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Different kinds of instabilities~charge-density wave, spin-density wave, singlet superconductivity! in the
one-dimensional Hubbard model with pair-hopping interaction are investigated using an approximate Bethe-
Salpeter equation. The study is performed at any density of electrons and for arbitrary values of the model
parameters. In the absence of the on-site interaction, no transition occurs at half-filling for any finite negative
pair-hopping parameter, in agreement with recent results; our calculation suggests that the Penson-Kolb model
(t,W) with uW/tu,p/sinkF behaves qualitatively like the Hubbard model (t,U). Phase diagrams of the
Penson-Kolb-Hubbard model (t,U,W) at various densities are presented.

I. INTRODUCTION

The studies of the one-dimensional~1D! models of corre-
lated electronic systems can be a primary source for under-
standing the occurrence of the high-temperature supercon-
ductivity in materials the physics of which is mainly two
dimensional. In these high-Tc superconductors the ‘‘Cooper
pairs’’ are extremely small with coherence lengths compa-
rable with the size of the unit cell. Various mechanisms can
lead to this local pairing.1 In this paper we consider a model
that can be relevant to the high-Tc superconductivity because
it contains not only such a local pairing but also an on-site
electron-electron repulsion, interaction that may lead to the
insulating phase of the cuprates.

The Hamiltonian of the Penson-Kolb-Hubbard~PKH!
model is2

H52t(
i ,s

~ci11,s
† ci ,s1H.c.!1U(

i
ni ,↑ni ,↓

1W(
i

~ci ,↑
† ci ,↓

† ci11,↓ci11,↑1 H.c.!, ~1!

where we have used the standard notation for fermion opera-
tors: ci ,s

† (ci ,s) creates ~destroys! an electron of spin
s5↑,↓ on the lattice sitei andni ,s5ci ,s

† ci ,s . In the absence
of the on-site interaction termU, the Hamiltonian~1! re-
duces to the Penson-Kolb~PK! model3 where the competi-
tion between the single and pair hopping of electrons can
lead to interesting effects in one dimension; a spin-gap tran-
sition at half-filling forW,0 has been the subject of some
controversy.2–5 Recently, some variants of the PKH model
were solved by the Bethe ansatz method,6,7 where the single-
particle hopping term is modified to include interaction ef-
fects: the jumping of an electron to an empty site differs
from that corresponding to an occupied one.8 But the inte-
grability of such a model is possible only under some restric-
tions on the interaction parameters. Consequently, it remains
interesting to have results depending on all parameters of the
model and in a wide range. That is why we will consider
both positive and negative values forU andW (t.0) in Eq.

~1! and arbitrary density; however, our results for the ground
state phase diagram are valid in a definite range of param-
eters determined below.

We investigate the possible occurrence of instabilities in
the ground state of the PKH model in the same manner9 as
for the 1D (t,U,X) model:10 within the ~zero-temperature!
Green-function formalism in the Bloch representation, the
instabilities are signaled by the poles of the vertex function
G, which obeys the Bethe-Salpeter equation. We solve this
equation in the approximation when the irreducible vertex
part is just the bare potential and the single-particle propaga-
tor has the ‘‘free’’ expression. The imaginary part of the
poles~in the total frequency variable!, interpreted as the in-
verse of the relaxation time to a new ground state, gives us
the regions in the parameters space where the instabilities
can occur; in the regions common to more instabilities we
choose that phase with the shortest relaxation time.

II. BETHE-SALPETER EQUATION

To understand what kinds of instabilities can occur in the
system, one can investigate the generalized susceptibilities. It
is assumed that we start from a phase where there is no order
parameter, and study the density-density fluctuations. When
the generalized susceptibility is singular, it is an indication
that a spontaneous distortion or ordering can occur in the
system.

The general form of the susceptibility is

x~k,v!52 i E dteivt^T$D~k,t !D†~k,0!%& ~2!

whereT is the usual chronological operator andD(k,t) is a
density operator. The brackets indicate an average in the
ground state~for the zero-temperature case! or a statistical
average~for the finite-temperature case!. If D(k,t) is a
charge-density operator, the corresponding susceptibility
GCDW will test thecharge-density-wave~CDW! instability; in
a similar way the susceptibilities relevant to the other kinds
of instabilities can be defined:GSDW for spin-density wave
~SDW!, GSS for singlet superconductivity~SS!, andGTS for
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triplet superconductivity~TS!. The correspondence between
these quantities and the components of the vertex function
can be found in Ref. 9.

The generalized susceptibilities are two-particle Green
functions and they obey the Bethe-Salpeter equation. In the
simplest approximation, where only the bare interaction is
considered for the irreducible vertex part and the one-particle
propagatorG is replaced by the free oneG0, it can be writ-
ten as

jG~k,k8;K,V!5
i

2p
V~k,k8;K !

1(
k9

V~k,k9;K !G ~k9;K,V!

3G~k9,k8;K,V! ~3!

where G can be any of the quantitiesGCDW, GSDW, or
GSS; the TS case does not occur in this approximation be-
cause the interaction in the Hamiltonian~1! is only between
electrons with opposite spin.K (V) denotes the transfer mo-
mentum ~frequency! in the particle-hole (ph) channel and
the total momentum~frequency! in the particle-particle
(pp) channel,

j5H 21, CDW

1, SDW, SS.
~4!

G ~k;K,V!5
i

2pE2`

1`

dvG0~k1K/2,v1V/2!

3H G0~k2K/2,v2V/2!, CDW, SDW

G0~K/22k,V/22v!, SS,

~5!

where the addition or subtraction of thek vectors are defined
modulo 2p ~the lattice constant is considered one!. V in Eq.
~3! comes from the interaction part of the Hamiltonian~1! in
the Bloch representation and has the expression

V~k,k8;K !5
1

N HU12Wcos~k1k8!, CDW, SDW

U12Wcos~K !, SS,
~6!

whereN denotes the number of sites in the chain.
For theph channel, Eq.~3! admits a solution of the form

G5
i

2pN
ÊT~k!X̂~K,V!Ê~k8! ~7!

with

Ê~k!5S 1

cosk

sink
D ,X̂~K,V!5S X11 X12 X13

X21 X22 X23

X31 X32 X33

D , ~8!

whereÊT means the transposed matrix ofÊ. The unknown
coefficientsXi j (K,V) are determined from the following al-
gebraic system:

M̂ X̂5S U 0 0

0 22W 0

0 0 22W
D , ~9!

whereM̂ is the 333 matrix

M̂[S j2gU 2c1U 2s1U

22c1W j22c2W 22pW

2s1W 2pW j12s2W
D ~10!

and
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N (
q
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~cosq!nG ~q;K,V!, n51,2

sn5
1

N (
q

~sinq!nG ~q;K,V!, n51,2

p5
1

N (
q

sinqcosqG ~q;K,V! .

~11!

Since for the SS caseV(k,k8;K)[V(K), the solution of the
Eq. ~3! in the pp channel reads immediately

GSS5
i

2pN

V~K !

12V~K !g~K,V!
. ~12!

An instability in the ground state of the system occurs
when the determinantD of the M̂ matrix vanishes for the
first time starting from the noninteracting case, indicating
that theXi j diverge and consequentlyG diverges. Following
Ref. 9, we look for theG poles of the form

V5Eexc1 iT, Eexc5H 0, CDW, SDW ~K52kF!

2«F , SS ~K50!,
~13!

whereEexc is the excitation energy to provide the system to
undergo a phase transition;T is the inverse of the relaxation
time of the unstable ground state and can be also regarded as
a ‘‘temperature’’;kF5pn/2 is the Fermi momentum (n be-
ing the density of electrons! and«F522tcoskF . In this case,
the determinantD has the form

D.m1rFl lnUV0

T U, ~14!

which is valid foruT/V0u!1. This condition is similar to the
BCS theory, where only the excitations of electrons around
the Fermi level~with energies much less than the Debye
energy! are taken into account. We will use the expression
~14! to find the solutions of the equationD50 for
uT/V0u,1 and we expect the results to be reliable at least for
not too big values oful/mu, which plays the role of the
coupling constant.

The parameters in Eq.~14! are given by
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whereu[U/t, w[W/t ;

V058tsin2kFH ~coskF!21, CDW, SDW

1, SS,
~17!

rF5~2psinkF!21, ~18!

rF /t being the density of states at the Fermi level.
It follows that a transition to an ordered phase will occur

at the critical ‘‘temperature’’

Tc5uV0uexpS m

rFl D , ~19!

with m/l,0 ~so thatuTc /Vou,1). In order to get the phase
diagram for the Hamiltonian~1!, we determine at first the
regions in the (w,u) space where the quantitym/l is nega-
tive ~for each case: CDW, SDW, or SS!; when more than one
instability occurs in a given region, we decide for the phase
that is held first, i.e., with the shortest relaxation time~or
equivalently, with the biggest critical ‘‘temperature’’Tc). We
restrict our considerations to that region of the (w,u) space
containing the originu5w50 and wherel/m never be-
comes infinite.

III. PHASE DIAGRAM OF THE PK MODEL

ForU50 the Hamiltonian~1! reduces to the PK model.3

By comparing the various critical ‘‘temperatures’’~for CDW,
SDW, and SS! we get the phase diagram plotted in Fig. 1: the
investigated region isuwusinkF,p following from the condi-
tion uTc /V0u,1, as discussed above. Forw.0 we get only
a SDW. Forw,0 there is a SS phase for densities less than
a critical onenc.(2/p) arccos (e22).0.914 and a CDW
phase forn.nc ; the critical densitync tends to 1 asn→1.
According to our calculations, at half-filling the system is in
a SDW state forw.0 and in a CDW phase forw,0. Let us
remark that at half-filling the conditionuTc /V0u51 ~when
the effective coupling constant becomes infinite! determines
the limitsw56p. It is interesting to note that close to our
limit w52p, around the valuew.23.5, Sikkema and
Affleck5 found a phase-separation transition; in our ap-
proach, the existence of such a transition can be in principle
analyzed by calculating the compressibility in the homoge-
neous phase.12

Since atw50 the electrons move freely and at large
negativew the ground state contains only doubly occupied
and empty sites, it was argued3 that there should be a ‘‘pair-
ing transition’’ at some negativewc . Exact diagonalizations
on chains up to 12 sites2,3 have shown that at half-filling this
transition occurs aroundwc.21.4; but conformal field
methods4 and renormalization-group studies5 have shown
thatwc50. In our calculation the only transition that occurs
at half-filling ~in the investigated range! is for w50.

IV. PHASE DIAGRAMS FOR THE PKH MODEL

In the limit of half-filling (n→1) we found a SDW-CDW
transition along the curve

u522wF12
w2

11~121/p2!w2G , ~20!

FIG. 1. Ground-state phase diagram of the 1D Penson-Kolb
model in a mean-field-type approximation. Here and in the next
figures the unlabeled~empty! parts correspond to regions beyond
the validity limits of the used approximations.
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in agreement with the prediction of Hui and Doniach,2 who
found such a transition foru,uwu!1 along the line
u.22w. The obtained phase diagrams at various densities
are presented in Figs. 2–4. The first remark is that the super-
conducting phase cannot appear whenu12w.0; this is due
to the form of the bare potentialV(K), given by Eq.~6! in
the particle-particle channel, which becomes repulsive in that
region. However, it follows from Figs. 2–4 that we do not

get systematically a SS phase forV(K),0; some regions of
the SDW and/or CDW phase still remain. The SS region
decreases by increasing the density; it disappears forn51.
Technically, this fact comes mainly from the expression of
V0 , given by Eq.~17!: it grows indefinitely asn→1 in the
particle-hole channel, determining an increasing of the criti-
cal ‘‘temperatures’’ for the density-wave instabilities and
thus a suppression of the SS phase. Let us note that near
half-filling our phase diagram is qualitatively in agreement
with that obtained by Hui and Doniach,2 who studied the
same model withu.0 andw,0 using exact diagonalization
for samples of up to 12 sites. For example, for rather large
values ofu andw they found a sequence SDW→ CDW
→ SS in passing fromu.2w to u,2w; this one can be
also observed in our results from Fig. 2.

V. CONCLUSIONS

In this paper we have presented phase diagrams for the
PKH model at arbitrary densities of electrons and for mod-
erate values of the parametersW/t and U/t. Our results,
obtained by using the simplest approximation of the Bethe-
Salpeter equation in both particle-particle and particle-hole
channels, are consistent with other works done at half-filling.
In the particular case of the PK model (U50) we have
found for uWu/t,p/sinkF a phase diagram similar to that
corresponding to the Hubbard model in the same
approximation;9 at half filling, the only transition that occurs
is a SDW-CDW atW50. However, beyond the limits
uWu/t5p/sinkF indicated by our approach, we expect a
qualitative change in the ground state of the PK model. To
what extent or whether or not, this fact can be related to the
phase separation transition found by Sikkema and Affleck5 at
W/t.23.5 near half-filling is a subject for further investi-
gations.

FIG. 2. Ground-state phase diagram of the 1D Penson-Kolb-
Hubbard model near half-filling.

FIG. 3. Ground-state phase diagram of the 1D Penson-Kolb-
Hubbard model in the quarter-filled case.

FIG. 4. Ground-state phase diagram of the 1D Penson-Kolb-
Hubbard model at low density.
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