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Local-field distribution in systems with dipolar interparticle interaction

D. V. Berkov*
Institut fur Physikalische Hochtechnologie, Helmholtzweg 4, D-07743 Jena, Germany
(Received 19 June 1995

It is shown that the interactiofiocal) field distribution in disordered systems with dipolar interparticle
interaction transforms from the Lorentzian to the Gaussian when the particle volume concentration is in-
creased. To evaluate correctly the local-field dispersibrin systems with randomly oriented dipoles it is
sufficient to take into account the nonmonotonic behavior of the particle radial pair distribution function. For
aligned dipolesangular correlations of particle positions in the first coordination sphere play a dominant role,
strongly decreasing?.

The task of calculating the distribution density of the in-  Hence the important problem which still should be solved
teraction field for the system of particles carrying electric orconcerns the behavior of the interaction field distribution
magnetic dipole moments arises in a broad spectrum oihen the concentration of dipole moments increases. In this
physical problems, including the determination of the linepaper we demonstrate that with increasing concentration of
shape for various magnetic resonantesudies of dipolar dipoles the interaction field distribution transforms from the
glasse$® and fine magnetic particle systefsThe latter Lore.ntzian to t_he Gaussian one. Fl_thhermore, we show that
are widely used now as magnetic recording média, that ~ SPatial correlations of particle positions due to the excluded
the influence of thédipolan interparticle interaction on both Volume effect significantly influence the distribution width

quasistatic propertieghysteresis loop parametgrand dy- even for moderatg particle con_centrgtions. And finally we
namic behavio(stability of the information storagef such dem(_)nstrate th"’.‘t In systems with a_lhgned d'pm“'ar
systems are of a great practical intefest position correlations for particles which form the first coor-

Probably the first rigorous result concerning this problemdlnatlon sphere around the trial particle strongly reduce the

is due to Andersoﬁ.Studying the electron-paramagnetic- width of the interaction field distribution.

resonance line broadening in systems of interacting magneti For the definiteness we consider a system of identical
. SO . X herical particles carryin@lassical magneticmnoments but
dipoles, he showed that the distribution of any |nteract|on§p P ying al mag

' : ) ) : - all results can be applied to systems of electric dipoles as
field component in a system of dilute aligned dipoles is &ye|| For the material with the magnetizatioh, the particle

Lorentzian. .Th|s regult was general!zed py Kfefior the magnetic moment i$¢=(47-r/3)a3MsmEVpMsm, wherea

system of dipoles with six allowed orientatiof@rrespond- s the particle radiusy,, is the particle volume, anth de-

ing to possible orientations of OH defects in cubic KCl  npotes the unit vector along the magnetization direction. Us-

crystald) and by Berkov and Meshkdvor dilute ensembles ing the reduced magnetic fieli=H/M we can write the

of small ferromagnetic particles which moments can havejipole field created by a particle located at the coordinate

any orientation. A closely related question plays the centrabrigin as

role in single-particle theories of the Ruderman-Kittel-

Kasuya-Yosida(RKKY) spin glasse&’ Due to the same ~

r 2 scaling of the RKKY interaction the Lorentzian field h(r) =V 3er(erm)_m:\/ h(e) @

distribution was obtained for both Ising motfeand Heisen- P rs SR s

berg glass with randomly oriented momeht$iowever, we

point out that(in contrast to the dipole-dipole interactioe ) ) _ N

RKKY interaction is essentially isotropic, so that complete If we neglect any spatial correlations in the positions of

similarity between systems possessing these two kinds dfther particles with respect to the trial one except the restric-

interactions cannot be expectgbe be|ov)/_ tion  r>rgin= 2a, the interaction field d|SperS|On
On the other hand, based on the numerical simulatioras=(h,hg) for the system with the particle volume frac-

results, Faehnté3claimed that for amorphous binary alloys tion =NV, /V (N being the particle numbeY is the sys-

A,_,B, where only atomsA carry a dipole moment, the tem volume is given by (a,8=x,y,2)

interaction field distributiorp(h) is Gaussian for alk in the

system with aligned momerifsand for large concentration ~ ~

of magnetic atoms for randomly oriented dipoté§-hough o2 = szfw(ha(er)hﬁ(e,)) 43

the criterion used in Refs. 12 and 13 is insufficient to find out ap PJ2a ré

whether the studied distribution is indeed Gaussian, results )

listed in Ref. 13 indicate some systematic changg(éf) by _ 27y (m,mpg) @)

decreasing. 15 | “ef 3 '
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The standard Margenau metfiotf to evaluate the distri- (see, e.g., Ref. 14, Chap). Zhis means that the probability
butionp(h,) of some interaction field componelny uses its  to find a neighboring particle at the distancer,~2a is
definition as strongly enhanced, which leads to the increase of the inter-

N N action fieldlalso. | 1 - "
A quite large maximal number of the nearest neighbors

P(ha):fr>2ap({ri})5 (ha—Zl h(m 'ri))inl d°r;, Nmax=12 (achieved for the perfect hexagonal latjice-

(3) gether with the trend —r.;,,=2a mentioned above allows
- _ _ us to assume that for sufficiently high volume concentration
whereP({r}) denotes the probability density to find thr  ;, the opposite assumptidin,|>h,,, is valid for most par-
partiC|e at the pOiI’l'l’i if the trial pal"[iC|e is placed at the ticles. Hence we can expand the exponente)’] up to the
coordinate origin. For the dilute system all spatial correla-gacond order in the small quantikghS? (k,~ 1/h,<1/hP).

. _ N .
tions can be neglected, so thB({r;})=1N". Using the  Then the real part of this single-particle integral takes the
well-known integral representation of th& function, the  5rm

Fourier transform of, for example,(h,) can be rewritten in
the limit V—ce via the one-particle integraf-° 1
L (k) =1~ W< f [kzh§*’<m,r>]zg(r>d3r>, @)
I(kz)=1—v<f[1—exp(—ikzh§p(m,r))]d3r> (4
SO thatF(kZ)le(kZ)~k§, which obviously leads to the
asF (k) =1(k,)". For largek,>kpin(~ 1) the explicit evalu-  Gaussian distributiop(h,) with the dispersion
ation of (4) gives I =|k,JA(m)V,/V, where the function
A(m) can be calculated numerically and shows only a weak 4w (eg(nydr [ -
dependence on the magnetic moment orientatiarhis ggz_ﬁf —4f hi(m)de. 8
~|k,| dependence df leads directly to the Lorentzian form 3 "Jaa T Q
of F(h,),**since in this case its Fourier transform takes
the formF(k,) =1 (k)N ~exp(~|kNV,/V)~exp( rlk,). The reasons given above are nothing but a statement that
The assumptiok> ki, means that the Lorentzian distri- the number of particleM essentially contributing to the in-
bution obtained this way is valid fdi<h,,, whereh ,,is  teraction field on the given particle is largMé& 1), so that
the field created by the single nearest neighbrig;,&2a),  the central limit theorem can be applied for the evaluation of
so that some cutoff should be introduced by large fieldo(h,). As it can be seen, the dispersi@) coincides with
values® For most applications it is sufficient to take the in- (2) except that the PDE(r) is introduced.
teraction field distribution in the form To check whether the interaction field distribution for
higher particle concentrations becomes indeed Gaussian, we
ho)— N Ih,|<h () performed direct numerical simulations. For each volume
p(hz) 1+(h,/A)% A= concentration of interest 50 configurations each consisting of
) 2048 particles were generated choosing particle positions
andp(h;)=0 for [h|>h;. HereCy denotes the normaliza- anqomly and rejecting particles which would overlap with
tion constant andA~4.547 (Ref. 9 is the distribution  hose already created. Then the interaction field on each par-
width. The cutoff valueh; should be determined from the ticle was calculated assuming periodical boundary conditions
condition (h)= 07, which ensures that the distributid8)  and zero demagnetizing field.
has the correct dispersid@). To investigate the finite-size effects we have also per-
For dilute systems#<1) the conditiorh<h,, holds for  formed the same simulations for systems consisting of
almost the whole field region of interest, because the probn =256, 512, and 1024 particles. With the increasing particle
ability to find even one neighbor on the distancenumber no systematical changes in the final results were ob-
r~rmnp=2a is very small. But by increasing the volume served for systems witN=512 particles, so that results pre-
concentration this condition is violated for most particles forsented belowfor which N=2048) seem to be representative
two reasonsti) the mean interparticle distanceends to the  in the thermodynamic limit.
minimal distance 2 and (i) the spatial correlations in the  Two examples of the interaction field distributions ob-
particle positions become important, so that the assumptiofhined this way are shown in Fig. 1, where the histograms of
P({ri})=1N" is no longer valid. simulated distributions for systems with randomly oriented
The simplest possible way to take these spatial correlamoments are compared with) Gaussian distributions with
tions into account is to neglect all except the pair correladispersions8) (solid line) and i) the restricted Lorentzian
tions. This requires the introduction of the pair distribution distribution (5). It can be seen, that fop=0.01 the simu-

function** (PDP) g(r) into (4) leading to lated p(h,) coincides with the corresponding Lorentzian,
whereas forp=0.25 — with the Gaussian distribution. As a

I(k)=1— £< f [1—exp(—ik,hS”(m r))]g(r)d3r>. quantitative criterion of the differend® between the simu-

z \Y ze lated pg(h,) and the Gaussiapg(h,) distributions we

(6) have used the integrated absolute value of their difference

Already for a moderate volume concentration~0.1) .
g(r) starts to exhibit a peak far~2a signaling the forma- sz lpsim(h.) — pa(hy)|dh, . 9)
tion of the short-range order — the first coordination sphere SR e
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FIG. 3. Values of thew? criterion (calculated to check whether

06 | p(hz) b) the distribution obtained numerically is a Gaussian)aggsus par-
=" ticle volume fraction » for randomly oriented(triangles and
0.4 L , . aligned (crosses moments.w? values above the horizontal line
) o N (corresponding to the 95% probability leyehdicate statistically
‘ : significant deviations from the Gaussian distribution.
0.2
h known distribution functionGaussian in our casend the

0 : : : distribution function derived from some empirical data set
i exceeds some prescribed value if the distribution law of
these data is indeed Gaussian.

FIG. 1. Distribution densitiep(h,) of the z projection of the ~_11€ dependences af values in the particle volume frac-
interaction field for particle volume fractiong=0.01 (8) and  tion 7 are shown in Fig. 3 for randomly orientéttiangles
7=0.25(b). Histograms are the numerical simulation results, solidand alignedcrossegdipoles. The horizontal line represents

lines are the Gaussian distributions with the same dispersion, dottdie usual probability levelP=95%, which for thew? crite-
lines are the restricted Lorentzian distributigis. rion calculated using the Gaussian distribution with the dis-
persion derived from the empirical data is

2 — — 15 2 H
In our case the mean of the corresponding Gaussian distrf (P—0.95)— 0'442'. All o values greater than this one
. = . . o .~ should, strictly speaking, lead to the conclusion that the stud-
butions f,=0) is known in advance, whereas its dispersion

biained f the simulated data. Values Dof f ied distribution isnot Gaussian, i.e., deviations from the
was obtained from the simulated data. vValuesIblor — qq sgian distribution are statistically significant. It can be
p(h,) are shown in Fig. 2 as a function of the particle con-

X ) X ) seen that for randomly oriented moments the distribution can
centrationn for randomly orientedtriangles and aligned

dinol s With i . dicl be treated as Gaussian fge=0.2, whereas for aligned mo-
(crqsse}s IPOi€ moments. VVIth Increéasing particle concen- ,q g small(see Fig. 2, but statistically significant devia-
tration the simulated distribution converges to the Gaussiaj) s from the Gaussian distribution occur up to the highest
more rapidly for the rar]qlomly quented system, which is Ob'concentratior177=0.35 available by such simulations.

viously due to the additional disorder arising from the ran-

q entati ¢ dinol s . ith th Unfortunately, it was not possible to perform the same
om orientation of dipole moments in comparison wi €w? test for the Lorentzian distribution for all values of
aligned system.

: . . : except the smallest ones;€0.03), where the distribution
tweTgnfltrrllceiz 2?;1,ufl(;;ev(\jlhz:\(r:1r:j iggcggﬁzggzs Jgfrig:ﬁ?(:ﬁgc:reb;was clearly Lorentzian. The reason is that the analytical form
- o ) 5 e <?5) does not describe the distribution tails correctly even for
tistically significant, we applied the~ criterion:> It allows

o, . moderate volume concentration. This leads to the wrong val-
us to calculate the probability that the difference between th%es of thew? criterion which is very sensitive to such details.

We found that the dispersion of the interaction field dis-
tribution strongly depends on the orientation degree of the

particle moments. In Fig. 4 dependend:ésn) obtained us-
ing different methods are shown for randomly orienttE).
4(a)] and alignedFig. 4(b)] dipoles. Crosses indicate values
obtained by numerical simulations, straight solid lines repre-
sent linear dependencé® which neglect all spatial correla-
tions except the condition>2a and open triangles stand for
h§ values obtained bgB), i.e., taking into account radial pair
correlations only. The corresponding PQf) was accumu-
lated for all configurations obtained during numerical simu-
lations. It can be seen that the latter approach provides good
FIG. 2. Integrated difference [Eq. (9)] between the simulated agreement with the num_erical simulation results for 'the ran-
and the corresponding Gaussian distribution densities as functiorfd0mMIy oriented dipole$Fig. 4(@)], whereas for the aligned
of the particle volume fractiom for randomly orientedtriangles  System[Fig. 4(b)] it fails to predict even the correct trend of
and alignedcrosses moments. the hf( n) dependence when compared with the ideal case
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FIG. 4. Interaction field dispersidE as function of the particle
volume fraction# for randomly oriented@ and aligned(b) di-

We assumed, that for the aligned systhé'lis strongly
reduced due to thangular correlations of thepositionsof
particles forming the first coordination sphere around the
trial particle. These particles make the dominant contribution

to h2 and correlations of their angular positions would re-

duce h§ for the system with aligned moments because the
only disorder left is due to the random orientation of this first
coordination shell relative to the given particle. To test this
assumption we calculateluﬁ for =0.3 assuming that the
nearest neighbors of the trial particle form the perfect hex-
agonal lattice and the positions of other neighbors are uncor-
related except that they are outside the first coordination
shell (r>4a). To compute the contribution tb§ from this
hexagonal shell we performed numerical averaging over its
possible orientations given by the corresponding Euler
angles. The resultotal h2(»=0.3)~0.189 is shown in Fig.
4(b) by the open circle. It is in good agreement with the
valueh2~0.179 obtained numerically.

In conclusion, we have shown that in the disordered sys-
tem of particles with dipolar interaction the distribution den-
sity of the local (interaction field transforms from the
Lorentzian to the Gaussian form when the particle volume
fraction 7 increases. The transition for randomly oriented

poles. Crosses are the numerical simulation values, solid lines ar&poles is completed by~0.2, whereas for the aligned sys-
the ideal dependenceg), triangles are the values calculated from yoam even for the highest studied particle volume fraction
(8), i.e., taking into account radial correlations only. Dashed Ilnesnzo_35 statistically significant deviations from the Gaussian

through triangles are a guide for the eye. The open circlébon
represents the value obtained fpre=0.3 when perfect short-range
order is assume(kee text for details

(straight ling. This behavior differs also from the corre-
sponding dependence in RKKY spin glasses, thﬁrevas

distribution have been found. Already for moderate particle
concentrationsp=0.1 the local-field dispersion is strongly
influenced by the radial and — for systems of aligned di-
poles — angular correlations of the particle positions, so that
these correlations should be explicitly taken into account.

The author thanks Professor W. Andma carefully read-

found to be larger for the aligned system than for the chaotiéng the manuscript and N. L. Gorn for discussions concern-

onel!

ing various statistical significance tests.
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