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Thermodynamic properties of one-dimensional spin-1 antiferromagnetic Heisenberg chains:
Green’s-function approach
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The one-dimensional spin-1 Heisenberg antiferromagnetic chains are studied by a generalized two-time
Green's-function method at finite temperatw&’) is set to zero at each site to guarantee the lack of the
long-range order in the one-dimensional Heisenberg system. The Green’s functions are decoupled in terms of
the correlation functions of spin operators. A set of self-consistent equations of the correlation functions are
derived and solved numerically. Correlation functions of spin operators, thermodynamic properties such as the
internal energy, and specific heat in the entire temperature region are obtained. The Haldane gap in the
excitation spectrum appears naturally in the analytical result. Vihenzero, there is a gapA2 which is
1.0J and close to the theoretical result of White and Huse. And there is a broad maximum in the temperature
dependence of the specific heat. The properties of the thermodynamic quantities are consistent with the
numerical results on the finite chains.

. INTRODUCTION conjecture, De Neef and Bie'° had calculated the specific
heat of magnetic linear chains for spin-1 and other spins by a
Haldane predictédin 1983 that the integer spin antiferro- numerical diagonalization method. Later, some others dis-
magnetic Heisenberg chain has a unique disordered grourmissed the same probleth¥’ numerically. Among them,
state and a finite excitation gap. This conjecture has bee¥amamoto and Miyashitd have recently investigated the
checked experimentalfy, especially with the compound low-temperature behavior of thermodynamic quantities in
NENP[Ni(C,HgN,),NO,CIO,] for which inelastic neutron 1D spin-1 isotropic antiferromagnetic Heisenberg chains by
scattering and susceptibility measurements have clearlg qguantum Monte Carlo method. Their results show that the
shown the existence of a spin gafRecently, besides the specific heat is linear at the low-temperature region and ex-
usual Haldane systems, such as CsNICINENP, and hibits a broad maximum at the intermediate temperature.
AgVP,Sg, Y ,BaNiOs is also found as a new Haldane state However, until now few studies have been done on the
compound and this system can be described by a onexcitation spectrum and the thermodynamic properties of the
dimensional (1D) Hamiltonian with exchange anisotropy spin-1 Haldane systems by the two-time Green’s-function
(J,#Jyy) or planar anisotropyHaldane’s conjecture is also method. The original two-time Green’s-function method in-
confirmed theoretically’ In particular, White and Hus®, troduced by Tyablibot? is very successful in the study of
who developed the density-matrix renormalization-groupthree-dimensional magnetic systems in which the long-range
techniques, have calculated a variety of properties of therder exists. The decoupling procedure gives a spin-wave
Heisenberg chain and got important results. The groundspectrum which depends ¢6°). Since(S?) vanishes in one
state energy and Haldane gap are found to balimension, Kondo and Yamdif,proposed a new decoupling
e,=—1.401 484 038 978) and A=0.4105@2). About the at a stage one step further than Tyablibov. TK89=0 is
excitation spectrum, they found that, ket 0.3, the lowest  satisfied at each site and the Green’s functions are expressed
stable excitation can be well described by the one-magnom terms of correlations. By this method, Kondo and Yamaiji
excitation, while at small momentum the excitation spectrurrhave studied the spif-isotropic Heisenberg chains. Their
is governed by the multimagnon excitation where the singlgesults are consistent with the numerical calculation of finite
magnon is unstable to decay into two magnons and the lowehains by Bonner and Fish€rThe nearly same method was
est stable excitation is that of the two magnon. The Haldanalso used by Richard$, Scales and Gerscfi,Rhodes and
gap occurs ak= 7 and the gap a=0 is two times the gap Scale$® to study one-dimensional Heisenberg chains. Such a
at k=m. This is also obtained by TakahasHi.Affleck, = method was called the second-order Green's-function
Kennedy, Lieb, and Tasdkhave introduced an exactly solv- method in these papers. However, their excitation energy for
able model with the Hamiltonian H=3X,[SS,; integer spins has a zero gapkat 0. The Haldane gap is also
+B(SS.+1)?%], (B=-1%). The ground state is constructed discussed by the spin-wave thed?yHowever, the excitation
out of valence bonds. Such a model has the typical naturgpectrum has a gap atk=0 which deviates from the result
predicted by Haldane. Affleck and Lieb also made clear thA by White and Hustand TakahasHi.
difference between integer spin and half-integer spin systems In the present work, we generalize Kondo and Yamaiji's
and the origin of the gap. decoupling technique of Green's-function method for the
Haldane’s conjecture has also stimulated a lot of attentiospin- isotropic Heisenberg chains to the 1D spin-1 antifer-
on the thermodymanic properties of the 1D spin-1 antiferrofomagnetic Heisenberg chains. We do not use the concept of
magnetic Heisenberg chains. Actually, long before Haldane'sublattice that appeared in the spin-wave th&bigcause of
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the disordered ground state of spin-1 syste(®) is set whereJ>0 is consideredS’, ', andS’ represent the three
equal to zero at each site. The Green’s functions are excomponents of the spin-1 operator at siie with
pressed in terms of the correlatio§;Sy) and (S;S,) S =S'=iS). y is the exchange anisotropic pamameter and
which are determined by a set of self-consistent equations. ® is the single-ion anisotropic parameter. When
new decoupling approximation has been introduced which i® =0,y=1, Eq. (1) changes into the isotropic Heisenberg
different from Refs. 16—18 and a new formula of the excita-model. We will begin with the formalism of the two-time
tion spectrum can be obtained from the analytical results. AGreen'’s function whose time-Fourier transform satisfies the
k=0 in our excitation spectrum, there is a gapp &vhich  equation

equals 1.0. This result is close to the exact numerical results

of White and Hus®and TakahasHi.Our results at smak o((A;B))y=(2m) "Y[A,B])+({[A,B];B)), 2)

are better than that of Refs. 16—-18 and that of spin-wave

theory™® However, the value of gap at larglerin our results  where |A,B] denotes the commutator of the two operatars
deviates from that of White and Husend that of the spin andB and((A;B)) is the time-Fourier transformation of the

wave theory® We believe this is the flaw of the decoupling Green functionGAg(t) of the two operatoré\ andB:
approximation in the Green’s-function method. But the ther-

modynamic quantities in the whole temperature range can be 1 [+ _
obtained by this method. In the present work thermodynamic ((A;B))= 2—f Gag(t)e'“'dt, 3)
properties such as the internal energy and specific heat at T~
arbitrary temperature are obtained after solving the set of
self-consistent equations numerically. There is a broad maxi- Gas(t)=—i6(t){[A,B]), (4)
mum in the curve of the temperature dependence of the spe-
cific heat. These results are consistent with the numericaj(t) is the step function of time,- - -) denotes the thermal
resultslff Yamamoto and Miyashifaand the experimental average which is given by
results.

Section Il gives the formalism of the generalized two-time o
Green's-function method and the final set of equations of (BA)ziJ dw[{({(A;B))y+is— ((A;B))w-isIN(Bw),
correlation functions. Section IIl provides numerical solu- -
tions and discussion. The final section is a summary. ©)

where n(x)=1[expx)—1], B=1kgT, kg is the Boltz-
mann constant. We first consider the Green’s function
((S§;Sh)). Using the formalisn(2), we get

Il. GENERALIZED TWO-TIME
GREEN’'S-FUNCTION METHOD

The 1D spin-1 antiferromagnetic Heisenberg chain with

both exchange anisotropy and single-ion anisotropy can be J - - -
expressed by the Hamiltonian o{(S5;S)) = 57((3551 —SI1Sy S S;+S1:Sy:S)-
N/2 y (6)
H=J SIS+ 5(S'SL1+S S

i:—%z 1|39t 28 St S S Furthermore, after a similar calculation, the equations of mo-

N/2 tion for the Green’s functions on the right-hand side of the

+D )2 (1) above equation can be obtained easily. For example, the
i—-N2+1 equation of motion of the Green’s functidS,; S; ;S5)) is

1
(0—=J3+2JD"){(Sy S, ;Sﬁ»:E(_%n"‘ 810)(Sp Sy ) +239{(S5—S1;S0))

+I(~S5 S S —S2150 Sy +vSI1S5S; — vSiS - 2D S ;S 1 S)

+I((Sg Sy S5+ S5 S8y — vSy SiS; +¥SiS*+2D S5 S, S S))), (7)

where we have leID'=D for convenience and we have It should be emphasized that all results obtained above are
used the commutation relations of spin operators, such asxact. We have not made any approximation. The term
S'ST—S S'=—S and the special property of th8=1  —J+2JD’ in the coefficient of the Green’s function
operators ((Sy'S; ;SE)) in the left-hand side of Eq(7) is obtained
S S =2-S— (52 ® fro_m the commutation relations of spin-l operators. While
[ i i/ using Eq.(2) to calculate the equation of motion of the
wherei refers to an arbitrary lattice site. Green's function((S; S; ;S7)), for example, we have a
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further higher-order Green’'s function of the four- i« .
operator J((—Sgsisl’ 'SY))  which  equals to G'(k,w)zzn: e""(S5; S (12)
—J((Sy S, ;SN +I((Sy S ;SAY). The last term is just
the second term on the left-hand side of E@$.and the first Wherea is the lattice spacing and will be set to 1 in this
term will be decoupled together with other Green’s functionswork. Then from Eq(11) and Eq.(12) we get
on the right-hand side of Eq7). Later we will see that it is P./2
theJ that is responsible for the Haldane gap. So the Haldane G'(k,w)= k
gap arises naturally in the generalized Green’s-function ’ (0= Q) (0= Qyp)°
method and its value predicted by this method is analytical,are
However, our result is different with that of Ref. 18 where
the decoupling approximatipn has _been made earlier in Eq. P,=2J y(—1+cod<)<S§S{>/7r, (19
(3.2) of Ref. 18. Thus it is this key difference that causes our
results to differ from those of Refs. 16—18. At the same time&"
it is also interesting to note that the term responsible for the . b 2
Haldane gap in spin-1 Heisenberg chéains does not appear in k12/9=2(1-2D") 3 {(1-2D")
the corresponding equation of the sginsotropic Hersen- 1/2
berg chain¥ because of the relations such as T27(Bot 2B, cosk+2B, cosA/IFTE. (19
2S'Sf=—S", and XS =-S  for spin; operators. Then the correlatiofS;S{) can be obtained by using Eq.
Therefore the following two termg(SjSES; ;Sh)) and  (5). We have
—((Sy SiS; ;Sh)) are canceled out by each other, so that _ P
there is no gap ak=0 for the spin3 isotropic Heisenberg zczy —ikn___"k _
chains!® This implies that the generalized two-time Green’s- (S0 =1 ; © le_ka[n(Ble) n(Alhia)]
function method can explain the different behavior of spin-1 (16
and spins at smallk. o

Similarly we can get equations of motion of other |f D=0, Eq.(15 can be simplified as
Green’'s-functions in the right-hand side of E). We de- 11 2 2 -
couple the Green'’s function on the right-hand side of &j. Qa2 I=7+2{1+8¥(2y=yCoF 2yC1+7C;

(13

by the following rules: —2ct cok)(1—cok)}1/2, (17)
((Sy Sy S5 S5y — @y (Sy Sy (ST S, (99  From this equation we can see that there are two branches of
the excitation spectrum. For the positive on& 0, there is
((SESESE; SEY) — aup( SESHI(SE; SE)) a gap 1.0 for D=0. We will return to this problem in the
next section.
+ ay( EEW(SE S, (10) Similarly, for the correlatiofS; Sy ), if D=0, we have
where we have introduced two parameters and «, be- b ik
cause of the exchange anisotropy, ane= a, wheny=1. In {Sn So >_ 2 e [n('gwkl) (B,
this work, for simplicity we use the same;, and a, wher- (19

ever the corresponding decouplings are introduced. )
After defining C, by Ci=ay(SESE) and c@ With

=a,(S¢S,) with n=0,1,2 ..., Eq.(6) becomes 2= 23{2(— 1+ y cok)( S+ (— 7+ COK)(S: Sr >}19)
1
(@=3+2ID")o((S5:S)) =5 ( 5-DntBo((S5:So)) and
+B((S2+S2,:SD) wi12/d= 3+ 3{1+ A+ 2A,cok+ 2A,cos XK} 2,
o (20)

+B,((S2+ S z;s;»], (1)  Where

where Ag=4{4+(—2+y*)Cy +29°Ci+3yC; +2C5+¥°C, },

o = z_ N~E z_ +
Dn:(_450n+251n+25—1n)<8351_>1 A;=2{—4y+yCy—4yCi—2(1+y°)C] —2yC5—yC5},

. . A,=2y{2yCi+Ci}.
Bo=4J[2y— yCi+2yCi+(1-2D")Ci +C;5 1, 2=27{2yCi+ C

Equations(16) and (18) for n=0,1,2,. . ., together with

B;=2J[-2y+yCi—2yCi—-2(1-D")Cy —C5], Eq. (8), consist of a set of self-consistent equations which
can be solved numerically and the correlations, internal en-
B,=2JC;. ergy, and specific heat, etc., can then be obtained.

From Egs.(16) and (18), if D=0,y=1, we obtain the
The Fourier transformation ak S§; S7)) is defined as rotational invariance of correlations{S, Sy )=2(S;S5).
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FIG. 1. Correlation$(S§S7)| and(S§S5) vs temperature for the
1D spin-1 isotropic antiferromagnetic Heisenberg chain.

FIG. 2. The excitation spectrum, vs k/ 7 at zero temperature
for the 1D spin-1 isotropic antiferromagnetic Heisenberg chain.

This is certainly correct because of the symmemysx and  EQ. (22). From Fig. 2, we know that the excitation spectrum
zey of the isotropic Heisenberg spin chains. The results aréas a gap equal taX2atk=0, A=0.5]. This is close to the
exact numerical results of White and Hfissnd TakahasHi.
Actually, in the generalized two-time Green’s-function
method, we have included the contributions of multimagnons
as well as that of one magnon, so it is not surprising that our
results at smalk are quite good. This is the natural result of
11 ; . . . the generalized two-time Green’s-function method. However,
wy12/3= 3+ 3{1+8(2—C§+2C7+2C5—4C7 cok) at largerk, our result of the value of gap deviates from the
X (1—cok)}1/2, (22) exact value. This results from the defect of the decoupling
approximation in the Green's-function method which has
Here,a;=a,=a, andC; =2C2%=2a(S5S%) because of the been discussed by Kondo a_nd _YarﬁéjHowever, in spin-
rotational invarance stated above. Equatiof®l) with ~ Wave theory, ak=0, the excitation spectrum has a gap

n=0,1,2 form a set of self-consistent equations which deterwhich is not consistent with the resultA2of White, Huse
mine the three quantitie§, C%, anda. and Takahashi, while the excitation spectrum in Refs. 16-18

is Eﬁoc(l—cosk)(1+h coxK), which is zero atk=0. This
spectrum has the same behavior as that of the 1D Spin-
ferromagnetic Heisenberg chain obtained by the traditional
spin-wave theoryE,=2zJ91-co¥k). Actually, these pa-
The set of self-consistent equations obtained in the previPers appeared long before Haldane’s conjecture. Our excita-
ous section can be solved numerically by using the iteratiodion spectrum at smalk is obviously better than that ob-
technique at arbitrary temperature. In the present work, wéained by spin-wave theoty and much better than that
only calculate the results @=0 andy=1. obtained by the second-order Green’s-function thédrf
We present our results of the variations |682S7)| and ~ (In Ref. 18, the cas@<0 is the antiferromagnet.
(S5S5) with temperature in Fig. 1. The temperature depen- In Fig. 3 and Fig. 4, the temperature depe_zndences of the
dence of(SiS?) from our method is in general agreementmternal energy and the corresponding specific heat are plot-
. 1/ . \ : ; ted. The internal energy is defined as
with the behavior of Fisher’s classical motfein the whole
temperature region although the actual values are not the _ _ 7z t o
same. While in Ref. 18 the nearest-neighbor correlation func- E=(H)=IN{(SS) +(So S )t (23

tion deviates from Fisher's result at low temperature. OUFrhg gpecific heat is obtained by differentiating the internal
results show that a— 0, the value of the correlations tend energyE with respect to the temperatufe From these cal-
to (S5S7) = —0.38483 and $;S5) =0.11764 which are con-  cylations we found that &% tends to zero, the internal en-
sistent with that obtained by TakahaShiand Liang™  ergy tends to—0.1545. A broad maximum exists in the
At higher temperature, after a high-temperature expancurve of the specific heat versus temperature. This broad
sion, we found thafSiS))~—2/36, (S;S5)~1/36°,  maximum occurs because we have included the “bound
where §=KgT/J. From Fig. 1, we can see that the correla-states” in using the decoupling procedure proposed by
tions have the same behavior as that predicted by our highkondo and Yamaji‘.“ The broken lines in both figures repre-
temperature expansion and thé®;S;) tends to zero at sent the numerical results obtained by Yamamoto and
higher temperature. Miyashita? with the quantum Monte Carlo method, and our
In Fig. 2, the excitation spectrum, is plotted versus results are consistent with their results. We also find that our
k/ 7 at zero temperature. We take the positive bramghin  results are slightly lower than the exact numerical values.

z
- 4J(—1+cok)C3

[N(Bwyy) —N(Bwyz) ],
(21

1
Ci=—), e
n N; W1~ Wk2

IIl. NUMERICAL SOLUTION AT ARBITRARY
TEMPERATURE AND DISCUSSION
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2p ~-§.Yamamoto 05 --SYamamoto

KsT/J KsT /J

FIG. 3. Temperature dependence of the internal energy pig. 4. Temperature dependence of the specific Bébitkg for
—E/JN for the 1D spin-1 isotropic antiferromagnetic Heisenberg e 1p spin-1 isotropic antiferromagnetic Heisenberg chain. The
chain. The solid line represents our results obtained by the generaly|ig jine represents our results obtained by the generalized two-
ized two-time Green's-function method. The broken line represent$ne Green’s-function method. The broken line represents Yama-

Yamamotto and Miyashita’s results obtained by a quantum Montgqtio and Miyashita’s results obtained by a quantum Monte Carlo
Carlo method. method.

IV. SUMMARY method. AsT tends to zero, the internal energy is found to be
. . . . —0.1548. There is a broad maximum in the curve of the
The thermodynamic properties of the 1D spin-1 antifero-cqiic heat versus temperature. This result is attributed to

magnetic Heisenberg chains are investigated by the generglie contribution of the “bound state” which we have in-
ized two-time Green’s-function metho(f) is set to zero at  ¢jyded in our decoupling approximation. Finally it may be
each site which guarantees the absence of long-range Ord@feresting to note that, with this generalized two-time
in the spin-1 systems. The Green's functions are decouple@reen's function method, different results at snefior spin-
in terms of the correlation$S{S;) and (SgS;). A set of 1 and spin-1 systems can be obtained which are consistent
self-consistent equations of correlations result and are solveglith that predicted by Haldane although the results at larger
numerically for the isotropic Heisenberg chains. Fair agreek are not satisfactory, which we should consider improving
ment is found in the excitation spectrum at smialinainly  jn the future. We believe that this method is still a very useful
because we have included the contributions of the multimagmethod in investigating the Heisenberg chains.
non as well as that of the one magnon.k&t 0, the gap is
found to be 2 which is 1.0 and close to the theoretical ACKNOWLEDGMENTS
exact result of White and Huse. Thermodynamic quantities
such as the internal energy and the specific heat are obtained We are grateful to Dr. Hanting Wang for his useful dis-
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