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Ground-state instabilities in the one-dimensional Penson-Kolb-Hubbard model
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Different kinds of instabilities(charge-density wave, spin-density wave, singlet supercondugtivitthe
one-dimensional Hubbard model with pair-hopping interaction are investigated using an approximate Bethe-
Salpeter equation. The study is performed at any density of electrons and for arbitrary values of the model
parameters. In the absence of the on-site interaction, no transition occurs at half-filling for any finite negative
pair-hopping parameter, in agreement with recent results; our calculation suggests that the Penson-Kolb model
(t,W) with |W/t|<m/sinke behaves qualitatively like the Hubbard modé|\{). Phase diagrams of the
Penson-Kolb-Hubbard modet,J,W) at various densities are presented.

I. INTRODUCTION (1) and arbitrary density; however, our results for the ground
state phase diagram are valid in a definite range of param-
The studies of the one-dimensior{iaD) models of corre- eters determined below.
lated electronic systems can be a primary source for under- We investigate the possible occurrence of instabilities in
standing the occurrence of the high-temperature supercorhe ground state of the PKH model in the same mahasr
ductivity in materials the physics of which is mainly two for the 1D ,U,X) model® within the (zero-temperatuje
dimensional. In these highz superconductors the “Cooper Green-function formalism in the Bloch representation, the
pairs” are extremely small with coherence lengths compainstabilities are signaled by the poles of the vertex function
rable with the size of the unit cell. Various mechanisms carl’, which obeys the Bethe-Salpeter equation. We solve this
lead to this local pairind.In this paper we consider a model equation in the approximation when the irreducible vertex
that can be relevant to the high-superconductivity because part is just the bare potential and the single-particle propaga-
it contains not only such a local pairing but also an on-sitefor has the “free” expression. The imaginary part of the
electron-electron repulsion, interaction that may lead to thgoles(in the total frequency variableinterpreted as the in-

insulating phase of the cuprates. verse of the relaxation time to a new ground state, gives us
The Hamiltonian of the Penson-Kolb-Hubbaf®KH) the regions in the parameters space where the instabilities
model i¢ can occur; in the regions common to more instabilities we

choose that phase with the shortest relaxation time.

op— T
T = t;f (Ciy1,6Ciot H-C-)+U2i N Ni,| Il. BETHE-SALPETER EQUATION

To understand what kinds of instabilities can occur in the

+WE (C{Tcﬂilciﬂiciﬂ,ﬁ H.c), (1) system, one can investigate the generalized susceptibilities. It

' is assumed that we start from a phase where there is no order
parameter, and study the density-density fluctuations. When
5h[1e generalized susceptibility is singular, it is an indication
that a spontaneous distortion or ordering can occur in the
system.

The general form of the susceptibility is

where we have used the standard notation for fermion oper
tors: cfr’(,(ci,(,) creates (destroy$ an electron of spin

o=1,] on the lattice sité andn; ,= cI,,ci,(,. In the absence

I,o
of the on-site interaction terrJ, the Hamiltonian(1) re-
duces to the Penson-KoltPK) modef where the competi-
tion between the single and pair hopping of electrons can _
lead to interesting effects in one dimension; a spin-gap tran- x(k )= —if dte“T{Z(k,H) #"(k,0)}) 2
sition at half-filling for W<<0 has been the subject of some
controversy > Recently, some variants of the PKH model
were solved by the Bethe ansatz metfidayhere the single- whereT is the usual chronological operator afdk,t) is a
particle hopping term is modified to include interaction ef-density operator. The brackets indicate an average in the
fects: the jumping of an electron to an empty site differsground statgfor the zero-temperature caser a statistical
from that corresponding to an occupied &nBut the inte-  average(for the finite-temperature caself Z(k,t) is a
grability of such a model is possible only under some restriccharge-density operator, the corresponding susceptibility
tions on the interaction parameters. Consequently, it remainBcpy will test thecharge-density-waveCDW) instability; in
interesting to have results depending on all parameters of the similar way the susceptibilities relevant to the other kinds
model and in a wide range. That is why we will considerof instabilities can be defined:gpyy for spin-density wave
both positive and negative values idrandW (t>0) in Eq.  (SDW), I' g for singlet superconductivitySS, andI'+g for
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triplet superconductivitfTS). The correspondence between U 0 0

these quantities and the components of the vertex function A~

can be found in Ref. 9. MX={ 0 —2W 0 |, ©
The generalized susceptibilities are two-particle Green 0 0 —-2W

functions and they obey the Bethe-Salpeter equation. In the R

simplest approximation, where only the bare interaction igvhereM is the 3x3 matrix

considered for the irreducible vertex part and the one-particle

propagatoiG is replaced by the free or@°, it can be writ- §&—gu  -cU —s;U

ten as M=| —2c,W &-2c,W  —2pW (10)

i 25,W 2pW E+2s,W
€T (k k'K, Q)= 5-V(k,K'iK)

and
+ V(KK K) (K"K, Q) 1
2 9=y 2 F(aK.Q)
XT (K" k":K,Q) € 1
g n<)// . —

whereI' can be any of the quantitieEcpw, ['spw, Or Cn N zq: (com)"7(a;K, ), n=12
I'ss; the TS case does not occur in this approximation be- 1 (11
cause the interaction in the Hamiltoniéh) is only between sy=— 2 (sing)"Z(q;K,Q), n=1,2
electrons with opposite spii ({2) denotes the transfer mo- N “g
mentum (frequency in the particle-hole §h) channel and 1
the total momentum(frequency in the particle-particle p=NE singcox 4(q; K, Q) .
(pp) channel, 4

Since for the SS casé(k,k’;K)=V(K), the solution of the

g_{ -1, chw (4) Eq. (3) in the pp channel reads immediately

|1, SDW,SS.

[ V(K)
' [ T'ss= 52N I=V(K)g(K.a)
.‘/(’(k;K,Q)=Ef dwGo(k+K/2,0+Q/2) T (K)g(K,Q)

(12)

An instability in the ground state of the system occurs

Oy — _ A
G(k=K/2,0—Qf2),  CDW, SDW when the determinar® of the M matrix vanishes for the

X first time starting from the noninteracting case, indicating
GOUK/2—k, Q12— w), SS, that theX;; diverge and consequently diverges. Following
5 Ref. 9, we look for thd™ poles of the form

where the addition or subtraction of tke_/ectors are _defined 0, CDW, SDW (K=2kg)
modulo 2 (the lattice constant is considered opné in Eq. Q=EgetiT, Ege=
(3) comes from the interaction part of the Hamiltonidn in 28, SS (K=0),
the Bloch representation and has the expression (13

1 (U+2Wcogk+k'), CDW, SDW whereEg,. is the excita_ti_on ._energy_ to provide the system to

V(k,k";K)=— (6)  undergo a phase transitiof;is the inverse of the relaxation
N [ U+2WcogK), SS, time of the unstable ground state and can be also regarded as

a “temperature”;kg= 7n/2 is the Fermi momentumn(be-
ing the density of electronginds = — 2tcokc. In this case,
the determinanD has the form

whereN denotes the number of sites in the chain.
For theph channel, Eq(3) admits a solution of the form

[N A -
- T ’
r= 5 ETIOX(K, QE(K) 7 O st perin Q

0
Eat (14)

with

which is valid for| T/Q,|<1. This condition is similar to the

1 X Xew X BCS theory, where only the excitations of electrons around
A A 1 M2 s the Fermi level(with energies much less than the Debye
E(k)=| cok | X(K,Q)=| X1 Xz Xzz|, (8) energy are taken into account. We will use the expression

sink Xz Xz Xas (14) to find the solutions of the equatio®=0 for

R R |T/Q0|<1 and we expect the results to be reliable at least for

whereET means the transposed matrix Bf The unknown not too big values of\/u|, which plays the role of the

coefficientsX;;(K,(2) are determined from the following al- coupling constant.

gebraic system: The parameters in Eq14) are given by
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2 w2 1 kZ—In?|coskg|
"‘l-‘r—(SInk,:)W"'—"'

—_— SDW
277 S|n2kF uw,
M= 1 2Ke 2 2 (15
— CDbwW
t53 Sinke | tarke In|coskg| + kg —In“|cokg| |u
1, SS,
1 o +2 e In|coskg| +2 W’ SDW
5 u+2w= - Sinkg + Sirke uw_w(sm W%,
A= 1 ke k (16)
- CDW
+—3 1 Ztaﬁ(F+—nzk—F+2ln|cod<,:| uw?
u+2w, SS,
|
whereu=U/t, w=W/t ; Since atw=0 the electrons move freely and at large
. negativew the ground state contains only doubly occupied
O — 8tsirk (cokg)~ ", CDW, SDW 1 and empty sites, it was argukthat there should be a “pair-
0= SlSIMKe 1, SS, (17 ing transition” at some negativey.. Exact diagonalizations
on chains up to 12 sités have shown that at half-filling this
pe=(2msinkg) 1, (18  transition occurs aroundv.=—1.4; but conformal field

methodé and renormalization-group studiekave shown
thatw.= 0. In our calculation the only transition that occurs
at half-filling (in the investigated rangés for w=0.

pe/t being the density of states at the Fermi level.
It follows that a transition to an ordered phase will occur
at the critical “temperature”

TC=|QO|eX[{ pL)\)’ (19 IV. PHASE DIAGRAMS FOR THE PKH MODEL
F

with w/\ <0 (so that|T./Q,|<1). In order to get the phase
diagram for the Hamiltoniaril), we determine at first the
regions in the W,u) space where the quantify/\ is nega-
tive (for each case: CDW, SDW, or $Svhen more than one
instability occurs in a given region, we decide for the phase u=-—2w|1-
that is held first, i.e., with the shortest relaxation tirfos
equivalently, with the biggest critical “temperaturé?y). We
restrict our considerations to that region of tive, ) space
containing the originu=w=0 and where\/u never be-
comes infinite.

In the limit of half-filing (n— 1) we found a SDW-CDW
transition along the curve

W2

1+ (1-UndWe) 20

W/t

Ill. PHASE DIAGRAM OF THE PK MODEL

For U=0 the Hamiltonian(1) reduces to the PK mod&lI. ]

By comparing the various critical “temperaturegbr CDW,
SDW, and Sgwe get the phase diagram plotted in Fig. 1: the
investigated region iBw|sink=< 7 following from the condi- o s 05 or 0
tion | T./Q/<1, as discussed above. Fer>0 we get only R B
a SDW. Forw<0 there is a SS phase for densities less than
a critical onen.>(2/m) arccos € 2)=0.914 and a CDW
phase fom>n_; the critical densityn; tends to 1 an— 1.
According to our calculations, at half-filling the system is in
a SDW state foww>0 and in a CDW phase fav<<0. Let us
remark that at half-filling the conditiofiT./Q¢|=1 (when

the effective coupling constant becomes infinidetermines
the limitsw= = 7r. It is interesting to note that close to our
limit w=—, around the valuev=-3.5, Sikkema and
Affleck® found a phase-separation transition; in our ap- FIG. 1. Ground-state phase diagram of the 1D Penson-Kolb
proach, the existence of such a transition can be in principléhodel in a mean-field-type approximation. Here and in the next
analyzed by calculating the compressibility in the homoge-igures the unlabeledempty parts correspond to regions beyond
neous phasbz. the validity limits of the used approximations.
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8- 8
4: 4:
0: ——————— 0: ———————
e e
_3: _B_-
W/t

FIG. 2. Ground-state phase diagram of the 1D Penson-Kolb- F|G. 4. Ground-state phase diagram of the 1D Penson-Kolb-
Hubbard model near half-fll“ng Hubbard model at low density.

in agreement with the prediction of Hui and Donigcivho ~ get systematically a SS phase #(K) <0; some regions of
found such a transition foru,|w|<1 along the line the SDW and/or CDW phase still remain. The SS region
u=—2w. The obtained phase diagrams at various densitiedecreases by increasing the density; it disappears fot.

are presented in Figs. 2—4. The first remark is that the supefechnically, this fact comes mainly from the expression of
conducting phase cannot appear when2w>0; this is due o, given by Eq.(17): it grows indefinitely an—1 in the

to the form of the bare potentid(K), given by Eq.(6) in particle-hole channel, determining an increasing of the criti-
the particle-particle channel, which becomes repulsive in thagal “temperatures” for the density-wave instabilities and

region. However, it follows from Figs. 2—4 that we do not thus a suppression of the SS phase. Let us note that near
half-filling our phase diagram is qualitatively in agreement

with that obtained by Hui and Doniaéhwho studied the
same model withu>0 andw< 0 using exact diagonalization
for samples of up to 12 sites. For example, for rather large
values ofu andw they found a sequence SDW CDW

— SS in passing fronu>—w to u<—w; this one can be
also observed in our results from Fig. 2.

U/t

V. CONCLUSIONS

In this paper we have presented phase diagrams for the
PKH model at arbitrary densities of electrons and for mod-
erate values of the parametefd/t and U/t. Our results,
obtained by using the simplest approximation of the Bethe-
Salpeter equation in both particle-particle and particle-hole
channels, are consistent with other works done at half-filling.
In the particular case of the PK model €0) we have
found for |W|/t<m/sink: a phase diagram similar to that
corresponding to the Hubbard model in the same
approximatior? at half filling, the only transition that occurs
is a SDW-CDW atW=0. However, beyond the limits
W/t |W|/t=m/sink: indicated by our approach, we expect a
qualitative change in the ground state of the PK model. To
what extent or whether or not, this fact can be related to the
phase separation transition found by Sikkema and Afflatk
FIG. 3. Ground-state phase diagram of the 1D Penson-KolbW/t=—3.5 near half-filling is a subject for further investi-
Hubbard model in the quarter-filled case. gations.
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