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The multiband envelope-function formalism—of which a convenient, analytical formulation is presented—is
used to investigate the energies and wave functions of valence-band levels in spherical nanocrystallites of
several III-V and II-VI compound semiconductors with finite spin-orbit splitting energyD. Interband absorp-
tion spectra are deduced. A significant influence of the split-off band is found even in cases whereD is large,
as for CdTe. In fact,D is not a decisive criterion for the strength of couplings; Luttinger parameters play a
major role. Numerical results are presented for size-distributed crystallites of various binaries~CdTe, CdSe,
CdS, GaAs, InP!. These are analyzed in terms of the accuracy of measuring the sizes from absorption spectra
by using a fitting procedure, and of performing size-selective excitation of photoluminescence. It is also found
that optical transitions between the ground valence- and conduction-band levels may be forbidden, due to
incompatible symmetries. Calculations neglecting the influence of the split-off band are unable to account for
this property, which strongly affects photoluminescence mechanisms.

I. INTRODUCTION

Nanometric semiconductor crystallites have recently at-
tracted considerable interest because they represent the ma-
terialization of the simple quantum-mechanical problem of
quantum boxes. Moreover, their optical properties, strongly
influenced by the three-dimensional confinement of carriers,
seem to be promising routes to future all-optical data pro-
cessing devices. In practice, III-V and II-VI semiconductor
nanocrystals embedded in glasses, polymers, or in colloids
have been prepared by a variety of techniques. The major
part of the available work has been done in CdS,1–5

CdSe,6–10 and CdSxSe12s crystallites. Recently, several at-
tempts have led to the fabrication of CdTe,11–14 GaAs,15 or
InP clusters,16 among other materials.

From the theoretical viewpoint, several previous studies
have demonstrated that, for realistic semiconductor systems,
the electronic states cannot really be considered as those of a
simple particle-in-a-box problem. As a matter of fact, it is
now established that the superimposition of a three-
dimensional confinement potential, with spherical symmetry,
onto the Hamiltonian of a cubic semiconductor leads to com-
plex mixings of valence-band states. These complicate the
assignment of quantized levels and of related optical transi-
tions towards conduction-band states. This way to consider
electron and holes separately is naturally restricted to the
so-called strong confinement regime, i.e., to crystal radii
smaller than;2 exciton Bohr radii.17 Recent works have
been devoted to the theoretical study of the quantization of
hole states in spherical semiconductor nanocrystallites. Apart
from a particular attempt based on a tight-binding
approach,18 most works on this subject were kept within the
framework of a multiband effective-mass approxi-
mation.19–25 In some cases,21,24 a numerical approach was
used to solve the set of coupled differential equations which
arise from the boundary condition that the wave function be
zero at the surface of the crystallite. Moreover, for the sake
of simplicity, many authors have treated spin-orbit split-off

~SO! states in one of the asymptotic approximations:
D→`,20,21,23–25or D→0,20 whereD is the spin-orbit splitting
energy.

Only few recent works19,22,23have faced the problem in a
tractable, analytical way. Basically, all approaches are rather
similar, since they start from the same so-called six-band
Hamiltonian of cubic semiconductors with finiteD. Ekimov
et al.19 have given the basic equations providing the energies
of quantized levels in CuCl and solved them by making
some approximations. Grigoryanet al.22 have given another
rigorous general formulation of the necessary equations. Al-
though analytical, these formalisms are not easy to handle
and do not provide a convenient assignment of the mixed
states. To this extent, Ramaniah and Nair18 have remarked
that the most adapted formalism is an extension of that de-
veloped by Baldereschi and Lipari26 for acceptor states in
cubic semiconductors, which was adopted by several
workers.14,18,21,24The formalism is based on the fact that the
total Hamiltonian of the system commutes with operator
F5L1J. J is the good quantum number for valence states of
the cubic semiconductor:J5 3

2 for light-hole and heavy-hole
bands, whileJ5 1

2 for the SO band.L would be the good
quantum number for a system with the only spherical sym-
metry of the crystallite. This permits us to deal with a block-
diagonal Hamiltonian, where each block corresponds to a
given eigenvalue ofF ~ 12,

3
2,

5
2,...!.

Sercel and Vahala23 have thoroughly developed an ana-
lytical formulation for cases whereD→`, which we call the
two-band~2B! modeling, and only forF51

2 and
3
2. In what

follows, we start by extending this convenient 2B modeling
to F up to 7

2, within the same formalism.
14 The main result of

such calculations is that ‘‘pure’’S, P, D, etc. states, which
would result from a simplistic one-band approach, are
mixed, leading to new states labelednP1/2, nD1/2, nSD3/2,
nPF3/2, nPF5/2, etc. In these notations, capital letters indi-
cate which kind ofL states are coupled~they always differ
by two units!, n is the principal quantum number, and the
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index corresponds to the value ofF. Within the 2B model,
conduction-band and SO-band states are labelednSe ,
nPe , . . . , nSSO, nPSO, . . . , after theirL value, since they
are assumed decoupled from the two upper valence-bands. In
addition, simple ‘‘selection rules’’ apply: allowed interband
transitions occur only between valence-band and conduction-
band levels having common orbital quantum numbersL.

As stated above, many workers have adopted the 2B
approximation,20,21,23–25for simplicity. This may be an ex-
pression of the common intuition that split-off states should
play a minor role in materials with large values ofD, such as
CdSe~420 meV! or CdTE ~927 meV!, especially if one is
only concerned by fundamental hole levels.

It is the purpose of this paper to demonstrate that this
intuition is misleading: there can be a strong influence of the
spin-orbit split-off band on electronic levels of spherical
semiconductor quantum dots, even for some materials with
largeD splittings. This work is organized as follows. In the
next section, we introduce a convenient way to account ex-
actly for valence-band mixings in spherical crystallites of
cubic semiconductors. By solving a few simple equations,
we obtain the energies of hole eigenstates and the oscillator
strengths of all allowed interband transitions within a range
of ;1–2 eV above the fundamental gap of the system. This
work can be achieved with a simple desktop computer,
which is of great interest for experimentalists. In Sec. III, we
apply this formalism to the calculation of hole levels and of
interband absorption spectra of nanocrystals of several popu-
lar III-V and II-VI compound semiconductors. We compare
the results of 2B and 3B modelings and draw conclusions on
the measurable influence of the SO band. The work is sum-
marized in Sec. IV.

II. MODELING OF CONFINED STATES

Within the framework of the envelope-function formal-
ism, we consider the crystallites as spherical clusters sur-
rounded by an infinitely high potential barrier. Then, the an-
gular and radial parts of the wave functions are separable.
The eigenfunctions of the problem are the product of spheri-
cal harmonics~quantum numbersL andm!, for the angular
variation, by radial functions. The condition of vanishing of
these radial functions at the surface of the sphere (r5R)
provides the stationary states of the system. In the treatment
of valence bands, we made the so-called spherical approxi-
mation, i.e., the following relationship between Luttinger pa-
rameters:g25g3.

The simplest approach of confined electronic states con-
sists in a one-band effective-mass approximation, where con-
duction and valence bands are all assumed parabolic, isotro-
pic, and independent, and where no difference is made
between the so-called light-hole and heavy-hole states. In
most usual semiconductors of interest~CdS, CdSe, CdTe,
GaAs, InP, etc.! the energy gap is large enough to make this
approximation quite reasonable for conduction states. This
one-band approximation will thus be assumed relevant along
the rest of this work, for conduction states.

A. One-band approximation

The conduction-band energy is given, versus the wave
numberK, by E5Ec1K2/2me ~we assume units such that

\51!. Both valence bands are then represented by a common
dispersion relation,E5Ev2g1K

2/2, while the spin-orbit
split-off band is given by the equationE5Ev2D2g1K

2/2.
Ec andEv are the energies at theG point, at the bottom of
conduction band, and at the top of valence bands, respec-
tively.

In this simplistic approach, the Hamiltonian commutes
with the angular momentum operatorL2. Thus, the wave
functions, for all types of carriers, are given by spherical
harmonicsYL

m(u,w), multiplied by spherical Bessel func-
tions j L(Kr ), for the radial variation. The boundary condi-
tion then takes the formj L(KR)50, which is fulfilled by an
infinity of discrete valuesKn , wheren is the principal quan-
tum number. The orbital numberL defines the type of the
quantized state. Such states will be termed ‘‘pure’’S-, P-,
D-like ~etc.! states, in the following, forL50, 1, 2,..., re-
spectively. Their degeneracies are equal to (2L11).

Concerning optical transitions, simple selection rules ap-
ply: Dn50 andDL50. The strengths of the transitions are
directly proportional to the degeneracies, i.e., (2L11).

Although reasonably accurate for describing the energy of
the fundamental optical transition in materials where
0,2g2/g1,0.7,21 this approach does not properly account for
the energies and relative strengths of the variety of excited
transitions. In fact, for a better description of small crystal-
lites, one must take into account the confinement-induced
valence-band mixings.

We follow and develop the analytical procedure intro-
duced in Ref. 23: The unknown valence-band wave functions
are expanded over a set of several Bloch states, multiplied by
envelope functions. For rather wide-band-gap materials, the
matrix representation of the valence-band Hamiltonian—the
so-called Kane matrix—can be restricted to the basis of the
only valence-banduJ,mJ& Bloch states (J5 3

2, mJ56 3
2 and

6 1
2, for light and heavy holes,J5 1

2, mJ561
2, for the SO

band!. The corresponding 636 Hamiltonian matrix is well
known: we keep the same notations as in Ref. 23.

B. Two-band approximation

Several authors have assumed no mixing between the up-
per valence bands and the SO band.18,21,24In this case, one
can restrict the valence-band Hamiltonian to the four upper
valence states, the so-called light-hole and heavy-hole bands.

As stated above, the Hamiltonian commutes26 with opera-
tor F5J1L. The Luttinger-Kohn Hamiltonian can be turned
from its matrix representation in theuJ,mJ& basis into its
matrix representation in the basis of eigenstates ofF andFz
@to each value ofF correspond (2F11) values forFz#. This
is done by calculating the Clebsch-Gordan coefficients cor-
responding to the addition ofJ5 3

2 and L50, 1, 2,... . The
result is a block-diagonal matrix: in each subspace corre-
sponding toF5 1

2,
3
2,

5
2, ... one gets (2F11) identical 434

matrices, which can be written, in fact, as (2F11) pairs of
232 blocks. Each of these blocks corresponds to the mixing
of two basis states such asuF,Fz ,

3
2,L& and uF,Fz ,

3
2,L12&.

Instead of pureS-, P-, D-like ~etc.! states, one gets cou-
plings between states whose quantum numbersL differ by 2.
The most general expression of quantized states in the semi-
conductor sphere is a combination of orthogonal basis states
of the ‘‘F subspace,’’ multiplied by spherical Bessel func-
tions j L(Kr ) and j L12(Kr ).

7288 53RICHARD, LEFEBVRE, MATHIEU, AND ALLÈGRE



For instance, forL53
2 and whateverFz , using the com-

pact notationuF,Fz ,J,L&5uJ,L&, the diagonalization of one
of the two blocks corresponds to the coupling ofS (L50)
andD (L52) states. One gets the following eigenstates:

uCLH&5A1
2 @ u 32 ,0&2u 32 ,2&],

uCHH&5A1
2 @ u 32 ,0&1u 32 ,2&], ~1!

and one thus obtains the following light-hole- and heavy-
hole-like ‘‘envelope vectors,’’ written on the basis of theu 32,L&
states:

fLH~r !5A1
2 F j 0~KLHr !

2 j 2~KLHr !G , fHH~r !5A1
2 F j 0~KHHr !

j 2~KHHr !G .
~2!

WhateverF, the wave vectorsKHH andKLH are always given
by the simple dispersion relationsE5Ev2~g122g2!KHH

2 and
E5Ev2~g112g2!K LH

2 . It is to be noted that the crystal-field
splitting of these bands, associated with the hexagonal sym-
metry of wurtzite semiconductors like CdS or CdSe, is very
small compared to the large confinement-induced energy
shifts and splittings of the various levels. This splitting will
be ignored, in first approximation.

Finally, the most general expression for the valence-band
wave function is a normalized linear combination offLH(r )
andfHH(r ). The condition of vanishing of this wave func-
tion at the surface of the crystallite (r5R) provides the
quantized levels. Though the change of basis set and the
calculation of all matrix elements are a bit tedious, the di-
agonalization of each block is straightforward and the final
result is quite simple. The states in each subspace~up toF5
7
2!, theirFz degeneracies, and the corresponding equations to
be solved are summarized below:

P1/2 ~2! j 1~KLHR!50, ~3a!

D1/2 ~2! j 2~KLHR!50, ~3b!

SD3/2 ~4! j 0~KHHR! j 2~KLHR!1 j 0~KLHR! j 2~KHHR!50, ~3c!

PF3/2 ~4! 9 j 1~KHHR! j 3~KLHR!1 j 1~KLHR! j 3~KHHR!50, ~3d!

PF5/2 ~6! 2 j 1~KHHR! j 3~KLHR!13 j 1~KLHR! j 3~KHHR!50, ~3e!

DG5/2 ~6! 6 j 2~KHHR! j 4~KLHR!1 j 2~KLHR! j 4~KHHR!50, ~3f!

DG7/2 ~8! 5 j 2~KHHR! j 4~KLHR!19 j 2~KLHR! j 4~KHHR!50. ~3g!

The labeling of the states has been introduced in Sec. I.
Each equation has an infinite number of solutions labeled by
the principal quantum numbern (n51,2,...). Theground
state is always the 1SD3/2.

18,21–24The energetic ordering of
the excited states strongly depends on the values of Luttinger
parametersg1 and g2, as do the oscillator strengths of the
optical transitions from these states to conduction-band
quantized levels.

Equations~3a!–~3d! have already been given in Ref. 23.
Solving these equations is straightforward, if compared to
usual methods using all-numerical expansion-diagonalization
procedures. We also remark the presence of stateD1/2 @Eq.
~3b!#, which derives from the formalism of Ref. 23. For
some reason, this state is not mentioned in several previous
works.21,24

The absorption spectrum of a crystallite is constituted by
a series of peaks which correspond to the transitions between
conduction and valence quantized levels. The allowed inter-
band transitions involve initial and final states which possess
commonL contributions. The oscillator strengths of these
transitions are given by the squared matrix element of the
dipole moment between the normalized final and initial
states. For instance, the fundamental transition is
1SD3/2→1Se ,

10,18 and its oscillator strength is

z^1SD3/2upu1Se& z258pP2FAE
0

R

j 0~KHHr! j 0~Ker!r2dr

1BE
0

R

j 0~KLHr! j 0~Ker!r2drG2, ~4!

where j 0 is the spherical Bessel function of order 0 and
Ke5p/R is the wave number of the confined electron, in the
1Se state.P

25z^SupjuJ&z2 is the squared matrix element of
pj (j5x,y,z) between the conduction band and stateuJ&
(J5X,Y,Z).

Allowed transitions also exist between levels originating
from the split-off band and the conduction band. Within the
present approximation, the simpleDn50 andDL50 rules
apply, and the oscillator strengths ofSe2SSO, Pe2PSO,...
transitions are equal to 2(2L11)P2.

The optical density of a crystallite of radiusR versus the
photon energyE is obtained as the sum of all contributions.
In first approximation, the electron-hole Coulomb interaction
will just be included as a low-energy shift of the absorption
lines by a quantity calculated as the matrix element of the
Coulomb potential between conduction and valence
eigenstates.27 For a realistic modeling5 of absorption spectra,
we include a homogeneous broadening of absorption peaks
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as a Lorentzian function, with a half width at half maximum
G. In addition, because the experimental quantized exciton
peaks are broadened by an inhomogeneous distribution of
sizes, we may also assume a Gaussian size-distribution func-
tion P(R) with average radiusR̄ and variances 2.

C. Three-band approximation

We extend the calculations of Ref. 23 to the mixing of the
three upper valence bands. The total angular momentum
F5L1J remains a good quantum number. We treat explic-
itly the cases ofF51

2 and
3
2, and go more rapidly to the result

for F5 5
2. We thus obtain analytically the set of equations

yielding the valence-band eigenenergies and eigenstates of
spherical crystallites, versus their radiusR.

In the degenerate subspaces whereF5 1
2, Fz561

2 the
valence-band Hamiltonian may be written23

H1/25FHodd 0

0 Heven
G , ~5!

where blocksH $odd,even% have the form

u 32 ,$1,2%& u 12 ,$1,0%&

H $odd,even%5FEv2~g112g2!K
2/2 2A2g2K

2

2A2g2K
2 Ev2D2g1K

2/2G .
~6!

We use the compact notationsuJ,L& for basis states and
the numbers in curly brackets represent the two possibilities
for L. These blocks correspond respectively to states denoted
PP1/2 and DS1/2, which are parents of theP1/2 and D1/2
states of the 2B modeling ~from now on, the last capital
letter will always correspond to the contribution of the SO
band!. The first block ~statesPP1/2! yields the following
eigenstates:

uCLS1&5
1

Ar22xr
F2g2K

2u
3
2 ,1&2

1
A2

~r2x!u
1
2 ,1& G , ~7a!

uCLS2&5
1

Ar21xr
F2g2K

2u
3
2 ,1&2

1
A2

~r1x!u
1
2 ,1& G , ~7b!

where r5 1
2A9g2

2K422g2K
2D1D2 and x5D2g2K

2. The
eigenenergies are given by

ELS1
5EV2~D/2!2~g11g2!~K

2/2!1r, ~8a!

ELS2
5EV2~D/2!2~g11g2!~K

2/2!2r. ~8b!

For the second block (DS1/2) the expressions of eigenval-
ues and eigenstates are absolutely similar. One just has to
replace the basis kets by~u32,&,u

1
2,0&!.

Then we make the same development as in the case of
two coupled bands. For a given energyE, statesuCLS1& and
uCLS2&, respectively, correspond to wave numbersK1 and
K2 , which can be derived analytically from Eqs.~8!, yielding
two sets of values~r1,x1! and ~r2,x2!. The eigenvectors of
the first basis (PP1/2) may be written from spherical Bessel
functions:

f i~r !5
1

Ar i
27x ir i

F 2g2Ki
2 j 1~Kir !

21

A2
~r i7x i ! j 1~Kir !G ~ i51,2!.

~9!

Upper signs correspond toi51 and lower signs toi52.
The most general expression of the corresponding valence-
band wave function is thus a linear combination off1(r )
andf2(r ). Again the condition that the wave function is zero
at the surface of the sphere yields the simple equation to be
solved. In the case ofPP1/2 states, this equation can be writ-
ten

~b2u! j 1~K1R! j 1~K2R!50, ~10!

where b5K 1
2~r21x2! and u5K 2

2~r12x1!. With the same
readiness, we can write the corresponding equation forDS1/2
states:

b j 2~K1R! j 0~K2R!2u j 2~K2R! j 0~K1R!50. ~11!

We shall now present the fourfold degenerate case ofF5
3
2 (Fz561

2, 6 3
2!. The corresponding sub-HamiltonianH3/2

can be written in the same form as Eq.~5!, where the sub-
blocks are given by

u 32 ,0& u 32 ,2& u 12 ,2&

Heven5F Ev2g1K
2/2 g2K

2 g2K
2

g2K
2 Ev2g1K

2/2 2g2K
2

g2K
2 2g2K

2 Ev2D2g1K
2/2

G ~12a!

and

u 32 ,1& u 32 ,3& u 12 ,1&

Hodd5F Ev2~g1/224g2/5!K2/2 3g2K
2/5 g2K

2/A5
3g2K

2/5 Ev2~g1/214g2/5!K2/2 23g2K
2/A5

g2K
2/A5 23g2K

2/A5 Ev2D2g1K
2/2
G . ~12b!
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The diagonalizations of these matrices yield an uncoupled
heavy-hole-like stateuCHH& and two mixed statesuCLS1& and
uCLS2& involving light-hole and split-off-like bands.

Let us detail the case of blockHeven, corresponding to
SDD3/2 states. The diagonalization yields the following so-
lutions:

uCHH&5~ u 32 ,0&1u 32 ,2&)/A2,

uCLS1
&5

1

Ar22xr
@g2K

2uCLS8&1
1

A2
~r2x!u 12 ,2&],

uCLS2
&5

1

Ar21xr
@g2K

2uCLS8&2
1

A2 ~r1x!u 12 ,2&], ~13!

where uCLS8&5(u 32 ,0&2u 3
2 ,2&)/A2.

Concerning the dispersion relations,ELS1
andELS2

have
rigorously the same expressions as above@Eqs.~8!#. For the
heavy-hole-like band, one has

EHH5Ev2~g122g2!K
2/2. ~14!

For a given energyE these equations provide three wave
numbersKHH , K1 , and K2 . The general threefold wave
functions, in the basis of theuJ,L& states, are

fHH~r !5
1

A2 F j 0~KHHr !

j 2~KHHr !

0
G ,

f1~r !5
1

A2r1
222x1r1

F 2g2K1
2 j 0~K1r !

22g2K1
2 j 2~K1r !

~r12x1! j 2~K1r !
G ,

and

f2~r !5
1

A2r2
212x2r2

F 2g2K2
2 j 0~K2r !

22g2K2
2 j 2~K2r !

2~r21x2! j 2~K2r !
G . ~15!

The most general expression of the wave function is again
a normalized combination of these states, and the boundary
condition atr5R provides the equation forSDD3/2 levels:

j 2~KHHR!@b j 0~K1R! j 2~K2R!1u j 2~K1R! j 0~K2R!#

1 j 0~KHHR! j 2~K1R! j 2~K2R!~b1u!50. ~16!

For the second subblock the procedure is identical. The
dispersion relations are the same, and the eigenvectors are

uCHH&5~3u 32 ,1&1u 32 ,3&)/A10,

uCLS1
&5

1

Ar22xr
@g2K

2uCLS8&1
1

A2
~r2x!u 12 ,1&],

uCLS2
&5

1

Ar21xr
@g2K

2uCLS8&2
1

A2 ~r1x!u 12 ,1&], ~17!

whereuCLS8&5~u32,1&23u 3
23&!/A10.

The energies and wave functions ofPFP3/2 states are
obtained by solving

9 j 1~KHHR!@b j 1~K1R! j 3~K2R!1u j 3~K1R! j 1~K2R!#

1 j 3~KHHR! j 1~K1R! j 1~K2R!~b1u!50. ~18!

We shall finish with the case of the sixfoldF55
2 Hamil-

tonian, which is again made of two independent 333 blocks.
Two types of states are produced:PFF5/2 andDGD5/2. The
dispersion relations are the same as above. ForPFF5/2
states, we get

3 j 3~KHHR!@b j 1~K1R! j 3~K2R!1u j 3~K1R! j 1~K2R!#

12 j 1~KHHR! j 3~K1R! j 3~K2R!~b1u!50. ~19!

For DGD5/2 states one has to solve

6 j 2~KHHR!@b j 4~K1R! j 2~K2R!1u j 2~K1R! j 4~K2R!#

1 j 4~KHHR! j 2~K1R! j 2~K2R!~b1u!50. ~20!

Equations~10!, ~11!, ~16!, and ~18!–~20! ~F5 1
2,

3
2 and

5
2! are sufficient to obtain a satisfactory description of the
states involved in the absorption spectrum of the crystallite,
within ;1–2 eV above the band-gap energy. The oscillator
strengths of the various allowed transitions are calculated
exactly as in the preceding section, by using the relevant
normalized envelope functions.

III. RESULTS AND DISCUSSION

The numerical parameters used in the following calcula-
tions, for the five considered binaries~CdTe, CdSe, CdS,
GaAs, and InP!, are gathered in Table I.

A. Size dependence of valence-band levels

Similar to the presentations of Refs. 20 and 22, Figs. 1–5
display the calculated energies of valence-band states in
spherical nanocrystals, versus (1/R)2. Figure 1 shows the
results of both the 2B ~a! and 3B ~b! models, in the case of
CdTe nanocrystals. Figure 1~a! shows that, although the up-
per valence-band levels are coupled in the 2B modeling,
their energies all vary linearly with (1/R)2. Oppositely, the
variation of the energy levels is found quite more complex
by the 3B calculation@Fig. 1~b!#. This is caused by numer-
ous anticrossings between levels of the same symmetry, i.e.,
levels with commonL and F values~see, e.g., in Fig. 1, the
crossing between states 1PP1/2 and 2PFP3/2!. In our nota-
tions, as mentioned above, the last capital letter always cor-
responds to the component related to the SO band. For in-
stance, the 1SDD3/2 state is affiliated to the well-known
1SD3/2 state, calculated by the 2B modeling,14,18,21,24but
with an additional ‘‘D contribution’’ from the SO band.

In the case of Fig. 1, the largeD value of CdTe allows one
to analyze such anticrossings. The levels which shift rapidly
to energies close toD exhibit very strong couplings with the
SO band. For instance, the 1D1/2 and 2D1/2 2B levels ac-
quire a substantialScontribution, even for rather large radii.
The resulting 1DS1/2 and 2DS1/2 3B levels thus show a
broad curvature of their energy shift vs (1/R)2. The other
DS1/2 states show several small anticrossings, the place of
which roughly mark where the 1SSO level of a one-band
modeling would have been. However, Fig. 1 demonstrates
that the SO band has also a sizable influence on levels lying
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at much lower energies, namely, the so-called ‘‘odd’’ states
~PF3/2 andPFP3/2!, as discussed below. This result is related
to the large value of the coupling parameterg52g2/g1, in
CdTe. Such importance of effective masses has been evoked
in Refs. 19 and 22. Indeed, this parameter controls not only
the coupling between the two upper valence bands,21 but
also, to a large extent, the coupling of these bands with the
SO bands, since off-diagonal terms in the Hamiltonian are
proportional tog2.

Figure 2 illustrates this strong influence of effective-mass
parameters on the result of the 3B calculation, in the case of
CdSe crystallites. The complex system of crossings and an-
ticrossings is found completely different in Figs. 2~a! and
2~b!, while the onlyg1 parameter has been changed—in~a!
we have taken the value of Table I; in~b! we have used the
value proposed in Ref. 34. The currently poor knowledge of
CdSe valence-band parameters may have important conse-
quences on the reliability of some theoretical predictions, as
shown below. This is essentially due to~i! the fact that Lut-
tinger parameters are only indirectly related to effective
masses, and~ii ! the attempt which is made to treat CdSe as a
material with a zinc-blende structure, while the few available
data are all related to wurtzite CdSe. This problem is even
more serious in the case of CdS, for which a large dispersion
of effective-mass values exists in the literature. Figure 3 pre-
sents the results of a 3B calculation for nanocrystals of this
binary, obtained by using the numerical data of Table I. This
plot may be compared to those presented in Fig. 1 of Ref. 22,
which display the results of assuming three different sets of
light- and heavy-hole masses. In Ref. 22, the Luttinger pa-
rameters were extracted from mass values by using the fol-
lowing equations:g15(1mh11/ml)/2, g25(1ml21/mh)/4,
which is only strictly valid if those masses characterize the
motion along thec axis of the material.

Fortunately, for materials with usual cubic structure like
CdTe, GaAs, or InP, Luttinger parameters are better known,
which warrants the quantitative relevance of theoretical pre-
dictions. Figures 4 and 5 are the analogs of Fig. 3, for spheri-
cal nanocrystals of GaAs and InP, respectively.

TABLE I. Material parameters used in our calculations.Eg is the interband energy gap at liquid-helium
temperature~the average for light- and heavy-holes in binaries with usual wurtzite structure!. « r is the
relative dielectric constant, used in calculations of the Coulomb interaction. Asterisks mark Luttinger param-
eters which were deduced from effective-mass values, by using the following expressions:g15~2/mh'

11/mhz
)/3, g25~1/mh'

21/mhz
)/3, or g15~1/mh'

11/ml'
)/2; g25~1/mh'

21/ml'
)/2. In these equationsmh

(ml) correspond to theG9 ~G7! bands of the wurtzite structures of CdS or CdSe;z and' denote directions
parallel and perpendicular to thec axis of these materials.

Material Eg ~eV! D ~eV! « r g1 g2 me

CdS 2.590a 0.068a 8.58b 1.09a,b 0.34a,b,* 0.200a

CdSe 1.853a 0.420a 9.5a 1.67a,* 0.56a,* 0.120a

CdTe 1.606c 0.927b 9.3c 5.23e 1.89e 0.096c

GaAs 1.519a 0.340a 12.55a,c 6.85a 2.10a 0.067a

InP 1.424c 0.108d 12.35c 5.22f 1.83f 0.080c

aReference 28.
bReference 29.
cReference 30.
dReference 31.
eReference 32.
fReference 33.

FIG. 1. Plot of the calculated energies of some valence-band
levels in spherical CdTe nanocrystals versus (1/R)2, whereR is the
crystal radius.~a! shows the result of the two-band modeling, while
~b! corresponds to the 3B approximation. Solid lines~dotted lines!
represent levels for which interband transitions are allowed~forbid-
den! towards the 1Se ground conduction-band level.
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The examination of Figs. 1–5 allows a few general re-
marks:~i! The influence of the split-off band on energy lev-
els is important, even on the ground levels and even in ma-
terials whereD is large, like CdTe, CdSe, or GaAs.~ii ! The
results of calculations are extremely sensitive to effective-
mass parameters.~iii ! When 1/R2 is large enough so that
most levels overtake theD energy, a quasilinear shift of all
levels is obtained versus this quantity, because the states lie
far enough from their anticrossings. This is particularly true
in materials with small spin-orbit splittings, like CdS or InP.
On the other hand, for materials with large splittings, like
CdTe, complex energy shifts and mixings are present for
crystallites of usual sizes.

Coupling effects are even better illustrated by the calcu-
lation of the energies and oscillator strengths of the allowed
interband optical transitions. As a matter of fact, the oscilla-
tor strengths are controlled by the spatial overlap of electron
and hole envelope functions, which are more sensitive to
mixings than energy levels. Since allowed transitions only
occur when a commonL character exists between initial and
final states, some levels of Figs. 1–5 are represented by solid

curves: these are levels from which a transition is allowed
towards the fundamental 1Se conduction-band state. On the
contrary, other valence-band levels give dipole-forbidden
transitions with this state: they are shown by dotted curves.
Note, in particular, that theS component introduced by the
SO band into theD1/2 states makes them optically active
towards the 1Se state.

B. Absorption spectra

Figure 6 shows the comparison of the two-band and of the
three-band modelings in the particular case of CdS crystal-
lites of average radius 2.10 nm, which has been chosen so
that the fundamental interband transition is equal to 3.10 eV.
In the lower part of the figure, we show the calculated ab-
sorption spectrum of a crowd of crystallites having a Dirac
distribution as a size-dispersion function, but randomly ori-
ented in space. This corresponds to averaging the spectra
over all possible configurations for light polarization against
the crystal axes. A Lorentzian broadening parameterG510

FIG. 2. Energy levels for spherical CdSe nanocrystals versus
(1/R)2, calculated within the 3B approximation, but by using two
sets of material parameters.~a! corresponds to the values of Table I
and, in particular,g151.67.~b! results from the same parameters as
for ~a! exceptg152.10. The assignment of solid and dashed lines is
the same as in Fig. 1.

FIG. 3. The analog of Fig. 1~b!, for CdS spherical crystallites.
This plot is to be compared with those presented in Fig. 1 of Ref.
22. Note that the confinement energies are quite smaller than in
crystallites of other binaries, for the same range of radii.

FIG. 4. The same as Fig. 3, for GaAs nanocrystals.
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meV has been assumed. The top of Fig. 6 displays the results
obtained for a Gaussian size distribution with the same av-
erage radius and with a deviations50.3 nm, which is com-
patible with usual experimental findings.

A few transitions have been assigned, for clarity. The peak
at low energy is constituted by three transitions, which all
involve the 1Se state. Similarly the high-energy peaks are
caused by the superimposition of as much as five transitions
which involve the 1Pe state. Clearly, the present transitions
are affiliated to the 1Se-1Sv and 1Pe-1Pv transitions which
would be calculated by the simple one-band model. Also,
there is a sensitive difference between 2B and 3B approxi-
mations, not only in the ‘‘single crystallite’’ spectra, but also
in the more realistic broadened spectra. For the present ra-

dius, the energy shift between the two absorption onsets is
rather small~;30 meV!. So, at this stage, it may seem rea-
sonable to state that the complexity of the 3B modeling is
not necessary if one intends to use it as a fitting procedure, in
order to estimate the average crystal radius from an experi-
mental spectrum, for instance.

Let us now compare Figs. 6 and 7~the latter is analogous
to Fig. 6, for CdTe crystallites!. The parameters which sig-
nificantly influence the fine structure of absorption spectra
are the Luttinger parameters~g1 and g2! and the spin-orbit
split-off energyD. This is the reason why the general aspect
of the spectra~see, e.g., the relative positions and intensities
of peaksa andb! depend so much on the material. Then, it is
very difficult to extract general trends by comparing different
materials, since too many things vary from one case to an-
other.

Figure 7 shows that, contrary to what could be expected
from Fig. 1, the difference between 2B and 3B approxima-
tions is not large, near the absorption onset. Now, coming to
the description of resolved excited states, which can be ob-
served in samples of good quality,10 the 3Bmodeling is ob-
viously much more accurate. In particular, it is quite clear
that the spectral range usually investigated~;1–2 eV above
the band gap! is by far larger thanD. Consequently, the spin-
orbit split-off band cannot be ignored.

In the 2B modeling, the only parameters areg1 andg2.
The ratio g52 g2/g1 determines the mixing of valence
states,21 and thus the relative intensities of the peaks, inde-
pendently of the crystal size~though the positions of these
peaks depend on the crystal radius and on the values ofg1
andg2!. In the 3B model, the strength of the light-hole–to–
split-off-hole coupling is obviously controlled by the value
of D. However, as noticed above, theg2 parameter is also
very important: the largerg2 the stronger the coupling and
thus the larger the difference between the results of the 2B
and 3B approximations. Anyway, concerningallowed inter-
band transitions, significant differences only occur at ener-
gies of the order ofD above the absorption onset.

Now, let us investigate different situations. Figures 8–12
show examples of ‘‘single-crystallite’’ spectra calculated for
spherical quantum dots of several semiconductors, within the

FIG. 5. The same as Fig. 3, for InP nanocrystals.

FIG. 6. Calculated absorption spectrum of a crowd of CdS crys-
tallites of average radius 2.10 nm. The interband gap of the system
is 3.10 eV. The bottom and the top of the figure correspond to two
different size-dispersion functions~bottom: Dirac distribution;
top: Gaussian distribution withs50.3 nm!. Dashed curves show
the results of the two-band approximation, while solid lines corre-
spond to the three-band modeling. Transitions labeleda–h are re-
lated to the three-band modeling. They correspond, in this order, to
1Se-1SDD3/2, 1Se-2SDD3/2, 1Se-3SDD3/2, 1Pe-1PFP3/2,
1Pe-1PP1/2, 1Pe-1PFF5/2, 1Pe-2PFF5/2, 1Pe-3PFF5/2. For
valence-band levels, the last letter corresponds to theL value of the
spin-orbit split-off state involved.

FIG. 7. The same as Fig. 6, for CdTe crystallites of average
radius 2.80 nm~interband gap: 2.30 eV!. Labelsa–d correspond,
respectively, to 1Se-1SDD3/2, 1Se-2SDD3/2, 1Pe-1PFP3/2,
1Pe-1PFF5/2, and 1Pe-1PP1/2.
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3B modeling. The radii indicated near each spectrum have
been chosen so that the fundamental interband transition en-
ergy varies by regular steps of 0.2 eV. The values for this
energy and for the corresponding excitonic energy are indi-
cated in the captions of the figures, since the fundamental
interband gap has been set to zero in all cases.

The first remark is that the spectra are extremely size- and
material-dependent. Generally speaking, for rather small
crystals, the spectra are made of two groups of transitions.
These are respectively related to the above-mentioned 1Se
and 1Pe conduction-band levels. In all cases, the group of
excited transitions affiliated to the 1Pe state shows a high-
energy shift, when decreasing the radius, which is linear with
the energy shift of the 1Se-related transitions. Roughly
speaking, the excited group shifts approximately twice as
fast as the fundamental one. In fact, Figs. 8–12 allow us to
observe the competition between two effects. The effect of
the only confinement~the ‘‘L effect’’! is responsible for the
above rough tendencies, i.e., the shift of groups of lines. In
addition, the material manifests itself by adding a fine struc-
ture to these global shifts, via what we shall call the ‘‘J
effect.’’ The latter obviously depends on the Luttinger pa-

rameters and on the value ofD. Here again, it is almost
impossible to draw a general trend versus material param-
eters. Anyway, we can make an interesting comparison be-
tween CdTe and InP crystallites. As a matter of fact, both
materials happen to have comparable Luttinger parameters,
while theirD values are completely different. It appears that
the L effect can be clearly observed on InP crystallites be-
cause the position of the 1Pe group above the fundamental
transition is much higher thanD ~;0.1 eV!, in the present
range of radii. On the contrary, for CdTe,D50.927 eV and a
much more intricate situation is obtained, for a comparable
range of blueshifts of the gap, than for InP. For the same
range of small crystallites, in the case of CdS, CdSe, GaAs,
or InP, the confinement-induced blueshifts are such that the
energy difference between the groups of 1Pe and 1Se lines is
larger thanD. Then all confined states lie quite far from their
anticrossings and the spectra are rather simple. This is con-
nected to the remark in the preceding section and is con-
firmed by the direct comparison of Figs. 1~b! and 5: one may
state that, by changing energy and radius scales, Fig. 1~b! is
a kind of ‘‘zoom’’ into the lower left corner of Fig. 5. In
other words, for crystallites of materials with small SO split-
tings, theL effect is dominant and the fine structures of the
groups of peaks tend to disappear when reducing the size.

In such cases, increasing the confinement permits one to
open wide gaps of transparency between the 1Se and 1Pe
allowed transitions. When broadened by size-dispersion ef-

FIG. 8. ‘‘Single crystallite’’ interband absorption spectra of CdS
nanocrystals, calculated within the three-band approximation. The
radius is indicated near each spectrum. Labelsa–h correspond to
1Se-1SDD3/2, 1Se-2SDD3/2, 1Se-3SDD3/2, 1Pe-1PFP3/2,
1Pe-1PP1/2, 1Pe-1PFF5/2, 1Pe-2PFF5/2, 1Pe-3PFF5/2. The
fundamental transition energies have been set to zero, for conve-
nience. From the top to the bottom of the figure, these energies are
2.70, 2.90, 3.10, 3.30, and 3.50 eV. The corresponding excitonic
energies, obtained within the approximation of Ref. 27, are 2.67,
2.84, 3.03, 3.22, and 3.40, respectively.

FIG. 9. The same as Fig. 8, for CdSe crystallites. Interband
gaps: 2.00–2.80 eV by steps of 0.2 eV. Excitonic gaps: 1.95, 2.12,
2.30, 2.48, and 2.67 eV, respectively. Labelsa– f correspond, re-
spectively, to 1Se-1SDD3/2, 1Se-2SDD3/2, 1Pe-1PFP3/2,
1Pe-1PP1/2, 1Pe-1PFF5/2, 1Pe-2PFF5/2.
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fects, the corresponding absorption spectra are made of two
well-separated, poorly structured peaks. This has an interest-
ing consequence, from the experimental viewpoint. As a
matter of fact, it may be useful to perform photolumines-
cence experiments by resonant excitation of size-distributed
nanocrystals. This is meant to obtain a selection of the size of
the particles. What we see here is that these experiments are
likely to be successful in materials such as CdS or InP, where
the 1Pe resonances are always gathered close to each other
and show a very strong sensitivity to the radius. Exciting
with a laser tuned at a defined energy above the absorption
onset will certainly provide a good selection of the size. For
example, for InP crystallites with radii smaller than 5 nm, the
1Pe lines are always contained within;0.2 eV. Now, these
lines shift with the radius at a rate of;0.8 eV/nm. We thus
obtain a theoretical selectivity on the radius smaller than
0.15 nm. For CdS crystallites withR smaller than 2.5 nm, we
can estimate from Fig. 8 a selectively of;0.1 nm.

On the other hand, for CdTe crystallites, even for small
radii, many light-hole and heavy-hole states are still in the
middle of their crossing with those originating from the split-
off band~see Figs. 1 and 10!. Then the above groups of lines
overlap each other and are less easy to define, even with a
size dispersion. In such materials it should be almost impos-
sible to perform a size-selective excitation of the lumines-
cence, because the absorption spectra are made of numerous,
well-spanned transitions, which occupy the whole energy

range of;1.5 eV above the fundamental gap. A laser light is
thus likely to be absorbed by crystallites of several sizes.

For ‘‘intermediate’’ cases like CdSe or GaAs, Figs. 8 and
11 show that rather large gaps exist between the two princi-
pal series of lines, but the 1Pe lines are better resolved and
occupy a larger energy range. Fairly good size selectivities
can be roughly estimated, especially for radii smaller than
;3 nm ~;4 nm! for CdSe~GaAs!, but these values are com-
parable to the usual values ofs. Selective excitation might
be difficult in these cases.

Another remarkable result of 3B calculations should not
affect absorption experiments, but is rather related with pho-
toluminescence properties, since it rules the allowed or for-
bidden character of the fundamental interband transition.

C. Allowed or forbidden fundamental transition

Figure 1~b! clearly shows that the ground valence-band
level in CdTe crystallites is 1PFP3/2, whatever the radius
~this level is optically inactive with the fundamental 1Se
level!. This is in complete contradiction with the prediction
of the 2B modeling by which the ground state is found as the
1SD3/2, whatever the material and whatever the size.21 We
thus find that~i! the interband transition of lowest energy,
which photoluminescence experiments should reveal, is al-
ways symmetry-forbidden in spherical CdTe nanocrystals;
~ii ! this transition lies at a size-dependent energy—of the
order of several tens of meV—below the threshold of the

FIG. 10. The same as Fig. 8, for CdTe crystallites. Interband
gaps: 1.70–2.50 eV by steps of 0.2 eV. Excitonic gaps: 1.67, 1.84,
2.02, 2.21, and 2.39 eV. The transitions are labeled as in Fig. 7.
Labels e and f correspond, respectively, to 1Pe-1PP1/2 and
1Pe-2PFF5/2.

FIG. 11. The same as Fig. 8, for GaAs crystallites. Interband
gaps: 1.7–2.5 eV by steps of 0.2 eV. Excitonic gaps: 1.67, 1.86,
2.05, 2.24, and 2.43 eV. Labelsa– f correspond, respectively, to
1Se-1SDD3/2, 1Se-2SDD3/2, 1Pe-1PFP3/2, 1Pe-1PFF5/2,
1Pe-1PP1/2, 1Pe-2PFF5/2.
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absorption spectrum, i.e., the allowed 1SDD3/2-1Se transi-
tion; ~iii ! the presence of this transition can only be ex-
plained by the influence of the spin-orbit split-off band, al-
though the latter lies;1 eV away from the level of interest.
Practically, intrinsic luminescence should be hardly observed
in CdTe nanocrystals of small size, due to the thermalization
of holes onto the 1PFP3/2 level. The same conclusion can be
safely drawn for InP crystallites, as shown by Fig. 5, which
suggests that the values of Luttinger parameters are a deci-
sive factor for the symmetry of the ground hole level.

Thus, for crystallites made of the two latter cubic binaries,
one expects a luminescence behavior similar to what is usu-
ally observed on CdS crystallites,35 for example. As a matter
of fact, Grygorianet al.22 have tentatively explained the
weak intrinsic luminescence of CdS crystallites by the pres-
ence of a comparable forbidden transition. In fact, the case of
CdS is often considered specific22,25 sinceD568 meV:28 the
strong influence of the split-off band is obvious, while it is
neglected for other materials. According to the parameters of
Table I, we find that the fundamental transition in CdS crys-
tallites should be the forbidden 1PFP3/2-1Se transition, only
for radii smaller than;3 nm, i.e., one excitonic Bohr radius
of bulk CdS ~see Fig. 3!. However, we also find that the
allowed 1SDD3/2-1Se transition lies only a few meV above
the forbidden one, which is not as demonstrative as in the
cases of CdTe and InP, considering the above-mentioned lack
of knowledge of Luttinger parameters in CdS. For instance,

Grigoryan et al.22 have found the 1PFP3/2-1Se transition
fundamental, for two of their three sets of trial parameters.
The same remark is valid for CdSe. In Fig. 2, we observe
that the ground valence-band state is always the 1SDD3/2, if
one assumes the effective masses of Ref. 34, but the
1PFP3/2 and 1SDD3/2 are found almost degenerate if one
agrees with the values of Table I.

At the present stage, after several attempts, by using sets
of parameters from various authors, we estimate that the situ-
ations presented in Figs. 2~a! and 3 are qualitatively relevant.
Consequently, the numerical results of the 3B modeling
seem reasonably coherent with both facts that luminescence
in small CdS nanocrystals is usually related to deep trapping
of carriers, while it is most probably related to shallow trap-
ping of excitons in small CdSe quantum dots.36 Besides, the
presence of an ‘‘odd’’ state as the ground valence-band level
had been calculated by Efros and Rodina20 in the asymptotic
case whereD50. These authors had thus connected the weak
luminescence of CdS crystallites to the small value of the
spin-orbit splitting. We have shown that this criterion is too
restrictive. In a more recent work,25 the same authors have
demonstrated that a slight nonsphericity of crystallites yields
a size-dependent splitting of the fourfold 1SD3/2 ground
valence-band state, which they considered within the 2B ap-
proximation ~the noncubicity of CdS or CdSe should have
the same effect!. In some conditions, this was shown to pos-
sibly alter luminescence properties of the system. However,
from the present study, it seems necessary to~i! try and ob-
tain reliable effective-mass parameters for these materials;
and~ii ! reconsider the effects of the nonsphericity of crystal-
lites ~or the noncubicity of the structure! within the frame-
work of the 3B modeling, so as to get reliable quantitative
information. Work is at hand on this problem, as well as on
the effect of the electron-hole Coulomb interaction on the
above results. Actually, Kochet al.24 have proved, within a
2B approximation, that this interaction may slightly alter
valence-band mixings, but they have shown that this should
be effective for the larger radii. It is thus most likely that the
main features derived here from the 3B modeling should be
preserved after inclusion of excitonic effects, at least for the
smallest nanocrystals.

To be comprehensive, let us finally notice that, for GaAs
crystallites, the present 3B calculation~see Fig. 4!, predicts a
critical radius of;3 nm below which 1PFP3/2 lies at lower
energy than the 1SDD3/2. Experimental evidence of such a
critical radius is still desired.

IV. SUMMARY

We have given a set of analytical equations which can be
easily solved for calculating the energies and envelope func-
tions of valence-band levels in spherical semiconductor
nanocrystals. The Coulomb interaction can be included quite
easily as a first-order perturbation, from the envelope func-
tions of electrons and holes. We have applied our modeling
to five III–V and II–VI binaries which correspond to practi-
cal cases. For all these materials, we have found that includ-
ing couplings with split-off bands is recommended. When
one is only concerned by the determination of the average
crystal size from an experimental absorption spectrum, this is
restricted to materials with smallD values. Anyway, this is

FIG. 12. The same as Fig. 8, for InP crystallites. Interband gaps:
1.5–2.3 eV by steps of 0.2 eV. Excitonic gaps: 1.48, 1.66, 1.87,
2.03, and 2.22 eV. Labelse–h correspond, respectively, to
1Se-1SDD3/2, 1Se-2SDD3/2, 1Se-3SDD3/2, 1Pe-1PFP3/2,
1Pe-1PP1/2, 1Pe-1PFF5/2, 1Pe-2PFF5/2, 1Pe-3PFF5/2.
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crucial for a correct description of transitions between ex-
cited states. The analysis of those excited states has allowed
us to identify the conditions necessary for an efficient size-
selective excitation of the photoluminescence: a rather small
D value is needed.

We also come to the conclusion that it is too restrictive to
focus on the only value ofD, for including or neglecting
spin-orbit split-off states in the calculation of valence-band
mixings. In fact, these mixings also strongly depend on Lut-
tinger parameters, which are very different for different ma-

terials. The result is that the split-off band may have a sub-
stantial influence on the near-band-gap optical response of
spherical semiconductor crystallites,even in some materials
with large spin-orbit splitting energies, like CdTe. In particu-
lar, the relative positions of the most fundamental valence-
band levels, and thus intrinsic luminescence, are dependent
on the coupling with the SO band. To this extent, for CdTe
crystallites, a forbidden fundamental transition is predicted
by the present work, in total contradiction with what the
usual two-band calculations predict.
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