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We calculate the quasiparticle effective mass for the electron gas in two and three dimensions in the metallic
region. We employ the single-particle scattering potential coming from the Sjo¨lander-Stott theory and enforce
the Friedel sum rule by adjusting the effective electron mass in a scattering calculation. In three dimensions
~3D! our effective mass is a monotonically decreasing function ofr s throughout the whole metallic domain, as
implied by the most recent numerical results. In two dimensions~2D! we obtain reasonable agreement with the
experimental data, as well as with other calculations based on the Fermi-liquid theory. We also present results
of a variety of different treatments for the effective mass in 2D and 3D.

I. INTRODUCTION

The evaluation of the Fermi-surface parameters has been
a cornerstone of the Fermi-liquid theory since its early years.
Precise knowledge of these parameters for an electron gas,
especially in the metallic domain, is not only a fundamental
problem, but is also extremely important for physical appli-
cations. At present, there is some controversy about the
three-dimensional~3D! results at metallic and overmetallic
densities. The two-dimensional results are also of significant
importance due to the recent nonvanishing interest in the 2D
physics stimulated by high-Tc superconductivity, the frac-
tional quantum Hall effect, as well as the development of 2D
electronic devices.

As is well known from textbooks, quasiparticle excita-
tions can be characterized by the renormalization constant
Z(kF), which is related to the residue of the Green’s function
at the Fermi surface, and the quasiparticle effective mass
m* . In a simple-minded physical picture, 12Z(kF) and
12m* /m both measure the amount of the many-body ef-
fects in the electron gas. In this paper we will be concerned
with the effective~renormalized! electron mass. We will use
the effective potential coming from the Sjo¨lander-Stott
theory,1 and find the effective electron mass by adjusting the
effective electron mass in a scattering calculation, so that the
Friedel sum rule is satisfied. Our approach is ‘‘hydrody-
namic’’ in a sense that it does not explicitly employ the mi-
croscopics of the Fermi liquid, however, it requires the ‘‘cor-
rect’’ static linear response function as an empirical input.
Thus, the Fermi-liquid character of the electron gas will
come in indirectly through the linear response that we use in
a parametrized form.

Below we will outline theGW format, which is a basis
for the majority of calculations of the Fermi-surface param-
eters. We will compare results of different approximation
schemes with ours. For both 2D and 3D our results are in a
reasonable agreement with the most recent calculations
based on the Fermi-liquid theory, as well as experimental
data.

II. EFFECTIVE MASS IN THREE DIMENSIONS

In this section we will outline theGW format for calcu-
lating the self-energy, and present numerical results for the
3D electron gas. It is well known that in 3D the effective
mass ratiom* /m is less than unity in the high-density limit.
The high-density expansion (r s!1) was obtained in Refs. 2
and 3. In the metallic region (1,r s,8) there has been some
controversy about the behavior of the effective-mass ratio as
a function of the ground-state density. The formalism for
evaluating the self-energy part was put forward by Hedin4

(GW approximation!. In a more rigorous formulation5 it can
be summarized as follows. The standard starting point is the
Dyson equation for the Green’s function:

Gs~k,v!5
1

v2«k
~0!2Ss~k,v!

, ~1!

with «k
(0) the unperturbed energy andSs(k,v) the irreduc-

ible self-energy. The effective mass characterizes the quasi-
particle excitation spectrum,

«k5
k2

2m*
, ~2!

and in terms of the self-energy is then given as

m* /m5S 12
]Ss~k,v!

]v U
k5kF

D S 11
m

k

]Ss~k,v!

]k U
k5kF

D 21

,

~3!

wherem is the unrenormalized~bare! electron mass. The
irreducible self-energy can be approximately expressed in
Dyson equation form as

Ss~k,v!5 i E dq

~2p!3
E dv8

2p
W~q,v8!Gs~k2q,v2v8!,

~4!

where theW function incorporates the many-body effects. In
general, it can be approximated by
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W~q,v!5
vq

e~q,v!
G~q,v!. ~5!

Here vq54pe2/q2 is the ~3D! bare Coulomb interaction,
e(q,v) is the exact dielectric function, andG(q,v) is the
vertex correction.6 In the work of Hedin4 the random phase
approximation~RPA! was adopted by puttingG51 and us-
ing the RPA dielectric response in~5!:

WRPA~q,v!5vk /e
RPA~q,v!. ~6!

Thus, theW function was just an effective RPA screened
interaction. The self-energy was obtained by substituting the
W function ~6! into ~4! and using the noninteracting Green’s
function in the right-hand side of~4!. Results of Hedin are
shown in Fig. 1~solid triangles!. The effective-mass ratio
assumes its minimum atr s'1, then increases in the metallic
region, and becomes greater than 1 forr s.3. More recent
results indicate a totally different behavior. In the self-
consistent approach of Rietschel and Sham7 the effective in-
teraction function had the same form as in~6!, but Eqs.~1!
and ~4! were solved self-consistently. Their results~Fig. 1,
empty triangles! indicate that the effective-mass ratio is a
monotonically decreasing function ofr s in the whole metal-
lic domain. Similar results were obtained by Yasuhara and
Ousaka8 ~Fig. 1, empty squares!, who analyzed the Landau
interaction function9 using analytic fits based on the Monte
Carlo results of Ceperly and Alder.10 In their work the de-
crease in the quasiparticle mass was due to both spin-parallel
and spin-antiparallel parts on the Landau interaction func-
tion. Another analysis of Landau interaction function based
on Singwi, Sjölander, Tosi, and Land11 was carried out in

Ref. 12. Finally, a self-consistent scheme of Nakano and
Ichimaru with theW function incorporating vertex correction
~5! produced a similar decreasing behavior of the effective-
mass ratio~Fig. 1, circles!. Their procedure is rather in-
volved; we refer to Ref. 13 for the details.

Our vehicle will now be the Sjo¨lander-Stott~SS! theory of
the two-component plasma.1 As was recently shown,14 it is
essentially a fluid description of the electron gas, and does
not directly employ the microscopic structure of the Fermi-
liquid theory. It uses the correct linear response of the elec-
tron gas as an empirical input information. It is well known
that this theory is capable of producing reliable density pro-
files around a repulsive impurity. The density profile equa-
tion resulting from the SS theory is

nq
ind, 3D5 f 3D~q!F 11

3

4E0
`

k2dkS 11
q22k2

2qk
lnUk1q

k2qU D
3nk

ind, 3DG . ~7!

This gives the induced electron densitynq
ind around an impu-

rity of chargeZ. Here,f 3D(q) is the induced electron density
in the linear response approximation:

f 3D~q!5x3D~q!
4pZe2

kF
2q2

.

The static linear responsex3D(q) is an input information and
in our calculations was taken from the parametrization in
Ref. 15. k,q are in units of the Fermi radius
kF5(3p2n)1/3, n being the homogeneous ground-state den-
sity. This profile relation has the correct high-q dependence,
which is responsible for satisfying the cusp condition at the
Coulomb source:

nq
ind, 3Duq→`5Z

16lr s
3pq3 S 11

nind, 3D~r50!

n D . ~8!

The major shortcoming of the profile relation~7! in the do-
main of repulsive impurities is overscreening by a hole. If
the ~repulsive! impurity charge is big enough the total elec-
tron density at the location of the impurity goes negative. For
most of the possible physical applications this feature has an
insignificant effect16 because the region of the nonphysical
behavior is very small and one can simply put the total elec-
tron density to 0 in this region. However, to be on the safe
side, we restrict ourselves to the range of small enough im-
purity charges:

20.3,Z3D,20.03, ~9!

where the overscreening by a hole does not occur and one
obtains a reliable density profile. We extract the effective
single-particle scattering potential using the SS theory.1,16

With this scattering potential we check the Friedel sum rule.
The Friedel sum rule is a condition on the difference of

the trace of the logarithm of the single-particle scattering
matrix between the top and the bottom of the band.17,18 In
our case of the jellium model of electron gas it takes a fa-
miliar form

FIG. 1. The effective-mass ratiom* /m vs the Seitz radiusr s for
the 3D electron gas. Results of Hedin~Ref. 4! ~solid triangles!,
Nakano and Ichimaru~Ref. 13! ~empty circles!, Yasuhara and
Ousaka~Ref. 8! ~empty squares!, present~dark circles!, and Ri-
etschel and Sham~Ref. 7! ~empty triangles!. The dashed line is the
high-density limit ~Refs. 2 and 3!. Our results indicate that the
effective mass is a monotonically decreasing function ofr s through-
out the whole metallic domain.
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Z5
2

p (
l50

`

nld l~kF!. ~10!

where the factornl accounts for the angular degeneracy:

nl5H 2l11 for 3D

22d l ,0 for 2D.

The factor of 2 comes from the spin degeneracy,d l(kF) are
the partial wave scattering phase shifts at the Fermi momen-
tum. This sum rule has been routinely used to adjust free
parameters of the effective potential in a self-consistent fash-
ion. In our case we take the effective potential from the SS
theory.1,16 With this effective potential we run a scattering
calculation at the Fermi surface, and, having obtained the
phase shiftsd l(kF), check the sum rule~10!. The particles
that are scattered at the Fermi surface are quasiparticles, not
bare electrons. Their mass comes explicitly into the scatter-
ing calculation. We adjust this effective electron mass in the
scattering calculation until~10! is satisfied within 0.01% ac-
curacy. This provides us with the value for the effective
mass. The procedure above is repeated for several values of
Z from the region~9! in order to ensure that the results are
independent of the impurity charge within a reasonable range

Our data for 3D are plotted on Fig. 1~solid circles!. They
clearly indicate that the effective-mass ratio is a monoto-
nously decreasing function of the Seitz radius throughout the
whole metallic domain. In the high-density limit they~as
well as all the other data! converge to the limiting
behavior.2,3 The agreement of our results with the most re-
cent 3D calculations suggests that the same procedure can be
tried in 2D since, in principle, the hydrodynamic model does
not distinguish between dimensions as long as the correct
linear response is employed. Now, we will consider the situ-
ation in two dimensions.

III. EFFECTIVE MASS IN TWO DIMENSIONS

Two-dimensional calculations based on the many-body
formalism have been carried out within the same format of
GW approximation. In the work of Jang and Min19 theW
function ~5! is defined so that the vertex correctionG51.
The dielectric function is expressed in a standard way in
terms of the local field correctionG (q,v):

e~q,v!512
vqx0~q,v!

11vqG ~q,v!x0~q,v!
. ~11!

The notation here is as before, but refers to the 2D quantities:
vq52p2/q, and the noninteracting responsex0(q,v) is as
in Ref. 20. A further approximation is conventionally made
that consists of replacing the dynamical local field correction
by a frequency-independent one:G (q,v)5G (q). Jang and
Min employed different parametrizations for theG (q) to-
gether with the noninteracting Green’s function in~4!. Their
approach was not self-consistent. The employed approxima-
tions were as follows: the RPA withG50; the Hubbard
approximation~HA! adopted to the 2D by Jonson21 with

G HA~q!5
1

2

q

Aq21kF
2
, ~12!

wherekF5A2pn is the 2D Fermi radius; and the modified
Hubbard approximation22 ~MHA ! with

G MHA~q!5
1

2
Aq21kF

21k TF
2 , ~13!

where the Thomas-Fermi momentum is given by
kTF52pne2/«F5A2r skF . The 2D Seitz radius is given by
p(r sa0)

251/n. The effective-mass ratios produced by these
approximations are plotted in Fig. 2: Hubbard approximation
~empty triangles!, modified Hubbard approximation~empty
squares!, and RPA~empty circles!.

We proceed with the scheme we developed for the 3D
case, but adapted to 2D. The profile relation coming from the
Sjölander-Stott theory takes the form

nq
ind, 2D5 f 2D~q!S 11E

0

`

kdk
F~q,k!

Ak21q2
nk
ind, 2DD , ~14!

where the notation is the same as in~7!, but refers to 2D.
F(q,k) results from the angular integration:23

F~q,k!5
q

p S K@22aq,k /~12aq,k!#

A12aq,k

1
K@2aq,k /~11aq,k!#

A11aq,k
D

2
aq,kk

4 2F1S 34 , 54,2,aq,k2 D , ~15!

with aq,k52qk/k21q2. Here, K(x) and 2F1(x) are the

FIG. 2. The same as in Fig. 1. Results of Jang and Min~Ref. 19!
in the Hubbard approximation~empty triangles!, modified Hubbard
approximation~empty boxes!, RPA ~empty circles!, present theory
~solid circles!, and experimental data of Smith and Stiles~Ref. 25!
~crosses!. The dashed line is the high-density result~18! of Isihara
and Toyoda~Ref. 26!.
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complete elliptic integral of the first kind and the hypergeo-
metric function, respectively. The induced density in the lin-
ear response approximationf 2D(q) is taken from the
parametrization16 of the numerical results of Neilsonet al.24

Just like~7!, ~14! has the correct high-q dependence that is
responsible for satisfying the cusp condition at the Coulomb
source:

nq
ind, 2Duq→`5

Z 2A2r s
q3 S 11

nind, 2D~r50!

n D . ~16!

In order to avoid dealing with the overscreening by a hole we
take the repulsive impurity charge to be small enough:

20.1,Z2D,20.01. ~17!

As in the previous section, we extract the effective potential
using the SS theory and run a 2D scattering calculation at the
Fermi momentum adjusting the effective electron mass until
the Friedel sum rule~10! is satisfied. Just as in 3D, we repeat
the calculation for different values ofZ within the range
~17!. Our results for the effective-mass ratio are shown in
Fig. 2. They fit roughly in between the results of the HA and
the MHA. The HA is known to take into account the ex-
change interaction and neglect correlations, while the MHA
is an attempt to incorporate correlations. To compare with
the experimental data we plot the magnetoconductivity mea-
surements of Smith and Stiles25 ~Fig. 2, crosses!. The agree-
ment of our results with the experimental values is rather
reasonable. We also plot the high-density expansion~Fig. 2,
dashed line! obtained by Isihara and Toyoda26 from the
specific-heat calculation:

m* /m5110.043r s . ~18!

This result was obtained by including first- and second-order
exchange, as well as the ring diagram contributions for small
but finite temperatures.

Finally, a few words about our numerical procedure
would be appropriate. In the solution of~7! and ~14! we
could use~8! and~16!, respectively, to approximate the high-
q behavior, and after solving in the remaining domain match
the solutions. This procedure is, however, very tedious and
ineffective. We found that the solution is not affected if we
solve the integral equation on the whole semi-infinite domain
@0,̀ ) using the Gauss-rational rule for discretizing the inte-

gral. Of course, 2D calculations require care because of
weaker convergence of integrals. In the scattering calculation
we used twelve partial waves.

IV. CONCLUSION

We have presented our results for the electron effective-
mass ratio using the effective potential coming from the SS
theory for two and three dimensions. The calculations were
carried out for small repulsive impurities where the SS
works. The effective mass was extracted by enforcing the
Friedel sum rule in the scattering calculation for the effective
potential. We compared our results with the most recent nu-
merical, as well as experimental data.

As for the 3D results~Fig. 1!, there has been some uncer-
tainty in the behavior ofm* /m in the metallic domain. Ear-
lier results predicted that this ratio should increase withr s ,
while more recent results indicate that it is a decreasing func-
tion of r s . In our treatment the effective-mass ratio is a
monotonically decreasing function of the Seitz radius in the
whole metallic domain.

In 2D ~Fig. 2! we present our results together with the
results based on theGW approximation. Our treatment
seems to fall ‘‘in between’’ the Hubbard and the modified
Hubbard approximations. Our results give reasonable agree-
ment with the experimental data.

In conclusion, it is interesting to relate the 2D and 3D
results between themselves. It is well known that the ex-
change interaction diminishes the effective mass, while cor-
relations shift it in the opposite direction. The quasiparticle
effective mass is a result of an interplay between the ex-
change and correlation contributions. It comes as no surprise
that because correlations are stronger in 2D than in 3D, gen-
erally, the effective mass is greater in 2D than in 3D for the
same value ofr s .
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