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The one-dimensional spin-1 Heisenberg antiferromagnetic chains are studied by a generalized two-time
Green’s-function method at finite temperature.^Si

z& is set to zero at each site to guarantee the lack of the
long-range order in the one-dimensional Heisenberg system. The Green’s functions are decoupled in terms of
the correlation functions of spin operators. A set of self-consistent equations of the correlation functions are
derived and solved numerically. Correlation functions of spin operators, thermodynamic properties such as the
internal energy, and specific heat in the entire temperature region are obtained. The Haldane gap in the
excitation spectrum appears naturally in the analytical result. Whenk is zero, there is a gap 2D, which is
1.0J and close to the theoretical result of White and Huse. And there is a broad maximum in the temperature
dependence of the specific heat. The properties of the thermodynamic quantities are consistent with the
numerical results on the finite chains.

I. INTRODUCTION

Haldane predicted1 in 1983 that the integer spin antiferro-
magnetic Heisenberg chain has a unique disordered ground
state and a finite excitation gap. This conjecture has been
checked experimentally,2 especially with the compound
NENP@Ni~C2H8N2)2NO2ClO4# for which inelastic neutron
scattering and susceptibility measurements have clearly
shown the existence of a spin gap.3 Recently, besides the
usual Haldane systems, such as CsNiCl3 , NENP, and
AgVP2S6 , Y 2BaNiO5 is also found as a new Haldane state
compound and this system can be described by a one-
dimensional ~1D! Hamiltonian with exchange anisotropy
(JzÞJx,y) or planar anisotropy.

4 Haldane’s conjecture is also
confirmed theoretically.5,7 In particular, White and Huse,6

who developed the density-matrix renormalization-group
techniques, have calculated a variety of properties of the
Heisenberg chain and got important results. The ground-
state energy and Haldane gap are found to be
e0521.401 484 038 971~4! and D50.410 50~2!. About the
excitation spectrum, they found that, atk>0.3p, the lowest
stable excitation can be well described by the one-magnon
excitation, while at small momentum the excitation spectrum
is governed by the multimagnon excitation where the single
magnon is unstable to decay into two magnons and the low-
est stable excitation is that of the two magnon. The Haldane
gap occurs atk5p and the gap atk50 is two times the gap
at k5p. This is also obtained by Takahashi.5,7 Affleck,
Kennedy, Lieb, and Tasaki8 have introduced an exactly solv-
able model with the Hamiltonian H5( i@SiSi11
1b(SiSi11)

2#, (b52 1
3). The ground state is constructed

out of valence bonds. Such a model has the typical nature
predicted by Haldane. Affleck and Lieb also made clear the
difference between integer spin and half-integer spin systems
and the origin of the gap.

Haldane’s conjecture has also stimulated a lot of attention
on the thermodymanic properties of the 1D spin-1 antiferro-
magnetic Heisenberg chains. Actually, long before Haldane’s

conjecture, De Neef and Blo¨te9,10 had calculated the specific
heat of magnetic linear chains for spin-1 and other spins by a
numerical diagonalization method. Later, some others dis-
cussed the same problems11,12 numerically. Among them,
Yamamoto and Miyashita12 have recently investigated the
low-temperature behavior of thermodynamic quantities in
1D spin-1 isotropic antiferromagnetic Heisenberg chains by
a quantum Monte Carlo method. Their results show that the
specific heat is linear at the low-temperature region and ex-
hibits a broad maximum at the intermediate temperature.

However, until now few studies have been done on the
excitation spectrum and the thermodynamic properties of the
spin-1 Haldane systems by the two-time Green’s-function
method. The original two-time Green’s-function method in-
troduced by Tyablibov13 is very successful in the study of
three-dimensional magnetic systems in which the long-range
order exists. The decoupling procedure gives a spin-wave
spectrum which depends on^Sz&. Since^Sz& vanishes in one
dimension, Kondo and Yamaji,14 proposed a new decoupling
at a stage one step further than Tyablibov. Thus^Si

z&50 is
satisfied at each site and the Green’s functions are expressed
in terms of correlations. By this method, Kondo and Yamaji
have studied the spin-12 isotropic Heisenberg chains. Their
results are consistent with the numerical calculation of finite
chains by Bonner and Fisher.15 The nearly same method was
also used by Richards,16 Scales and Gersch,17 Rhodes and
Scales18 to study one-dimensional Heisenberg chains. Such a
method was called the second-order Green’s-function
method in these papers. However, their excitation energy for
integer spins has a zero gap atk50. The Haldane gap is also
discussed by the spin-wave theory.19 However, the excitation
spectrum has a gapD at k50 which deviates from the result
2D by White and Huse6 and Takahashi.7

In the present work, we generalize Kondo and Yamaji’s
decoupling technique of Green’s-function method for the
spin-12 isotropic Heisenberg chains to the 1D spin-1 antifer-
romagnetic Heisenberg chains. We do not use the concept of
sublattice that appeared in the spin-wave theory19 because of
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the disordered ground state of spin-1 systems.^Si
z& is set

equal to zero at each site. The Green’s functions are ex-
pressed in terms of the correlations^S0

zSn
z& and ^S0

1Sn
2&

which are determined by a set of self-consistent equations. A
new decoupling approximation has been introduced which is
different from Refs. 16–18 and a new formula of the excita-
tion spectrum can be obtained from the analytical results. At
k50 in our excitation spectrum, there is a gap 2D which
equals 1.0J. This result is close to the exact numerical results
of White and Huse6 and Takahashi.7 Our results at smallk
are better than that of Refs. 16–18 and that of spin-wave
theory.19 However, the value of gap at largerk in our results
deviates from that of White and Huse6 and that of the spin
wave theory.20 We believe this is the flaw of the decoupling
approximation in the Green’s-function method. But the ther-
modynamic quantities in the whole temperature range can be
obtained by this method. In the present work thermodynamic
properties such as the internal energy and specific heat at
arbitrary temperature are obtained after solving the set of
self-consistent equations numerically. There is a broad maxi-
mum in the curve of the temperature dependence of the spe-
cific heat. These results are consistent with the numerical
results of Yamamoto and Miyashita12 and the experimental
results.11

Section II gives the formalism of the generalized two-time
Green’s-function method and the final set of equations of
correlation functions. Section III provides numerical solu-
tions and discussion. The final section is a summary.

II. GENERALIZED TWO-TIME
GREEN’S-FUNCTION METHOD

The 1D spin-1 antiferromagnetic Heisenberg chain with
both exchange anisotropy and single-ion anisotropy can be
expressed by the Hamiltonian

H5J (
i52 N/2 11

N/2 FSizSi11
z 1

g

2
~Si

1Si11
2 1Si

2Si11
1 !G

1D (
i52 N/2 11

N/2

~Si
z!2, ~1!

whereJ.0 is considered.Si
x , Si

y , andSi
z represent the three

components of the spin-1 operator at sitei with
Si

65Si
x6 iSi

y . g is the exchange anisotropic pamameter and
D is the single-ion anisotropic parameter. When
D50,g51, Eq. ~1! changes into the isotropic Heisenberg
model. We will begin with the formalism of the two-time
Green’s function whose time-Fourier transform satisfies the
equation

v^^A;B&&5~2p!21^@A,B#&1^^@A,B#;B&&, ~2!

where [A,B] denotes the commutator of the two operatorsA
andB and^^A;B&& is the time-Fourier transformation of the
Green functionGAB(t) of the two operatorsA andB:

^^A;B&&5
1

2pE2`

1`

GAB~ t !e
ivtdt, ~3!

GAB~ t !52 iu~ t !^@A,B#&, ~4!

u(t) is the step function of time,̂•••& denotes the thermal
average which is given by

^BA&5 i E
2`

1`

dv@^^A;B&&v1 id2^^A;B&&v2 id#n~bv!,

~5!

where n(x)51/@exp(x)21#, b51/kBT, kB is the Boltz-
mann constant. We first consider the Green’s function
^^S0

z ;Sn
z&&. Using the formalism~2!, we get

v^^S0
z ;Sn

z&&5
J

2
g^^S0

1S1
22S21

1 S0
22S0

2S1
11S21

2 S0
1 ;Sn

z&&.

~6!

Furthermore, after a similar calculation, the equations of mo-
tion for the Green’s functions on the right-hand side of the
above equation can be obtained easily. For example, the
equation of motion of the Green’s function^^S0

1S1
2 ;Sn

z&& is

~v2J12JD8!^^S0
1S1

2 ;Sn
z&&5

1

2p
~2d0n1d1n!^S0

1S1
2&12Jg^^S0

z2S1
z ;Sn

z&&

1J^^2S0
1S1

2S1
z2S21

z S0
1S1

21gS21
1 S0

zS1
22gS0

zS1
z222D8S0

1S0
zS1

2 ;Sn
z&&

1J^^S0
1S1

2S2
z1S0

1S0
zS1

22gS0
1S1

zS2
21gS1

zS0
z212D8S0

1S1
2S1

z ;Sn
z&&, ~7!

where we have letJD85D for convenience and we have
used the commutation relations of spin operators, such as
Si
zSi

22Si
2Si

z52Si
2 and the special property of theS51

operators

Si
2Si

1522Si
z2~Si

z!2, ~8!

wherei refers to an arbitrary lattice site.

It should be emphasized that all results obtained above are
exact. We have not made any approximation. The term
2J12JD8 in the coefficient of the Green’s function
^^S0

1S1
2 ;Sn

z&& in the left-hand side of Eq.~7! is obtained
from the commutation relations of spin-1 operators. While
using Eq. ~2! to calculate the equation of motion of the
Green’s function^^S0

1S1
2 ;Sn

z&&, for example, we have a
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further higher-order Green’s function of the four-
operator J^^2S0

1S1
zS1

2 ;Sn
z&& which equals to

2J^^S0
1S1

2S1
z ;Sn

z&&1J^^S0
1S1

2 ;Sn
z&&. The last term is just

the second term on the left-hand side of Eqs.~7! and the first
term will be decoupled together with other Green’s functions
on the right-hand side of Eq.~7!. Later we will see that it is
theJ that is responsible for the Haldane gap. So the Haldane
gap arises naturally in the generalized Green’s-function
method and its value predicted by this method is analytical.
However, our result is different with that of Ref. 18 where
the decoupling approximation has been made earlier in Eq.
~3.1! of Ref. 18. Thus it is this key difference that causes our
results to differ from those of Refs. 16–18. At the same time,
it is also interesting to note that the term responsible for the
Haldane gap in spin-1 Heisenberg chains does not appear in
the corresponding equation of the spin-1

2 isotropic Hersen-
berg chains14 because of the relations such as
2Si

1Si
z52Si

1 , and 2Si
zSi

252Si
2 for spin-12 operators.

Therefore the following two termŝ ^S0
1S0

zS1
2 ;Sn

z&& and
2^^S0

1S1
zS1

2 ;Sn
z&& are canceled out by each other, so that

there is no gap atk50 for the spin-12 isotropic Heisenberg
chains.14 This implies that the generalized two-time Green’s-
function method can explain the different behavior of spin-1
and spin-12 at smallk.

Similarly we can get equations of motion of other
Green’s-functions in the right-hand side of Eq.~6!. We de-
couple the Green’s function on the right-hand side of Eq.~7!
by the following rules:

^^S0
1S1

2S1
z ;Sn

z&&→a1^S0
1S1

2&^^S1
z ;Sn

z&&, ~9!

^^S0
zS0

zS1
z ;Sn

z&&→a2^S0
zS0

z&^^S1
z ;Sn

z&&

1a2^S0
zS1

z&^^S0
z ;Sn

z&&, ~10!

where we have introduced two parametersa1 and a2 be-
cause of the exchange anisotropy, anda15a2 wheng51. In
this work, for simplicity we use the samea1 anda2 wher-
ever the corresponding decouplings are introduced.

After defining Cn by Cn
z5a1^S0

zSn
z& and Cn

6

5a2^S0
1Sn

2& with n50,1,2, . . . , Eq.~6! becomes

~v2J12JD8!v^^S0
z;Sn

z&&5
J

2
gH 1

2p
Dn1B0^^S0

z ;Sn
z&&

1B1^^S1
z1S21

z ;Sn
z&&

1B2^^S2
z1S22

z ;Sn
z&&J , ~11!

where

Dn5~24d0n12d1n12d21n!^S0
1S1

2&,

B054J@2g2gC0
z12gC1

z1~122D8!C1
61gC2

6#,

B152J@22g1gC0
z22gC1

z22~12D8!C1
62gC2

6#,

B252JC1
6 .

The Fourier transformation of̂̂ S0
z ;Sn

z&& is defined as

G8~k,v!5(
n

eikna^^S0
z ;Sn

z&&, ~12!

wherea is the lattice spacing and will be set to 1 in this
work. Then from Eq.~11! and Eq.~12! we get

G8~k,v!5
Pk/2

~v2Vk1!~v2Vk2!
, ~13!

where

Pk52Jg~211cosk!^S0
1S1

2&/p, ~14!

and

Vk1,2/J5 1
2 ~122D8!6 1

2 $~122D8!2

12g~B012B1 cosk12B2 cos2k!/J%1/2. ~15!

Then the correlation̂Sn
zS0

z& can be obtained by using Eq.
~5!. We have

^Sn
zS0

z&5
p

N (
k
e2 ikn

Pk

Vk12Vk2
@n~bVk1!2n~bVk2!#.

~16!

If D50, Eq. ~15! can be simplified as

Vk1,2/J5 1
26 1

2 $118g~2g2gC0
z12gC1

z1gC2
6

22C1
6 cosk!~12cosk!%1/2. ~17!

From this equation we can see that there are two branches of
the excitation spectrum. For the positive one, ifk50, there is
a gap 1.0J for D50. We will return to this problem in the
next section.

Similarly, for the correlation̂Sn
1S0

2&, if D50, we have

^Sn
1S0

2&5
1

N (
k
e2 ikn

Zk
vk12vk2

@n~bvk1!2n~bvk2!#,

~18!

with

Zk52J$2~211g cosk!^S0
zS1

z&1~2g1cosk!^S0
1S1

2&%,
~19!

and

vk1,2/J5 1
26 1

2 $11A012A1cosk12A2cos2k%1/2,
~20!

where

A054$41~221g2!C0
612g2C1

z13gC1
612C2

z1g2C2
6%,

A152$24g1gC0
624gC1

z22~11g2!C1
622gC2

z2gC2
6%,

A252g$2gC1
z1C1

6%.

Equations~16! and ~18! for n50,1,2,. . . , together with
Eq. ~8!, consist of a set of self-consistent equations which
can be solved numerically and the correlations, internal en-
ergy, and specific heat, etc., can then be obtained.

From Eqs.~16! and ~18!, if D50,g51, we obtain the
rotational invariance of correlations:̂Sn

1S0
2&52^Sn

zS0
z&.
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This is certainly correct because of the symmetry:z↔x and
z↔y of the isotropic Heisenberg spin chains. The results are

Cn
z5

1

N(
k
e2 ikn

4J~211cosk!C1
z

vk12vk2
@n~bvk1!2n~bvk2!#,

~21!

vk1,2/J5 1
26 1

2 $118~22C0
z12C1

z12C2
z24C1

z cosk!

3~12cosk!%1/2. ~22!

Here,a15a25a, andCn
652Cn

z52a^S0
zSn

z& because of the
rotational invarance stated above. Equations~21! with
n50,1,2 form a set of self-consistent equations which deter-
mine the three quantitiesC1

z , C2
z , anda.

III. NUMERICAL SOLUTION AT ARBITRARY
TEMPERATURE AND DISCUSSION

The set of self-consistent equations obtained in the previ-
ous section can be solved numerically by using the iteration
technique at arbitrary temperature. In the present work, we
only calculate the results ofD50 andg51.

We present our results of the variations ofu^S0
zS1

z&u and
^S0

zS2
z& with temperature in Fig. 1. The temperature depen-

dence of^S0
zS1

z& from our method is in general agreement
with the behavior of Fisher’s classical model21 in the whole
temperature region although the actual values are not the
same. While in Ref. 18 the nearest-neighbor correlation func-
tion deviates from Fisher’s result at low temperature. Our
results show that asT→0, the value of the correlations tend
to ^S0

zS1
z&520.38483 and̂S0

zS2
z&50.11764 which are con-

sistent with that obtained by Takahashi22 and Liang.23

At higher temperature, after a high-temperature expan-
sion, we found that̂ S0

zS1
z&'22/3u, ^S0

zS2
z&'1/3u2,

whereu5KBT/J. From Fig. 1, we can see that the correla-
tions have the same behavior as that predicted by our high-
temperature expansion and that^S0

zS2
z& tends to zero at

higher temperature.
In Fig. 2, the excitation spectrumvk is plotted versus

k/p at zero temperature. We take the positive branchvk1 in

Eq. ~22!. From Fig. 2, we know that the excitation spectrum
has a gap equal to 2D at k50, D50.5J. This is close to the
exact numerical results of White and Huse6 and Takahashi.7

Actually, in the generalized two-time Green’s-function
method, we have included the contributions of multimagnons
as well as that of one magnon, so it is not surprising that our
results at smallk are quite good. This is the natural result of
the generalized two-time Green’s-function method. However,
at largerk, our result of the value of gap deviates from the
exact value. This results from the defect of the decoupling
approximation in the Green’s-function method which has
been discussed by Kondo and Yamaji.14 However, in spin-
wave theory, atk50, the excitation spectrum has a gapD
which is not consistent with the result 2D of White, Huse
and Takahashi, while the excitation spectrum in Refs. 16–18
is Ek

2}(12cosk)(11h cosk), which is zero atk50. This
spectrum has the same behavior as that of the 1D spin-1

2

ferromagnetic Heisenberg chain obtained by the traditional
spin-wave theory:Ek52zJS(12cosk). Actually, these pa-
pers appeared long before Haldane’s conjecture. Our excita-
tion spectrum at smallk is obviously better than that ob-
tained by spin-wave theory19 and much better than that
obtained by the second-order Green’s-function theory.16–18

~In Ref. 18, the caseJ,0 is the antiferromagnet.!
In Fig. 3 and Fig. 4, the temperature dependences of the

internal energy and the corresponding specific heat are plot-
ted. The internal energy is defined as

E5^H&5JN$^S0
zS1

z&1^S0
1S1

2&%. ~23!

The specific heatC is obtained by differentiating the internal
energyE with respect to the temperatureT. From these cal-
culations we found that asT tends to zero, the internal en-
ergy tends to20.1545J. A broad maximum exists in the
curve of the specific heat versus temperature. This broad
maximum occurs because we have included the ‘‘bound
states’’ in using the decoupling procedure proposed by
Kondo and Yamaji.14 The broken lines in both figures repre-
sent the numerical results obtained by Yamamoto and
Miyashita12 with the quantum Monte Carlo method, and our
results are consistent with their results. We also find that our
results are slightly lower than the exact numerical values.

FIG. 1. Correlationsu^S0
zS1

z&u and^S0
zS2

z& vs temperature for the
1D spin-1 isotropic antiferromagnetic Heisenberg chain.

FIG. 2. The excitation spectrumvk vs k/p at zero temperature
for the 1D spin-1 isotropic antiferromagnetic Heisenberg chain.
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IV. SUMMARY

The thermodynamic properties of the 1D spin-1 antiferro-
magnetic Heisenberg chains are investigated by the general-
ized two-time Green’s-function method.^Si

z& is set to zero at
each site which guarantees the absence of long-range order
in the spin-1 systems. The Green’s functions are decoupled
in terms of the correlationŝS0

zSn
z& and ^S0

1Sn
2&. A set of

self-consistent equations of correlations result and are solved
numerically for the isotropic Heisenberg chains. Fair agree-
ment is found in the excitation spectrum at smallk mainly
because we have included the contributions of the multimag-
non as well as that of the one magnon. Atk50, the gap is
found to be 2D which is 1.0J and close to the theoretical
exact result of White and Huse. Thermodynamic quantities
such as the internal energy and the specific heat are obtained
in the wide temperature region which are found to be con-
sistent with that obtained by the quantum Monte Carlo

method. AsT tends to zero, the internal energy is found to be
20.1545J. There is a broad maximum in the curve of the
specific heat versus temperature. This result is attributed to
the contribution of the ‘‘bound state’’ which we have in-
cluded in our decoupling approximation. Finally it may be
interesting to note that, with this generalized two-time
Green’s function method, different results at smallk for spin-
1
2 and spin-1 systems can be obtained which are consistent
with that predicted by Haldane although the results at larger
k are not satisfactory, which we should consider improving
in the future. We believe that this method is still a very useful
method in investigating the Heisenberg chains.
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