
perfect this cancellation is depends on the exponential
weight factor, which arises from the algebraic formula
~2.13a! for the matrix elements of the 3 vertices. In the first-
order diagram of the self-energy in Fig. 12~c! the cancella-
tion is complete by the choice~5.7!. However, in the higher-
order diagrams thek-dependent exponential factors depend
sensitively on the topology of the diagrams. Hence, the
second-order diagram yields a contribution to the self-energy
which contains nontrivial time-dependent and retardation ef-
fects. This contribution should be small so that in the second-
order approximationG̃(t2t8) differs not too much from the
free Green’s function and the related spectral functionÃ(e)
is a single peakwith a relatively small width.

We have not proven explicitly if the noninstantaneous
contributions of the self-energy due to the higher-order dia-
grams are really small. It is not clear if these contributions
are small at all. In principle one can improve our approach to
higher orders by constructing a perturbation series for the

bosonic functionB(t2t8) in such a way that the noninstan-
taneous terms of the self-energy are canceled order by order.
We believe that our approach is good at least to some extent,
because it provides a simple and intuitive explanation of the
effect and because it yields quantitative results for the tun-
neling currentI (V) which agree with the experiments quite
well ~see Sec. VI!.

Once we believe that our theory is reasonable, we can
calculate the electron Green’s functionG(t2t8) by Eqs.
~5.14!, ~4.8!, and~5.7! if the density-density correlation func-
tion xrr(k,t2t8) is known. The occupation fraction of the
lowest Landau level

n52G~t2t8520!5n~e1! ~5.15!

is simply given by the Fermi distribution function with the
renormalized energy~5.12! as the argument. It turns out that
our result forn(m) is a continuous function of the chemical
potentialm. Thus, our theory does not include the subtleties
of the fractional quantum Hall effect~FQHE! as, e.g., steps
and plateaus in n(m). However, in the tunneling
experiments1–3 the FQHE seems to play a minor role, so that
this deficiency of our theory is not very important. Inserting
~5.14! into ~3.5! we obtain the particle-hole pair propagator

x~t2t8!5n~12n!exp@2DF~t2t8!#, ~5.16!

which does not depend explicitly on the renormalized energy
~5.12!. Then from the Fourier transformsG(vn) and
x(Vn) we determine the spectral functionsA(e) andx9(e)
by analytic continuations to real frequencies via Pade´ ap-
proximation. Finally, from~3.6! we obtainI (V). In a recent
paper about moments of the spectral functions9 it was
pointed out that a measure of the tunneling pseudogap can be
obtained from a sum rule of the current-voltage characteristic
I (V). Thus, from~3.6!, ~5.16!, and ~4.8! we can calculate
this sum-rule gap and obtain

eE
0

`

dV V I~V! YE
0

`

dV I~V!

5E
0

`

de e x9~e! YE
0

`

de x9~e!

52\
]

]t
x~t!ut510 /x~t50!

522\
]

]t
DF~t!ut51052D. ~5.17!

Since the currentI (V) in ~1.1! is a convolution of electronic
spectral functions, this sum-rule gap is related to the
pseudogap ofA(e). If A(e) has a double-peak structure as
expected, then 2D is approximately the energy difference of
the positions of the two peaks. Hence,D is an important
parameter in our theory. Inserting~5.7! into ~4.4! we obtain

D5
1

2E d2k

~2p!2
xrr~k,Vn50!@V~k!#2exp@2 1

2k
2l 2#.

~5.18!

Herexrr(k,Vn50) is the thermodynamic susceptibility that
describes the linear response of the electron density on an
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applied external potential in thermal equilibrium. Thus, the
quantityD in ~5.18! can be interpreted as minus the change
of the energy~the thermodynamic potential! of the electron
system due to relaxation in an applied external potential
V(r ) up to second order. The origin of this external potential
is the tunneling of an electron. If one electron tunnels into
the two-dimensional layer, it then creates a Coulomb poten-
tial V(r )5e2/ur u in its surrounding, which causes a relax-
ation and a change of the electron density and hence a re-
duction of the electrostatic correlation energy given by
~5.18!. The exponential factor arises due to the fact that this
additional electron must satisfy the Pauli exclusion principle
with the remaining electrons.@In the Fock energy, the second
term in ~5.12!, the exponential factor appears for the same
reason.#

Thus, on a rough scale, from our theory we can read off a
qualitative explanation for the effect which is similar to that
of Eisensteinet al.1 and of Johansson and Kinaret.5 An elec-
tron that tunnelsinto the layer needs an additional energy
D to compensate the correlation energy before the system
can relax. In some sense one can say that the electron tunnels
into an interstitial place. Hence, theelectron peakof the
spectral functionA1(e) is shifted to higher energies byD.
An electron that tunnelsout of the layer leaves a hole which
has a correlation energy2D because of its opposite charge.
Hence, thehole peakof the spectral functionA2(e) is
shifted to lower energies by2D. As a result, the electronic
spectral functionA(e)5A1(e)1A2(e) has two peaks,
whose positions are separated approximately by 2D. Since
the system relaxes into equilibrium within a certain time af-
ter the tunneling process, the two peaks have finite widths,
which are determined by the explicit form of the spectrum
xrr(k,e) of the collective excitations. If the relaxation pro-
cess is slow, then the two peaks will be well established.
Otherwise, in the case of a quick relaxation the two peaks
will melt together into one peak.

Our theory yields a formula for the electron Green’s func-
tion G(t2t8) which needs the density-density correlation
functionxrr(k,t2t8) as an input. In principle, one can cal-
culatexrr(k,t2t8) by perturbation theory, e.g., in an RPA
approximation. The result, however, is not very accurate. In
any approximation one must be very careful that
xrr(k,t2t8) has the right hydrodynamic behavior for small
k and small frequencies, imposed by the particle conserva-
tion. Explicitly this meansxrr(k50,t2t8)5constant, so
that the assumptions of the theorems in Sec. IV are satisfied
and that the transition from the effective potential~5.4! to the
formula~5.5! is valid. We have found that the density-density
correlation function calculated by aself-consistentRPA ap-
proximation~as in Sec. III! violates this property and thus is
not successful.@The result is an electronic spectral function
A(e) with a single peak that looks similar to the result of
Sec. III in Fig. 3.# In Sec. IV we have proven the equality
xrr(k,t2t8)5x̃rr(k,t2t8) order by order in perturbation
theory. This implies that by our method we do not obtain a
formula for the density-density correlation function that goes
beyond perturbation theory.

The quantum-field theory does not yield a reliable result
for the density-density correlation function. Nevertheless, it
is instructive to do the standard RPA calculation, because it
yields a simple result and some feeling for the order of mag-

nitudes~and it does not violate the assumptions of the theo-
rems!. From the free-electron Green’s function~2.10! we ob-
tain the free pair propagatorx0(Vn)5bn(12n)dVn,0

and
hence the RPA density-density correlation function

xrr~k,Vn!5
bn~12n!

11l~k!bn~12n!
dVn,0

, ~5.19!

wherel(k)5(2pl 2)21exp$2„1/2…k2l 2%V(k) is the effec-
tive interaction. The related spectrumxrr9 (k,e) has its
weight atzero energy, so that the present approximation is
somewhat oversimplified. We can now proceed with Eqs.
~5.7!, ~4.8!, and~5.14! to calculate the electron Green’s func-
tion. Because of the simplicity of~5.19! all integrals can be
evaluated exactly, and we obtain

DF~t2t8!52\21Dut2t8u1\22~kBTD!~t2t8!2,
~5.20!

where

D5pl 2E d2k

~2p!2
@l~k!#2bn~12n!

11l~k!bn~12n!
~5.21!

and b51/kBT. The analytic continuation to real times
~Keldysh formalism! can be done easily. Substituting
t→601 i t in the Green’s function~5.14! we obtain the real-
time Green’s functionsG1(t) andG2(t), the Fourier trans-
forms of which are the spectral functions

A1~e!5~12n!@2pd#21/2exp@2~e2@e11D#!2/2d2#,
~5.22a!

A2~e!5n@2pd#21/2exp@2~e2@e12D#!2/2d2#,
~5.22b!

whered5(2kBTD)1/2. Thus, we obtain an electronic spec-
tral functionA(e)5A1(e)1A2(e), which consists of two
Gaussian peaks of widthd the positions of which are sepa-
rated by the sum-rule gap 2D. At low temperatures
T!D/kB the width is quite small,d!2D, so thatA(e) has a
well-established double-peak structure. However, in the
zero-temperature limitT→0 the peaks becomed functions
because ofd5(2kBTD)1/2→0 while the sum-rule gap
2D→(p/2)e2/l becomes the Fock energy. This zero-
temperature result is artificial and arises from the fact that we
have assumed a spectrum of zero-energy collective excita-
tions. According to the experiments,A(e) must have two
broad peaks also forT50. Thus, in a more profound theory
we need a more realistic spectrumxrr9 (k,e) of the collective
excitations.

Since the input of the independent-boson model is thek
integral ~5.7!, the k dependence of the spectrum of the col-
lective excitations is not so important. More precisely, the
electron Green’s functionG(t2t8) and the electronic spec-
tral function A(e) depend only on the integrated spectral
function

B9~e!5E d2k

~2p!2
xrr9 ~k,e!@V~k!#2exp@2 1

2k
2l 2#.

~5.23!

Thus, we can play around with the independent-boson model
to find out whatB9(e) must qualitatively look like so that the
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resultingA(e) fits the experiments. It turns out that the form
of A(e) is determined mainly by theenergyof the collective
excitations, i.e., the energy at whichB9(e) has its main spec-
tral weight, while the precise form ofB9(e) is not so impor-
tant. We find that high-energy collective excitations produce
a single peak forA(e), while collective excitations with low
energiese&0.3D yield a double-peak structure for low tem-
peratures. The electronic spectral functionA(e) with two
broad peaks at low temperatures, as expected from the ex-
periments, is obtained ifB9(e) has its main spectral weight
in the interval 0,ueu&0.2D where 2D;e2/l . In the next
section we determine B9(e) by the single-mode
approximation13 and then calculateA(e), x9(e), andI (V).

VI. SINGLE-MODE APPROXIMATION
FOR THE COLLECTIVE EXCITATIONS

In a simple approximation we can assume that for a given
wave vectork density waves approximately are collective
modes with a single energyE(k) and an infinite lifetime.
This means that for the spectral function of the collective
excitations we make the ansatz

xrr9 ~k,e!5a~k!@d„e2E~k!…2d„e1E~k!…#, ~6.1!

which is called single-mode approximation. The energy
E(k) and the spectral weighta(k) are determined by sum
rules for xrr9 (k,e) and can be calculated according to the
magnetoroton theory of collective excitations developed by
Girvin, MacDonald, and Platzman.13 In this theory all quan-
tities can be expressed in terms of the static structure factor
S̄(k), which is defined as the Fourier transform of the static
correlation function of the densityr̂(r )5ĉ1(r )ĉ(r ) pro-
jected to the lowest Landau level,

^r̂~r !r̂~r 8!&5E d2k

~2p!2
eik~r2r8!r0S̄~k!. ~6.2!

Here the uniform particle density of the system
r05n/2pl 2 appears for convention of the normalization of
the static structure factor. Now, one can straightforwardly
prove the sum rule

1

2E de coth@be/2#xrr9 ~k,e!5xrr~k,t50!5r0S̄~k!

~6.3!

using the property thatxrr9 (k,e) is antisymmetric ine. The
factor coth@be/2# is related to a fluctuation-dissipation theo-
rem which connects the dynamic susceptibilityxrr9 (k,e)
with the dynamic structure factor. In a similar way a second
sum rule can be proven,

1

2E de exrr9 ~k,e!5
1

2 S F2
1

\

]

]t
xrr~k,t!GU

t510

2F2
1

\

]

]t
xrr~k,t!GU

t520
D

5r0 f̄ ~k!, ~6.4!

where f̄ (k) is the oscillator strength defined by the Fourier
transform of the double commutator

1
2 ^@@ r̂~r !,K̂#,r̂~r 8!#&5E d2k

~2p!2
eik~r2r8!r0 f̄ ~k!.

~6.5!

Here K̂5Ĥ2mN̂ is an operator related to the Hamiltonian
Ĥ ~2.1!, of the system and the operator of the total particle
numberN̂. Inserting the single-mode approximation~6.1! for
the spectral functionxrr9 (k,e) into the sum rules~6.3! and
~6.4!, the energy integrals on the left-hand sides can be
evaluated trivially, and we obtain the formulas

a~k!5r0S̄~k! tanh@bE~k!/2#, ~6.6!

E~k!5r0 f̄ ~k!/a~k!. ~6.7!

Because of the factor tanh@bE(k)/2# these equations are the
generalizations of the formula of the single-mode energy in
Ref. 13 to finite temperatures@compare with~4.19! in the
second paper of Ref. 13 and note that forS̄(k) and f̄ (k) we
use the same notation while ourE(k) must be identified with
D(k) in this paper#. Thus, if S̄(k) and f̄ (k) are known, with
these formulas we can calculatea(k),E(k) and then obtain
the spectral functionsxrr9 (k,e) and B9(e) via ~6.1! and
~5.23!. Equivalent to~6.1! are the equations

xrr~k,t!5a~k!„$u~t!1nB@E~k!#%exp@2\21E~k!t#

1$u~2t!1nB@E~k!#%exp@1\21E~k!t#…,

~6.8!

xrr~k,Vn!5a~k!2E~k!/$~\Vn!
21@E~k!#2% ~6.9!

in imaginary-time representation and Matsubara representa-
tion, respectively, wherenB(e)51/@ebe21# is the Bose dis-
tribution function. From ~6.8! and ~5.7! we obtain the
bosonic functionB(t), which we need as an input to calcu-
late the functionDF(t2t8) by ~4.8! and finally the fermion
Green’s functionG(t2t8) by ~5.14!.

Girvin, MacDonald, and Platzman13 have evaluated the
double commutator on the left-hand side of~6.5! and shown
that for densities projected to the lowest Landau level the
oscillator strengthf̄ (k) can be expressedexactlyin terms of
the structure factorS̄(k). The resulting formula is given by
~4.15! in the second paper of Ref. 13. We replace the expo-
nential functions with imaginary arguments by sine and co-
sine functions and transform the momentum integration to
polar coordinates. Then we write the formula in the form

f̄ ~k!5 1
2 ~2p!22E

0

`

qdqE
0

2p

dwV~q!~2sin@ 1
2qkl

2sinw#!2

3@2S̄~q!e2k2l 2/2

1S̄~Ak21q212kqcosw!ekqcosw#, ~6.10!

which is convenient for numerical evaluation. Here
V(q)52pe2/q is the two-dimensional Fourier transform of
the Coulomb interaction potential. Because of the isotropy of
the liquid state the structure factor and all other quantities
depend only on the absolute valuek5uku but not on the
direction of the wave vector. Thus, from now on we write
k instead ofk in the arguments of the functions. We perform
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first the integral over the anglew and then the integral over
the radial wave numberq. All functions are sufficiently
smooth so that the numerical integrations cause no problems
and are accurate.

Now, all we need to evaluate the quantitiesa(k), E(k),
and the spectral function~6.1! is the static structure factor
S̄(k). Girvin, MacDonald, and Platzman13 calculated the
structure factor for fractional quantum Hall ground states
with occupation fractionsn51/3, 1/5, and some others by
two different methods, a Monte Carlo and a hypernetted-
chain calculation. QualitativelyS̄(k) has the following form:
for k→0 andk→` it is zero, and for wave numbers around
k'l 21 it has a single maximum. Since we needS̄(k) for all
occupation fractionsn in the interval 0,n,1, mainly close
to n51/2, we should establish an easy interpolation formula.
However, it turns out that the mode energyE(k) is very
sensitive on small details ofS̄(k). Thus, we must be very
careful in choosing an appropriate ansatz forS̄(k).

According to Girvin, MacDonald, and Platzman13 we start
with the pair-correlation functiong(r ) of the ‘‘liquid’’
ground state, which can be expanded in terms of lowest-
Landau-level eigenfunctions with angular momentumm for
the relative motion as

g~r !512e2r2/2l 21 (
m51
odd

`

cm
2

m! S r 2

4l 2Dme2r2/4l 2.

~6.11!

Here thecm with oddm51,3,5, . . . are coefficients which
represent the nontrivial correlations of the electronic ground
state in the fractional quantum Hall regime. For a free elec-
tron gas it iscm50 for all m. Positive definiteness requires
cm>21 for all m. For a correlated state thecm are nonzero
but satisfy the limiting behaviorcm→0 for m→`. By Fou-
rier transformation and projection to the lowest Landau level
we find an equivalent expansion for the structure factor
which reads

S̄~k!5~12n!e2k2l 2/214n (
m51
odd

`

cmLm~k2l 2!e2k2l 2,

~6.12!

whereLm(z) are the Laguerre polynomials. Now, our strat-
egy is to find a good interpolation formula forS̄(k) with only
a few nonzerocm . It turns out that charge neutrality and
perfect screening sum rules imply two restrictions on the
coefficientscm , which read13

(
m51
odd

`

cm52 1
4 ~12n!/n, ~6.13!

(
m51
odd

`

~m11!cm52 1
8 ~12n!/n. ~6.14!

ExpandingS̄(k) for smallk in powers ofk2, the two restric-
tions imply that the terms proportional tok0 andk2 vanish.
Thus, for smallk up to leading order we have

S̄~k!5~12n! 12g~k2l 2!21•••, ~6.15!

whereg is a parameter which is positive and depends in a
particle-hole symmetric way onn. It turns out that the mode
energiesE(k) depend sensitively ong for smallk. Thus, we
must considerg as an important parameter and choose it
appropriately. Expanding~6.12! with respect tok up to
fourth order and comparing with~6.15! we obtain a third
equation for the coefficientscm given by

1

4
1

2n

12n (
m51
odd

`

~m11!~m12!cm5g. ~6.16!

For simplicity we assume that only the first three coefficients
c1 , c3 , and c5 are nonzero whilecm50 for m>7. Then
~6.13!, ~6.14!, and ~6.16! are three linear equations which
determine the three coefficientsc1 , c3 , andc5 completely if
g is known. It turns out that with the above assumptiong is
the only parameter of our theory which we can tune. Particle-
hole symmetry requires thatr0S̄(k) is a symmetric function
of n aroundn51/2 wherer05n/2pl 2. Equation~6.15! im-
plies that g5g(n) must be also symmetric inn around
n51/2. Since in our theory we are interested in occupation
fractionsn which are not too far away fromn51/2, we can
assume in a lowest order approximation thatg is a constant
independent ofn. This assumption implies that the disper-
sion relation of the mode energiesE(k) does not depend on
the occupation fractionn but only on the value ofg. We
have variedg in the interval 0<g<3 and determined the
dispersion relationE(k) numerically. We find a magnetoro-
ton minimum at wave numbersk'l 21 that agrees with the
results of Ref. 13. For smaller valuesg the magnetoroton
minimum becomes stronger, while for larger valuesg it be-
comes fainter and disappears forg>1.5. We find that for
g51.0 the dispersion relationE(k) has the most reasonable
form and looks similar like that forn51/3 in Ref. 13. Thus,
for our purposeg51.0 seems to be the optimal choice. Ac-
tually, for the Laughlin ground states with occupation frac-
tions n51/m wherem53,5,7,. . . , the leading-order term
~6.15! of the structure factorS̄(k) can be determined
exactly,13,20,21which impliesg51/4n. The resulting value of
g50.75 forn51/3 is very close to our choice.

Now, all we need as input for our theory is complete and
we can present our results. In the following calculations we
choose the occupation fractionn51/2. It turns out that the
results are qualitatively similar also for other occupation
fractionsn in the interval 0,n,1 not too close to 0 or 1.
We chooseg51.0, determinec1 , c3 , c5 via ~6.13!, ~6.14!,
~6.16!, and obtain the structure factorS̄(k) from ~6.12!. Then
we proceed as described above and obtain the bosonic spec-
tral functionB9(e) by ~6.1! and ~5.23!. The result is shown
in Fig. 13 as a full line.B9(e) is thek integrated effective
spectral function of the collective excitations, which we need
as the input for our independent-boson model. As it should
be,B9(e) is antisymmetric in the energye. One can clearly
see that the main spectral weight is located at the energy
0.1e2/l ~and also at20.1e2/l ). In analogy to the sum-rule
gap 2D ~5.17!, which can be viewed as the average energy of
the spectral weightx9(e) of the pair propagator, we define
the average energy of the collective excitations
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Ē5E
0

`

de eB9~e! YE
0

`

de B9~e! ~6.17!

and obtain the value Ē50.099e2/l . Since the
experiments,1–3 which we want to explain with our theory,
are done at very low temperaturesT'0.01kB

21e2/l so that
Ē/kBT'10, we have performed the calculations of the
single-mode approximation at zero temperature. This means
in ~6.6! we have set tanh@(1/2)bE(k)#' tanh(5)'1 in
good approximation, so that the spectral weighta(k) of the
collective excitations in~6.1! is identified with the structure
factor a(k)5r0S̄(k). It is known that the structure factor
S̄(k) of the density projected to the lowest Landau level has
its main weight for wave numbersk in the interval
0.5l 21&k&2.5l 21. On the other hand, the dispersion rela-
tion E(k) has a minimum with a positive gap in the same
k interval which is called the magnetoroton minimum. Thus
we can say that the main contribution of the spectral function
B9(e) comes from themagnetorotons.

The single-mode approximation~6.1! is based on the an-
satz that the spectrum of the collective excitations with wave
numberk is a delta function located at the average energy
E(k). In reality there are several modes for eachk so that the
peak ofxrr9 (k,e) at E(k) will be smeared out. To take this
effect into account to a certain extent, we have replaced the
d functions in ~6.1! by Gaussian peaks with a finite width
De50.02e2/l , which is still small compared to the average
energy Ē50.099e2/l . The resulting spectral function
B9(e) is shown in Fig. 13 as a dashed line. One clearly sees
that this spectral function of thek integrated collective exci-
tations is much smoother and somewhat more smeared out
compared to the full line calculated withd functions in~6.1!,
while the average energyĒ is not changed.

We take the spectral functionB9(e) from Fig. 13 and
determineB(t) via a formula analogous to~2.9!. Then we
calculate the electronic Green’s functionG(t2t8) by ~5.14!
and~4.8! and obtain the electronic spectral functionA(e) by
analytic continuation via Pade´ approximation. The result is
shown in Fig. 14, where the full and dashed line correspond
to those in Fig. 13 We find what we expect from the experi-

ments:A(e) has two peaks separated by a pseudogap at
e5m wherem5e1 ande1 is given by~5.12!. The left peak
with energiese,m represents the hole excitations, and the
right peak with energiese.m represents the electron excita-
tions. HereA(e) is symmetric with respect toe5m. This
fact is a speciality of the occupation fractionn51/2 and
reflects particle-hole symmetry. For other values ofn the
spectral functionA(e) is not symmetric. In this case the two
peaks have different sizes, but the pseudogap ate5m re-
mains.

From ~3.5! or ~5.16! we obtain the pair propagator
x(t2t8) and by analytic continuation the related spectral
function x9(e). The result is shown in Fig. 15. Because of
~3.6! the spectral functionx9(e) is directly related to the
current-voltage characteristicI (V) of the tunneling experi-

FIG. 13. The spectral functionB9(e) of thek integrated collec-
tive excitations, defined by~5.23!, in single-mode approximation
for n51/2 andT50. The dashed line is the same but with thed
functions in ~6.1! replaced by Gaussian peaks of width
De50.02e2/l . The main spectral weight arises from the magne-
torotons and is located at the average energyĒ50.099e2/l .

FIG. 14. The electronic spectral functionA(e) for n51/2 and
T50.01kB

21e2/l obtained from~5.14!, ~4.8!, and analytic continu-
ation usingB9(e) of Fig. 13, as input for the collective excitations.
The full and dashed line correspond to those in Fig. 13. One clearly
sees the double-peak structure with the pseudogap ate5m. The
symmetry ofA(e) arounde5m is a speciality of the occupation
fraction n51/2 and reflects particle-hole symmetry.

FIG. 15. The spectral function of the pair propagatorx9(e) for
n51/2 andT50.01kB

21e2/l obtained from~3.5! or ~5.16! and ana-
lytic continuation. The full and dashed line correspond to those in
Figs. 13 and 14. Equation~3.6! allows us to compare the curve
directly with the current-voltage characteristicI (V) by proper re-
scaling of both axes. Qualitatively our curve agrees quite well with
the experimental results in Refs. 1–3.x9(e) is always an antisym-
metric function. For positivee we find one broad peak located at
the average energy 2D'1.0e2/l and a tunneling pseudogap at
small energies~voltages!.

7372 53RUDOLF HAUSSMANN



ment by rescaling the two axes. Thus, we can easily compare
our curve in Fig. 15 with the experimental results1–3 by
changing the variables and hence the scale on the two axes.
Qualitatively we find very good agreement with the experi-
ments. Our curve has nearly the same shape as the experi-
mental curve. Forx9(e) @and hence forI (V)# we find one
broad peak at a certain energy~voltage! and a tunneling
pseudogap at small energies~voltages! as it is in the experi-
ments. The scale of the horizontal axis in Fig. 15 is deter-
mined by the sum-rule gap 2D as energy scale, which ac-
cording to ~5.17! can be interpreted as average energy
calculated withx9(e) as weight function,

2D5E
0

`

de ex9~e! YE
0

`

de x9~e!. ~6.18!

In the single-mode approximation 2D is most easily evalu-
ated by~5.18! using ~6.9!, which yields

2D5E d2k

~2p!2
2a~k!

E~k!
@V~k!#2e2k2l 2/2. ~6.19!

From this formula we obtain the values 2D50.96e2/l and
1.01e2/l for the full and dashed line, respectively, and for
n51/2, which can be clearly identified as the average peak
position ofx9(e) in Fig. 15. In a recent paper9 the sum-rule
gap 2D has been related exactly to the ground-state energy.
Using an interpolation formula for the ground-state energy
the value 2Dexact'0.6e2/l has been found forn51/2,
which is very accurate and can be viewed as nearly exact.
The experimental result1,3 2Dexp'0.5e2/l is even somewhat
smaller. Thus it turns out that our sum-rule gap is by a factor
of 1.6 or 1.9 too large compared to the exact or measured
value, respectively. However, since our theory contains a lot
of approximations which imply that the originally micro-
scopic theory is drastically reduced to an independent-boson
model, we cannot expect that our theory yields a quantita-
tively correct value for the sum-rule gap 2D. On the other
hand, our value for 2D has the right order of magnitude, so
that the disagreement is not so bad.

In our theory the effect of the collective excitations~mag-
netorotons! on the electronic Green’s function~5.14! is in-
cluded in the functionDF(t) in the exponent. We have cal-
culated this function numerically by~4.8! and find that
DF(t) is negative in the open interval 0,t,\b and zero
at its boundariest50 and t5\b. For very low tempera-
tures T!kB

21Ē the interval 0,t,\b5\/kBT becomes
very large, and it turns out thatDF(t) is mainly constant in
the inner part of the interval. We approximately find the
value

DF~t!'2D/Ē for \/Ē&t&\b2\/Ē. ~6.20!

@This value is obtained if we approximate the bosonic spec-
tral function B9(e) by two delta peaks located at energies
1Ē and2Ē. For T→0 the exact value is the spectral mo-
ment2*0

`deB9(e)/e2.# This fact implies thatG(t) in ~5.14!
is nearly a free fermion Green’s function in the inner part of

the t interval, but scaled with the exponential factore2D/Ē.
By analytic continuation we find the implication on the elec-
tronic spectral function, which is

A~e!5e2D/Ēd~e2e1!1 regular terms ~6.21!

in the zero-temperature limit wherem5e1 ande1 is given by
~5.12!. While we identify the regular terms with the two
broad peaks in Fig. 14, the delta function causes a sharp peak
at e5m. However, this sharp peak is strongly suppressed by

the exponential factore2D/Ē. We believe that thed peak in
~6.21! is an artifact of the independent-boson model, which
should not be present in an exact theory. At least for the
fractional-quantum-Hall-effect fractionsn5p/q there is no
d peak becauseA(e) has a real gap.~For other occupation
fractionsn this is not proven so that in general we cannot
exclude the existence of a smalld peak.! Thus for the valid-

ity of our theory the weight factore2D/Ē of thed peak must
be negligibly small. This means that the ratioD/Ē, the quo-
tient of the average energyD of the single-particle excita-
tions (5 half of the sum-rule gap! and the average energy of
the collective excitations~magnetorotons! should be large.
From our values of 2D and Ē we obtain the ratio
D/Ē55.0 for n51/2, which implies a sufficiently small

weight factore2D/Ē'0.007 of thed peak. Indeed, we have
found out from our numerical calculations that the ratio
D/Ē should be about 5 or larger to observe the double-peak
structure with a pseudogap in the electronic spectral func-
tion.

Inserting~6.20! into ~5.16! we find that in the inner part of
the t interval x(t) is the free pair propagator scaled by the

exponential factore22D/Ē. By analytic continuation we ob-
tain the implication on the spectral functionx9(e), which is

x9~e!5n~12n!e22D/Ēed~e!1 regular terms.
~6.22!

Actually, in this function the singular term vanishes because
the extra factore implies ed(e)50. On the other hand, the

weight factore22D/Ē is the square of the weight factor of the
delta function inA(e) and hence much smaller. Thus, a sin-
gular behavior ate50 in x9(e) and hence atV50 in the
current-voltage characteristicI (V), which could arise as an
artifact of the independent-boson model, does not appear. In
Fig. 15 one clearly sees thatx9(e) is smooth ate50.

In our theory, which is an independent-boson model com-
bined with the single-mode approximation for the magne-
torotons, we have one parameter that we can tune: the coef-
ficient g of the leading term of the structure factorS̄(k) in
~6.15!. Our optimal choice isg51.0 ~used for the curves in
Figs. 13–15!. We have performed our calculations also for
other values ofg. If g is decreased, thenĒ becomes some-
what larger andD somewhat smaller. The ratioD/Ē de-
creases, and the peak of the current-voltage characteristic
I (V) or of x9(e) becomes somewhat broader while the tun-
neling pseudogap at smallV or e becomes smaller. For
smaller g we soon get troubles with thed peak inA(e)

because the exponential factore2D/Ē is not small enough. On
the other hand, ifg is increased, thenĒ becomes somewhat
smaller andD larger. The ratioD/Ē increases and can be
made easily as large as 100 if we chooseg54.5. The peak of
I (V) or x9(e) becomes sharper while the tunneling
pseudogap becomes somewhat larger. In the ultimate limit
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D/Ē→` where Ē→0 and D is kept fixed, the peaks of
I (V), x9(e), andA(e) becomed functions forT50. This
limiting case has been considered at the end of Sec. V. The
related spectral functionA(e) is given by~5.22! in the limit
d→0 for T50. Comparingx9(e) with the experimental
curve ofI (V) we find by considering the shape of the curves
and especially the ratio of the peak width to the tunneling
pseudogap, thatD/Ē'5 and henceg'1.0 are the optimal
values.

Surprisingly the differences between the dashed line and
the full line of A(e) andx9(e) in Figs. 14 and 15, respec-
tively, are very small, while in Fig. 13 the differences for the
spectrum of the collective excitationsB9(e) are quite large.
We remember that the dashed line in Fig. 13 has been calcu-
lated by smearing out thed functions in the single-mode
approximation ~6.1! by Gaussian peaks of width
De50.02e2/l . While the average energyĒ50.099e2/l of
the collective excitations remains fixed, smearing out the
spectrumB9(e) causes a slight enhancement of the sum-rule
gap 2D from 0.96e2/l ~full line! to 1.01e2/l ~dashed line!,
which means that the peaks ofA(e) andx9(e) are shifted a
little bit to higher energies. This effect, however, is very
small. Thus we arrive at the conclusion that the precise shape
of the spectrum of the collective excitations~magnetorotons!
B9(e) has nearly no influence on the shape of the curves of
A(e), x9(e), andI (V). The qualitative form of the current-
voltage characteristicI (V) is mainly determined by the pa-
rameters 2D, Ē, and the temperatureT.

In our calculations the parameters have the values
T50.01kB

21e2/l , Ē'0.1e2/l , and 2D'1.0e2/l , which
means that we have the inequalitykBT!Ē!2D where each
inequality sign means a factor of about 10. We have also
changed the temperature. Once the temperature is
T50.1kB

21Ē or below, the pseudogaps ofA(e) andx9(e) are
visible, and the curves nearly do not change any more if the
temperature is lowered more or if it is evenT50. Hence the
curves in Figs. 14 and 15, which are calculated for
T50.01kB

21e2/l , represent nearly zero-temperature results.
If the temperature comes close toT'kB

21Ē or higher, the
pseudogaps ofA(e) andx9(e) vanish. Eventually,A(e) be-
comes a single broad peak ifT@kB

21Ē.
The results shown in Figs. 14 and 15 are obtained for the

occupation fractionn51/2. We have performed the calcula-
tions also for other values ofn. The most drastic changes are
observed inA(e). While the double-peak structure and the
pseudogap ate5m remains, the sizes of the two peaks
change andA(e) is no more symmetric arounde5m. On the
other hand, the changes ofx9(e) and hence of the current-
voltage characteristicI (V) are small, ifn does not come too
close to 0 or 1. This observation agrees with the experimen-
tal finding,1–3 that the influence of the occupation fraction
n on I (V) is small. Especially, nothing unusual is seen at the
rational fractionsn5p/q of the fractional quantum Hall ef-
fect. For n51/3 we have performed the calculations using
the results of the single-mode approximation forS̄(k) and
E(k) of Ref. 13~the coefficientscm of Table I therein!. The
resultingx9(e) is very similar to the curve in Fig. 15, while
we find 2D50.97e2/l , Ē50.091e2/l , and D/Ē55.3,

which are values similar to those given above. This fact tells
us that our interpolation of the structure factorS̄(k) seems to
be good.

We have performed the numerical calculations to obtain
the curves in Figs. 14 and 15 by using the Matsubara formal-
ism and analytic continuation to real frequencies. It is well
known that sometimes the analytic continuation is problem-
atic and does not yield the correct results for the spectral
functions. Thus we have performed the numerical calcula-
tions also with the Keldysh formalism, which deals directly
with spectral functions and avoids the analytic continuation.
We have found nearly the same results forA(e) and
x9(e), so we can be sure that our curves in Figs. 14 and 15
are quite accurate.

VII. CONCLUSIONS

We have investigated the two-dimensional strongly corre-
lated electron system in the fractional quantum Hall regime
on a microscopic level using many-particle quantum-field
theory. Due to the degeneracy of the lowest Landau level,
standard perturbation theory fails at low temperatures. The
perturbation series can be improved by resummation of self-
energy subdiagrams, which yields the self-consistent
quantum-field theory. While this self-consistent theory works
successfully for superconductivity,17 it fails for the fractional
quantum Hall system too, because all Feynman diagrams
have the same order.

To solve the problem, we have proposed a resummation
procedure for the electron Green’s function, which, after a
certain approximation, ends up exactly in the solution of an
independent-boson model. To do this we separate a bosonic
part with zero wave vector from the interaction, which can
be treated exactly, and obtain a transformation formula for
the electron Green’s function that represents a resummation
of Feynman diagrams and goes beyond perturbation theory.
The separated bosonic interaction part plays the role of the
‘‘independent bosons’’ and is identified with the collective
excitations. Since our method yields no resummation for the
density-density correlation function, we cannot calculate this
correlation function by field-theoretic means. A more sophis-
ticated theory for the collective excitations, which is called
the single-mode approximation, has been developed by
Girvin, MacDonald, and Platzman.13 Using this method we
determine thek integrated spectrum of the collective excita-
tions, which we need as an input for the independent-boson
model. It turns out that the main spectral weight comes from
the magnetorotons.

Thus, our theory is a combination of an independent-
boson model with the single-mode approximation. We calcu-
late the electronic Green’s function and obtain from this the
electronic spectral functionA(e). The result is a spectral
function with a double-peak structure with a pseudogap at
e5m ~see Fig. 14!. By a convolution~1.1! of the spectral
function A(e)5A1(e)1A2(e) the current-voltage charac-
teristic I (V) for the tunneling between two fractional quan-
tum Hall layers is obtained that is directly related to the
spectral function of the pair propagatorx9(e) by ~3.6!. Our
result forI (V) ~see Fig. 15! shows a strong suppression~tun-
neling pseudogap! for small voltages at low temperatures
and agrees qualitatively quite well with the experiments.1–3
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The voltage scale is ruled by the sum-rule gap9 2D. Our
value is by a factor 1.6 or 1.9 too large compared to the exact
and experimental value. Since our theory contains many ap-
proximations, this disagreement is not so bad. It turns out
that the shape of the curves ofx9(e) and I (V) is mainly
determined by the ratio between the characteristic energy of
the single-particle excitationsD and the average energyĒ of
the collective excitations~magnetorotons!, while the precise
shape of the collective-excitation spectrum has nearly no in-
fluence. We obtain the valueD/Ē'5, which is also required
by the independent-boson model to produce a curve that
qualitatively agrees with the measuredI (V).

Our theory explains the observations of the two-layer tun-
neling experiments as an effect of the electronic correlations
in a single layer, while the interlayer interactions are ne-
glected. It supports the qualitative picture for the origin of
the pseudogap described already in Ref. 1, that a tunneled
electron and the created hole must emit collective excitations
to relax and build up the correlations with the surroundings.

Furthermore, our theory supports the approach of Johansson
and Kinaret5 on a microscopic level. These authors have con-
structed an independent-boson model directly by considering
the tunneling process of one electron and modeling the sur-
roundings bymagnetophononsas the collective excitations
in a Wigner crystal. The main progress of our method is that
we derive the independent-boson model from the micro-
scopic theory by a certain approximation, while the collec-
tive excitations are themagnetorotonsof a liquid state in the
fractional quantum Hall regime.
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