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We consider rectangular graph superlattices of sidesl 1 , l 2 with the wave-function coupling at the junctions
either of thed type, when they are continuous and the sum of their derivatives is proportional to the common
value at the junction with a coupling constanta, or theds8 type with the roles of functions and derivatives
reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric
scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratiou:5 l 1/ l 2 . If
the latter is an irrational badly approximable by rationals,d lattices have no gaps in the weak-coupling case.
We show that there is a quantization for the asymptotic critical values ofa at which new gap series open, and
explain it in terms of number-theoretic properties ofu. We also show how the irregularity is manifested in
terms of Fermi-surface dependence on energy, and possible localization properties under influence of an
external electric field.

I. INTRODUCTION

The advent of new technologies that made possible fabri-
cation of semiconductor quantum wires and other tiny struc-
tures opened a new chapter in solid-state physics as well as
ways to many potentially useful devices. At the same time,
this development has an impact on the quantum theory itself,
which may not be so spectacular but is by no means less
important. The point is that by investigating various ‘‘tai-
lored’’ systems one is able to study—both theoretically and
experimentally—interesting and sometimes unsuspected ef-
fects ‘‘hidden’’ in the basic equations of quantum mechanics.

An example is represented by irregular spectral properties
due to incommensurability of certain parameters of the sys-
tem. Such behavior is known to occur, e.g., for two-
dimensional lattice electrons in a constant magnetic field.1–5

In this paper we discuss similar effects that can be observed
without the presence of an external fieldin certain graph
superlattices.

Before we shall describe the model, a few words should
be said about the simplification it involves. A real quantum
wire is a complicated many-body system; even if we suppose
that it has an ideal crystallic structure, we may describe it as
an electron duct at most in a certain range of energies where
the profile of the conduction band is reasonably flat. Neglect-
ing the lateral size of the wire, i.e., assuming that the propa-
gating electrons remain in a single transverse mode, is an-
other approximation. It can be justified in thin wires, not
only by practical experience, but also by rigorous arguments6

showing that the intermode coupling involves a dynamical
~p-space! tunneling, and therefore it diminishes exponen-
tially with the decreasing wire thickness.

Although the replacement of a quantum wire system by
the corresponding graph structure leaves us with a much sim-
pler model, other idealizations may be useful to draw lessons
from it. A typical one concerns the global size of the system.

As the number of individual cells in a superlattice grows,
‘‘collective effects’’ become more important; the question is
when they begin to prevail. The larger the superlattice, the
more reasonable it is to start from an infinitely extended
structure, with the boundary effects considered as a pertur-
bation.

The last introductory remark concerns the question of
why various results based on number-theory properties of the
parameters represent more than nice mathematics. With a
certain exaggeration one can certainly claim that for a math-
ematician all rationals are the same, while in physics with its
finite-resolution experiments it is meaningless to ask whether
a measured quantity is irrational or not. Fortunately, differ-
ences between number types and between simple and com-
plicated rationals are usually two sides of the same coin.

While theoretically there might be an ultimate difference
between the valueA2 and its close rational approximations,
it is manifested over a long scale~in energy, time, etc.!; at a
shorter scale it is important that the value in question does
not coincide with one of simple harmonies. The irrational
model thus represents a proper description of the ‘‘dishar-
monic’’ situation. These somehow vague statements can be
readily illustrated with the help of the system treated below.

II. DESCRIPTION OF THE MODEL

The configuration space of our model is a two-
dimensional lattice graph whose elementary cell is a rect-
angle of sidesl 1 , l 2 ~cf. Fig. 1!. If no external field is ap-
plied, the motion of electrons on graph links is free. Since
the choice of the energy scale will play no role in the fol-
lowing, we choose atomic units,\2/2m*51, for the sake of
simplicity; hence if the wave functionc is supported in the
interior of a single graph link, the Hamiltonian changes it
into 2c9.

The nontrivial part of the problem concerns, of course, the
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behavior at the junctions. The wave functions must be
coupled there in such a way that the probability flow is pre-
served; in mathematical terms that is equivalent to the claim
that the Hamiltonian is a self-adjoint operator. This has been
known for quite a long time: Schro¨dinger operators on
graphs appeared in quantum mechanics for the first time in
connection with the free-electron model of organic
molecules,7 and in recent years interest in them has been
revived.8–16

The requirement of probability-flow conservation does
not specify the coupling uniquely: it can be satisfied, e.g., if
the wave functions are continuous at all vertices and their
derivatives satisfy there the conditions

(
j

c j8~xm!5amc~xm!, ~1!

wherem is the vertex number, the derivatives are taken in
the same direction~conventionally outward!, the sum runs
over all links entering this vertex,c~xm! is the common
value of the functionscj there, and the real numbersam are
coupling constants characterizing the junctions. For the sake
of brevity, we shall refer to~1! as thed coupling; the name is
motivated by the fact that in the simplest case of just two
links this is just thed interaction on a line.2

A choice of the coupling should, of course, be obtained by
deriving the graph model from a more realistic description,
in which the configuration space consists of a system of
coupled tubes. Though a heuristic argument showing that for
an ideal starlike junction the conditions~1! with am50 might
be the optimal choice was given more than four decades
ago,7 and it is natural to expect that nonzero coupling con-
stants could correspond to the local deformation of the junc-
tion region, impurities, or the influence of external fields—in
short, imperfect contacts—no convincing answer is known
up to now.

Moreover, the coupling~1! is not the only possible cou-
pling: for a junction ofN links there is in general anN2

parameter family of self-adjoint operators that act as the free
Hamiltonian outside the branching points. A method to con-
struct such operators and some particular classes of them was
discussed in detail in Ref. 14. In distinction to~1!, the ‘‘ad-
ditional’’ couplings have wave functionsdiscontinuousat the
vertex, i.e., the limits for at least one pair of links differ
mutually there.

This feature is not automatically disqualifying. It was
shown in Ref. 10 that the so-calledd8 interaction17 represents
a reasonable~if idealized! model for a complicated geometric
scatterer, in which instead by a point contact two half lines
are joined by numerous short ‘‘wires.’’ Moreover, this result
extends to junctions with any number of links;13 the most
natural counterpart to~1! appears to be the so-calledd s8 in-
teraction, which requires the wave-functionderivativesto be
continuous,c18(xm)5•••5cN8 (xm)5:c8(xm), and

(
j

c j~xm!5bmc8~xm! ~2!

for somebm . The ‘‘coupling constants’’bm here measure,
roughly speaking, thetotal lengthof the wires that constitute
the geometric scatterer; for a more detailed discussion we
refer to Ref. 13.

In what follows we shall be concerned with rectangular
lattices in which the coupling at each junction is the same
and belongs to one of the above-described types; for the sake
of brevity we shall refer to them as thed and d s8 lattices,
respectively. In a sense, such lattices represent a generaliza-
tion of the classical Kronig-Penney~KP! model and itsd8
modification2 to higher dimensions.18

III. GENERAL PROPERTIES OF THE SPECTRA

Before proceeding further let us recall some results about
the spectra of the considered lattice Hamiltonians derived in
Ref. 13.

A. d lattices

By assumption, ad lattice is a periodic system in both
directions. Performing the Bloch analysis, we arrive at the
band condition19

cosq1l 12coskl1
sinkl1

1
cosq2l 22coskl2

sinkl2
2

a

2k
50. ~3!

Although an analytic solution can be written in the trivial
case only, the condition~3! nevertheless allows one to draw
many conclusions about the spectrum. Let us rewrite it in the
form

a

2k
5(

j51

2
v j2coskl j
sinkl j

;

if the quasimomentum componentsqj , j51,2, run though
the Brillouin zone, the ranges of the parametersv j :5cosq j l j
cover the interval@21,1#. It is easy to see that for a fixedk,
the maximum of the right side equals

F1~k!:5(
j51

2

tanS kl j2 2
p

2 Fkl jp G D ,
where the square bracket denotes conventionally the integer
part, and the minimum,F2(k), is given by a similar formula
with tan replaced by2cot. It is clear from here that the gaps
of the d-lattice spectrum with a coupling constanta on the
positive part of the energy axis are determined by the condi-
tion

FIG. 1. A rectangular lattice.
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6
a

2k
.6F6~k! ~4!

for 6a.0, respectively. The negative part of the spectrum is
obtained analogously by comparinga/2k with the extremum
values of the functioniF6( ik). Simple consequences of the
condition ~4! are the following:

~a1! The spectrum has a band structure; it coincides with the
positive half line@0,̀ ! if and only if a50.

~a2! If a.0, each upper band end is a square of some
kn :5pn/ l 1 or k̃m :5pm/ l 2 , where n,m are integers.
Similarly, for a,0 each lower band end, starting from
the second one, equalsk n

2 or k̃ m
2 .

~a3! The lowest band threshold is positive fora.0 and
negative if a.0; in the casea,24~l 1

211l 2
21! the

whole first band is negative, and the second one starts at
(p/L)2, whereL:5max~l 1 ,l 2!.

~a4! The positive bands shrink with increasinguau.
~a5! Each gap is contained in the intersection of a pair of

gaps of the Kronig-Penney model with the coupling
constanta and spacingsl 1 and l 2 , respectively.

~a6! All gaps above the threshold are finite. If there are in-
finitely many of them, their widths are asymptotically
bounded by 2uau~l 11l 2!

211O(r21!, wherer is the gap
number.

Most of these results have a natural meaning. In particu-
lar, ~a5! shows that transport properties of the lattice are

better than a combination of its one-dimensional projections.
Notice that the Kronig-Penney spectral condition2 can be
cast into the form~a3! with a single trigonometric expression
on the left-hand side~lhs!. If an energy value is contained in
a Kronig-Penney band in one of the directions, it is trivially
also in a band of the lattice Hamiltonian, the other factor
being annulated by choosinguj5k. The converse is not true,
of course: the condition~a3! may be satisfied even if none of
the factors can be annulated separately. The directions in
which the electron is able to ‘‘dribble’’ through the lattice
will be seen in Sec. VI below.

Less trivial is the irregular dependence of the spectrum on
the rectangle-side ratiou :5l 2/l 1 coming from the existence
of competing periods inF6(k). It appears that it is not only
rationality or irrationality ofu that matters, but also the type
of irrationality plays a role. In this respect, the situation is
similar to the almost Mathieu equation mentioned in the In-
troduction.

Let us recall some elementary facts from the number
theory.20 An irrational numberu is badly approximableby
rationals if there is a positived such thatuqu2pu.dq21

holds for all integersp,q. There are uncountably many such
numbers; nevertheless, they are rather exceptional in the
sense that they form a zero-measure set. Its complement to
the set of all irrationals consists of numbers that we shall call
Last admissible.5 A convenient way to characterize these
number types is through their unique continued-fraction rep-

FIG. 2. The golden-meand lattice spectrum as a function of the coupling constant.

53 7277BAND SPECTRA OF RECTANGULAR GRAPH SUPERLATTICES



resentations:u is badly approximable if and only if the infi-
nite sequence of integer coefficients in this representation is
bounded, and Last admissible otherwise. Needless to say,
rationals have finitely many nonzero coefficients.

If u is irrational, the right-hand side of~4! is never zero;
the existence of gaps requires then that there is a subse-
quence of local minima that tends sufficiently fast to zero. In
this way we were able in Ref. 13 to prove the following
results:

~a7! For a badly approximableu there isa0.0 such that
for uau,a0 the spectrum has no gaps above the
threshold.

~a8! The number of gaps is infinite for anyu provided
uauL.521/2p2; recall thatL:5max~l 1 ,l 2!.

~a9! If u is rational or Last admissible, there are infinitely
many gaps for anyaÞ0.

The worst irrational in this sense is the golden meanu5
1
2(11A5), which has the continued-fraction representation
u5@1,1, . . .#. In this case the sufficient condition for the

existence of infinitely many gaps is necessary at the same
time and coincides with the critical value of the claim~7!:
ua0uL is p2~5u!21/253.4699, . . . ; more about that will be
said in Sec. V below.

B. ds8 lattices

Replacing thed coupling by the boundary conditions~2!,
one can derive the band equation in this case:13

cosq1l 11coskl1
sinkl1

1
cosq2l 21coskl2

sinkl2
2

bk

2
50; ~5!

the same argument as above then shows that spectralbands
of the d s8 lattice with a coupling constantb are determined
by the inequalities

7F7~k!>6
bk

2
~6!

for 6b.0 andk.0, and an analogous relation for the nega-
tive part.

The structure of the spectrum is now different; the condi-
tion ~6! allows one to make the following conclusions:

~b1! The spectrum equals@0,̀ ! if and only if b50; other-
wise there are infinitely many gaps.

~b2! If b.0, the lower end of each band coincides with
somek n

2 or k̃ m
2 , wheren,m are integers. The same is

true forb,0 and the upper band ends, with the excep-
tion of the first one.

~b3! The lowest band threshold is positive forb.0 and
negative ifb,0; in the case2 l 12l 2,b,0 the whole
first band is negative, and the second one starts at zero.

~b4! The positive bands shrink with increasingubu.
~b5! Each gap is contained in the intersection of a pair ofd8

Kronig-Penney gaps2 with the coupling constantb and
spacingsl 1 and l 2 , respectively.

Instead of the asymptotic behavior~a6! of d lattices, we
have a slightly more complicated result. If a band high in the
spectrum is well separated, its widthDr is the same as in the
d8 Kronig-Penney model,Dr58/b l j1O(r21!. Furthermore,
if u is rational and two bands intersect,kn5k̃m for somen,m,
we have a similar expression withl j

21 replaced byl 1
21l 2

21.
It may happen, however, thatkn and k̃m are not identical but
close to each other, so that they still produce a single band.
Then the bandwidth is enhanced; the effect is most profound
just before the band splits. Using the condition~5!, it is
straightforward to estimate the factor of enhancement by
conspiracy of bands:13 asymptotically we have the relation

8

bL
1O~r21!,D r,

32

3b
~ l 1

211 l 2
21!1O~r21!. ~7!

This brief survey shows, in particular, that despite the
generally irregular pattern, the spectra ofd and d s8 lattices
inherit the main feature of their Kronig-Penney analogues,
namely that they are dominated asymptotically by bands and
gaps, respectively, at high energies. At the same time, the
above listed results leave many questions open about the
actual form of these spectra and related quantities. In the
following sections we are going to answer some of them.

FIG. 3. ~a! d-lattice spectrum as a function of the ratiou for
a5220. ~b! d-lattice spectrum as a function of the ratiou for
a520.
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IV. d-LATTICE SPECTRA

The form ~4! of the gap condition makes it possible to
find the d-lattice spectra numerically in dependence on pa-
rameters of the model; the results are shown in Figs. 2 and 3.
The effect of competing periods is obvious: while a square
lattice has a familiar Kronig-Penney spectrum shape2 with
the halved coupling constant as expected from the gap con-
dition, in the general case the gap pattern is irregular.

The dependence of spectral bands on the ratiou shows
clearly that the gaps are contained in view of~a5! in the
intersections of KP gaps. The latter can be numbered by an
integern such thatpnl j

21 is the lower~upper! gap end for
6a.0, respectively~with n50 referring to the region below
the bottom of the spectrum2!. This allows us to label the gaps

of a d lattice naturally by a pair~n1 ,n2! with the integersnj
tagging the KP gaps. Notice also that due to~a2! the actual
gaps occupy the lower part of the allowed region ifa.0, and
the upper one fora,0. Asymptotically each intersection is
of a parallelepiped form and the actual gap part represents a
diagonal cut of it, which conforms with~a6!.

Although theu plots look rather regular, they contain a
hidden irregular pattern that is revealed if the spectrum is
properly folded. A way to do that is suggested by a relation
between the present model and the theory of multidimen-
sional Jacobi matrices21 by which l52sin@k( l 11 l 2!# is the
natural ‘‘folded’’ energy variable, the above-introduced gap
labeling then has a direct relation to that of Ref. 3. The
folded spectrum is illustrated on Fig. 4; we plotl against lnu

FIG. 4. ~a! The foldedd-lattice spectrum as a function ofu ~with the u axis logarithmically scaled!: The regions with at least one gap;
the lowest one,~1,1!, is deleted.~b! The foldedd-lattice spectrum as a function ofu ~with theu axis logarithmically scaled!: An inset of the
previous picture.~c! The foldedd-lattice spectrum as a function ofu ~with the u axis logarithmically scaled!: The plot of gap edges in the
same scale as~a!. ~d! The foldedd-lattice spectrum as a function ofu ~with theu axis logarithmically scaled!: Gap edges in a wider scale,
with several lowest of the (n1,1) and (1,n2) gaps shown.
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to show the symmetry with respect to the exchange of the
basic cell sides. All the gaps close, of course, and the multi-
plicity is infinite, but it changes in a fractal way22 as is seen
when we plot the regions where the original spectrum has at
least one gap. For the sake of illustration we delete here the
‘‘regular’’ ~1,1! gap which produces a concave strip covering
a part of the upper half of the picture. Similar ‘‘nonfractal’’
contributions come from the gaps (n1 ,1! and (1,n2! with
nj>2, which enter the picture at sufficiently largeulnuu. Each
gap of the fractal structure ‘‘contains’’ an infinite series of
embedded gaps as can be seen if we plot just the gap edges;
for instance, the central element~2,2! of the picture is, in
fact, a sequence~2,2!.~3,3!.~4,4!.•••.

V. CRITICAL COUPLING CONSTANTS

Due to~a7!, the spectrum may contain no gaps if the ratio
u is badly approximable and the coupling is weak enough. To
get a better understanding of how the number-theoretic prop-
erties of the parameter imply this result, let us discuss in
more detail the ‘‘worst’’ case of the golden-mean lattice,u5
1
2(11A5).
Suppose that the coupling constant grows from the zero

value. The condition~4! shows that a new gap opens when-
ever the hyperbolic graph of the function on the lhs crosses a
local minimum of the functionF1~ !. These critical values of
the coupling together with the corresponding momenta are
shown on Fig. 5. One can make from here several conclu-
sions:

~i! Gaps open in series. The asymptotic behavior is
clearly visible and the critical points approach the as-
ymptotic value from above; hence a new infinite se-
ries of gaps opens ‘‘from above’’ once the coupling
constant crosses the next critical value.

~ii ! The critical points are extremely sparse; we see that
the patterns are practically equidistant in the logarith-
mic scale. This is a nice illustration of the fact thatu

is badly approximable: to obtain the next close ap-
proximation to it we have to use integers that are
roughly twice as large as their predecessors.

~iii ! The asymptotic critical values are quantized; they ap-
pear at multiples of the two basic values
p2/ lA5u61/2, where l :5Al 1l 2. However, not every
multiple yields a critical value: in both series the same
sequence of integers repeats, namely,

1,4,5,9,11,16,19,20,25, . . . . ~8!

Let us attempt to explain this quantization rule. Recall that
the golden mean is approximated by ratios of successive Fi-
bonacci numbers,17 u5limn→`un11u n

21, where theun sat-
isfy the recursive relationun115un1un21 and assume the
values 1,2,3,5,8,13,21, . . . forn51,2, . . . . In thecontinued-
fraction representation thenth approximant equals
un5@1, . . .1,0, . . .# with n11 nonzero coefficients.

Let us ‘‘spoil’’ the approximation by choosing instead the
sequence ofu n

N:5@1, . . . ,1,N,0, . . .# with a fixed positive
integerN preceded byn ones. This can be alternatively writ-
ten asqn11qn

21, whereqn :5Nun1un21, so that

qn
2S u2

qn11

qn
D 5FN un2~2u!2n

A5
1

un212~2u!2n11

A5 G
3~2u!2n11S 12

N

u D→~21!n
11N2N2

A5

asn→`. The asymptotic threshold values thus are

p2

lA5
u61/2uN22N21u,

which yields the integer multiples 1,5,11,19,29,41, . . . ex-
plaining part of the values~8! but not all of them. The miss-
ing numbers can be obtained if we consider a more general
approximation to the golden mean,

un
A,B :5

Aun121Bun11

Aun111Bun
~9!

for some positiveA,B. The numerical factor in the above
limit is then replaced byuA22B22ABu, so the complete se-
quence~8! is obtained whenA,B run through positive inte-
gers. What is important is thatA,B here neednot be rela-
tively prime. This can be seen directly: it is clear from~4!
that replacing approximation sequences$qn%, $pn% by $Mqn%,
$Mpn% means that the corresponding local minima ofF1(k)
are enhanced by a factor that tends toM asn→`. These are
compared witha/2k at the minima, which isdividedby M ,
so the asymptotic critical value of the modified sequence is
multiplied byM2. In the logarithmic scale thex coordinates
referring to the modified sequence are just shifted by a mul-
tiple of lnM ; this is also seen in Fig. 5.

In this way, we are able to explain how the successive
infinite gap series open in the spectrum as the coupling con-
stanta increases.

FIG. 5. Critical coupling constants for the golden-meand lattice.
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FIG. 6. ~a! Fermi surfaces for different energies for the second band of a squared lattice. ~b! Fermi surfaces for different energies, the
‘‘side view’’ for the same lattice and the logarithmic scale of energy, 1<k<21. ~c! Fermi surfaces for different energies for the second band
of a golden-meand lattice.~d! Fermi surfaces for different energies, the ‘‘side view’’ for the same lattice and the logarithmic scale of energy,
1<k<21.
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FIG. 7. The quantityt~u,a! as a function of
the coupling constant foru51, 5

3 ,
233
144, and the

golden mean. The arrows mark distinguishable
gap openings.

FIG. 8. ~a! The quantityt~u,a! as a function ofu. Plot fora53.4699 over rational values ofu. ~b! The quantityt~u,a! as a function of
u. Plot for a53.4699 withu being random identically distributed numbers.~c! The quantityt~u,a! as a function ofu. Plot for a520 over
rational values ofu. ~d! The quantityt~u,a! as a function ofu. Plot for a520 with u being random identically distributed numbers.
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VI. FERMI SURFACES

The above results do not exhaust all possible irregularities
of the model in question. The fact that a given energy value
is contained in a spectral band tells us nothing about the
directions in which the electron may propagate. To this end
we have to find what are the allowed values of the quasimo-
mentum, i.e., to determine the Fermi surface. As mentioned
above, the Brillouin zone is the rectangle

B:5F2
p

l 1
,
p

l 1
D3F2

p

l 2
,
p

l 2
D , ~10!

and the Fermi surface is a one-dimensional submanifold in it.
Since it has a fourfold symmetry due to the invariance of the
condition~3! with respect to the interchangesqj↔2qj , it is
sufficient to consider a quadrant ofB. The change of vari-
ablesv j :5cosq j l j maps it on the square@21,1#3@21,1#; the
band condition becomes at that

v1
sinkl1

1
v2

sinkl2
5

a

2k
1cotkl11cotkl2

describing a line segment that crosses the square providedk
corresponds to a point in a spectral band. Passing back to the
quasimomentum coordinates we see that the Fermi surface
can have one of several standard shapes.

On the other hand, the way in which the surface changes
as a function of the Fermi energy depends substantially on
the ratiou. This is illustrated in Fig. 6 where we plot the
two-dimensional manifolds spanned by the Fermi surface as
the energy increases; to see the change over a larger range of
energies we choose for the latter a logarithmic scale. We see
that for a square lattice the surface ‘‘evolution’’ produces a
regular pattern of switching ‘‘caps’’ reminiscent of the corre-
sponding quantity for the one-dimensional Kronig-Penney
model,2 while in the golden-mean case the dependence is
highly irregular.

Another lesson from the dependence of Fermi surfaces on
energy concerns the character of the spectrum. To avoid
spectral singularities, the solutionk5k(u1 ,u2! of Eq. ~3! has
to be smooth with local extrema at discrete points only. The
lhs of ~3!, which we denote asD(k,u1 ,u2!, is certainly
smooth in all variables away of the pointskl j5np, and

]D

]k
~k,u1 ,u2!5

l 1
sin2/kl1

1
l 2

sin2/kl2
1

a

2k2
Þ0

FIG. 9. The coupling constant plot for thed s8-lattice spectrum in
the golden-mean case.

FIG. 10. Theds8-lattice spectrum as a function of theu for b55.

FIG. 11. The foldedds8-lattice spectrum as a function ofu ~with
the u axis logarithmically scaled! for b520. The value of momen-
tum is restricted tok<100.

53 7283BAND SPECTRA OF RECTANGULAR GRAPH SUPERLATTICES



holds there, with a possible exception of a discrete set of
points for a,0. Hencek~u1,u2! is smooth by the implicit-
function theorem and

]k

]u j
~u1 ,u2!52 l j

sinu j l j
sinkl j

S ]D

]k
~k,u1 ,u2! D 21

,

which may be simultaneously zero only ifu j l j56p, j51,2.
This means that stationary points ofk~u1,u2! are only at the
center of the Brillouin zone or at its cornerpoints; we con-
clude that

~a10! The d lattice spectrum in the bands is absolutely con-
tinuous.

This is not just a mathematical statement; it tells us that the
transport properties of electrons in the allowed energy win-
dows are ‘‘normal.’’

VII. EXTERNAL FIELDS

Adding an external field, even a simple one like a linear
potential, makes the problem much more difficult, and we
are not able to present more than several heuristic observa-
tions. Recall that the problem is far from being understood
even in the one-dimensional case. It has been demonstrated
recently that an array ofd8 interactions has no absolutely
continuous spectrum when an electric field is applied;10,23

this result extends to a wide class of background potentials.24

Moreover, one may conjecture that the spectrum ofd8
Wannier-Stark ladders depends substantially on the slope of
the potential being pure point and nowhere dense if the latter
is rational, and covering the whole real axis otherwise.23

The case of a periodicd array is more difficult and only
partial results are known,25–27though it is generally believed
that a phase transition occurs in this case with the spectrum
being pure point at weak fields and continuous if the field is
strong.26 The critical field value can be conjectured to be
Fcrit'a2/4a, wherea is the array spacing andF the field
intensity, using the argument of Ref. 26, which is based on
estimating the tunneling probability through the family of
tilted spectral gaps.28 The result is intuitively appealing be-
cause it compares two values having an established meaning:
the energy stepFa with the bound-state energya2/4 of a
singled well. However, the argument neglects the fact that in
some tilted gaps the other~exponentially growing! solution
for the classically forbidden region may play a role, and
therefore it is nota priori clear whether this is the correct
answer.

Applying the same tilted-band picture to the two-
dimensional situation, one may conjecture that in ad s8 lattice
whose spectrum is dominated by the gaps at high energies,
an external electric field is likely to produce a localization in
the field direction; in other words, electrons would be able to
move at most in the directionperpendicularto the field.

In the d lattice case the situation is more complicated.
Even if a Berezhkovski-Ovchinnikov-type~BO! argument26

could be justified, it will yield now only a lower bound to the
power with which the solution to the Schro¨dinger equation
decays, because a gap-width counting disregards the fact that
at some energies belonging to a band a propagation is pos-
sible in certain directions only. With this reservation in mind,
let us compute the expression that is a two-dimensional ana-
logue of the BO power: it equals~p/16F!T ~u,a! with

T ~u,a!:5 lim
n→`

1

lnn (
m51

n udmu2

km
, ~11!

wheredm[dm~u,a! are the corresponding gap widths.
Due to the results of Sec. IV, namely, the property~a4!,

the sum in~11! is monotonously increasing as a function of
uau, the growth being roughly quadratic. The same behavior
is expected forT ~u,a! though for a badly approximableu
the existence of the thresholds discussed in Sec. V may lead
to local deformations of this dependence around the thresh-
old values ofa; this is illustrated on Fig. 7.

On the other hand, let us fix the coupling constant at two

FIG. 12. ~a! Folded-spectrum gaps~black! for rational approxi-
mations to the golden mean,b520. ~b! Folded-spectrum gaps
~black! for rational approximations to the golden mean,b55.
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values,a53.4699, . . . forwhich we know thatT ~u,a! has a
zero, anda520, and plot theu dependence~Fig. 8!. Simple
harmonic values of the ratio produce well-pronounced peaks;
hence the corresponding lattices are expected to exhibit bet-
ter localization properties when an electric field is applied.
On the other hand,T ~p/q,a! may depend substantially on
the integersp,q involved. To illustrate the difference we
compute first this quantity forp,q51,2,3, . . . with q<150,
and after that we plotT ~u,a! with random identically dis-
tributedu values; the latter are almost surely ‘‘typical,’’ i.e.,
irrational.

VIII. d s8-LATTICE SPECTRA

Let us finally check what the spectra ofd s8 lattices look
like. They can be found with the help of the condition~6!; in
the same way as above, we can also check that

~b6! the d s8 lattice spectrum in the bands is absolutely con-
tinuous.

Figure 9 shows the dependence of spectral bands onb, again
for the golden-mean case,u51

2(11A2); we see that the pat-
tern hasglobally the same behavior as thed8 Kronig-Penney
spectrum.2 On the other hand theu plot ~Fig. 10! illustrates
the properties~b2! and ~b5!; the latter can be again used to
label the gaps. Moreover, we see clearly the enhancement
due to conspiracy of bands—cf.~7!.

As in the d situation, the spectrum may be folded into
2 sin@k( l 11l 2!#; this is shown on Fig. 11. We have deleted
here again the lowest ‘‘regular’’ band, which can be done
unambiguously if ulnuu is small enough. In this case the
folded spectrum leaves, in general, some gaps open, but it
may happen at rational values ofu only. Indeed, it is not
difficult to check that for an irrationalu spectrum the folded
spectrum has a full measure. It is sufficient to notice that all

the points (pn/ l )u61/2 with both signs are contained in a
band, either as its lower edge~upper edge forb,0! or an
internal point. The corresponding values ofl are then
2sin@pn~11u61!#; they cover the interval@22,2# due to the
basic result of the ergodic theory.29 On the other hand, for
rationalu some gaps remain open; this is illustrated in Fig.
12.

IX. CONCLUSIONS

We have demonstrated irregular properties of rectangular
d and d s8 lattices with incommensurate sides, as they are
manifested in the form of their spectra, critical coupling-
constant values, dependence of the Fermi surface on the
Fermi energy, and possibly in localization properties under
influence of external fields. These features are expected to
play a dominating role in the behavior of finite but large
enough graph superlattices. It is also natural to conjecture
that similar geometrically induced spectral properties will be
seen in superlattices in which the basic cell has another form.

One lesson drawn from the present considerations con-
cerns the validity of the so-calledBethe-Sommerfeld conjec-
ture by which the number of gaps in periodic systems of
dimensions two or higher is finite. This was proven by
Skriganov30 for Schrödinger operators with nice potentials,
and it is known to be valid also for some systems withd
interactions.2 We have seen that the conjecture may not be
valid if the periodic structure is singular enough: the golden-
meand lattice has, depending on the value of the coupling
constanta, either infinitely many gaps ornone at all.
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