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The multiband envelope-function formalism—of which a convenient, analytical formulation is presented—is
used to investigate the energies and wave functions of valence-band levels in spherical nanocrystallites of
several llI-V and II-VI compound semiconductors with finite spin-orbit splitting enexginterband absorp-
tion spectra are deduced. A significant influence of the split-off band is found even in casesA\whédagge,
as for CdTe. In factA is not a decisive criterion for the strength of couplings; Luttinger parameters play a
major role. Numerical results are presented for size-distributed crystallites of various biiGdies CdSe,

CdS, GaAs, InP These are analyzed in terms of the accuracy of measuring the sizes from absorption spectra
by using a fitting procedure, and of performing size-selective excitation of photoluminescence. It is also found

that optical transitions between the ground valence- and conduction-band levels may be forbidden, due to
incompatible symmetries. Calculations neglecting the influence of the split-off band are unable to account for

this property, which strongly affects photoluminescence mechanisms.

I. INTRODUCTION (SO) states in one of the asymptotic approximations:
A—00,202123-25qr A_,0 29 \whereA is the spin-orbit splitting
Nanometric semiconductor crystallites have recently atenergy.
tracted considerable interest because they represent the ma-Only few recent works*?>?*have faced the problem in a
terialization of the simple quantum-mechanical problem oftractable, analytical way. Basically, all approaches are rather
quantum boxes. Moreover, their optical properties, stronglysimilar, since they start from the same so-called six-band
influenced by the three-dimensional confinement of carrierSqamiltonian of cubic semiconductors with finite Ekimov
seem to be promising routes to future all-optical data progt 5119 have given the basic equations providing the energies
cessing devices. In practice, llI-V and II-VI semiconductor s quantized levels in CuCl and solved them by making
nanocrystals embedded in gla_sses, polyme_:rs, or in coIIoi_d§Ome approximations. Grigoryast al?2 have given another
have been prepared by a variety of techniques. ngz énajq{gorous general formulation of the necessary equations. Al-
?;?jré Soflotheda(\éznzgnle work r:?s b(le?en dolne n ? ' though analytical, these formalisms are not easy to handle
€ ~an 258 s crystallites. ece[11t4y, Se"?;a at and do not provide a convenient assignment of the mixed
tempts have led to the fabrication of Cdfe,* GaAs,” or states. To this extent, Ramaniah and Kalrave remarked
éhat the most adapted formalism is an extension of that de-

InP clusters® among other materials.
From the theoretical viewpoint, several previous studie : . op. :
P P yeloped by Baldereschi and Lip&tifor acceptor states in

have demonstrated that, for realistic semiconductor systems; -, . X
the electronic states cannot really be considered as those o 4PiC SSTégggfuctors, which was adopted by several
simple particle-in-a-box problem. As a matter of fact, it is Workers:™“~“The formalism is based on the fact that the
now established that the superimposition of a threelotal Hamllltonlan of the system commutes with operator
dimensional confinement potential, with spherical symmetryF =L +J. Jis the good quantum number for valence states of
onto the Hamiltonian of a cubic semiconductor leads to comthe cubic semiconductod:=  for light-hole and heavy-hole
plex mixings of valence-band states. These complicate thbands, whileJ=3 for the SO bandL would be the good
assignment of quantized levels and of related optical transiquantum number for a system with the only spherical sym-
tions towards conduction-band states. This way to considemnetry of the crystallite. This permits us to deal with a block-
electron and holes separately is naturally restricted to thdiagonal Hamiltonian, where each block corresponds to a
so-called strong confinement regime, i.e., to crystal radigiven eigenvalue oF (3, 3, 3,..).

smaller than~2 exciton Bohr radit’ Recent works have Sercel and Vahafd have thoroughly developed an ana-
been devoted to the theoretical study of the quantization offytical formulation for cases wher&—oo, which we call the
hole states in spherical semiconductor nanocrystallites. Apativo-band(2B) modeling, and only foF =3 and 3. In what
from a particular attempt based on a tight-bindingfollows, we start by extending this convenient 2B modeling
approach® most works on this subject were kept within the to F up to Z, within the same formalisri: The main result of
framework of a multiband effective-mass approxi- such calculations is that “pureS, P, D, etc. states, which
mation!®-2?° In some case$:?* a numerical approach was would result from a simplistic one-band approach, are
used to solve the set of coupled differential equations whicimixed, leading to new states labeladP;,,, NDy, NSDy,,
arise from the boundary condition that the wave function benPF;,, nPFgp,, etc. In these notations, capital letters indi-
zero at the surface of the crystallite. Moreover, for the sakeate which kind ofL states are couplefthey always differ

of simplicity, many authors have treated spin-orbit split-off by two unit9, n is the principal quantum number, and the
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index corresponds to the value Bf Within the 2B model, #=1). Both valence bands are then represented by a common
conduction-band and SO-band states are labai&l, dispersion relationE=E,— y,K%2, while the spin-orbit
nP,,...,NSso, NPy, . . ., after theirL value, since they split-off band is given by the equatide=E, — A — y,K?/2.

are assumed decoupled from the two upper valence-bands. By, andE, are the energies at tHeé point, at the bottom of
addition, simple “selection rules” apply: allowed interband conduction band, and at the top of valence bands, respec-
transitions occur only between valence-band and conductiortively.

band levels having common orbital quantum numbers In this simplistic approach, the Hamiltonian commutes

As stated above, many workers have adopted the 2Bvith the angular momentum operatbf. Thus, the wave
approximatiort>2123-25for simplicity. This may be an ex- functions, for all types of carriers, are given by spherical
pression of the common intuition that split-off states shouldharmonicsY ["(6,¢), multiplied by spherical Bessel func-
play a minor role in materials with large values&fsuch as tions j (Kr), for the radial variation. The boundary condi-
CdSe (420 meV or CATE (927 meV, especially if one is tion then takes the formy (KR) =0, which is fulfilled by an
only concerned by fundamental hole levels. infinity of discrete value,,, wheren is the principal quan-

It is the purpose of this paper to demonstrate that thisum number. The orbital numbér defines the type of the
intuition is misleading: there can be a strong influence of thequantized state. Such states will be termed “pug; P-,
spin-orbit split-off band on electronic levels of spherical D-like (etc) states, in the following, fot. =0, 1, 2,..., re-
semiconductor quantum dots, even for some materials witspectively. Their degeneracies are equal th{2).
large A splittings. This work is organized as follows. In the  Concerning optical transitions, simple selection rules ap-
next section, we introduce a convenient way to account exply: An=0 andAL=0. The strengths of the transitions are
actly for valence-band mixings in spherical crystallites ofdirectly proportional to the degeneracies, i.e.l.(21).
cubic semiconductors. By solving a few simple equations, Although reasonably accurate for describing the energy of
we obtain the energies of hole eigenstates and the oscillatdéhe fundamental optical transition in materials where
strengths of all allowed interband transitions within a ranged<2y./y,<0.7 2! this approach does not properly account for
of ~1-2 eV above the fundamental gap of the system. Thishe energies and relative strengths of the variety of excited
work can be achieved with a simple desktop computerfransitions. In fact, for a better description of small crystal-
which is of great interest for experimentalists. In Sec. I, welites, one must take into account the confinement-induced
apply this formalism to the calculation of hole levels and ofvalence-band mixings.
interband absorption spectra of nanocrystals of several popu- We follow and develop the analytical procedure intro-
lar 11V and 1I-VI compound semiconductors. We compare duced in Ref. 23: The unknown valence-band wave functions
the results of 2B and 3B modelings and draw conclusions omare expanded over a set of several Bloch states, multiplied by
the measurable influence of the SO band. The work is sumenvelope functions. For rather wide-band-gap materials, the

marized in Sec. IV. matrix representation of the valence-band Hamiltonian—the
so-called Kane matrix—can be restricted to the basis of the
Il. MODELING OF CONFINED STATES only valence-bandd,m;) Bloch states {=3, my== } and

o . +3, for light and heavy holes)= 3, m;==3, for the SO
Within the framework of the envelope-function formal- hang. The corresponding %6 Hamiltonian matrix is well

ism, we consider the crystallites as spherical clusters suknown: we keep the same notations as in Ref. 23.
rounded by an infinitely high potential barrier. Then, the an-

gular and radial parts of the wave functions are separable. B. Two-band approximation
The eigenfunctions of the problem are the product of spheri-

cal harmonicgquantum numberg and m), for the angular
variation, by radial functions. The condition of vanishing of
these radial functions at the surface of the sphereR)

Several authors have assumed no mixing between the up-
per valence bands and the SO b&htf?*In this case, one
can restrict the valence-band Hamiltonian to the four upper

provides the stationary states of the system. In the treatmeN@/€Nnce states, the so-called light-hole and heavy-hole bands.

of valence bands, we made the so-called spherical approxi- As_stated above, the Hamiltonian commdtesith opera-
mation, i.e., the following relationship between Luttinger pa-t©" F =J+ L. The Luttinger-Kohn Hamiltonian can be turned
rameters:y,=ys. from its matrix representation in thed,m;) basis into its

The simplest approach of confined electronic states Corl}”atrix representation in the basis of eigenstates ahdF,
sists in a one-band effective-mass approximation, where cont® €ach value of correspond (E +1) values forF,]. This
duction and valence bands are all assumed parabolic, isotr& done by calculating the Clebsch-Gordan coefficients cor-
pic, and independent, and where no difference is mad&esponding to the addition af=3 andL=0, 1, 2,.... The
between the so-called light-hole and heavy-hole states. IFFSult is @ block-diagonal matrix: in each subspace corre-
most usual semiconductors of interd&@dS, CdSe, CdTe, SPonding toF=3, 3, 3, ... one gets (E+1) identical 4x4
GaAs, InP, etd.the energy gap is large enough to make thismatrices, which can be written, in fact, asH2 1) pairs of _
approximation quite reasonable for conduction states. Thi€><2 blocks. Each of these blocks corresponds to the mixing

H 3 3
one-band approximation will thus be assumed relevant alongf tWo basis states such #,F, L) and|F,F, 2L +2).
the rest of this work, for conduction states. Instead of pures-, P-, D-like (etc) states, one gets cou-
plings between states whose quantum numbetifer by 2.

The most general expression of quantized states in the semi-
conductor sphere is a combination of orthogonal basis states
The conduction-band energy is given, versus the wavef the “F subspace,” multiplied by spherical Bessel func-

numberK, by E=E_ +K?/2m, (we assume units such that tionsj (Kr) andj . »(Kr).

A. One-band approximation
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For instance, folL.=3 and whatevefF,, using the com- WhateverF, the wave vectork ,, andK, ,, are always given
pact notatior|F,F,,J,L)=|J,L), the diagonalization of one by the simple dispersion relatiofs=E, — (y,—2y,)K 4, and
of the two blocks corresponds to the coupling®{L=0) E=E,—(y+2y,)K,. Itis to be noted that the crystal-field
andD (L=2) states. One gets the following eigenstates: splitting of these bands, associated with the hexagonal sym-
metry of wurtzite semiconductors like CdS or CdSe, is very
small compared to the large confinement-induced energy
W)= \/g[ 3.0-13.21, shifts and splittings of the various levels. This splitting will
be ignored, in first approximation.
T3 5 Finally, the most general expression for the valence-band
W ) = \/;[|210>+|3,2>]a (1) wave function is a normalized linear combinationdt,(r)
and ¢y4(r). The condition of vanishing of this wave func-
and one thus obtains the following light-hole- and heavy-tion at the surface of the crystalliter €R) provides the
hole-like “envelope vectors,” written on the basis of thd.) ~ quantized levels. Though the change of basis set and the
states: calculation of all matrix elements are a bit tedious, the di-

agonalization of each block is straightforward and the final
_ 1| Jo(Keur) _ i io(Kyur)
TOUERE Kbyl IR CRRE vl

result is quite simple. The states in each subsjjapdo F =
1), their F, degeneracies, and the corresponding equations to
2 be solved are summarized below:

Pz (2)  j1(KyR)=0, (3a)

Dz (2) j2(KwR)=0, (3b)
SD3z (4 jo(KunR)J2(KwR) +jo(KLnR)j2(KuR) =0, (30
PFaz (4)  9]1(KuuR)js(KuR) +j1(KuR)j3(KpuR) =0, (3d)
PFsz  (6)  2]1(KuuR)js(KuR) +3j1(K yR)j3(KuuR) =0, (3¢
DGs (6) 6]j2(KunR)ja(KLuR) +]2(KnuR)ja(KuyR) =0, (3f)
DGz (8)  S5j2(KuuR)ja(KuR) +9j2(K 4R)ja(KuyR)=0. (39

The labeling of the states has been introduced in Sec. I.
Each equation has an infinite number of solutions labeled by [(1SDs/2lp|1Se)[*=811?
the principal quantum number (n=1,2,...). Theground
state is always the 3D,,.8?1-2*The energetic ordering of R. _ . P
the excited states strongly depends on the values of Luttinger + BJO Jo(KLup)jo(Kep)p dp} )
parametersy; and y,, as do the oscillator strengths of the
optical transitions from these states to conduction-band o ) )
quantized levels. \I/<vhere/1Ig llst;he spherlcaIbBes?ter: functfl_on doflor(t:ier 0_ atr;]d
Equations(3a)—(3d) have already been given in Ref. 23. f\e= 7/R IS thé wave number of (né confined electron, in the
Solving these equations is straightforward, if compared to1Se state.H2=|<S|p§|:>|2 is the squgred matrix element of
usual methods using all-numerical expansion-diagonalizatioRf (£=x.y,2) between the conduction band and st

(E=XY,2).
E)ég)(jedvl\jr?iacsﬁ \(ljvgriifs ;ﬁ:%artl:];hl?orprgzsliirrfeofong?@z[g ql.:or Allowed transitions also exist between levels originating

: : . . . _from the split-off band and the conduction band. Within the
some reason, this state is not mentioned in several preV'Oleresent approximation, the simpln=0 andAL =0 rules

21,24
works: apply, and the oscillator strengths 8f— Sgo, Pe— Pso,...

The absorption spectrum of a crystallite is constituted by, ansitions are equal to 2{2+ 1)IT%
a series of peaks which correspond to the transitions between The gptical density of a crystallite of radiiversus the
conduction and valence quantized levels. The allowed intefynoton energyE is obtained as the sum of all contributions.
band transitions involve initial and final states which possess first approximation, the electron-hole Coulomb interaction
commonL contributions. The oscillator strengths of thesewill just be included as a low-energy shift of the absorption
transitions are given by the squared matrix element of théines by a quantity calculated as the matrix element of the
dipole moment between the normalized final and initialCoulomb potential between conduction and valence
states. For instance, the fundamental transition isigenstate$’ For a realistic modelimjof absorption spectra,
1SD;,— 1S, 28 and its oscillator strength is we include a homogeneous broadening of absorption peaks

R
A ToKupio(Kep)p7dp
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as a Lorentzian function, with a half width at half maximum where p= %\/9y§K4—2y2K2A+A2 and y=A—y,K2. The
I'. In addition, because the experimental quantized excitogjgenenergies are given by
peaks are broadened by an inhomogeneous distribution of
sizes, we may also assume a Gaussian size-distribution func- ELs,=Ev—(A72) = (y1+ 72)(K?/2) +p, (82
tion P(R) with average radiu® and variancer?.

ELs,=Ev—(A72) = (y1+ 72) (K?/2)—p. (8b)

C. Three-band approximation

For the second blockXS,,,) the expressions of eigenval-

We extend the calculations of Ref. 23 to the mixing of the ;o5 ang eigenstates are absolutely similar. One just has to
three upper valence bands. The total angular momentur;qemace the basis kets Ifi2.),/%,0)).

F=L+J remains a good quantum number. We treat explic- “then we make the same development as in the case of

itly the cases oF =3 and2, and go more rapidly to the result two coupled bands. For a given enefystated ¥, ¢ ) and
for F= 3. We thus obtain analytically the set of equations| s,), respectively, correspond to wave numbls’}is and
yielding the valence-band eigenenergies and eigenstates Rf which can be derived analytically from Eq8), yielding
spherical crystallites, versus their radids two sets of valuegp,,x1) and (p,,x,). The eigenvectors of

1 , . ] )
In the degenerate subspaces whére;, F,=*3 the e first basis PP,,,) may be written from spherical Bessel
valence-band Hamiltonian may be writtén

functions:
Hyp| o O ) 2y5KFja(Kir)
FLo Heae (1) =~ | ~1 (i=1.2
(D= T T i(Kor =1.2.
where blocksH (g even NavVe the form i Xipi \/§(p|+)(|)11( ")
C)

341.2) [3.{1.0)

Upper signs correspond te=1 and lower signs to=2.

B 2 _ 2 The most general expression of the corresponding valence-
Hrougaves (y1+2y2)K2 V27K . band wave function is thus a linear combination ¢f(r)
{odd.evep —\2y,K? E,—A—y,K?2 ande,(r). Again the condition that the wave function is zero

(6) at the surface of the sphere yields the simple equation to be

, ) solved. In the case d? Py, states, this equation can be writ-
We use the compact notatioh,L) for basis states and ten

the numbers in curly brackets represent the two possibilities

for L. These blocks correspond respectively to states denoted (B—0)j1(K{R)j1(K,R)=0, (10
PP,, and DS,;;,, which are parents of th®,, and D4,
states of the B modeling (from now on, the last capital
letter will always correspond to the contribution of the SO

where B=K %(p,+x,) and =K 3(p;—x,). With the same
readiness, we can write the corresponding equatioD 8y,

band. The first block (statesPP,;,) yields the following states:

eigenstates: Bi2(K1R)jo(K2R) = 0j2(KoR)jo(K1R)=0.  (11)

|‘1’le>= 2; [272K2|§,1>— %<p,x)|%,1)}, (78 We shall now present the fourfold degenerate cade-of
Vpe—xp v

3 (F,==3, =3). The corresponding sub-Hamiltoniath,,
can be written in the same form as H§), where the sub-

1
Wis,)- Ny p[ZVzK 30— 7<P*X>‘5'1>} ™" blocks are given by
J
3,0) 3.2) 2,2)
E,— 7’1K2/2 ‘}’2K2 72K2
Hever= y,K? E,— y1K?/2 — K2 (12a
y,K? —y,KZ2  E,—A—yK?2
and
3
|§vl> |213> |%11>
— (y1/2— 4y,/5)K?/2 3y,K2/5 v-K2/\/5
H o= 3y,K2/5 E,— (y1/2+47,/5K?2  —3y,K¥\5 |. (12b)

v,K2/\/5 —3y,K?%/\5 E,—A—y,K?2
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The diagonalizations of these matrices yield an uncoupled  9j, (K 4R)[Bj1(K1R)j3(K,R) + 0j3(K1R)j1(K,R)]
heavy-hole-like statgVy,,) and two mixed statesV', s ) and . _ _
|¥ ¢, involving light-hole and split-off-like bands. +13(KuuR)j1(K1R)j1(KoR)(B+ 6)=0. (18)
Let us detail the case of blodd,., corresponding to

. . . . _§ . _
SDD,, states. The diagonalization yields the following so- Ve shall finish with the case of the sixfofé=; Hamil
lutions: tonian, which is again made of two independert33blocks.

Two types of states are producd®lEFg, andDGDg,. The
Vo0 =(12.00+1(2.2))/12, dispersion relations are the same as above. FBiF5),
(W =(13.0+3,2)/V2 Statos. wo gt

3j3(KuuR)[Bj1(K1R)j3(K,R) + 8j3(K1R)j1(K2R)]
+2j1(KpuR)j3(K1R)j3(K,R) (B8+ 6)=0. (19

For DGDs, states one has to solve

6j,(KyuR i4(KiR)j-(KsR)+ 0j-(K R)ji.(K5R
where| W, o) = (|2,0)=| 2,2))/\2. J2(KyyR)[ 8] 4(K1R) j2(K2R) + 8j2(K1R) j4(K2R) ]

Concerning the dispersion relatiors,s andEys, have +Ja(KunR)j2(K1R)j2(K2R) (B84 6) =0. (20)
rigorously the same expressions as abjd@s.(8)]. For the
heavy-hole-like band, one has

1 1
|Wis)= W[VZK2|\PLS’>+ ﬁ(P‘XH%,Zﬂ,

1 1
|V s,)= W[72K2|\PLS’>_ ﬁ(ﬁﬂ(ﬂ%@]y (13

Equations(10), (11), (16), and (18)—(20) (F= 3, 2 and
3) are sufficient to obtain a satisfactory description of the
Epn=E,— (y1—2y,)K?/2. (14)  states involved in the absorption spectrum of the crystallite,
. ) : within ~1-2 eV above the band-gap energy. The oscillator
For a given energyE these equations provide three wave gyrengths of the various allowed transitions are calculated

numbersKyy, Ky, and K,. The general threefold wave eyactly as in the preceding section, by using the relevant
functions, in the basis of the,L) states, are normalized envelope functions.

Jo(Kpur)
. lll. RESULTS AND DISCUSSION
¢HH(r): ﬁ JZ(KHHr) ’
0 The numerical parameters used in the following calcula-
tions, for the five considered binari€g€dTe, CdSe, CdS,
ZyZKﬁ o(Kyr) GaAs, and Inlp, are gathered in Table |I.
1= —————| —27:Kija(Kir) |,
Pl 2p1—2x1p1 (p1—x1)i2Kyr) A. Size dependence of valence-band levels
and Similar to the presentations of Refs. 20 and 22, Figs. 1-5
display the calculated energies of valence-band states in
2)/2ng o(Kyr) spherical nanocrystals, versus R}?. Figure 1 shows the
bo(r) = 1 —2y2K§j2(K2r) (15) results of both the B (a) and 3B (b) models, in the case of
V2p5+2x2p2 CdTe nanocrystals. Figurga shows that, although the up-

~ (P2t x2)l2(Kar) per valence-band levels are coupled in the éhodeling,

. . . . 2 .
The most general expression of the wave function is agaif’€i" €nergies all vary linearly with (). Oppositely, the
a normalized combination of these states, and the boundaifriation of the energy levels is found quite more complex

condition atr =R provides the equation fd@DDs, levels: y the 3B calculation[Fig. 1(b)]. This is caused by numer-
ous anticrossings between levels of the same symmetry, i.e.,
i 2(KunR)[Bio(K1R)j2(KoR) + 0j,(K1R)jo(K,R) ] levels with commori and Fvalues(see, e.g., in Fig. 1, the
) ] ] crossing between state®P,,, and 2PFP5;,). In our nota-
+Jo(KunR)j2(K1R)j2(K2R) (B+ 6) = 0. (16)  tions, as mentioned above, the last capital letter always cor-

responds to the component related to the SO band. For in-
Stance, the $DD,,, state is affiliated to the well-known
8D, state, calculated by theB modeling**82124put
with an additional ‘D contribution” from the SO band.
W)= (3[2,1) +| %'3»/@' In the case of Fig. 1, the largevalue of CdTe allows one
to analyze such anticrossings. The levels which shift rapidly
to energies close tA exhibit very strong couplings with the
SO band. For instance, theD},, and 2D, 2B levels ac-
quire a substantigb contribution, even for rather large radii.
1 ) 1 L The resulting DS;;, and DS,;, 3B levels thus show a
|\If|_52>= WHZK Vi) - ﬁ(P+X)|5’1>]' (17 broad curvature of their energy shift vs R)f. The other
DS,, states show several small anticrossings, the place of
where| ¥, ¢ )=(3,1)—3] £3))/\/10. which roughly mark where the S, level of a one-band
The energies and wave functions BfFP;, states are modeling would have been. However, Fig. 1 demonstrates
obtained by solving that the SO band has also a sizable influence on levels lying

For the second subblock the procedure is identical. Th
dispersion relations are the same, and the eigenvectors ar

1 1
|Wis)= W[VZK2|\I,LS’>+ ﬁ(l)_)(ﬂ%,l)],
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TABLE I. Material parameters used in our calculatiokg.is the interband energy gap at liquid-helium
temperature(the average for light- and heavy-holes in binaries with usual wurtzite strycigyes the
relative dielectric constant, used in calculations of the Coulomb interaction. Asterisks mark Luttinger param-
eters which were deduced from effective-mass values, by using the following expresgjent&/m;

+ 1 )13, yo=(Lmy —1/imp )13, or yy=(Limy +1/my )/2; y=(1imy —1/m; )/2. In these equationsi,
(my) correspond to th&'q (I';) bands of the wurtzite structures of CdS or Cdsand.L denote directions
parallel and perpendicular to tleeaxis of these materials.

Material Eq (eV) A (eV) & " V> me

cds 2.590 0.06& 8.58 1.09+P 0.340% 0.20¢"
CdSe 1.853 0.42¢ 9.5 1.672" 0.56*" 0.12¢*
CdTe 1.608 0.927 9.3 5.2% 1.8¢ 0.096
GaAs 1.518 0.34¢ 12.58¢ 6.85 210 0.067
InP 1.424 0.10¢ 12.3% 5.2 1.83 0.08¢

8Reference 28.
bReference 29.
‘Reference 30.
dreference 31.
®Reference 32.
fReference 33.

at much lower energies, namely, the so-called “odd” states 65 4 s m) )

(PF3andPFPg)y), as discussed below. This resultis related 1500 —wmprr—y—7———— T @)

to the large value of the coupling parameter2y.,/y;, in :3D1rz/ I/ o/ //

CdTe. Such importance of effective masses has been evokeds ! "/ 4P 3 8Dag

in Refs. 19 and 22. Indeed, this parameter controls not only g ,’ 4

the coupling between the two upper valence bahdsyt % 1000

also, to a large extent, the coupling of these bands with the E 2PFy,

SO bands, since off-diagonal terms in the Hamiltonian are

proportional toy,. g 25Dse
Figure 2 illustrates this strong influence of effective-mass ¥ soo p—

parameters on the result of th& Zalculation, in the case of ‘g 1/ 18Dy

CdSe crystallites. The complex system of crossings and an- ©

ticrossings is found completely different in FigsaR and CdTe NANOCRYSTALS

2(b), while the onlyy; parameter has been changed—an 0 —

we have taken the value of Table I; {h) we have used the 0 041 0.2 03

value proposed in Ref. 34. The currently poor knowledge of VRE (nm)

CdSe valence-band parameters may have important conse- R (nm)

quences on the reliability of some theoretical predictions, as 65 4 3 2

shown below. This is essentially due (i the fact that Lut- 1800 P 205, ™ (b)

tinger parameters are only indirectly related to effective

masses, ani) the attempt which is made to treat CdSe asa %

material with a zinc-blende structure, while the few available ;E: [ 3 SDDy;

data are all related to wurtzite CdSe. This problem is even 2 1ot , :PD::/’:

more serious in the case of CdS, for which a large dispersion Z ’,,/42 i

of effective-mass values exists in the literature. Figure 3 pre- E P ) SDD;

sents the results of aB3calculation for nanocrystals of this & _

binary, obtained by using the numerical data of Table I. This & 150Dy,

plot may be compared to those presented in Fig. 1 of Ref. 22, § ,,,, — 1 PP

which display the results of assuming three different sets of [l L2 C -2 e="" CdTe NANOGRYSTALS

light- and heavy-hole masses. In Ref. 22, the Luttinger pa- 0 KE— ) L

rameters were extracted from mass values by using the fol- 0 01 0.2 03

lowing equations:y;=(1m,+1/m)/2, y,=(1m,—1/m,)/4, 1IR? (nm?)

which is only strictly valid if those masses characterize the

motion along thec axis of the material. FIG. 1. Plot of the calculated energies of some valence-band

Fortunately, for materials with usual cubic structure like jevels in spherical CdTe nanocrystals versuRj3/ whereR is the
CdTe, GaAs, or InP, Luttinger parameters are better knowngrystal radius(a) shows the result of the two-band modeling, while
which warrants the quantitative relevance of theoretical pre¢b) corresponds to theB approximation. Solid linegdotted lines
dictions. Figures 4 and 5 are the analogs of Fig. 3, for spherirepresent levels for which interband transitions are allo¢iexdbid-
cal nanocrystals of GaAs and InP, respectively. den towards the $, ground conduction-band level.
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R (hm) R (nm)

6 5 4 3 2 65 4 3 2
1000 T T T T 7 T T T 400 EMTTT T T ] T

CdS NANOCRYSTALS

CdSe NANOCRYSTALS

% (parameters from Table 1) E 300
§, 3 DSz kA
% 5
; 2DSy2 g
£ 3 SDDy; o200 |
z V4 =z
z g
E 1PPy, ]
[ - 2 PFP3p T 100
= 2 DDy z
3 8
© 1 8DD;2 o
1 PFPy;,
0
0.3 0 0.1 0.2 0.3
1/R? (nm™?) 1/R? (hm?)
R (nm . . .
65 4 3 thm) ) FIG. 3. The analog of Fig.(b), for CdS spherical crystallites.

. This plot is to be compared with those presented in Fig. 1 of Ref.
(b) 22. Note that the confinement energies are quite smaller than in
crystallites of other binaries, for the same range of radii.

1000 T T T T T ]

CdSe NANOCRYSTALS

curves: these are levels from which a transition is allowed

>
£
5
i P towards the fundamentalS} conduction-band state. On the
; 500 =Z"_ 20fpy, contrary, other valence-band levels give dipole-forbidden
w ,12 ';PD1|132 transitions with this state: they are shown by dotted curves.
z * Note, in particular, that th& component introduced by the
‘g _ _1PFPy, SO band into theD,,, states makes them optically active
o |\ AT === 1 SDDs towards the B, state.
0 0.1 0.2 0.3 B. Absorption spectra
R (am?) Figure 6 shows the comparison of the two-band and of the

. three-band modelings in the particular case of CdS crystal-
FIG. 2. Energy levels for spherical CdSe nanocrystals versugiies of average radius 2.10 nm, which has been chosen so
(1/R)", calculated within the B approximation, but by using two 4t the fundamental interband transition is equal to 3.10 eV.
sets of material parametexs) corresponds to the values of Table | In the lower part of the figure, we show the calculated ab-
and, in particulary;=1.67.(b) results from the same parameters as s, o spectrum of a crowd of crystallites having a Dirac
for (a) excepty;=2.10. The assignment of solid and dashed lines Sdistribution as a size-dispersion function, but randomly ori-
th in Fig. 1. . . ! .
©same asin g ented in space. This corresponds to averaging the spectra
over all possible configurations for light polarization against

The examination of Figs. 1-5 allows a few general re- ) .
xaminat '9 W W9 the crystal axes. A Lorentzian broadening paraméted0

marks: (i) The influence of the split-off band on energy lev-
els is important, even on the ground levels and even in ma-

terials whereA is large, like CdTe, CdSe, or GaA&i) The R (nm)

results of calculations are extremely sensitive to effective- 4500 65 4 3 2
mass parametersiii) When 1R? is large enough so that Bl
most levels overtake th& energy, a quasilinear shift of all
levels is obtained versus this quantity, because the states lie
far enough from their anticrossings. This is particularly true
in materials with small spin-orbit splittings, like CdS or InP.
On the other hand, for materials with large splittings, like
CdTe, complex energy shifts and mixings are present for
crystallites of usual sizes.

Coupling effects are even better illustrated by the calcu-
lation of the energies and oscillator strengths of the allowed
interband optical transitions. As a matter of fact, the oscilla- ‘
tor strengths are controlled by the spatial overlap of electron 0 . ‘ L N
and hole envelope functions, which are more sensitive to 0 01 02 0.3
mixings than energy levels. Since allowed transitions only 1IR? (nm)
occur when a commoh character exists between initial and
final states, some levels of Figs. 1-5 are represented by solid FIG. 4. The same as Fig. 3, for GaAs nanocrystals.

GaAs NANOCRYSTALS

3 8DD3;2

2 SDD3;;

1000
r 1DS2

.- 1PPy
1 SDD3.

CONFINEMENT ENERGY (meV)
o
o
=)
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R (hm)
65 4 3 2 CdTe NANOCRYSTALS
R=2.80 ; IT'=
1000 T T T 7 T T T - nm 10 mev Y,
X 2 /
S | _ _ -: Two-band modelling /
< InP NANOCRYSTALS _: : Three-hand modelling £
(] 2 DSq;2 L
£ k3
> >3 SDDy, z
O =
i 2
3 2 SDD;;; w
I} ol =
E 5o 1 DSy 2'
"EJ _15DDy; E
F4 —1PFP3;; (=]
i
z
Q
o n
1.8 2 2.2 24 2.6 2.8 3
0

PHOTON ENERGY (eV)
0 0.1 0.2 0.3

1/R? (nm*®) . .
FIG. 7. The same as Fig. 6, for CdTe crystallites of average

radius 2.80 nminterband gap: 2.30 eV Labelsa—d correspond,
respectively, to $,-1SDDgp, 1S,-2SDDjy;p, 1P-1PFPgp,
-1PFFgp, and 1P.-1P Py ).

FIG. 5. The same as Fig. 3, for InP nanocrystals.

1P
meV has been assumed. The top of Fig. 6 displays the results °

obtained for a Gaussian size distribution with the same avgjys, the energy shift between the two absorption onsets is

erage radius and with a deviatier=0.3 nm, which is com-  rather small(~30 me\). So, at this stage, it may seem rea-

patible with usual experimental findings. _ sonable to state that the complexity of thB 8nodeling is
Afew transitions have been assigned, for clarity. The pealqot necessary if one intends to use it as a fitting procedure, in

at low energy is constituted by three transitions, which allorger to estimate the average crystal radius from an experi-

caused by the superimposition of as much as five transitions | et ys now compare Figs. 6 andfhe latter is analogous
which involve the P, state. Clearly, the present transitions to Fig. 6, for CdTe crystallités The parameters which sig-
are affiliated to the &-1S, and 1P.-1P, transitions which pficantly influence the fine structure of absorption spectra
would. be caIcu_I(_':\ted .by the simple one-band model. Alsoare the Luttinger parametefs; and y,) and the spin-orbit
there is a sensitive difference betwee and 3B approxi-  gplit-off energyA. This is the reason why the general aspect
mations, not only in the “single crystallite” spectra, but also of the spectrdsee, e.g., the relative positions and intensities
in the more realistic broadened spectra. For the present rgs peaksa andb) depend so much on the material. Then, it is
very difficult to extract general trends by comparing different
materials, since too many things vary from one case to an-

CdS NANOCRYSTALS

R=210nnm ; [ =10 meV other.
Figure 7 shows that, contrary to what could be expected
— — - Two-band modelling 5 .=0.3 pm ST T T T T from Fig. 1, the difference betweerB2and 3B approxima-
—: Three-band modelling -

tions is not large, near the absorption onset. Now, coming to
the description of resolved excited states, which can be ob-
served in samples of good qualifythe 3modeling is ob-
viously much more accurate. In particular, it is quite clear
that the spectral range usually investigated—2 eV above
the band gapis by far larger tha\. Consequently, the spin-
orbit split-off band cannot be ignored.

In the 2B modeling, the only parameters afg and v,.
The ratio y=2 +v,/y; determines the mixing of valence
states’! and thus the relative intensities of the peaks, inde-
pendently of the crystal siz&hough the positions of these

FIG. 6. Calculated absorption spectrum of a crowd of CdS crys-peaks depend on the crystal radius and on the valueg of

tallites of average radius 2.10 nm. The interband gap of the syster%nl(:j yzf)-f. :1” Ithe B rlpodgl, tfge .Streln gth 0{ tfllleélgbht-hhole—tlo—
is 3.10 eV. The bottom and the top of the figure correspond to tw piit-off-hole coupling Is obviously controlled by the value

different size-dispersion functiongbottom: Dirac distribution; of A. However, as noticed above, thg parameter is also
top: Gaussian distribution witr=0.3 nm). Dashed curves show Very important: the largery, the stronger the coupling and
the results of the two-band approximation, while solid lines corre-thus the larger the difference between the results of e 2
spond to the three-band modeling. Transitions labelett are re- and 3B approximations. Anyway, concernirgjlowed inter-
lated to the three-band modeling. They correspond, in this order, tfand transitions, significant differences only occur at ener-
1S,-1SDD3j,,  1S.-2SDDy,  1S,-3SDDsj,,  1P.-1PFPs,  gies of the order ot above the absorption onset.

1P-1PPyjy, 1Po-1PFFsp 1P.-2PFFg, 1P.-3PFFg,. For Now, let us investigate different situations. Figures 8—-12
valence-band levels, the last letter corresponds td th@lue of the ~ show examples of “single-crystallite” spectra calculated for
spin-orbit split-off state involved. spherical quantum dots of several semiconductors, within the

OPTICAL DENSITY (arb. units)

2.7 2.9 3.1 33 3.5 3.7
PHOTON ENERGY (eV)
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FIG. 8. “Single crystallite” interband absorption spectra of CdS ~ FIG. 9. The same as Fig. 8, for CdSe crystallites. Interband
nanocrystals, calculated within the three-band approximation. Th@aps: 2.00-2.80 eV by steps of 0.2 eV. Excitonic gaps: 1.95, 2.12,
radius is indicated near each spectrum. Lalaelé correspond to  2.30, 2.48, and 2.67 eV, respectively. Labalsf correspond, re-
1S,-1SDDyj,, 1S,-2SDDyjp,  1S.-3SDDgyp,  1Pe-1PFPg, — Spectively, to Be-1SDDgjp  1S,-2SDDgjp,  1P-1PFPgyy,,
1Pe-1PPyy, 1P-1PFFgp, 1Po-2PFFgp 1Po-3PFFsy, The  1Per1PPyp 1Pe-1PFFgp 1Pe-2PFFs),.
fundamental transition energies have been set to zero, for conve-
nience. From the top to the bottom of the figure, these_ energit_as a@meters and on the value of Here again, it is almost
2.70, 2.90, 3.10, 3.30, and 3.50 eV. The corresponding excitoniGy,ssible to draw a general trend versus material param-
energies, obtained within the aperJX|mat|0n of Ref. 27, are 2'67eters. Anyway, we can make an interesting comparison be-
2.84,3.03, 3.22, and 3.40, respectively. tween CdTe and InP crystallites. As a matter of fact, both

materials happen to have comparable Luttinger parameters,
3B modeling. The radii indicated near each spectrum havevhile their A values are completely different. It appears that
been chosen so that the fundamental interband transition ethe L effect can be clearly observed on InP crystallites be-
ergy varies by regular steps of 0.2 eV. The values for thizause the position of thePl, group above the fundamental
energy and for the corresponding excitonic energy are inditransition is much higher thaa (~0.1 eV), in the present
cated in the captions of the figures, since the fundamentabnge of radii. On the contrary, for CdT&=0.927 eV and a
interband gap has been set to zero in all cases. much more intricate situation is obtained, for a comparable

The first remark is that the spectra are extremely size- ancange of blueshifts of the gap, than for InP. For the same
material-dependent. Generally speaking, for rather smallange of small crystallites, in the case of CdS, CdSe, GaAs,
crystals, the spectra are made of two groups of transitiongr InP, the confinement-induced blueshifts are such that the
These are respectively related to the above-mentiorigd 1 energy difference between the groups &.Jand 1S, lines is
and 1P, conduction-band levels. In all cases, the group oflarger thamA. Then all confined states lie quite far from their
excited transitions affiliated to thePl, state shows a high- anticrossings and the spectra are rather simple. This is con-
energy shift, when decreasing the radius, which is linear wittnected to the remark in the preceding section and is con-
the energy shift of the 3.-related transitions. Roughly firmed by the direct comparison of Figgb]l and 5: one may
speaking, the excited group shifts approximately twice astate that, by changing energy and radius scales, Hi.id
fast as the fundamental one. In fact, Figs. 8—12 allow us t@ kind of “zoom” into the lower left corner of Fig. 5. In
observe the competition between two effects. The effect obther words, for crystallites of materials with small SO split-
the only confinementthe “L effect”) is responsible for the tings, theL effect is dominant and the fine structures of the
above rough tendencies, i.e., the shift of groups of lines. Irgroups of peaks tend to disappear when reducing the size.
addition, the material manifests itself by adding a fine struc- In such cases, increasing the confinement permits one to
ture to these global shifts, via what we shall call thé “ open wide gaps of transparency between ti$g 4nd 1P,
effect.” The latter obviously depends on the Luttinger pa-allowed transitions. When broadened by size-dispersion ef-
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FIG. 10. The same as Fig. 8, for CdTe crystallites. Interband FIG. 11. The same as Fig. 8, for GaAs crystallites. Interband
gaps: 1.70-2.50 eV by steps of 0.2 eV. Excitonic gaps: 1.67, 1.84gaps: 1.7-2.5 eV by steps of 0.2 eV. Excitonic gaps: 1.67, 1.86,
2.02, 2.21, and 2.39 eV. The transitions are labeled as in Fig. 72.05, 2.24, and 2.43 eV. Labets-f correspond, respectively, to
Labels e and f correspond, respectively, toPL-1PP,, and  1S,-1SDDsj,, 1S,-2SDDsj  1P.-1PFPgp,  1P-1PFFg),
1P¢-2PFFs5),. 1P-1P Py, 1P-2PFFg),.

fects, the corresponding absorption spectra are made of twrange of~1.5 eV above the fundamental gap. A laser light is
' P g P P tt%us likely to be absorbed by crystallites of several sizes.

well-separated, poorly structured peaks. This has an interes For “intermediate” cases like CdSe or GaAs, Figs. 8 and
ing consequence, from the experimental viewpoint. As 41 show that rather large gaps exist between the two princi-

matter of fagt, It tm%y be useﬂil to .?ethOfmfphOtoé‘ﬂT'.gef' al series of lines, but theP, lines are better resolved and
cence experiments by resonant excitation of size-distriou egccupy a larger energy range. Fairly good size selectivities

nanocrystals. This is meant to obtain a selection of the size g an be roughly estimated, especially for radii smaller than
the particles. What we see here is that these experiments &3 \m (~4 nm) for CdSe(éaA3 but these values are com-

likely to be successful in materials such as CdS or InP, wher arable to the usual values of Selective excitation might
the 1P, resonances are always gathered close to each oth L difficult in these cases

and show a very strong ;ensitivity to the radius. Exciting Another remarkable result ofB3 calculations should not
with a laser tuned at a defined energy above the absorptio

. . : X ) ect absorption experiments, but is rather related with pho-
onset will certainly prow_de a good s_t_alectlon of the size. Fortoluminescence properties, since it rules the allowed or for-
exam_ple, for InP crystallltes_ with rqd|_| smaller than 5 nm, thebidden character of the fundamental interband transition.
1P, lines are always contained within0.2 eV. Now, these
lines shift with the radius at a rate 6f0.8 eV/nm. We thus
obtain a theoretical selectivity on the radius smaller than
0.15 nm. For CdS crystallites witR smaller than 2.5 nm, we Figure Xb) clearly shows that the ground valence-band
can estimate from Fig8 a selectively of~0.1 nm. level in CdTe crystallites is RF Pg,, whatever the radius
On the other hand, for CdTe crystallites, even for small(this level is optically inactive with the fundamentaSl
radii, many light-hole and heavy-hole states are still in thelevel). This is in complete contradiction with the prediction
middle of their crossing with those originating from the split- of the 2B modeling by which the ground state is found as the
off band(see Figs. 1 and 20Then the above groups of lines 1SDs, whatever the material and whatever the $izéve
overlap each other and are less easy to define, even withtaus find that(i) the interband transition of lowest energy,
size dispersion. In such materials it should be almost imposwhich photoluminescence experiments should reveal, is al-
sible to perform a size-selective excitation of the lumines-ways symmetry-forbidden in spherical CdTe nanocrystals;
cence, because the absorption spectra are made of numero(is, this transition lies at a size-dependent energy—of the
well-spanned transitions, which occupy the whole energyrder of several tens of meV—below the threshold of the

C. Allowed or forbidden fundamental transition
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Grigoryan et al?? have found the BPFP,,-1S, transition
fundamental, for two of their three sets of trial parameters.
The same remark is valid for CdSe. In Fig. 2, we observe
that the ground valence-band state is always tB® Dy, if

one assumes the effective masses of Ref. 34, but the
1PFP3, and 1SDD;), are found almost degenerate if one
agrees with the values of Table I.

At the present stage, after several attempts, by using sets
of parameters from various authors, we estimate that the situ-
ations presented in Figs(d@ and 3 are qualitatively relevant.
Consequently, the numerical results of th& 3nodeling

seem reasonably coherent with both facts that luminescence

3.63 nm . . .
d in small CdS nanocrystals is usually related to deep trapping
of carriers, while it is most probably related to shallow trap-
ping of excitons in small CdSe quantum ddtsBesides, the
presence of an “odd” state as the ground valence-band level
had been calculated by Efros and Rodfra the asymptotic
case wherd=0. These authors had thus connected the weak
luminescence of CdS crystallites to the small value of the
spin-orbit splitting. We have shown that this criterion is too
restrictive. In a more recent wofk,the same authors have

OPTICAL DENSITY (arb. units)

InP NANOCRYSTALS : o g ;
; d demonstrated that a slight nonsphericity of crystallites yields
a: 2.68 nm e f a size-dependent splitting of the fourfoldSD;, ground
b S M valence-band state, which they considered within tBeap-
o — ' ' proximation (the noncubicity of CdS or CdSe should have
01 01 03 05 07 09 141 the same effegt In some conditions, this was shown to pos-
RELATIVE PHOTON ENERGY (eV) sibly alter luminescence properties of the system. However,

from the present study, it seems necessar{i)ttry and ob-
FIG. 12. The same as Fig. 8, for InP crystallites. Interband gaps’E_ain reliable effective-mass parameters for these materials;
1.5-2.3 eV by steps of 0.2 eV. Excitonic gaps: 1.48, 1.66, 1.87and(ii) reconsider the effects of the nonsphericity of crystal-
2.03, and 2.22 eV. Label®-h correspond, respectively, to lites (or the noncubicity of the structurevithin the frame-
1S,-1SDDgj,,  1S.-2SDDgjp,  1S.-3SDDgj,  1P-1PFP5, — Work of the 3B modeling, so as to get reliable quantitative
1P¢-1PPyy, 1Po-1PFFgp, 1P-2PFFs, 1Po-3PFFg),. information. Work is at hand on this problem, as well as on
the effect of the electron-hole Coulomb interaction on the
above results. Actually, Kockt al?* have proved, within a
2B approximation, that this interaction may slightly alter
valence-band mixings, but they have shown that this should
be effective for the larger radii. It is thus most likely that the
(ljnain features derived here from th& 3nodeling should be
reserved after inclusion of excitonic effects, at least for the
smallest nanocrystals.

absorption spectrum, i.e., the allowe&DD;,-1S, transi-
tion; (iii) the presence of this transition can only be ex-
plained by the influence of the spin-orbit split-off band, al-
though the latter lies-1 eV away from the level of interest.
Practically, intrinsic luminescence should be hardly observe
in CdTe nanocrystals of small size, due to the thermalizatio
of holes onto the P F P, level. The same conclusion can be . . .
safely drawn for InP crystallites, as shown by Fig. 5, which To be comprehensive, let us finally notice that, for GaAs

suggests that the values of Luttinger parameters are a de&[y_stallites_, the presemﬂacalculatipn(see Fig. 4 predicts a
sive factor for the symmetry of the ground hole level. critical radius of~3 nm below which PFP5, lies at lower

Thus, for crystallites made of the two latter cubic binaries, SNy than the SDDsy, Experimental evidence of such a

one expects a luminescence behavior similar to what is usd:—”t'Cal radius is still desired.

ally observed on CdS crystallitéfor example. As a matter

of fac_t, (_3ry_gor|an_et al?? have tentatively 'explalned the V. SUMMARY

weak intrinsic luminescence of CdS crystallites by the pres-

ence of a comparable forbidden transition. In fact, the case of We have given a set of analytical equations which can be
CdS is often considered specffi¢®sinceA=68 meV?®the easily solved for calculating the energies and envelope func-
strong influence of the split-off band is obvious, while it is tions of valence-band levels in spherical semiconductor
neglected for other materials. According to the parameters afianocrystals. The Coulomb interaction can be included quite
Table 1, we find that the fundamental transition in CdS crys-easily as a first-order perturbation, from the envelope func-
tallites should be the forbidderPF P5,- 1S, transition, only  tions of electrons and holes. We have applied our modeling
for radii smaller than~3 nm, i.e., one excitonic Bohr radius to five llI-V and II-VI binaries which correspond to practi-
of bulk CdS (see Fig. 3 However, we also find that the cal cases. For all these materials, we have found that includ-
allowed 1SDDy,-1S, transition lies only a few meV above ing couplings with split-off bands is recommended. When
the forbidden one, which is not as demonstrative as in thene is only concerned by the determination of the average
cases of CdTe and InP, considering the above-mentioned ladkystal size from an experimental absorption spectrum, this is
of knowledge of Luttinger parameters in CdS. For instancerestricted to materials with small values. Anyway, this is
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crucial for a correct description of transitions between ex+erials. The result is that the split-off band may have a sub-
cited states. The analysis of those excited states has allowstantial influence on the near-band-gap optical response of
us to identify the conditions necessary for an efficient sizespherical semiconductor crystallitesyen in some materials
selective excitation of the photoluminescence: a rather smalith large spin-orbit splitting energiedike CdTe. In particu-
A value is needed. lar, the relative positions of the most fundamental valence-
We also come to the conclusion that it is too restrictive toband levels, and thus intrinsic luminescence, are dependent
focus on the only value of\, for including or neglecting on the coupling with the SO band. To this extent, for CdTe
spin-orbit split-off states in the calculation of valence-bandcrystallites, a forbidden fundamental transition is predicted
mixings. In fact, these mixings also strongly depend on Lutby the present work, in total contradiction with what the
tinger parameters, which are very different for different ma-usual two-band calculations predict.
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