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The in-plane spatial transport of nonequilibrium excitons in a GaAs quantum well structure has been
simulated with the ensemble Monte Carlo method. The simulation has been performed for excitons in the
presence of residual heavy holes including the interparticle Coulomb scatterings, LA-phonon scatterings, and
exciton/carrier-interface roughness scatterings. It has been found that, in contrast to the free electrons/holes
system in which the carrier-carrier scattering is significant, the interface roughness scattering is the dominant
process for excitons because of the relatively small scattering rate of exciton-carrier and exciton-exciton
scatterings. This strongly affects both the spatial motion and the energy relaxation of excitons. The spatial and
momentum distributions of excitons have been simulated up to 500 ps at several exciton temperatures and
interface roughness parameters. We have found that the exciton transport can be regarded as a diffusive motion,
with its diffusion coefficient varying with time. The diffusivity varies because the average velocity of excitons
change through the energy transfer between the excitons and the residual heavy-hole/lattice system.

I. INTRODUCTION

In-plane transport of photogenerated electrons/holes or
excitons confined in two-dimensional~2D! space of
quantum-well~QW! structures has attracted much attention,
as it contains rich physics not accessible in the stationary
transport of conduction electrons. It is also important from
the practical point of view, since the spatial resolutions of
position sensitive optical measurements such as the photolu-
minescence via optical microscopes and the recently devel-
oped near-field scanning optical microscopes1 are determined
by the diffusion length of photocarriers.

The measurements of photocarrier transport, which is a
transient phenomenon, are difficult because it requires high
spatial and temporal resolutions. There have been several
attempts to measure it in QW’s of GaAs/AlxGa12xAs with
various techniques under different experimental conditions.
The exciton localization was reported by Hegartyet al.,2 us-
ing the transient grating. Oberhauseret al.3 discussed the
scattering mechanism of excitons with the same method. The
pump-probe technique was utilized by Smithet al.4 and
Yoon et al.5 to investigate the excitation density dependence
of the spatial motion. Tsenet al.6,7 used the time and spa-
tially resolved Raman spectroscopy and discussed the spatial
transport as well as the energy relaxation. The time-of-flight
~tof! method with a photomask was developed by Hillmer
et al.8 and was applied to study the temperature and excita-
tion energy dependence of the transport in QW’s under low
excitation conditions.9–12The similar tof method with an op-
tical fiber was adopted by Akiyamaet al.,13 who reported the
transport properties in the wide range of excitation density in
doped and nondoped QW’s.

In spite of these experimental efforts, the physical mecha-
nism of transport is not fully understood in the microscopic
level so far. This is because the spatial transport of photoge-
nerated carriers is closely related with the longitudinal relax-
ation of carriers in the momentum space~i.e., the energy
relaxation!. This makes the problem further complicated as
compared with the transport of conduction electrons for

which the momentum space distribution is stationary. A dis-
tribution function of photocarriers, which are initially gener-
ated nonthermally at some point in the momentum space,
changes gradually due to the scatterings of carriers, and ap-
proaches the thermal equilibrium. At the same time, carriers
spread spatially from the point where they are initially gen-
erated. Since the scattering processes are affected both by the
momentum distribution and the spatial distribution~or the
density! of carriers and the carrier velocities are determined
by the momentum distribution, the time evolutions of the
momentum and the spatial distribution are mutually depen-
dent. Thus, it is necessary to solve the time evolution of
momentum and spatial distribution simultaneously to under-
stand the transport properties of photogenerated carriers.
Several authors8,14 reported the theoretical studies on the
spatial transport of excitons in QW’s, but they treated the
momentum distribution in thermal equilibrium, leaving its
dynamic evolution out of account.

There are several approaches to the theoretical analysis of
the longitudinal momentum relaxation~energy relaxation! of
photogenerated carriers:15 Analytical estimations based on
Green’s functions, numerical integrations of Boltzmann
equations, and numerical simulations, such as the ensemble
Monte Carlo~EMC! method. The last method is essentially
the same as solving~nonlinear! Boltzmann equations but,
with the advent of fast computers, it has become widely
used, because it is possible to perform quantitative calcula-
tions for nonequilibrium distributions of carriers and easy to
incorporate microscopic scattering mechanisms into the
model. Another advantage of this method is that the realistic
experimental conditions such as the shape of the sample, the
initial, and the boundary conditions, can be used in the
model calculations, allowing one to compare the theory and
the experiment directly.~The details of this method are re-
viewed in Ref. 16.!

There are many EMC studies on the nonequilibrium dy-
namics of photogenerated carriers,17–24both in bulk and QW
structures. But this method simulates the dynamics of par-
ticles in momentum space and does not yield the information
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in real space. Another class of numerical simulation methods
is the molecular dynamics~MD! approach, in which all par-
ticle trajectories are calculated classically in real space. Thus,
it naturally enables one to trace the motion of particles in real
space. MD has been applied to the dynamics of nonequilib-
rium carriers recently by several authors;25,26however, when
the number of participating particles grows, it becomes time
consuming and requires huge computer resources. An alter-
native method is required to practically perform the numeri-
cal simulation in the long time scale.

In this paper, the spatial transport and the momentum re-
laxation of excitons is numerically simulated. The spatial
motion is treated by dividing the simulation area by mesh
~concentric regions in the present case!, and the dynamics in
the momentum space is calculated in each region by the
EMC method at the density and the momentum distribution
averaged in the region. The position and the momentum of
the particle, and thus the density and the momentum distri-
bution in each region, are updated at every time step. This
approximation allows one to trace the spatial distribution of
particles at the spatial resolution comparable to the region
size, without the expense of fast computational speed of the
EMC method. The scattering mechanisms as carrier-carrier,
exciton-exciton, exciton-carrier, carrier-LA phonon,
exciton-LA phonon, carrier-interface roughness, and exciton-
interface roughness scatterings are included in the simula-
tions.

This paper is organized as follows: In Sec. II, the simula-
tion conditions are briefly described, followed by the detailed
description the screening and scattering mechanisms, and the
method of EMC simulation. In Sec. III A, the comparison of
freee/hh and exciton relaxation is discussed and in Sec. III B
the numerical results of the exciton spatial transport are
given. They are discussed in comparison with the previous
experimental works. Conclusions are given in Sec. IV.

II. MODEL

A. Simulation conditions

The in-plane spatial motion and the energy relaxation of
the nonequilibrium excitons are calculated in 2D space of
nondoped QW structures of GaAs, with the well widthLz 5
10 nm. The infinite barrier height is assumed throughout. The
simulations have been performed in a circular area of radius
10 mm. The initial excitons are spatially distributed in the
Gaussian shape,Cexp@24 ln2(x2/FWHM2)#, with its full
width at half maximum~FWHM! 6 mm, and their momen-
tum distribution is in the Bose distribution~which is essen-
tially identical to the Boltzmann distribution at the density
that we have used!, where the exciton temperatureTex is
used as a parameter for the initial momentum distributions.
The peak areal density of excitons is 1.93109 cm22 at the
center of the simulation area. The residual carriers~heavy
holes! of uniform areal density 13109 cm22 is assumed
over the whole simulation area as with Ref. 19, the initial
momentum distribution of which is in the Fermi distribution,
with the temperature the same as the lattice atTL (TL
ÞTex). In Sec. III A, we also calculate the relaxation of free
e/hh8s to compare with that of excitons. In this case, we have
used monoenergetic initial momentum distributions both for
e/hh’s and excitons. The simulation is performed in the ex-

citon temperatures (Tex) ranging between 10 and 90 K, with
the lattice temperature (TL) and the interface roughness pa-
rameters varied. The electrons, heavy holes and excitons are
treated in the parabolic band approximation as it removes the
complexity of the expressions of carrier-carrier and carrier-
LA-phonon scattering rates, and contributes to the major re-
duction of computational load. Only the lowest subbands in
the G point of the conduction and the heavy-hole band is
considered in the present study, disregarding the contribution
from the upper subbands and the light-hole bands. Since the
L valley is located more than 280 meV above, it does not
contribute in the energy region of the present simulation. If
we consider the realistic QW of Al0.3Ga0.7As/
GaAs withLz 5 10 nm, the energy separations between the
lowest hh state and the second hh state or the first light-hole
state is 22 meV and 13 meV, respectively.~The separations
are 33 meV and 48 meV, respectively, for the well of the
infinite barrier height.! Since the average exciton energy at
the highest exciton temperature~90 K! is 7.7 meV, only a
small fraction of excitons in the high energy tail of the Bose
distribution are involved in the scatterings with the upper
subbands. Thus, we have expected that the upper subbands
does not appreciably affect the relaxation and transport prop-
erties, and we have not included them in the simulations. The
in-plane (mhhi) and perpendicular (mhh') ~along the growth
direction! effective masses in the valence band are expressed
using Luttinger parameters,g1 andg2 ,

27

mhhi5~g11g2!
21m0 , mhh'5~g122g2!

21m0 ,

wherem0 is the free electron mass. The physical parameters
for GaAs in the present analysis are taken from Molenkamp
et al.;28 the effective mass in the conduction band
me50.0665m0 , g156.790, andg251.924.

B. Screening

The proper treatment of the screening is essential in the
many-body theory of electrons with electron-electron and
electron-phonon interactions. There are various approxi-
mated expressions with the different levels of
sophistication.29,30 Among them the random phase approxi-
mation ~RPA! is most commonly used, since it predicts im-
portant dynamical features such as plasmons, and it has ana-
lytic expressions in 3D system both for the degenerate29 and
nondegenerate31 carrier distributions. But the analytic ex-
pression for 2D system is not obtained, and we use the static
expression in the present study. The original RPA expression
of the dielectric function, which is valid in 2D for any dis-
tributions of carriers, is expressed as~see, e.g., Ref. 30!

«~q,v!512Vq(
k,s

f k2q2 f k
\v1 id1Ek2q2Ek

, ~2.1!

where f k is the momentum distribution function of carriers,
Ek is the energy of the carrier, and the summation runs over
all possible states of momentum and spin.Vq is the Fourier
transform of the Coulomb potential in 2D system:

Vq5
2pe2

«0L
2q
, ~2.2!
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whereL2 is the area of normalization, and«0 is the dielectric
constant including the contributions from the interband elec-
tronic transitions and from the phonons. In the static
(v→0) and the long wavelength limit (q→0), the RPA ex-
pression becomes

«~q→0,0!512Vq(
k,s

] f ~Eq!

]Eq
. ~2.3!

For 2D, converting the summation overk into an integral
over the energyE by utilizing the parabolic band dispersion,
assuming an isotropic momentum distribution, and integrat-
ing by parts, Eq.~2.3! reduces to

«~q→0,0!511(
s

Vq

L2

2p

2me

\2 f ~E50!, ~2.4!

which is valid for any isotropic momentum distributions of
carriers. Using Eq.~2.2! and summing up spin indices, one
finally obtains

«~q→0,0!511
2mee

2

«0\
2q

f ~E50!511
k

q
, ~2.5!

where the screening wave numberk is defined by

k[
2mee

2

«0\
2 f ~E50!. ~2.6!

This expression for the dielectric function was first adopted
by Goodnick and Lugli32 and has been used for the EMC
studies.33 We have used this expression throughout the
present study. This expression means that only the carriers in
the bottom of the band contribute to the screening. The
screened Coulomb interactionVq

eff is thus described as

Vq
eff[

Vq

«~q→0,0!
5
2pe2

«0L
2 S 1

q1k D . ~2.7!

When the carriers from more than one band have to be con-
sidered, they contribute to the screening wave number inde-
pendently in the long wavelength limit (q→0).34 ~Cross
terms appear whenq is finite.! Thus, in the present case
when the conduction and heavy-hole band take part in, the
screening wave number is expressed as

k5
2mee

2

«0\
2 @ f e~E50!1 f hh~E50!#, ~2.8!

where f e(E) and f hh(E) are the momentum distribution
functions of electrons and heavy holes, respectively. The
screening wave number is calculated by counting the number
of electrons and heavy holes at the bottom of each band in
every time step of Monte Carlo simulations. The strength of
Coulomb interaction is updated every time step, using this
screening wave number.

In order to obtain the full carrier dynamics in the relax-
ation, the dynamic screening model is highly desirable.
However, the direct calculation of Eq.~2.1! is computation-
ally very heavy and beyond the reach of the present study
~e.g., see Bair and Krusius in Ref. 35!. Instead, the static
screening expression of Eq.~2.5! is used in the following
simulations.

It should be noted that the expressions for the screening is
valid only in the homogeneous system. However, they can be
applied to the inhomogeneous systemlocally when the char-
acteristic length of the screening is much smaller than the
characteristic length at which the distribution functions and
the density change.36 In the present study, the inverse of the
screening wave number is 100 nm or less, while the charac-
teristic length at which the exciton distribution changes is of
the order of 1mm. Thus, we can use the locally defined
screening in the present case. Furthermore, as described be-
low, the excitons do not contribute to the screening, but only
the residual heavy holes, the distribution of which is almost
homogeneous, are responsible for the screening. Thus, the
effect of inhomogeneity is further reduced.

We have not included excitons in the screening in the
present calculations. The screening in the presence of both
charged carriers and excitons is discussed in detail by Haug
and Schmitt-Rink34 in the 3D system. In the simplest case,
the dielectric function, due to excitons, are given by

«~v!5«0~114pn 9
2 a0

3!,

where n and a0 are the exciton density and Bohr radius,
respectively. In the present case, this yields

«5«0~115.631022!.

On the other hand, the dielectric function, due to the free
carriers, is

«5«0@11O~1!#.

Thus, the contribution from excitons is much smaller than
that from free carriers, and we have included only the free
carriers in the screening.

C. Scattering mechanism

1. Carrier-carrier scattering

The scattering between charged carriers is discussed in
this section. Thee-e, hh-hh, ande-hh scatterings in 2D using
the Born approximation has been discussed in Ref. 19 in
detail and only the results relevant to the present study are
given here. The total scattering rate of an electron of a mo-
mentumk1 with heavy holes~momentumk2) is given by

We-h~k1!5
2pe4

«0
2\A

mr

\2(
k2 ,s

f hh~k2 ,s!E
0

2p

du
uFeehh~q!u2

~q1k!2
,

~2.9!

wheremr is the reduced mass,q is the momentum transfer
from the electron to the heavy hole, andu is the scattering
angle in c.m. frame.f hh(k2 ,s) is the momentum distribution
function of heavy holes. The screening wave numberk is
given by Eq.~2.5!. q is related to the initial and the final
relative momentum,kr andkr8, and the scattering angleu of
e-hh system by

q5kr2kr8, q52krsin~u/2!, ~2.10!

where the relative momentum is defined by
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kr5
mhhik12meik2
mhhi1mei

.

Feehh(q) is the form factor given by

Feehh~q!5E
2`

`

dzeE
2`

`

dzhuze~ze!u2uzh~zh!u2e2quze2zhu,

where ze(ze) and zh(zh) are the envelope functions in the
growth axis for electrons and heavy holes, respectively. The
form factor is of the order of unity when only the lowest
subbands of the conduction and the heavy-hole bands are
considered. Since carrier densities are low in the nondegen-
erate region, Pauli exclusion in the final state is not consid-
ered. The similar expression holds fore-e scattering with
antiparallel spins. The exchange term is included when deal-
ing with e-e scattering with parallel spins. The total scatter-
ing rate in this case is given by33

We-e~k1!5
2pe4

«0
2\A

mr

\2(
k2

f e~k2 ,s!

3E
2p/2

p/2

duUFeeee~q!

q1k
2
Feeee~Q!

Q1k U2,
~2.11!

whereQ is

Q52krcos~u/2!.

The origin of the exchange effect is in the exclusion principle
between the identical particles. When the two particles are
identical, they cannot come close enough. Thus the short
range interaction does not work between the identical par-
ticles. The scale at which the particle indistinguishability sets
in can be of the order of de Broglie wavelength. In the
present case, when the relative momentum between two elec-
trons is 0.6 nm21, the de Broglie wavelength is 10 nm. We
expect that the exchange effect becomes important when the
interaction range is equal to or less than the de Broglie
length. The interaction range defined by the inverse of the
screening wave number is much longer in our case, around
100 nm. Thus, the exchange term has small contribution and
the interaction strength between the electrons with parallel
spin is similar to that between the electrons with antiparallel
spin.

2. Electron (heavy-hole)–LA-phonon scattering

The LA-phonon scattering is treated in the present study,
since the energy of carriers and excitons is less than LO-
phonon energy and the lattice temperature is low (< 30 K!.
The 2D electrons interact with the phonons of bulk modes
through the deformation potential. The scattering rate in 2D
can be evaluated in parallel with the exciton-LA-phonon in-
teraction given by Takagahara in detail.37 The total LA-
phonon ~wave numberQph) absorption and emission rates
from the electron withk are given by

We-LA
absorb~k!5

1

4p

De
2mei

\2urLz
2kE

0

2p

du

sin
u

2

e\uQph /kT21
,

~2.12!

We-LA
emit ~k!5

1

4p

De
2mei

\2urLz
2kE

0

2p

dusin
u

2 F 1

e\uQph /kT21
11G ,
~2.13!

where u, r, and De are the velocity of sound, the mass
density, and the deformation potential for conduction band,
respectively.u is the electron scattering angle in laboratory
frame. A similar expression holds for heavy-hole–LA-
phonon scattering. Here, we assume that the phonon energy
\uQph is much smaller than the electron kinetic energy. The
z component of the phonon momentum is always set to zero
for simplicity, resulting in the slight overestimation of the
scattering rate. In the present analysis, the physical param-
eters are taken from Ref. 37;De526.5 eV,Dhh53.1 eV,
r55.3 g cm23, u54.813105 cm s21.

In the present analysis, the acoustic phonon distribution is
always assumed to be that of thermal equilibrium at the lat-
tice temperature, and the effects of nonequilibrium phonons
emitted from the carriers are not included, since the carrier
density and the excitation energy is low. There are several
investigations, theoretically and experimentally,4,38–41on the
effects of nonequilibrium phonons on the dynamics of carri-
ers and excitons. This should be included in the case of high
density, high excitation energy.

3. Electron (heavy-hole)–interface roughness scattering

The electron~heavy-hole! -interface roughness~IFR! scat-
tering in heterostructures was given by Andoet al.42 and
applied to the transport phenomena of 2D electron gas in
QW’s.43,44Here, a brief derivation is given for clarity. In the
well of infinite barriers, the lowest subband energy as a func-
tion of well width is given byE(Lz)5p2\2/(2me'Lz

2).
When the well width changes from place to place in the 2D
plane byDLz(ri), the subband energy changes by

DE~ri!5
p2\2DLz~ri!

me'Lz
3 , ~2.14!

whereri is the coordinate in 2D plane andme' is the effec-
tive mass perpendicular to 2D plane. The fluctuation of the
well width can be expanded by the Fourier series as

DLz~ri!5(
qi

Dqi
eiqi•ri. ~2.15!

DE(ri) in Eq. ~2.14! can be regarded as a potential for 2D
electrons and thee-IFR scattering amplitude is given by its
matrix element between 2D plane wave states as

^ki8uDE~ri!ki&5
p2\2

me'Lz
3Dqi

, ~2.16!

whereki2ki85qi . The Gaussian correlation function of the
well-width fluctuation is assumed, thus

^DLz~ri!•DLz~ri8!&5D2exp@~ri2ri8!2/L2#, ~2.17!
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whereD andL are the amplitude and the correlation length
of the fluctuation, respectively. Using the Fourier expansion
Eq. ~2.15!, the left side reduces to

K (
qi ,qi8

Dqi
Dqi8

ei ~qi•ri1qi8•ri8!L 5(
qi

uDqi
u2eiqi•Dri.

The right side can be expanded in Fourier series, then Eq.
~2.17! reduces to

(
qi

uDqi
u2eiqi•Dri5(

qi

1

A
pL2D2e2qi

2L2/4eiqi•Dri.

Thus, the expansion coefficient is expressed as

uDqi
u25

1

A
pL2D2e2qi

2L2/4.

Using this in the right side of Eq.~2.16!, the square of matrix
element is written as

z^ki8uDE~ri!uki& z25
p5\4L2D2

Ame'
2 Lz

6 e2qi
2L2/4. ~2.18!

The total scattering rate of the electron with momentumk is
calculated via Fermi’s golden rule as

We-IFR~ki!5
p4\L2D2mei

2me'
2 Lz

6 E
0

2p

due2ki
2L2sin2~u/2!,

~2.19!

whereu is the scattering angle in the laboratory frame. The
experimental determination of IFR parameters,D andL, is
very difficult. The former is the well width fluctuation and
usually one or two monolayers is assumed. The latter corre-
sponds to the typical terrace or island size in the two-
dimensional plane. In the present simulations,D is 0.283 nm
~one monolayer! andL is 10 nm unless otherwise stated. In
this model, since the infinite barrier height is assumed, the
IFR scattering is somewhat overestimated compared with the
realistic well of a finite barrier height.

4. Exciton-electron (heavy-hole) scattering

We derive here the exciton-electron~ex-e! scattering to
the lowest order. The exciton wave function in the ideal 2D
system (z dependence ignored! is written as

uK&5
1

AA(
re ,rh

eiK•RF~re ,rh!cre
† brh

† u0&,

whereK andR are the center-of-mass momentum and coor-
dinate, respectively.F is the wave function of relative mo-
tion, andcre

† (brh
† ) is the electron~heavy-hole! creation op-

erator in the Wannier representation. The wave function can
be rewritten in the Bloch representation, using the relation

cre
† 5

1

AN(
k
e2 ik•reck

† ,

whereN is the number of unit cells in the areaA, A5Nv0
(v0 is the area of the unit cell!. Converting the summation
over lattice sites into the integral by

(
r
→

1

v0
E d2r,

the exciton wave function reduces to

uK&5(
k,k8

f ~k,k8,K!dK,k1k8ck
†bk8

† u0&, ~2.20!

where

f ~k,k8,K!5
N

A3/2E d2rF~r!ei ~aeK2k!•r. ~2.21!

The mass ratiosae andah are defined by

ae5
me

me1mh
, ah5

mh

me1mh
.

We evaluate ex-e ~or ex-hh! scattering to the lowest order,
assuming that there happens neither rearrangement of elec-
trons nor the excitations of the internal state of the exciton,
and ignoring exchange effect. The Coulomb interaction
Hamiltonian is written as~spin indices are dropped!

H85
1

2 (
k,k8,qÞ0

Vq
effak1q

† ak82q
† ak8ak ,

whereak
† is an operator for electrons or heavy holes.Vq

eff is
the screened Coulomb potential of Eq.~2.7!, where the
screening in only due to the freee/hh’s. The scattering am-
plitude is obtained by calculating the matrix element ofH8
between the initial and the final electron-exciton states,
uk,K& and uk8,K8&. Here,k (k8) andK (K8) represent the
initial ~final! electron and exciton momentum, respectively.
Two terms remain and the corresponding diagrams are
shown in~a! and ~b! of Fig. 1. The term described by~a! is

(
k1 ,k2 ,l1 ,l2

Vqf * ~ l1 ,l2 ,K8! f ~k1 ,k2 ,K!dK8,l11 l2

3dK,k11k2
dq,l12k1

d l2 ,k2.

This term can be evaluated by using Eq.~2.21! and convert-
ing the summation over momenta into the integral. Evaluat-
ing two terms~a! and ~b!, the matrix element is given by

^k32q,K1quH8uk3 ,K&5
VqN

2

A2 E d 2ruF~r !u2

3@eiahq•r2e2 iaeq•r#.

~2.22!

Using the internal wave function of the lowest energy,
s-wave exciton;F(r )52av0e

2ar /A2p, wherea is the in-
verse of the Bohr radius, Eq.~2.22! reduces to

VqN
2

A2

4a2v0
2

2p E r dr du e22ar@eiahq•r2e2 iaeq•r#.

~2.23!

This expression can be integrated by using the generation
function of the Bessel function, and one finally obtains for
the matrix element
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^k32q,K1quH8uk3 ,K&

5VqH 1

F11S ahq

2a D 2G3/22
1

F11S aeq

2a D 2G3/2J . ~2.24!

The total scattering rate of an exciton with electrons~heavy
holes! can be calculated with the Fermi’s golden rule as

Wex-e,h~K!5
2pe4mr

\3«0
2A (

k
f e,h~k!E

0

2p

du
1

~q1k!2

3H 1

F11S ahq

2a D 2G3/22
1

F11S aeq

2a D 2G3/2J 2

,

~2.25!

wheremr is the reduced mass of an exciton and electron
~heavy hole! f e,h(k) is the momentum distribution function
of electrons~heavy holes!, andk is the screening wave num-
ber defined in Eq.~2.6!. The scattering angleu is related to
the momentum transferq and the relative momentummr as
q52kr /sin(u/2). The exciton Bohr radiusa21 is estimated
to be 12.5 nm from the variational calculation.45

5. Exciton-exciton scattering

We can derive the exciton-exciton~ex-ex! scattering in a
manner similar to ex-e scattering described in the previous
section. The relevant diagrams are shown in~c!–~f! of Fig. 1.
The total scattering rate is given as

Wex-ex~Ka!516
2pe4mr

\3«0
2A (

Kb

f ex~Kb!E
0

2p

du
1

~q1k!2

3H 1

F11S ahq

2a D 2G3/22
1

F11S aeq

2a D 2G3/2J 4

,

~2.26!

whereKa is the momentum of the exciton,mr is the reduced
mass of two excitons, andf ex(K) is the momentum distribu-
tion function of excitons.

Comparing the exciton scattering rates, Eq.~2.25! and Eq.
~2.26!, with the electron scattering rate, Eq.~2.9!, they show
large differences in their magnitude andq dependence. Fig-
ure 2 shows the plots of the scattering rates of the three
processes vsq. Thee-hh scattering rate is forward peaked,
and is larger than other two processes by several orders of
magnitude. The magnitudes of ex-hh and ex-ex scattering
rise with q and reach the peak atq50.15 and 0.20 nm21,
respectively, and are much smaller thane-hh scattering.
These features of scattering mechanism lead to the striking
difference in the relaxation and transport between electrons
and excitons, as described later.

6. Exciton-LA-phonon scattering

There is a detailed theoretical study of Takagahara37 on
the exciton-LA-phonon interaction and only the results rel-
evant to the present calculations are shown here. The total
exciton scattering rates for the phonon absorption and emis-
sion processes have similar forms to the electron case as

FIG. 1. The diagrams calculated in the exciton-electron@~a!, ~b!#
and in the exciton-exciton@~c!–~f!# scatterings.

FIG. 2. The comparison of electron—heavy-hole, exciton-heavy
hole, and exciton-exciton scattering rates plotted against momentum
transferq.
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1

4p

~De2Dhh!
2mei

\2urLz
2k

3E
0

2p

du

sin
u

2

e\uQph /kT21
, ~2.27!

Wex-LA
emit ~k!5

1

4p

~De2Dhh!
2mei

\2urLz
2k

3E
0

2p

dusin
u

2 F 1

e\uQph /kT21
11G , ~2.28!

where the notations are the same as electron-LA-phonon
scattering.

7. Exciton-interface roughness scattering

The exciton-IFR scattering is deduced from the electron-
IFR scattering. Using the matrix element of Eq.~2.18!, the
electron-IFR interaction Hamiltonian can be written as

Hex-IFR8 5 (
ki ,qi

p5/2\2LD

A1/2Lz
3 e2qi

2L2/2S 1

me'
cki1qi

† cki

1
1

mhh'
bki1qi

† bki D , ~2.29!

wherec† andb† are operators for an electron and a heavy
hole, respectively. The derivation is similar to the case of the
e-IFR scattering and the total scattering rate is given by

Wex-IFR~K!5
p4\D2L2mexi

2Lz
6 S 1

me'
2

1

mhh'
D 2

3E
0

2p

due2K i
2L2sin2u/2. ~2.30!

D. Simulation method

The EMC simulations ink space have been widely used
in the analysis of photogenerated carriers17–24 and reviewed
in Ref. 15, and the detailed technique is not repeated here. In
order to trace the distributions of the particles inr space
within the frame work of thek-space EMC method, the
simulation area is divided into ten concentric circular regions
as shown in Fig. 3. In each region, the average particle den-
sity and the momentum distribution function are calculated
in every time step and thek-space EMC simulation is per-
formed, independently from other regions, with the scatter-
ing parameters corresponding to the average density.~Inter-
particle scatterings are affected directly through their
dependence on the density and indirectly through the change
in the screening wave number. Other scatterings are also af-
fected indirectly through the change of the momentum dis-
tribution of particles.! The positions, as well as the momenta,
of particles are updated after each time step. A particle can
move to the neighboring region, thus the particle density, and
consequently the scattering parameters, change every time
step. This technique allows one to trace the time evolution of
both the spatial and the momentum distribution of particles
with relatively low computational load. The disadvantage is

that, since the continuous density distribution~solid line in
Fig. 3! is approximated by the steplike one, the difference of
the scattering rates between the particles near the inner
boundary and the outer boundary of the region is neglected.
Thus, the spatial distribution of particles calculated in the
present method is only valid in the length scale larger than
the region size. The range of the Coulomb interaction, deter-
mined by the inverse of the screening wave number, is of the
order of 100 nm in the present simulations, which is much
smaller than the region size.

In the present study, ten or 20 simulation areas, as men-
tioned above, are prepared and simulated simultaneously.
The physical information is obtained by taking their en-
semble average. The number of particles is 78 600 when 20
simulation areas are used. The time step of simulations are 5
fs for freee/hh’s and 12.5 fs for excitons. We have confirmed
that the time step is much smaller than the scattering interval
and that the simulation results do not change by further re-
ducing the time step.

III. RESULTS AND DISCUSSION

A. Electron and exciton relaxations

It is expected that the scattering frequency and thus the
energy relaxation is different between freee/hh’s and exci-
tons reflecting the different magnitude of scattering pro-
cesses. To see this, the frequency of each scattering process
is counted from 0 to 15 ps both for electrons and excitons.
For e/hh’s, the simulation is done in the monoenergetic ini-
tial momentum distribution, with the excitation energy 10
meV above the band gap~the excess energies is 6.34 meV
for electrons and 3.66 meV for heavy holes! in the presence
of residual hh’s at the lattice temperature 5 K. The spatial
distribution is in the Gaussian function with FWHM 6mm as
with excitons. The similar simulation is performed for exci-
tons assuming that they were generated monoenergetically at
10 meV. Notice that this is physically not realistic, because it
is not possible to optically generate excitons except at the

FIG. 3. Schematic diagram of the simulation area. The initial
excitons are generated in the Gaussian shape with FWHM 6mm.
They gradually spread out to the surrounding area with the density
distribution described by the solid line. The simulation area~radius
10mm! is divided into concentric circular regions with 1mm step,
and the average carrier density at each region is used in the evalu-
ation of carrier scatterings.
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bottom of the band due to the energy-momentum conserva-
tion. It is calculated to show the remarkable difference be-
tween the electron and exciton relaxation due to the differ-
ence in the magnitude of interparticle scatterings.

Plotted in Fig. 4 are the numbers of scattering events per
particle per second. For electronse-hh,e-e, ande-IFR scat-
terings are of the similar magnitude of 131012 s21. ~The
frequency thee-LA-phonon scatterings is several orders of
magnitude smaller than those plotted here.! Thee-hh scatter-
ing frequency increases in the initial few ps, reflecting the
rapid energy relaxation of electrons: When the electrons have
larger momenta and there are many residual hh’s with very
small average momentum just after photogeneration,e-hh
scattering is less frequent, because it favors the small mo-
mentum transfer.

The exciton scatterings plotted in the lower part of Fig. 4
show different features.~Notice that they are plotted in loga-
rithmic scale.! While the ex-IFR scattering is as frequent as
e-IFR scattering, the interparticle scatterings as ex-ex and
ex-hh scatterings are more than two orders of magnitude
smaller than those of electrons. This is due to the small scat-
tering rates of excitons as shown in Fig. 2. Thus, the contri-
butions from the interparticle scatterings~and LA-phonon
scatterings, which are not shown in Fig. 4! is very small. The
dominance of IFR scattering in excitons is in agreement with
the analytic calculations of Basu and Ray.14

The difference of the interparticle scattering rates in free
e/hh and exciton system has a significant effect on the time

evolutions of the momentum distribution functions. Figure 5
shows the distribution functions of the initial 15 ps. The
electrons, initially generated at 0.105 nm21 ~5 6.337 meV!,
relax rapidly, and approach the thermal distribution described
by the Boltzmann distribution function~with the electron
temperatureTe) at 15 ps. This is due to the high rate ofe-hh
ande-e scatterings which are quite efficient in redistributing
kinetic energies among electrons and heavy holes. It should
be noted that both the electrons and the heavy holes are in
equilibrium, with the same temperatureTe . ~The thermaliza-
tion with the lattice is achieved through the interaction with
LA phonons. But this process is quite slow, more than two
orders of magnitude lower thane-e scattering. Thus, the
electron temperature is larger than the lattice temperature at
this stage.! On the other hand, the exciton distribution does
not change appreciably in the time scale shown here. The
ex-IFR scattering, which is the dominant process for exci-
tons, is an elastic scattering, and does not change the kinetic
energy~or the magnitude of momentum! of excitons. Thus,
the energy relaxation is induced only through very slow
ex-hh and LA-phonon scatterings. Another feature attributed
to the difference of the scattering processes is that the elec-
tron transport would depend on the density, while the exciton
transport would not.

FIG. 4. The numbers of scattering events per particle per second
for electrons~upper! and excitons~lower! with the initial excitation
energy 10 meV and at 5 K. Notice that in the lower case, the data
are plotted in the logarithmic scale.

FIG. 5. The time evolution of the momentum distribution func-
tions for ~a! electrons and~b! excitons, from 0 ps~near side!–15 ps
~far side! with the time step 1 ps. The initial excitation energy is 10
meV and the lattice temperature is 5 K.
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B. Exciton transport for 500 ps

The spatial transport and the energy relaxation of excitons
have been calculated up to 500 ps. Here, the initial excitons
are in the Bose distribution with the temperatureTex, while
the initial residual heavy holes are in the Fermi distribution
atTL in equilibrium with the lattice. Figure 6 shows the time
evolution in the momentum distribution functions of excitons
up to 500 ps with 25 ps step, atTex5 30 K and the lattice
temperature is 5 K. Because of the low scattering rates of
ex-ex, ex-hh, and ex-LA-phonon processes, the energy relax-
ation is slow, and the excitons do not reach the thermal equi-
librium with the lattice even at 500 ps. Thus, the analytic
calculations of the exciton transport, which assume the mo-
mentum distribution in equilibrium with the lattice, can un-
derestimate the diffusivity in the earlier stage.

We have obtained the FWHM of the exciton spatial dis-
tribution by fitting the Gauss function to the distribution cal-
culated from the simulations. Figure 7 shows the time evo-
lution of the spatial spread~FWHM! of excitons at several
initial exciton temperatures (Tex5 10 K–90 K! from 0 ps to
500 ps when the initial residual hh’s~and the lattice! are at 5
K. The fitting uncertainty in FWHM is around 0.03mm. The
calculations show that the excitons spread faster when the
initial exciton temperature is higher. This trend can be easily
understood when we remember that the dominant scattering
process for excitons is the ex-IFR scattering. The ex-IFR
scattering probability@Eq. ~2.30!# does not depend on the
exciton density and is weakly dependent on the exciton mo-
mentum. Thus, the the mean free path of excitons, due to the
ex-IFR scattering, is similar at any place in the simulation
area and does not vary significantly during the simulation
from 0 to 500 ps. In this case, the transport is essentially
determined by the velocities of excitons, with which they
travel during consecutive IFR scatterings. Since the average
velocity is directly related to the exciton temperature, the
transport becomes enhanced with the temperatures. This also
means that, in the short time scale where the exciton tem-
perature is virtually constant, the transport can be regarded as
diffusive motion characterized by the instantaneous diffusion
coefficient, D5^v&l/2, over the whole simulation area.

Here,^v& is an average velocity andl is a mean free path. If
excitons were to go through diffusive motion with a constant
diffusion coefficient and the initial spatial distribution were
Gaussian, they would spread with timet retaining Gaussian-
shaped distribution with its FWHM(t) given by
A16ln23Dt1FWHM(0)2. We have also plotted this curve
with the diffusion constant 30 cm2 s21 in Fig. 7 with a
broken line for reference. The FWHM with a constant diffu-
sion coefficient is almost linear in the scale of Fig. 7, in
contrast to the sublinear trend of the simulation results. This
can be interpreted that the diffusion coefficient decreases dy-
namically due to the reduction of the average velocity. This
is because the initial exciton temperatures are higher than the
initial temperature of residual hh’s or the lattice, and the
exciton temperature~and their average velocity! decreases
through the ex-hh and ex-LA-phonon interactions. The dif-
fusion coefficient of the initial stage~0–25 ps! is 180 cm2 s
21 for Tex5 90 K, while it reduces to 5 cm2 s21 at 475–500
ps.

In Fig. 8, we have plotted the spatial spread of excitons
whenTL ~the initial residual hh temperature and the lattice
temperature! is varied. In the upper plot, whenTex ~30 K! is
larger thanTL ~5 K! ~solid curve!, the FWHM is sublinear,
reflecting the cooling down of excitons by the residual hh’s
and the lattice. WhenTex5TL5 30 K ~broken curve!, the
FWHM increases linearly, because there is no net energy
flow among excitons, residual hh’s, and the lattice. Actually,
in this case, the FWHM evolution can be reproduced by the
simple diffusion model with a constant diffusivityD5 19
cm2 s21. On the other hand, in the lower plot, when the
lattice temperature~30 K! is higher than the initial exciton
temperature~10 K! ~broken curve!, the FWHM evolution is
superlinear, because the excitons are heated by the residual
hh’s and the lattice.

In the calculations above, the IFR parameters were fixed
(D50.283 nm,L510 nm!. We have done further calcula-
tions to investigate how the interface roughness affects the

FIG. 6. The momentum distribution functions of excitons from
0 ps ~near side! to 500 ps~far side! with 25 ps step. The initial
momentum distribution is in the Bose function withTex5 30 K and
the lattice temperature at 5 K.

FIG. 7. The FWHM of the exciton spatial distributions from 0 to
500 ps with the initial exciton temperatures changed as a parameter.
The lattice temperature is fixed at 5 K. The FWHM is obtained by
fitting the Gaussian function to the spatial exciton distributions cal-
culated in the simulations. The FWHM of the simple diffusion
model withD5 30 cm2 s21 is also plotted for reference.
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transport phenomena. In the present model, the interface
roughness is characterized by the two parameters;L and
D. The former designates the typical lateral size of terrace or
island in the 2D plane of QW’s, while the latter indicates the
terrace height. There are several experimental investigations
to observe the interface structures in QW’s,44,46–48but it is
still a controversial problem. We have used several typical
values of the parameters in the simulations. Figure 9 shows
the FWHM of excitons atTex5 90 K andTL5 5 K. In the
upper plot, the calculations withL 5 5, 10, and 20 nm are
compared. (D is fixed at one monolayer, 0.283 nm! The dif-
fusion coefficient obtained by fitting to the simple diffusion
model at the initial stage~0–25 ps! is 100, 170, and 250
cm2 s21 for L 5 5, 10, and 20 nm, respectively. The lower
plot shows theD dependence~one monolayer, 0.283 nm and
two monolayer, 0.566 nm! of the transport whenL is fixed at
10 nm. The initial diffusion coefficient is 170 and 60
cm2 s21, respectively. These results show that the transport
strongly depends on the IFR parameters~the spatial spread is
faster when the lateral terrace size is larger and the terrace
height is lower!, and thus the transport properties would vary
from sample to sample depending on the growth conditions.

We shall discuss the limitations of the present model with
regard to the realistic situation in the experiment. The experi-
mentally observed diffusion coefficients vary widely from a
few cm2 s21 to several hundreds of cm2 s21, depending on
the experimental conditions such as sample temperatures, ex-
citation energies, carrier densities, and the sample
structures.2–5,8–13The direct comparison of the present simu-
lations with the experimental observation is difficult because,
in experiments, free electrons and heavy holes are initially
photogenerated, then they form a bound system, excitons.

Thus, we should have started simulations from freee/hh’s
and handled the exciton formation process properly. How-
ever, though there are several experimental studies on the
exciton formation time,49–52 to the best of our knowledge,
the theoretical formation model is not available. Here, we
can compare the simulation results with experiments with the
similar carrier density conditions only in qualitative manner,
assuming that if the initial excitation energy is higher, the
resultant exciton temperature is also high. In Refs. 5,11, the
experimental diffusivity decreases with the excitation energy.
The trend agrees with the present simulations. As for the
sample temperature dependence,3,5,8,10,11 the experimental
diffusivity decreases with sample temperatures down to 20
K, which also agrees with the simulation results if we as-
sume that the exciton temperature becomes lower with the
sample temperatures. However, below 20 K, Refs. 10,11 re-
port the increase of the diffusivity, which is not observed in
the other experiments. Our simulation results do not repro-
duce the diffusivity enhancement below 20 K. The origin of
the enhancement is not understood yet.

For the case of very lower exciton energy, we have to
consider the validity of the present IFR scattering model. In
the ex-IFR scattering, an exciton is treated in a plane wave
mode, extending over all 2D plane. However it is experimen-
tally observed46,47 that excitons become localized in the po-
tential minima of the interface roughness in 2D plane with
the reduction of the in-plane kinetic energy. The localized
excitons can still migrate in the 2D plane by phonon-assisted
hopping or variable range hopping~in the very low tempera-
tures!. This causes the significant slowing down of the
diffusivity.53 The present model does not include this effect.

FIG. 8. The FWHM of the exciton spatial distributions at the
lattice temperature 30 K withTex5 30 K ~upper! and 5 K~lower!.

FIG. 9. The FWHM of the exciton spatial distributions at dif-
ferent interface roughness parameters: the correlation lengthL de-
pendence~upper! and the width fluctuationD dependence~lower!.
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This becomes important when the exciton temperature gets
sufficiently low by emitting phonons.

IV. CONCLUSIONS

The time dependence of the spatial distributions of non-
equilibrium excitons was obtained using the ensemble Monte
Carlo simulations including the interparticle scatterings
~ex-ex, ex-carrier, carrier-carrier!, LA-phonon emissions/
absorptions, and the IFR scatterings. The simulations show
that the dominant scattering process for excitons is the ex-
IFR scattering, in contrast to charged carriers for which the
carrier-carrier scattering is most significant. The difference of
the dominant scattering processes affects the energy relax-
ations: Thee/hh system approaches the quasithermal equilib-
rium among carriers very rapidly~in few picoseconds!
through the efficient energy redistribution caused by the
carrier-carrier collisions. In contrast, the excitons relax very
slowly because their main scattering process, the ex-IFR
scattering, is elastic and does not change exciton energies.
Excitons can exchange energies only through the ex-ex, ex-
hh, and ex-LA-phonon scatterings with very low probabili-
ties.

The transport of excitons is essentially determined by
their average velocity, because the IFR scattering is weakly
dependent on the exciton distributions and the effect of other
scattering processes is negligibly small. Thus, the exciton
transport can be regarded with its diffusion coefficient vary-
ing with time. The diffusion coefficient, which is propor-
tional to the average velocity, varies through the energy ex-
change with residual hh’s and lattice. The spatial transport is
strongly dependent on the IFR parameters; the lateral terrace
sizeL and the terrace heightD. The transport is quenched
when the terrace size is smaller or the terrace height is
higher. This means that the exciton transport properties are
sensitive to the interface structures, and thus, to the growth
conditions of QW’s.
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