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It is shown that the interaction~local! field distribution in disordered systems with dipolar interparticle
interaction transforms from the Lorentzian to the Gaussian when the particle volume concentration is in-
creased. To evaluate correctly the local-field dispersionh2 in systems with randomly oriented dipoles it is
sufficient to take into account the nonmonotonic behavior of the particle radial pair distribution function. For
aligned dipolesangularcorrelations of particle positions in the first coordination sphere play a dominant role,
strongly decreasingh̄2.

The task of calculating the distribution density of the in-
teraction field for the system of particles carrying electric or
magnetic dipole moments arises in a broad spectrum of
physical problems, including the determination of the line
shape for various magnetic resonances,1 studies of dipolar
glasses,2–5 and fine magnetic particle systems.6,7 The latter
are widely used now as magnetic recording media,7 so that
the influence of the~dipolar! interparticle interaction on both
quasistatic properties~hysteresis loop parameters! and dy-
namic behavior~stability of the information storage! of such
systems are of a great practical interest.6

Probably the first rigorous result concerning this problem
is due to Anderson.1 Studying the electron-paramagnetic-
resonance line broadening in systems of interacting magnetic
dipoles, he showed that the distribution of any interaction
field component in a system of dilute aligned dipoles is a
Lorentzian. This result was generalized by Klein3 for the
system of dipoles with six allowed orientations~correspond-
ing to possible orientations of OH2 defects in cubic KCl
crystals2! and by Berkov and Meshkov9 for dilute ensembles
of small ferromagnetic particles which moments can have
any orientation. A closely related question plays the central
role in single-particle theories of the Ruderman-Kittel-
Kasuya-Yosida~RKKY ! spin glasses.10 Due to the same
r23 scaling of the RKKY interaction the Lorentzian field
distribution was obtained for both Ising model10 and Heisen-
berg glass with randomly oriented moments.11 However, we
point out that~in contrast to the dipole-dipole interaction! the
RKKY interaction is essentially isotropic, so that complete
similarity between systems possessing these two kinds of
interactions cannot be expected~see below!.

On the other hand, based on the numerical simulation
results, Faehnle12,13claimed that for amorphous binary alloys
A12xBx where only atomsA carry a dipole moment, the
interaction field distributionr(h) is Gaussian for allx in the
system with aligned moments12 and for large concentration
of magnetic atoms for randomly oriented dipoles.13 Though
the criterion used in Refs. 12 and 13 is insufficient to find out
whether the studied distribution is indeed Gaussian, results
listed in Ref. 13 indicate some systematic change ofr(h) by
decreasingx.

Hence the important problem which still should be solved
concerns the behavior of the interaction field distribution
when the concentration of dipole moments increases. In this
paper we demonstrate that with increasing concentration of
dipoles the interaction field distribution transforms from the
Lorentzian to the Gaussian one. Furthermore, we show that
spatial correlations of particle positions due to the excluded
volume effect significantly influence the distribution width
even for moderate particle concentrations. And finally we
demonstrate that in systems with aligned dipolesangular
position correlations for particles which form the first coor-
dination sphere around the trial particle strongly reduce the
width of the interaction field distribution.

For the definiteness we consider a system of identical
spherical particles carrying~classical! magneticmoments but
all results can be applied to systems of electric dipoles as
well. For the material with the magnetizationMs the particle
magnetic moment ism5(4p/3)a3Msm[VpMsm, wherea
is the particle radius,Vp is the particle volume, andm de-
notes the unit vector along the magnetization direction. Us-
ing the reduced magnetic fieldh5H/Ms we can write the
dipole field created by a particle located at the coordinate
origin as

hsp~r !5Vp

3er~erm!2m

r 3
[Vp

h̃~er !

r 3
. ~1!

If we neglect any spatial correlations in the positions of
other particles with respect to the trial one except the restric-
tion r.rmin52a, the interaction field dispersion
sab
2 5^hahb& for the system with the particle volume frac-

tion h5NVp /V (N being the particle number,V is the sys-
tem volume! is given by9 (a,b5x,y,z)
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The standard Margenau method8–10 to evaluate the distri-
butionr(ha) of some interaction field componentha uses its
definition as

r~ha!5E
r.2a

P~$r i%!d S ha2(
i51

N

ha
sp~mi ,r i !D)

i51

N

d3r i ,

~3!

whereP($r i%) denotes the probability density to find thei th
particle at the pointr i if the trial particle is placed at the
coordinate origin. For the dilute system all spatial correla-
tions can be neglected, so thatP($r i%)51/VN. Using the
well-known integral representation of thed function, the
Fourier transform of, for example,r(hz) can be rewritten in
the limit V→` via the one-particle integral1,9,10

I ~kz!512
1

V K E @12exp„2 ikzhz
sp~m,r !…#d3r L ~4!

asF(kz)5I (kz)
N. For largekz@kmin(;1) the explicit evalu-

ation of ~4! gives I5ukzuA(m)Vp /V, where the function
A(m) can be calculated numerically and shows only a weak
dependence on the magnetic moment orientation.9 This
;ukzu dependence ofI leads directly to the Lorentzian form
of F(ha),

1,9,10 since in this case its Fourier transform takes
the formF(kz)5I (kz)

N;exp(2ukzuNVp /V);exp(2hukzu).
The assumptionk@kmin means that the Lorentzian distri-

bution obtained this way is valid forh!hnn, whereh nn is
the field created by the single nearest neighbor (rmin52a),
so that some cutoff should be introduced by large field
values.9 For most applications it is sufficient to take the in-
teraction field distribution in the form

r~hz!5
CN

11~hz /D!2
, uhzu<hc ~5!

andr(hz)[0 for uhzu.hc . HereCN denotes the normaliza-
tion constant andD'4.54h ~Ref. 9! is the distribution
width. The cutoff valuehc should be determined from the
condition ^hz

2&5szz
2 which ensures that the distribution~5!

has the correct dispersion~2!.
For dilute systems (h!1) the conditionh!hnn holds for

almost the whole field region of interest, because the prob-
ability to find even one neighbor on the distance
r;rmin52a is very small. But by increasing the volume
concentration this condition is violated for most particles for
two reasons:~i! the mean interparticle distancer̄ tends to the
minimal distance 2a and ~ii ! the spatial correlations in the
particle positions become important, so that the assumption
P($r i%)51/VN is no longer valid.

The simplest possible way to take these spatial correla-
tions into account is to neglect all except the pair correla-
tions. This requires the introduction of the pair distribution
function14 ~PDF! g(r ) into ~4! leading to

I ~kz!512
1

V K E @12exp„2 ikzhz
sp~m,r !…#g~r !d3r L .

~6!

Already for a moderate volume concentration (h;0.1)
g(r ) starts to exhibit a peak forr'2a signaling the forma-
tion of the short-range order — the first coordination sphere

~see, e.g., Ref. 14, Chap. 2!. This means that the probability
to find a neighboring particle at the distancer5r p'2a is
strongly enhanced, which leads to the increase of the inter-
action field also.

A quite large maximal number of the nearest neighbors
Nmax512 ~achieved for the perfect hexagonal lattice! to-
gether with the trendr̄→rmin52a mentioned above allows
us to assume that for sufficiently high volume concentration
h the opposite assumptionuhzu@hnn is valid for most par-
ticles. Hence we can expand the exponent in~6! up to the
second order in the small quantitykzhz

sp (kz;1/hz!1/hz
sp).

Then the real part of this single-particle integral takes the
form

I ~kz!512
1

2V K E @kzhz
sp~m,r !#2g~r !d3r L , ~7!

so thatF(kz)5I N(kz);kz
2 , which obviously leads to the

Gaussian distributionr(hz) with the dispersion
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The reasons given above are nothing but a statement that
the number of particlesM essentially contributing to the in-
teraction field on the given particle is large (M@1), so that
the central limit theorem can be applied for the evaluation of
r(ha). As it can be seen, the dispersion~8! coincides with
~2! except that the PDFg(r ) is introduced.

To check whether the interaction field distribution for
higher particle concentrations becomes indeed Gaussian, we
performed direct numerical simulations. For each volume
concentration of interest 50 configurations each consisting of
2048 particles were generated choosing particle positions
randomly and rejecting particles which would overlap with
those already created. Then the interaction field on each par-
ticle was calculated assuming periodical boundary conditions
and zero demagnetizing field.

To investigate the finite-size effects we have also per-
formed the same simulations for systems consisting of
N5256, 512, and 1024 particles. With the increasing particle
number no systematical changes in the final results were ob-
served for systems withN>512 particles, so that results pre-
sented below~for whichN52048) seem to be representative
in the thermodynamic limit.

Two examples of the interaction field distributions ob-
tained this way are shown in Fig. 1, where the histograms of
simulated distributions for systems with randomly oriented
moments are compared with~i! Gaussian distributions with
dispersions~8! ~solid line! and ~ii ! the restricted Lorentzian
distribution ~5!. It can be seen, that forh50.01 the simu-
lated r(hz) coincides with the corresponding Lorentzian,
whereas forh50.25 — with the Gaussian distribution. As a
quantitative criterion of the differenceD between the simu-
lated rsim(ha) and the GaussianrG(ha) distributions we
have used the integrated absolute value of their difference

D5E
2`

`

ursim~ha!2rG~ha!udha . ~9!
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In our case the mean of the corresponding Gaussian distri-
butions (h̄a50) is known in advance, whereas its dispersion
was obtained from the simulated data. Values ofD for
r(hz) are shown in Fig. 2 as a function of the particle con-
centrationh for randomly oriented~triangles! and aligned
~crosses! dipole moments. With increasing particle concen-
tration the simulated distribution converges to the Gaussian
more rapidly for the randomly oriented system, which is ob-
viously due to the additional disorder arising from the ran-
dom orientation of dipole moments in comparison with the
aligned system.

To find out, for which concentrations the difference be-
tween the simulated and the Gaussian distributions are sta-
tistically significant, we applied thev2 criterion.15 It allows
us to calculate the probability that the difference between the

known distribution function~Gaussian in our case! and the
distribution function derived from some empirical data set
exceeds some prescribed value if the distribution law of
these data is indeed Gaussian.

The dependences ofv2 values in the particle volume frac-
tion h are shown in Fig. 3 for randomly oriented~triangles!
and aligned~crosses! dipoles. The horizontal line represents
the usual probability levelP595%, which for thev2 crite-
rion calculated using the Gaussian distribution with the dis-
persion derived from the empirical data is
v2(P50.95)50.442.15 All v2 values greater than this one
should, strictly speaking, lead to the conclusion that the stud-
ied distribution isnot Gaussian, i.e., deviations from the
Gaussian distribution are statistically significant. It can be
seen that for randomly oriented moments the distribution can
be treated as Gaussian forh>0.2, whereas for aligned mo-
ments small~see Fig. 2!, but statistically significant devia-
tions from the Gaussian distribution occur up to the highest
concentrationh50.35 available by such simulations.

Unfortunately, it was not possible to perform the same
v2 test for the Lorentzian distribution for all values ofh,
except the smallest ones (h,0.03), where the distribution
was clearly Lorentzian. The reason is that the analytical form
~5! does not describe the distribution tails correctly even for
moderate volume concentration. This leads to the wrong val-
ues of thev2 criterion which is very sensitive to such details.

We found that the dispersion of the interaction field dis-
tribution strongly depends on the orientation degree of the
particle moments. In Fig. 4 dependenceshz

2(h) obtained us-
ing different methods are shown for randomly oriented@Fig.
4~a!# and aligned@Fig. 4~b!# dipoles. Crosses indicate values
obtained by numerical simulations, straight solid lines repre-
sent linear dependences~2! which neglect all spatial correla-
tions except the conditionr.2a and open triangles stand for
hz
2 values obtained by~8!, i.e., taking into account radial pair
correlations only. The corresponding PDFg(r ) was accumu-
lated for all configurations obtained during numerical simu-
lations. It can be seen that the latter approach provides good
agreement with the numerical simulation results for the ran-
domly oriented dipoles@Fig. 4~a!#, whereas for the aligned
system@Fig. 4~b!# it fails to predict even the correct trend of
the hz

2(h) dependence when compared with the ideal case

FIG. 1. Distribution densitiesr(hz) of the z projection of the
interaction field for particle volume fractionsh50.01 ~a! and
h50.25 ~b!. Histograms are the numerical simulation results, solid
lines are the Gaussian distributions with the same dispersion, dotted
lines are the restricted Lorentzian distributions~5!.

FIG. 2. Integrated differencesD @Eq. ~9!# between the simulated
and the corresponding Gaussian distribution densities as functions
of the particle volume fractionh for randomly oriented~triangles!
and aligned~crosses! moments.

FIG. 3. Values of thev2 criterion ~calculated to check whether
the distribution obtained numerically is a Gaussian one! versus par-
ticle volume fractionh for randomly oriented~triangles! and
aligned ~crosses! moments.v2 values above the horizontal line
~corresponding to the 95% probability level! indicate statistically
significant deviations from the Gaussian distribution.

53 733LOCAL-FIELD DISTRIBUTION IN SYSTEMS WITH DIPOLAR . . .



~straight line!. This behavior differs also from the corre-
sponding dependence in RKKY spin glasses, wherehz

2 was
found to be larger for the aligned system than for the chaotic
one.11

We assumed, that for the aligned systemhz
2 is strongly

reduced due to theangular correlations of thepositionsof
particles forming the first coordination sphere around the
trial particle. These particles make the dominant contribution
to hz

2 and correlations of their angular positions would re-
ducehz

2 for the system with aligned moments because the
only disorder left is due to the random orientation of this first
coordination shell relative to the given particle. To test this
assumption we calculatedhz

2 for h50.3 assuming that the
nearest neighbors of the trial particle form the perfect hex-
agonal lattice and the positions of other neighbors are uncor-
related except that they are outside the first coordination
shell (r.4a). To compute the contribution tohz

2 from this
hexagonal shell we performed numerical averaging over its
possible orientations given by the corresponding Euler
angles. The result@totalhz

2(h50.3)'0.189# is shown in Fig.
4~b! by the open circle. It is in good agreement with the
valuehz

2'0.179 obtained numerically.
In conclusion, we have shown that in the disordered sys-

tem of particles with dipolar interaction the distribution den-
sity of the local ~interaction! field transforms from the
Lorentzian to the Gaussian form when the particle volume
fraction h increases. The transition for randomly oriented
dipoles is completed byh'0.2, whereas for the aligned sys-
tem even for the highest studied particle volume fraction
h50.35 statistically significant deviations from the Gaussian
distribution have been found. Already for moderate particle
concentrationsh>0.1 the local-field dispersion is strongly
influenced by the radial and — for systems of aligned di-
poles — angular correlations of the particle positions, so that
these correlations should be explicitly taken into account.
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FIG. 4. Interaction field dispersionhz
2 as function of the particle

volume fractionh for randomly oriented~a! and aligned~b! di-
poles. Crosses are the numerical simulation values, solid lines are
the ideal dependences~2!, triangles are the values calculated from
~8!, i.e., taking into account radial correlations only. Dashed lines
through triangles are a guide for the eye. The open circle on~b!
represents the value obtained forh50.3 when perfect short-range
order is assumed~see text for details!.
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