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We consider rectangular graph superlattices of sigek, with the wave-function coupling at the junctions
either of thed type, when they are continuous and the sum of their derivatives is proportional to the common
value at the junction with a coupling constamt or the 5{ type with the roles of functions and derivatives
reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric
scatterers. We show that the band spectra have a hidden fractal structure with respect to the-tatlg. If
the latter is an irrational badly approximable by rationdlattices have no gaps in the weak-coupling case.
We show that there is a quantization for the asymptotic critical valuesaifwhich new gap series open, and
explain it in terms of number-theoretic properties dfWe also show how the irregularity is manifested in
terms of Fermi-surface dependence on energy, and possible localization properties under influence of an
external electric field.

[. INTRODUCTION As the number of individual cells in a superlattice grows,
“collective effects” become more important; the question is
The advent of new technologies that made possible fabriwhen they begin to prevail. The larger the superlattice, the
cation of semiconductor quantum wires and other tiny strucmore reasonable it is to start from an infinitely extended
tures opened a new chapter in solid-state physics as well gructure, with the boundary effects considered as a pertur-
ways to many potentially useful devices. At the same timebation. _ _
this development has an impact on the quantum theory itself, The last introductory remark concerns the question of
which may not be so spectacular but is by no means les@hy various results based on numbe_r—theory properties of the
important. The point is that by investigating various “tai- Parameters represent more than nice mathematics. With a
lored” systems one is able to study—both theoretically andceain exaggeration one can certainly claim that for a math-
experimentally—interesting and sometimes unsuspected efmatician all rationals are the same, while in physics with its
fects “hidden” in the basic equations of quantum mechanicsfinite-resolution experiments it is meaningless to ask Wh_ether
An example is represented by irregular spectral propertied measured quantity is irrational or not. Fortqnately, differ-
due to incommensurability of certain parameters of the sysénces between number types and between simple and com-
tem. Such behavior is known to occur, e.g., for two- pllcate_d ranonalg are usually two sides of the same coin.
dimensional lattice electrons in a constant magnetic figld. ~ While theoretically there might be an ultimate difference
In this paper we discuss similar effects that can be observel@etween the valug/2 and its close rational approximations,
without the presence of an external fidhl certain graph it is manifested over a long scalm energy, time, etg; at a
superlattices. shorter scale it is important that the value in question does
Before we shall describe the model, a few words shouldot coincide with one of simple harmonies. The irrational
be said about the simplification it involves. A real quantummodel thus represents a proper description of the “dishar-
wire is a complicated many-body system; even if we suppos&10nic” situation. These somehow vague statements can be
that it has an ideal crystallic structure, we may describe it ageadily illustrated with the help of the system treated below.
an electron duct at most in a certain range of energies where
fche profile of the_ conduction_ bar_ld is reasor_1ably flat. Neglect- Il. DESCRIPTION OF THE MODEL
ing the lateral size of the wire, i.e., assuming that the propa-
gating electrons remain in a single transverse mode, is an- The configuration space of our model is a two-
other approximation. It can be justified in thin wires, not dimensional lattice graph whose elementary cell is a rect-
only by practical experience, but also by rigorous argunfentsangle of sided,, |, (cf. Fig. 1. If no external field is ap-
showing that the intermode coupling involves a dynamicalplied, the motion of electrons on graph links is free. Since
(p-space tunneling, and therefore it diminishes exponen-the choice of the energy scale will play no role in the fol-
tially with the decreasing wire thickness. lowing, we choose atomic unit§?/2m* =1, for the sake of
Although the replacement of a quantum wire system bysimplicity; hence if the wave functiogy is supported in the
the corresponding graph structure leaves us with a much simirterior of a single graph link, the Hamiltonian changes it
pler model, other idealizations may be useful to draw lessongito — /.
from it. A typical one concerns the global size of the system. The nontrivial part of the problem concerns, of course, the
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This feature is not automatically disqualifying. It was
shown in Ref. 10 that the so-calléllinteractiort’ represents
a reasonabléf idealized model for a complicated geometric
scatterer, in which instead by a point contact two half lines
y 1 are joined by numerous short “wires.” Moreover, this result
extends to junctions with any number of linksthe most
natural counterpart t¢l) appears to be the so-call& in-
teraction which requires the wave-functiaterivativesto be

continuous i1 (X)) = -+ * = ¥ (Xm) = 1’ (Xm), @and
. 20 0m) =Bt () @
FIG. 1. A rectangular lattice. for someB,,,. The “coupling constants’3,, here measure,

roughly speaking, theotal lengthof the wires that constitute

behavior at the junctions. The wave functions must bethe geometric scatterer; for a more detailed discussion we

coupled there in such a way that the probability flow is pre_ref(lar tOhRe';' ﬁ?" hall b 4 with |
served; in mathematical terms that is equivalent to the claim tt'n what %.o;/]vihwe S aI' € f[:oncehrn.e \t’Y't .re(t::]angu ar
that the Hamiltonian is a self-adjoint operator. This has beellF‘ Ices in which the coupling at each junction '? € same
known for quite a long time: Schdinger operators on and belongs to one of the above-described types; for the sake

. ; X
graphs appeared in quantum mechanics for the first time iﬂf brew_ty we shall refer to them as theand J; lattices, .
connection with the free-electron model of organic respectively. In a sense, such lattices represent a generaliza-

molecules, and in recent years interest in them has beer{ion .O.f th.e classi.cal qunig—Pgnne(‘KP) model and its
modificatiorf to higher dimension¥

revived®-16
The requirement of probability-flow conservation does
not specify the coupling uniquely: it can be satisfied, e.g., if ll. GENERAL PROPERTIES OF THE SPECTRA

the wave functions are continuous at all vertices and their

e . » Before proceeding further let us recall some results about
derivatives satisfy there the conditions P g

the spectra of the considered lattice Hamiltonians derived in
Ref. 13.

21': ¢ (Xm) = amip(Xm) @) A. & lattices

By assumption, & lattice is a periodic system in both
wherem is the vertex number, the derivatives are taken indirections. Performing the Bloch analysis, we arrive at the
the same directioriconventionally outward the sum runs band conditioh®
over all links entering this vertexy(x,, is the common
value of the functionsy; there, and the real numbess, are costyl;—cokl; costyl,—cokl, o
coupling constants characterizing the junctions. For the sake sinkl, sinkl, 2k
of brevity, we shall refer t¢1l) as thes coupling the name is
motivated by the fact that in the Simp|est case of just twgo\lthough an analytiC solution can be written in the trivial
links this is just thes interaction on a liné. case only, the conditiofB) nevertheless allows one to draw

A choice of the coupling should, of course, be obtained bymany conclusions about the spectrum. Let us rewrite it in the
deriving the graph model from a more realistic description,form
in which the configuration space consists of a system of
coupled tubes. Though a heuristic argument showing that for a 2 vj—cokl;
an ideal starlike junction the conditiof¥) with a,,=0 might 2k =41 sinkl,
be the optimal choice was given more than four decades

0. (3

KI;

m

ago! and it is natural to expect that nonzero coupling con-if the quasimomentum components, j=1,2, run though
stants could correspond to the local deformation of the juncthe Brillouin zone, the ranges of the parametgrs=cosd;|;
tion region, impurities, or the influence of external fields—in cover the interval —1,1]. It is easy to see that for a fixdd
short, imperfect contacts-no convincing answer is known the maximum of the right side equals
up to now. )

Moreover, the couplingl) is not the only possible cou- Klj
pling: for a junction ofN links there is in general aii? F+(k)::j21 ta 2 2 )
parameter family of self-adjoint operators that act as the free
Hamiltonian outside the branching points. A method to conwhere the square bracket denotes conventionally the integer
struct such operators and some particular classes of them wpart, and the minimun® _(k), is given by a similar formula
discussed in detail in Ref. 14. In distinction tb), the “ad-  with tan replaced by-cot. It is clear from here that the gaps
ditional” couplings have wave functiordiscontinuoust the  of the &lattice spectrum with a coupling constamton the
vertex, i.e., the limits for at least one pair of links differ positive part of the energy axis are determined by the condi-
mutually there. tion
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FIG. 2. The golden-mea# lattice spectrum as a function of the coupling constant.

a better than a combination of its one-dimensional projections.
o> EF=(k) (40 Notice that the Kronig-Penney spectral condifiazan be
cast into the form{a3) with a single trigonometric expression
for *a>0, respectively. The neggtive part of the spectrum ispn the left-hand sidéhs). If an energy value is contained in
obtained analogously by compariag2x with the extremum 5 Kronig-Penney band in one of the directions, it is trivially
values of the functionF . (i «). Simple consequences of the 5155 in a band of the lattice Hamiltonian, the other factor
condition(4) are the following: being annulated by choosirgy=k. The converse is not true,
(@) The spectrum has a band structure; it coincides with thef course: the conditiofa3 may be satisfied even if none of
positive half line[0,) if and only if «=0. the factors can be annulated separately. The directions in
(@2 If «>0, each upper band end is a square of someguhich the electron is able to “dribble” through the lattice
k,:=mn/l, or ky,:=7m/l,, wheren,m are integers. il be seen in Sec. VI below.
Similarly, for a<0 each lower band end, starting from | ess trivial is the irregular dependence of the spectrum on
the second one, equaks; or K- » the rectangle-side ratié :=1,/l, coming from the existence
(@3 The lowest band threshold is positive far>0 and ¢ competing periods i - (k). It appears that it is not only

. . . . _ 71 71
n?]g?t'\f’,e tlfba>c(i),' n th?, case0é<th All +(|12 ) thte < fationality or irrationality off that matters, but also the type
whole first band is negative, and the second one starts j; irrationality plays a role. In this respect, the situation is

2 —
(ad) %.7;“‘) ’ ‘_’;’_herﬁl—-ama;(hilz)-_th . ingl similar to the almost Mathieu equation mentioned in the In-
a e positive bands shrink with increasing. troduction.

(@5 Each gap is contained in the intersection of a pair of Let us recall some elementary facts from the number

gaps of the Kronlg_—Penney model W'th_ the COUp“ngtheory.zo An irrational numberd is badly approximableoy
constante and spacings, andl,, re;pectlvely. . rationals if there is a positiveéd such that|qé—p|>dq !

(@8 A". gaps above the threshpld are finite. If there aré N-po1ds for all integerp,g. There are uncountably many such
Egﬁilgerg%nyp%ﬂﬁm)’—tffg (\:vlqgh?/vﬁreerearlsiﬁ Tﬁg)t';a"y numbers; nevertheless, they are rather exceptional in the
number y 1772 ’ 93P sense that they form a zero-measure set. Its complement to

: the set of all irrationals consists of numbers that we shall call
Most of these results have a natural meaning. In particukast admissibl@ A convenient way to characterize these
lar, (a5 shows that transport properties of the lattice arenumber types is through their unique continued-fraction rep-
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existence of infinitely many gaps is necessary at the same

2500 time and coincides with the critical value of the clai®:
K2 laglL is 74(56) Y?=3.4699. . .; more about that will be
said in Sec. V below.
2000
B. &5 lattices
1500 Replacing thes coupling by the boundary conditiorig),
one can derive the band equation in this cHse:
1000 cosdl;+cokly cosdyl,+cokl, Bk 5
sinkl, sinkl, 20 O
500 the same argument as above then shows that spéetnals

of the § lattice with a coupling constan® are determined
by the inequalities

0
k
FFz(k)= t’% (6)
2500 for = B8>0 andk>0, and an analogous relation for the nega-
k2 tive part.
The structure of the spectrum is now different; the condi-
2000 tion (6) allows one to make the following conclusions:
(b1) The spectrum equal®,©) if and only if 8=0; other-
1500 wise there are infinitely many gaps.

(b2) If B>0, the_ lower end of each band coincides with
somek 2 or k2, wheren,m are integers. The same is
1000 true for <0 and the upper band ends, with the excep-
tion of the first one.
(b3) The lowest band threshold is positive f@>0 and
500 negative if3<0; in the case-1,—1,<B<0 the whole
first band is negative, and the second one starts at zero.
(b4 The positive bands shrink with increasifg).
0 (b5 Each gap is contained in the intersection of a pai#’of
Kronig-Penney gapswith the coupling constang and
spacingd; andl,, respectively.

FIG. 3. (a) &lattice spectrum as a function of the ratfofor
a=-20. (b) &lattice spectrum as a function of the ratibfor
a=20.

Instead of the asymptotic behavi@6) of & lattices, we
have a slightly more complicated result. If a band high in the
spectrum is well separated, its widMy is the same as in the

. . . . . . . & Kronig-Penney modeIA,=8/,8Ij+O(r:1). Furthermore,
resentationsd is badly approximable if and only if the infi- if 0is rational and two bands intersekt=k.. for somen,m,

nite sequence of integer coefficients in this representation .\%/e have a similar expression with * replaced by 7 +1 5 1
i 1 2 -

bounded, and Last admissible otherwise. Needless to San’may happen, however, this andk, are not identical but
] ) m

rationals have finitely many nonzero coefficients. close to each other, so that they still produce a single band.

If 0.'8 irrational, the nght-_hand side @) is NEVEr Z€I0,  Then the bandwidth is enhanced; the effect is most profound
the existence of gaps requires then that there is a subs%-

2 L st before the band splits. Using the conditi®), it is
?huisnvigyouzcwerpelnglt?ﬁtIgeer;di;utf(f)lcpl)ergsg ftfé t}% Ingv?héAstraightfomard to estimate the factor of enhancement by

conspiracy of bands® asymptotically we have the relation

results:
(a7 For a badly approximabl@ there isap>0 such that i+O(r—1)<Ar<g(|1—1+|£1)+O(r—1)_ )
for |aj]<aq the spectrum has no gaps above the BL 3B
threshold. o ) . .
(@® The number of gaps is infinite for ang provided This brief survey shows, in particular, that despite the
la]L>5"Y272 recall thatL:=max(,I,). generally irregular pattern, the spectra®fnd §; lattices
(@9 If ¢is rational or Last admissible, there are infinitely inherit the main feature of their Kronig-Penney analogues,
many gaps for any#0. namely that they are dominated asymptotically by bands and

gaps, respectively, at high energies. At the same time, the

The worst irrational in this sense is the golden mé&an  above listed results leave many questions open about the

31+ \/g), which has the continued-fraction representationactual form of these spectra and related quantities. In the
0=[1,1,...]. In this case the sufficient condition for the following sections we are going to answer some of them.
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FIG. 4. (a) The folded&lattice spectrum as a function @f(with the 6 axis logarithmically scaled The regions with at least one gap;
the lowest one(1,1), is deleted(b) The folded&-lattice spectrum as a function éf(with the 6 axis logarithmically scaledAn inset of the
previous picture(c) The foldedé&-lattice spectrum as a function @f(with the ¢ axis logarithmically scaled The plot of gap edges in the
same scale a®). (d) The foldedé&lattice spectrum as a function @f(with the 6 axis logarithmically scaled Gap edges in a wider scale,
with several lowest of then(;,1) and (1n,) gaps shown.

IV. &LATTICE SPECTRA of a J lattice naturally by a paitn, ,n,) with the integersh;
tagging the KP gaps. Notice also that dug@@) the actual

find the &-lattice spectra numerically in dependence on pa_gaps occupy the lower part of the allowed region##0, and

rameters of the model; the results are shown in Figs. 2 and 31€ UPPer one foe<0. Asymptotically each intersection is
The effect of competing periods is obvious: while a squaré®f @ Parallelepiped form and the actual gap part represents a
lattice has a familiar Kronig-Penney spectrum sRapith  diagonal cut of it, which conforms witte6). .
the halved coupling constant as expected from the gap con- Although the d plots look rather regular, they contain a
dition’ in the genera| case the gap pattern is irregu|ar_ hidden Il‘l'egular pattem that is revealed if the SpeCtI‘um IS
The dependence of spectral bands on the ratehows Pproperly folded. A way to do that is suggested by a relation
clearly that the gaps are contained in view (af) in the between the present model and the theory of multidimen-
intersections of KP gaps. The latter can be numbered by agional Jacobi matricés by which A=2sir{k(l,+1,)] is the
integern such thatq-rnlj‘1 is the lower(upped gap end for natural “folded” energy variable, the above-introduced gap
+a>0, respectivelywith n=0 referring to the region below labeling then has a direct relation to that of Ref. 3. The
the bottom of the spectrun This allows us to label the gaps folded spectrum is illustrated on Fig. 4; we ploagainst I

The form (4) of the gap condition makes it possible to
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100 is badly approximable: to obtain the next close ap-
= : o« proximation to it we have to use integers that are
— T o 4 roughly twice as large as their predecessors.

g : e = s0 (i) The asymptotic critical values are quantized; they ap-
—_ E pear at multiples of the two basic values
T ... ... E e 7215012 wherel:=\I,l,. However, not every
= . . R AR E multiple yields a critical value: in both series the same
=0 Tttt 'L 60 sequence of integers repeats, namely,
— O =T
—r . - 1,4,5,9,11,16,19,20,25, ... . (8)
—+ . e e e e ee e ee a. 4O
= - = Let us attempt to explain this quantization rule. Recall that
a L the golden mean is approximated by ratios of successive Fi-
= . . R -, bonacci numbers] =lim, _.u,, u;*, where theu, sat-
— T - - - L = isfy the recursive relatiom,, . ;=u,+u,_; and assume the
=€ - ) J R S 1 values 1,2,3,5,8,13,21.. forn=1,2, . ... In thecontinued-
e R S S T R fraction representation thenth approximant equals
P e — - O 0,=[1,...1,0,...] with n+1 nonzero coefficients.
10° 10' 10*° 10° 10° 10° «k Let us “spoil” the approximation by choosing instead the
sequence ofN:=[1,...,1N,0,...] with a fixed positive
FIG. 5. Critical coupling constants for the golden-me#fattice. integerN preceded by ones. This can be alternatively writ-

ten asqnﬂqgl, whereq,,:=Nu,+u,_4, so that

to show the symmetry with respect to the exchange of the
basic cell sides. All the gaps close, of course, and the multi-_» o— Qn+1) _
n

plicity is infinite, but it changes in a fractal wé4yas is seen On
when we plot the regions where the original spectrum has at

least one gap. For the sake of illustration we delete here the N 1+N—N?
“regular” (1,1) gap which produces a concave strip covering X (= 9)_n+1( 1- 5) —(= l)nT
a part of the upper half of the picture. Similar “nonfractal”

contributions come from the gaps4,1) and (1n,) with
n;=2, which enter the picture at sufficiently largied|. Each
gap of the fractal structure “contains” an infinite series of
embedded gaps as can be seen if we plot just the gap edges; A2
for instance, the central eleme(®,2) of the picture is, in m‘g IN“~N-1],
fact, a sequenc&,22(3,3D2(4,4D---.

Nn_/_ py—n n-1_,_ py—n+1
Nl G N et Sl ]

V5 V5

asn—o», The asymptotic threshold values thus are

2

which yields the integer multiples 1,5,11,19,29,41. ex-
V. CRITICAL COUPLING CONSTANTS plaining part of the value€8) but not all of them. The miss-

Due t th ¢ i it the rati ing numbers can be obtained if we consider a more general
ue to(a7), the spectrum may contain no gaps if the rai 'oapproximation to the golden mean,

0 is badly approximable and the coupling is weak enough. To
get a better understanding of how the number-theoretic prop-

erties of the parameter imply this result, let us discuss in ghB - — w 9)
more detail the “worst” case of the golden-mean lattiée; : Au,.1+Buj,
3(1+15).

Suppose that the coupling constant grows from the zerdr some positiveA,B. The numerical factor in the above
value. The conditior{4) shows that a new gap opens when-limit is then replaced byA?—B?—AB], so the complete se-
ever the hyperbolic graph of the function on the Ihs crosses guence(8) is obtained wherA,B run through positive inte-
local minimum of the functiorr . ( ). These critical values of 9ers. What is important is thak,B here neechot be rela-
the coupling together with the corresponding momenta arévely prime. This can be seen directly: it is clear frd#)
shown on Fig. 5. One can make from here several concluthat replacing approximation sequengas;, {p} by {Mdy},
sions: {Mp,} means that the corresponding local minimaFaf(k)

] ] . ) __are enhanced by a factor that tenddtaasn—«. These are

(i) ~ Gaps open in series. The asymptotic behavior isompared withe/2« at the minima, which iglivided by M,
clearly visible and the critical points approach the as-sg the asymptotic critical value of the modified sequence is
ymptotic value from above; hence a new infinite se-multiplied by M2. In the logarithmic scale the coordinates
ries of gaps opens “from above” once the coupling referring to the modified sequence are just shifted by a mul-
constant crosses the next critical value. tiple of InM; this is also seen in Fig. 5.

(i) The critical points are extremely sparse; we see that In this way, we are able to explain how the successive
the patterns are practically equidistant in the logarith-infinite gap series open in the spectrum as the coupling con-
mic scale. This is a nice illustration of the fact thtat stanta increases.
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FIG. 9. The coupling constant plot for t#& -lattice spectrum in
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VI. FERMI SURFACES
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FIG. 11. The foldeds;-lattice spectrum as a function éf(with
the 0 axis logarithmically scaledfor 8=20. The value of momen-
tum is restricted t&k=<100.

=

1714 PP
and the Fermi surface is a one-dimensional submanifold in it.

Since it has a fourfold symmetry due to the invariance of the
condition(3) with respect to the interchang@s«— —J; , it is

The above results do not exhaust all possible irregularitiesufficient to consider a quadrant of. The change of vari-

of the model in question. The fact that a given energy valuéblesv; :=cosd;l; maps it on the squafe-1,1]x[~1,1]; the
is contained in a spectral band tells us nothing about th&and condition becomes at that

directions in which the electron may propagate. To this end
we have to find what are the allowed values of the quasimo-
mentum, i.e., to determine the Fermi surface. As mentioned

U1 " (%) o
sinkl, = sinkl, 2k

+cotkl; + cotkl,

above, the Brillouin zone is the rectangle
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FIG. 10. Thed;-lattice spectrum as a function of tidor 3=5.

describing a line segment that crosses the square prokided
corresponds to a point in a spectral band. Passing back to the
quasimomentum coordinates we see that the Fermi surface
can have one of several standard shapes.

On the other hand, the way in which the surface changes
as a function of the Fermi energy depends substantially on
the ratio 6. This is illustrated in Fig. 6 where we plot the
two-dimensional manifolds spanned by the Fermi surface as
the energy increases; to see the change over a larger range of
energies we choose for the latter a logarithmic scale. We see
that for a square lattice the surface “evolution” produces a
regular pattern of switching “caps” reminiscent of the corre-
sponding quantity for the one-dimensional Kronig-Penney
model? while in the golden-mean case the dependence is
highly irregular.

Another lesson from the dependence of Fermi surfaces on
energy concerns the character of the spectrum. To avoid
spectral singularities, the solutiér=Kk(6,, 6,) of Eq. (3) has
to be smooth with local extrema at discrete points only. The
Ilhs of (3), which we denote a®(k,6,,6,), is certainly
smooth in all variables away of the poirk§ =nr, and

a

D 1 2
ok (k01020 = G+ S T 22 # 0
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VII. EXTERNAL FIELDS

b \I‘ i "Jl”h |'\‘ \‘“ P 200 Adding an external field, even a simple one like a linear
,'u: I ‘\H HHH l“lw “‘H i ! ‘Ei %f E 160 S potential, makes the problem much more difficult, and we
il “ “ “l M L ‘ ‘*‘ LSl 3 are not able to present more than several heuristic observa-
h “i \ loakeing “ BT =t tions. Recall that the problem is far from being understood
‘ }’ w‘\" [ ! M i N“W“]‘ Pt os0 N even in the one-dimensional case. It has been demonstrated
‘ i b ‘w; ) ‘Uil NH:"‘ \"H‘IWH‘}] “!g < recently that an array ob' interactions has no absolutely
i m ! m L - e
i | ‘ e § h\ i w || ﬂ‘wh‘w;\} “m J “W‘I L o0 this result extends to a wide class of background poterftials.
L w ’ 1{ ‘ l,llw ‘W" '\M / |]’H Moreover, one may conjecture that the spectrum Sbf
i “ ‘ \UI H\ ‘m WW‘ W‘ |H‘ \H‘\ o040 Wannier-Stark ladders depends substantially on the slope of
i ' 1 \ ‘H . }, \U 1 M ‘1“”}‘}1“‘ 'HFWIH 'Hf M 'ﬂ L 080 the potential being pure point and nowhere dense if the latter
u|| ‘ \‘ Ll “ i‘l w”w w i‘ MI \‘EI ‘ i is rational, and covering the whole real axis othervirse.
‘ H‘ ] “ J“ M‘ \‘\ W \l ﬂﬁ‘ lv'ﬂ }\W‘MF ”W{M 0l |\h il R 120 The case of a periodié array is more difficult and only
i ’ ‘”M MM \" W q]‘ f‘”r“f“H ‘hh\m I partial results are knowf?,%"though it is generally believed
‘ I U‘ ‘ ‘ “U}\! !w IR “lw f i that a phase transition occurs in this case with the spectrum
Ii HI‘ u},ﬂ]ﬂM MI‘ ‘V . . . . . . .
" f being pure point at weak fields and continuous if the field is
0 is 20 2 strong?® The critical field value can be conjectured to be
(b) Fiw~a’l4a, wherea is the array spacing anBl the field
I IV B 500 intensity, using the argument of Ref. 26, which is based on
b = estimating the tunneling probability through the family of
‘ \‘ “ !\ {" 1 A 160 E tilted spectral gap&€ The result is intuitively appealing be-
‘ il \ -‘} “ I 120 2 cause it compares two values having an established meaning:
oy | £ the energy stefra with the bound-state energy/4 of a
! ‘ \‘ i @ gy
fﬂ ol M MM - o080 ¢ single 5 well. However, the argument neglects the fact that in
”’ 4\ ‘ ‘I ‘ I‘ ‘} < some tilted gaps the othéexponentially growing solution
' B - 040 . . ;
}ﬂ HH ‘\‘l “U\ qﬂ\”‘ ‘ 0! for the classically forbidden region may play a role, and
“ w’ ‘ ( H \| \\ ‘ | e therefore it is nota priori clear whether this is the correct
A ‘H; ’ y “ { [ \‘ v || w\{“ i L a0 answer.
| ) | W i 1‘\, " ”w}' ;“|‘ Applying the same tilted-band picture to the two-
Wr ““ . (H “‘\ M“‘. g \“ :";‘,i”“ﬂﬁ - -0.80 dimensional situation, one may conjecture that ifidattice
_Jw A ] u‘) ST “:‘s‘"‘ oL 20 whose spectrum is dominated by the gaps at high energies,
K a “r\ | N‘ W ‘H'\f“h"h " an external electric field is likely to produce a localization in
“\‘ I : 1‘\" I ‘ i ‘i;“‘ o - -1.60 the field direction; in other words, electrons would be able to
AL s L ,!| ol move at most in the directioperpendicularto the field.
I -2.00 . . . . .
S P AR PR S DA PR M T Icl> In the & lattice case the situation is more complicated.

Even if a Berezhkovski-Ovchinnikov-typ@0) argumert®
could be justified, it will yield now only a lower bound to the
power with which the solution to the Sclifinger equation
decays, because a gap-width counting disregards the fact that
at some energies belonging to a band a propagation is pos-
sible in certain directions only. With this reservation in mind,
holds there, with a possible exception of a discrete set ofet us compute the expression that is a two-dimensional ana-

pOIntS for a<0. Hencek(01,02) is smooth by the Imp||C|t- |ogue of the BO power: it equa(gT/]_GF)/(g a) with
function theorem and

FIG. 12. (a) Folded-spectrum gapblack for rational approxi-
mations to the golden mean=20. (b) Folded-spectrum gaps
(black) for rational approximations to the golden me#s5.

|l

-1
( ek 91,92)) , T(6,a): = I|m|—nm§:l -~ (12)

sing;l ;
Pkt ] j
] smklJ

ok b 6=
a_aj( 1,602)=—

which may be simultaneously zero onlyéfl; ==, j= _ . .
This means that stationary points kif¢; ,6,) are only at the where 5,,=,(6,a) are the corresponding gap widths.

center of the Brillouin zone or at its cornerpoints; we con- Du€ to the results of Sec. IV, namely, the propefag),
clude that the sum in(11) is monotonously increasing as a function of

|a| the growth being roughly quadratic. The same behavior
(@10 The ¢ lattice spectrum in the bands is absolutely con-;g expected for7(6,a) though for a badly approximablé
tinuous. the existence of the thresholds discussed in Sec. V may lead
This is not just a mathematical statement; it tells us that théo local deformations of this dependence around the thresh-
transport properties of electrons in the allowed energy winold values ofa; this is illustrated on Fig. 7.
dows are “normal.” On the other hand, let us fix the coupling constant at two
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values,@=3.4699 . . . forwhich we know that7(6,a) has a the points ¢rn/l) 6= with both signs are contained in a
zero, anda=20, and plot thed dependencéFig. 8). Simple  band, either as its lower eddepper edge fol3<<0) or an
harmonic values of the ratio produce well-pronounced peakdhternal point. The corresponding values af are then
hence the corresponding lattices are expected to exhibit befSi ™ (1+67Y)]; they cover the interval—2,2] due to the
ter localization properties when an electric field is applied.2asic result of the ergodic thedty.On the other hand, for
On the other hand7(p/q,) may depend substantially on rational # some gaps remain open; this is illustrated in Fig.
the integersp,q involved. To illustrate the difference we
compute first this quantity fop,q=1,2,3 ... with q<150,
and after that we plot7(6,«) with random identically dis-
tributed 0 values; the latter are almost surely “typical,” i.e.
irrational.

IX. CONCLUSIONS

We have demonstrated irregular properties of rectangular
' § and & lattices with incommensurate sides, as they are
manifested in the form of their spectra, critical coupling-
constant values, dependence of the Fermi surface on the
Fermi energy, and possibly in localization properties under
influence of external fields. These features are expected to
play a dominating role in the behavior of finite but large
enough graph superlattices. It is also natural to conjecture
that similar geometrically induced spectral properties will be
seen in superlattices in which the basic cell has another form.
One lesson drawn from the present considerations con-
cerns the validity of the so-calld@lethe-Sommerfeld conjec-
tinuous ture by_which the nur_nber Qf gaps in p_eriodic systems of
' dimensions two or higher is finite. This was proven by
Figure 9 shows the dependence of spectral bang3 again  Skriganov® for Schralinger operators with nice potentials,
for the golden-mean casé=3(1+ \/E); we see that the pat- and it i_s known to be valid also for some systems with
tern hasglobally the same behavior as tf# Kronig-Penney ~ interactions: We have seen that the conjecture may not be
spectrun? On the other hand thé plot (Fig. 10 illustrates valid if the _perlodlc structure is singular enough: the goldgn-
the propertiegb2) and (b5); the latter can be again used to meangs Iattlcghha§,qup(Tnd|ng on the value of trhe coupling
label the gaps. Moreover, we see clearly the enhancemeﬁPnStanm’ either infinitely many gaps arone at a
due to conspiracy of bands—«f7).

As in the § situation, the spectrum may be folded into ) . .
2 sirfk(I,+1,)]; this is shown on Fig. 11. We have deleted ,. The work was done du_rlng _'ghe visits of P.E. at the Institut
here again the lowest “regular” band, which can be donefur Mathematik, Ruhr-UniversitaBochum and R.G. at the

. : . ' . Nuclear Physics Institute, Czech Academy of Sciences; the

unambiguously if|{ing| is .small enough. In this case the authors express their gratitude to the hosts. The research has
folded spectrum leaves, in general, some gaps open, butfeen partially supported by Grants AS No. 148409 and
may happen at rational values éfonly. Indeed, it is not GACR No. 202-93-1314, by the European Union Project
difficult to check that for an irrationa# spectrum the folded ERB-CIPA-3510-CT-920704/704 and by the “Deutsche For-
spectrum has a full measure. It is sufficient to notice that alschungsgemeinschaftSFB 237.

VIIl. 64-LATTICE SPECTRA

Let us finally check what the spectra 6t lattices look
like. They can be found with the help of the conditid@); in
the same way as above, we can also check that

(b6) the & lattice spectrum in the bands is absolutely con-
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