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A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in
detail. The method is based on a formulation of density-functional theory in which the ground-state energy is
determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of
the latter lie in the range@0,1#. Linear-scaling behavior is achieved by requiring that the density matrix should
vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is
imposed by the method of Li, Nunes, and Vanderbilt. The scheme is implemented by calculating all terms in
the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method.
Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix
is increased. A discussion of the relation between the present method and other linear-scaling methods is given,
and some problems that still require solution are indicated.

I. INTRODUCTION

During the last decade, first-principles total-energy meth-
ods based on density-functional theory~DFT! combined with
the pseudopotential method have become established as a
major tool in the study of condensed matter.1 The DFT
pseudopotential approach is now widely used for both static
and dynamic simulations on an enormous range of
condensed-matter problems. However, these methods suffer
from a severe drawback in that their computational cost gen-
erally increases as the cube of the number of atoms in the
system. This unfavorable scaling limits the size of systems
that can be studied with current methods and today’s com-
puters to a few hundred atoms at most. ThisO(N3) scaling
appears in spite of the fact that the complexity of the prob-
lem increases only linearly with the system size. This obser-
vation suggests that the unfavorable scaling of current meth-
ods is a consequence of the way in which the electronic
structure problem is being addressed. Conventional methods
rely either on diagonalization of the Hamiltonian or or-
thonormalization of a set of occupied orbitals, both of which
are intrinsicallyO(N3) operations. It is clear that more effi-
cient methods in which the effort is proportional to the num-
ber of atoms must be possible, and in recent years a consid-
erable effort has been devoted to finding such ‘‘linear-
scaling’’ schemes.2–20

The earliest linear-scaling scheme appears to be the ‘‘di-
vide and conquer’’ method of Yang.2,3 This obtains the elec-
tronic density and hence the total energy by dividing the
system into overlapping subsystems that can be treated inde-
pendently. The density is calculated for each subsystem with
conventional linear combination of atomic orbitals DFT. The
Hamiltonian for each subsystem, which includes the poten-
tial due to the other subsystems, is diagonalized indepen-
dently, thus avoiding the need to diagonalize the full Hamil-
tonian. This procedure is repeated until self-consistency is
achieved. The divide-and-conquer strategy is being success-

fully applied to study the electronic structure of large mo-
lecular systems.4 Baroni and Giannozzi5 also proposed a
scheme that directly determines the electron density. They do
this by discretizing the Kohn-Sham Hamiltonian on a real-
space grid, and then using the recursion method of Haydock,
Heine and Kelly21 to obtain the diagonal elements of the
Green’s function, from which the electron density can be
computed by contour integration. In this case linear scaling
results from the fact that the continued fraction used to
evaluate a particular diagonal element of the Green’s func-
tion can be truncated once a certain neighborhood of each
point has been explored. This neighborhood is independent
of the system size for sufficiently large systems.

More recently, several new schemes that resemble tradi-
tional first-principles methods have been reported. Galli and
Parrinello6 pointed out that some improvement could be
achieved in the scaling of a conventional DFT calculation by
requiring spatial localization of the electronic orbitals. This
localization was achieved by adding certain nonlocal con-
straining terms to the Hamiltonian, or by using a filtering
procedure. The total energy can then be obtained as a func-
tional of the localized orbitalsuf i& and theirconjugateorbit-
als uf̄ i&5( jSji

21uf j&, but in order to obtain these conjugate
orbitals, the overlap matrixShas to be inverted. Since spatial
localization implies sparsity ofS, this can be achieved in
O(N2) operations, so that some improvement with respect to
O(N3) is obtained. A step further in this direction was made
independently by Mauri, Galli, and Car7,8 ~hereafter referred
to as MGC! and by Ordejo´n et al.9,10They introduced a new
functional of the occupied orbitals that possesses the same
ground state as the conventional energy functional, but with
the added advantage of leading naturally to orthogonal orbit-
als when minimized. If this new functional is minimized
with respect to orbitals that are constrained to remain local-
ized in chosen regions of space, as suggested by Galli and
Parrinello,6 a linear scaling method results. In the original
formulation, the number of orbitals entering the new func-
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tional is equal to half the number of electrons in the system.
This restriction seems to lead to very slow convergence, and
to the appearance of spurious local minima in the functional.
This problem has been recently overcome by Kim, Mauri,
and Galli,11 by generalizing the functional so that it depends
on an arbitrary number of orbitals.

The linear-scaling scheme most relevant to the present
work is that put forward by Li, Nunes, and Vanderbilt12

~hereafter referred to as LNV! in the context of tight-binding
semiempirical calculations. In this method, linear scaling is
achieved by taking advantage of the real-space localization
properties of the density matrix,r(r ,r 8). By introducing a
spatial cutoffRc in r, such thatr(r ,r 8) is set to zero if
ur2r 8u>Rc , the number of nonzero elements inr increases
only linearly with the system size. The electronic structure
problem is then formulated as a minimization of the total
energy with respect to the truncated density matrix, subject
to the constraints of idempotency (r25r) and correct trace
(2Trr5Ne , where Ne is the number of electrons!. The
scheme of LNV consists of an algorithm for imposing these
constraints that at the same time fulfills the goal of linear
scaling. The idempotency ofr is the most difficult constraint
to impose, and this scheme achieves it by expressingr in
terms of an auxiliary matrix, which we denote in this paper
by s. This is subjected to apurifying transformation due to
McWeeny.22 If s is a near-idempotent matrix, i.e., if its ei-
genvalues lie close to 0 or 1, this transformation will return
r as a more nearly idempotent matrix, and thus it is possible
to minimize the total energy with respect tos while ensuring
the near idempotency ofr. By construction, the method is
variational @i.e., minE(Rc)>minE(`)#, and it has been
shown that the convergence of calculated properties with the
parameterRc is fairly rapid.

12,13 It is now being widely used
in tight-binding simulations of large systems.

Recently, the idea of working with the density matrix has
been applied to DFT linear scaling schemes. This has been
done independently by Hierse and Stechel14 and by Herna´n-
dez and Gillan.15 In both cases, the density matrix is repre-
sented in real space as

r~r ,r 8!5(
ab

fa~r !Kabfb* ~r 8!, ~1!

where thefa are a set of localized functions, andKab is a
symmetric matrix. The total energy is expressed in terms of
r(r ,r 8), and minimization is carried out with respect to both
thefa and theKab . Hierse and Stechel14 use a number of
functionsfa equal to the number of occupied orbitals, but
this restriction is not present in our scheme. The conse-
quences of this and other differences between the two meth-
ods will be addressed later in this paper. Other methods have
been proposed recently. Among them are the method due to
Stechel, Williams, and Feibelman,16 the method of Kohn,17

the density-matrix method of Yang and Lee,18 and the
method due to Goedecker.19,20

Previously, only a brief description of our method has
been published.15 In this paper we give a detailed description
of the method, together with some illustrations of its practi-
cal performance and a discussion of its relation to other
methods. In Sec. II, the method is outlined and its theoretical
foundations are discussed. The practical implementation of

the method is then described in Sec. III. The tests we have
performed to probe the practical usefulness of the scheme are
presented in Sec. IV. In Sec. V, we assess what has been
achieved and we discuss possible future developments, with
particular attention to the problems that need to be overcome
before the method can be generally applied. Some of the
mathematical analysis is reported in an Appendix.

II. FORMULATION OF DFT IN TERMS
OF THE DENSITY MATRIX

A. Density-functional theory

We need to recall briefly the principles of DFT.23 The total
energyEtot of the system of valence electrons and atomic
cores is expressed as

Etot5EK1Eps1EH1Exc1EM , ~2!

where the terms on the right are the kinetic, pseudopotential,
Hartree, and exchange-correlation energies of the electrons,
andEM is the Madelung energy of the cores. The first two
energies are

EK52(
i51

N K c iU2 \2

2m
¹2Uc i L ,

Eps52(
i51

N

^c i uV̂psuc i&, ~3!

wherec i are the Kohn-Sham~KS! orbitals, V̂ps is the total
pseudopotential operator, andN5 1

2Ne is the number of oc-
cupied orbitals. The energiesEH andExc can be written in
terms of the electron number densityn(r ):

EH5
1

2
e2E drdr 8n~r !n~r 8!/ur2r 8u,

Exc5E dr n~r !exc@n~r !#, ~4!

where for simplicity we assume the local density approxima-
tion ~LDA ! for Exc , with exc the exchange-correlation en-
ergy per electron. The number density is

n~r !52(
i51

N

uc i~r !u2. ~5!

The important principle for the present purposes is that the
true ground-state energy and electron density are obtained by
minimizingEtot with respect to the KS orbitals, subject to the
constraint that the latter are kept orthonormal.

In the standard formulation of DFT, which we have just
summarized, all the occupied orbitals are fully occupied.
However, it is frequently convenient, for physical, computa-
tional, or formal reasons, to generalize the theory so that
orbitals can be partially occupied. Spatial orbitalc i(r ),
rather than containing two electrons, may now contain 2f i
electrons, where the occupation numberf i lies in the range
0< f i<1. The number densityn(r ) now becomes

n~r !52(
i
f i uc i~r !u2, ~6!
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and the kinetic and pseudopotential energies are

EK52(
i
f i K c i2 U \2

2m
¹2Uc i L ,

Eps52(
i
f i^c i uV̂psuc i&. ~7!

The expressions forEH and Exc in terms of n(r ) are un-
changed.

The usual physical reason for making this generalization
is that one wishes to treat the electrons at a nonzero tempera-
ture, in which case thef i are Fermi-Dirac occupation
numbers;24 computationally, the generalization is sometimes
made in order to get rid of the troublesome discontinuity at
the Fermi level in metallic systems.25,26Our reason for con-
sidering it here is that it will be relevant to the density matrix
formulation. We shall assume that ifEtot is minimized both
with respect to thec i ~subject to orthonormality! and with
respect to thef i ~subject to the restriction 0< f i<1 and the
condition that the sumf i be equal to

1
2Ne), then we arrive at

exactly the ground state that is obtained by the more usual
minimization with respect to fully occupied statesc i . An-
other way of putting this is that the energy cannot be reduced
below the normal ground state by allowing partial occupa-
tion.

Now we turn to the density matrix, which is defined by

r~r ,r 8!5(
i
f ic i~r !c i* ~r 8!. ~8!

It follows from this definition thatr(r ,r 8) is a Hermitian
operator whose eigenvalues are all in the interval@0,1#. The
converse is also true: a Hermitian operatorr(r ,r 8) whose
eigenvalues aref i and whose eigenfunctions arec i(r ) can be
written as in Eq.~8!. In terms of such an operatorr(r ,r 8), let
the kinetic energy, pseudopotential energy, and number den-
sity be defined as

EK52
\2

mE dr @¹ r
2r~r ,r 8!# r5r8 ,

Eps52E drdr 8Vps~r 8,r !r~r ,r 8!, ~9!

n~r !52r~r ,r !,

with EH and Exc expressed in the usual way in terms of
n(r ). It follows from what we have said before that ifEtot is
minimized with respect tor(r ,r 8) subject to the condition
that the eigenvalues of the latter are in the required interval
and add up to12Ne , then we arrive at the usual ground state.
This is the density-matrix formulation of DFT.

B. Localization of the density matrix

Since DFT is variational, any restriction placed on the
class of density matricesr(r ,r 8) that can be searched over
has the effect of raising the minimum energyEmin above its
true ground-state valueE0; progressive relaxation of such a
restriction makesEmin tend toE0 . Now in general the den-
sity matrix in the true ground state tends to zero as the sepa-

ration of its argumentsur2r 8u increases. This strongly sug-
gests the usefulness of estimatingE0 by searching over
r(r ,r 8) with the following restriction:

r~r ,r 8!50, ur2r 8u.Rc , ~10!

whereRc is a chosen cutoff radius. The resulting estimate
Emin(Rc) will tend toE0 from above asRc→`. The manner
in whichr(r ,r 8) goes to zero at large separations depends on
the electronic structure of the system, and particularly on
whether there is a gap between the highest occupied and
lowest unoccupied states. It is rigourously established that in
one-dimensional systems having a gapr decays exponen-
tially with separation, while in gapless systems it decays
only as an inverse power.27 It is presumed that three-
dimensional systems behave similarly. This suggests—
though to our knowledge it is unproven—that
Emin(Rc)→E0 exponentially for insulators and algebraically
for metals.

Clearly in practical calculations we cannot work directly
with a six-dimensional functionr(r ,r 8), even if it vanishes
beyond a chosen radius. It is essential thatr be separable,
i.e., representable in the form

r~r ,r 8!5(
ab

fa~r !Kabfb~r 8!. ~11!

For practical purposes, there must be only a finite number of
fa(r ) functions, which will be referred to as support func-
tions. Forr to be Hermitian, we must require that the matrix
Kab be Hermitian. The restriction to a finite number of sup-
port functions is equivalent to the condition thatr have only
this number of nonzero eigenvalues, and this is the essence
of the separability requirement. With this, we now have two
independent restrictions onr: localization and separability.
The localization ofr can be imposed by requiring that the
support functions be nonzero only within chosen regions,
which we call the support regions, and that the coefficients
Kab vanish if the separation of the support regions offa and
fb exceeds a chosen cutoff.

We now have a general framework for linear-scaling DFT
schemes. In practical calculations, thefa functions will be
represented either as a linear combination of basis functions,
or simply by numerical values on a grid. Either way, the
amount of information contained in a support function will
be independent of the size of the system. The amount of
information in the support functions will then scale linearly
with the size of the system, and the number ofKab coeffi-
cients will scale in the same way. This in turn implies that
the electron densityn(r ) and all the terms in the total energy
can be calculated in a number of operations that scale lin-
early with system size.

C. Eigenvalue range of the density matrix

In this general scheme, the ground state is determined by
searching over support functions andKab matrices. How-
ever, it is essential that this search be confined to thosefa
andKab for which the eigenvalues ofr(r ,r 8) lie in the in-
terval @0,1#. This is a troublesome condition to impose, be-
cause we certainly do not wish to work directly with these
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eigenvalues. We can achieve what we want by expressing
r in a form that satisfies the condition automatically.

The scheme developed in this paper is the DFT analogue
of the tight-binding scheme of LNV.12 We write the density
matrix as

r53s* s22s* s* s, ~12!

where s(r ,r 8) is an auxiliary function. The asterisk here
indicates the continuum analogue of matrix multiplication.
For arbitrary two-point functionsA(r ,r 8) andB(r ,r 8), we
use the notationC5A*B as a short-hand for the statement

C~r ,r 8!5E dr 9A~r ,r 9!B~r 9,r 8!. ~13!

The reason this works is that the eigenvalueslr of r auto-
matically satisfy 0<lr<1 provided the eigenvaluesls of
s are in the range2 1

2<ls< 3
2; in addition,lr has turning

points at the values 0 and 1. Since the ground state is ob-
tained whenlr50 or 1, there is a natural mechanism
whereby variation ofs drivesr towards idempotency.

To obtain the separable form ofr @Eq. ~11!#, we write

s~r ,r 8!5(
ab

fa~r !Labfb~r 8!, ~14!

which implies the matrix relation

K53LSL22LSLSL, ~15!

whereSab is the overlap matrix of support functions:

Sab5E drfa~r !fb~r !. ~16!

The ground state is now obtained by minimizingEtot with
respect to thefa and theLab matrix, with theKab matrix
given by Eq.~15!. In the practical calculations reported later,
the fa are nonzero only inside spherical regions of radius
Rreg, and theLab are nonzero only if the centers of the
regionsa andb are separated by less than a cutoff distance
RL .

It will be useful for the purposes of later discussion to
note how a closely related scheme leads back to the MGC
method.7 This scheme is obtained by writing

r5s* ~22s!, ~17!

wheres is required to be positive semidefinite. Since the
eigenvaluesls can be expressed asks

2 whereks is real, the
eigenvalues ofr are given by

lr5ls~22ls!5ks
2~22ks

2 !. ~18!

This quartic function lies in the range@0,1# for uksu<21/2

and has turning points whenlr50 and 1. This gives an
alternative mechanism for drivingr towards idempotency.
With s given, as before, by Eq.~14!, it is straightforward to
show thats is positive semidefinite if and only if the matrix
Lab is positive semidefinite, and this is equivalent to the
condition thatLab be expressible as

Lab5(
s
ba

~s!bb
~s! . ~19!

The result is thats(r ,r 8) must have the form

s~r ,r 8!5(
s

x~s!~r !x~s!~r 8!, ~20!

where

x~s!~r !5(
a

ba
~s!fa~r !. ~21!

Following arguments presented by Nunes and Vanderbilt,28 it
can now be shown that this scheme is exactly equivalent to
the linear-scaling DFT scheme of MGC.

III. PRACTICAL IMPLEMENTATION OF THE METHOD

A. The real-space grid

We now give a prescription for the calculation of the en-
ergy functional, and of its derivatives with respect to the
support functionsfa and theLab parameters, and we de-
scribe how minimization of the energy can be carried out in
practice. Central to our implementation of the method de-
scribed in the previous section is the use of a regular cubic
real-space grid, spanning the whole system under study.
There have been a number of recent implementations of con-
ventional DFT-pseudopotential calculations using real-space
grids.29–34

The support functions are represented by their values at
the grid points. Since these functions are required to be spa-
tially localized, they have nonzero values only on the grid
points inside the localization regions. In the present work,
these regions are chosen to be spherical, and their centers are
at the atomic positions. Real-space integration is replaced by
summation over grid points, so that, e.g., the overlap matrix
elements are calculated as

Sab.dv(
r l

fa~r l !fb~r l !, ~22!

where the sum goes over the set of grid pointsr l common to
the localization regions of bothfa andfb , anddv is the
volume per grid point.

The action of the kinetic energy operator on the support
functions is evaluated using a finite difference technique. To
nth order in the grid spacing,h, we have that

]2fa

]x2
~nx ,ny ,nz!.

1

h2 (
m52n

n

Cumufa~nx1m,ny ,nz!,

~23!

wherenx ,ny , andnz are integer indices labeling grid point
r l , and the coefficientsCumu can be calculated beforehand.
Equivalent expressions can be used for]2fa /]y

2 and
]2fa /]z

2, and it is thus possible to evaluate¹2fa approxi-
mately at each grid point. From Eqs.~9! and~11!, the kinetic
energy is given by

EK52(
ab

KabTba , ~24!

where
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Tba52
\2

2mE drfb~r !¹ r
2fa~r !. ~25!

Once¹2fa(r ) has been evaluated at each grid point using
Eq. ~23!, theTab matrix elements are calculated by summing
over grid points, just as forSab @see Eq.~22!#. It is worth
noting that the use of a finite-difference approach can pro-
duce either positive or negative errors in the kinetic energy
evaluation. Thus, strictly speaking, the variational character-
istic of the method is lost with the introduction of this ap-
proximation. Nevertheless, the error incurred by such a
finite-difference scheme will be small provided that the grid
is sufficiently fine and the Laplacian approximation is of a
sufficiently high order in the grid spacingh. Practical appli-
cations will be carried out using finite values of the param-
etersRL andRreg, and since the method is still variational
with respect to these, it is to be expected that the minimum
energy provides an upper bound to the exact ground state.

In order to evaluate the exchange-correlation, Hartree,
and pseudopotential contributions to the total energy, we first
need to evaluate the electron density at each grid point. From
Eqs.~9! and ~11!, the density at grid pointr l is

n~r l !52(
ab

fa~r l !Kabfb~r l !. ~26!

From this, it is straightforward to evaluate the exchange-
correlation energy by summing the quantity
n(r l )exc@n(r l )# over grid points. The exchange-correlation
potentialmxc can also be calculated at each point, and is
given as

mxc~r l !5
d

dn
$n~r l !exc@n~r l !#%. ~27!

To obtain the Hartree energy and potential we use the fast
Fourier transform~FFT! method to transform the calculated
electronic density into reciprocal space, thus obtaining its
Fourier componentsn̂G . The Hartree energy is then given as

EH52pVe2(
GÞ0

un̂Gu2/G2, ~28!

whereV is the volume of the simulation cell. The Hartree
potential in reciprocal space is

V̂H~G!54pVe2n̂G /G
2. ~29!

This can be constructed on the reciprocal-space grid, and
transformed to obtain the Hartree potential in real space. FFT
is, of course, anO(Nlog2N) operation rather than anO(N)
operation, but the difference is negligible for the present pur-
poses.

We restrict ourselves here to local pseudopotentials, so
that the value of the total pseudopotentialVps(r l ) at grid
point r l is formally given by

Vps~r l !5(
I
vps~ ur l 2RI u!, ~30!

wherevps(r ) is the ionic pseudopotential andRI is the posi-
tion of ion I . In practice, however,Vps(r l ) cannot be calcu-
lated like this, becausevps(r ) has a Coulomb tail2Zueu2/r

at larger , whereZ is the core charge. In order to obtain a
linear-scaling algorithm forEps, we proceed as follows. The
ionic pseudopotential is represented as the sum of the Cou-
lomb potential due to a Gaussian charge distributionh(r )
and a short-range potentialvps

0 (r ). The total charge inh(r )
is Zueu, and the distribution is given by

h~r !5Zueu~a/p!3/2exp~2ar 2!, ~31!

where the parametera governs the rate of decay of the
Gaussian. We therefore have

vps~r !52
Zueu2

r
erf~a1/2r !1vps

0 ~r !. ~32!

The part ofVps coming fromvps
0 can now be calculated as a

direct sum over ions, as in Eq.~30!. Sincevps
0 can be ne-

glected beyond a certain radius, this part of the calculation
scales linearly. The part ofVps coming from the array of
Gaussians can be treated in exactly the same way as the
Hartree potential. The pseudopotential energy is then calcu-
lated by summation over the real-space grid:

Eps5dv(
l

Vps~r l !n~r l !. ~33!

B. Derivatives and minimization

Once the contributions to the total energy have been ob-
tained as outlined above, we need to vary bothLab andfa
in order to minimize it. TheLab and fa are independent
variables, and the problem breaks naturally into two separate
minimizations that can be carried out in an alternating man-
ner: one with respect toLab with fixed fa , and the other
with respect tofa with fixed Lab . Indeed, the choice of
object function can be different for the two types of varia-
tions, and when minimizing with respect to theLab we find
it more convenient to takeV5Etot2mNe as our object func-
tion, wherem is the chemical potential andNe is the electron
number. We return to this point below.

Expressions for the derivatives with respect toLab and
fa are obtained in the Appendix. The partial derivative of
V with respect toLab is given by

]V

]Lab
5@6~SLH81H8LS!

24~SLSLH81SLH8LS1H8LSLS!#ab , ~34!

whereH85H2mS, andH is the matrix representation of
the KS Hamiltonian in the support function representation. It
is worth noting that this expression is exactly the same as
would be obtained in a nonorthogonal tight-binding
formalism.35 There is, however, one important difference: in
self-consistent DFT calculations the Hamiltonian matrix ele-
ments depend onLab through the electronic densityn(r ).
The partial derivative of the total energy with respect tofa
at grid pointr l is given by

]Etot

]fa~r l !
54dv(

b
@KabĤ13~LHL !ab

22~LSLHL1LHLSL!ab#fb~r l !, ~35!
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whereĤ is the Kohn-Sham operator, which is made to act on
support functionfb .

It is important to notice that because of the spatial local-
ization of the support functions, and the finite range ofL, all
the matrices involved in the calculation of these derivatives
are sparse, when the system is large enough. Provided this
sparsity is exploited in the computational scheme, the
method scales linearly with the size of the system.

In the scheme of LNV,12 it is proposed to work at constant
chemical potential, rather than at constant electron number.
We prefer to maintain the electron number constant. The
variations with respect toLab andfa will in general cause
the electron number to differ from the correct value, and it is
therefore necessary to correct this effect as the minimization
proceeds. We achieve this in the following manner: during
the minimization with respect toL, the current search direc-
tion is projected so that it is tangential to the local surface of
constantNe , i.e., perpendicular to¹LNe at the current posi-
tion. This ensures that the minimization along this direction
will cause only a small change inNe , and it is expected that
at the new minimumNe will differ only slightly from the
required value. In any case, it is possible to return to a posi-
tion as close as desired to the constantNe surface by follow-
ing the local gradient¹LNe . If the value of the chemical
potentialm is appropriately chosen, this correction step can
be carried out without losing the reduction inV obtained by
performing the line minimization, and this is why we prefer
to takeV as the object function instead of the total energy,
when minimizing with respect toL. We find that this scheme
is capable of maintaining the electron number close to its
correct value throughout the minimization, and is also simple
to implement. The gradient¹LNe has elements

]Ne

]Lab
512~SLS2SLSLS!ab , ~36!

which, as all other gradients discussed earlier, can be calcu-
lated in O(N) operations. Minimization with respect to
fa(r l ) will also have the effect of changing the electron
number. However, given that the two types of variations are
performed alternately, the correction during theL minimiza-
tion is sufficient to counteract this effect.

Given that variation ofLab causes the electronic density
to change, and this in turn implies that the Hamiltonian ma-
trix elements change, it would seem necessary to update the
Hamiltonian at each step of the minimization with respect to
L. However, we find that this can be avoided by considering
H fixed during this part of the minimization. Strictly speak-
ing, if H is held fixed whileL is varied, we are not minimiz-
ing V5Etot2mN but ratherV85E82mN, where E8 is
given by

E85Tr@~6LSL24LSLSL!H#. ~37!

If this minimization were carried out through to conver-
gence, this would be equivalent to diagonalizingH in the
representation of the current support functions. At conver-
gence, it will be found in general thatL andH are not mu-
tually consistent, and if consistency is required, one needs to
updateH and repeat the minimization, iterating this cycle
until consistency was achieved. This is not necessary in prac-
tice, becauseH will be updated at the next variation with

respect to the support functions. The minimization ofV8 has
practical advantages in that it avoids the updating of the
Hamiltonian at each step, and, because of its construction, it
is a cubic polynomial in every possible search direction, so it
is possible to find the exact location of line minima during its
minimization.

The minimization with respect tofa(r l ) can be carried
out by simply moving along the gradient]Etot /]fa(r l ) Eq.
~35! ~steepest descents! or by using this expression to con-
struct mutually conjugate directions~conjugate gradients!.

IV. TEST CALCULATIONS

In order to test ourO(N) DFT scheme, we have per-
formed calculations on a system of 512 Si atoms treated
using a local pseudopotential. The purpose of these tests is to
find out how the total energy depends on the two spatial
cutoff radii: the support-region radiusRreg, and theL-matrix
cutoff radiusRL . The practical usefulness of the scheme, and
the size of system for which linear-scaling behavior is at-
tained depend on the rate of convergence ofEtot to its exact
value asRreg andRL are increased. Here, ‘‘exact’’ refers only
to the absence of errors due to the truncation ofr(r ,r 8);
other sources of inexactness, such as the use of a discrete
grid and a local pseudopotential, are of no concern here.

The system treated is a periodically repeating cell contain-
ing 512 atoms of diamond-structure Si having the experi-
mental lattice parameter~5.43 Å!. The local pseudopotential
is the one constructed by Appelbaum and Hamann,36 which
is known to give a satisfactory representation of the self-
consistent band structure. The LDA exchange-correlation en-
ergy is calculated using the Ceperley-Alder formula.37 We
use a grid spacing of 0.34 Å, which is similar to the spacing
typically used in pseudopotential plane-wave calculations on
Si, and is sufficient to give reasonable accuracy. The second
derivatives of thefa needed in the calculation ofEK are
computed using the second-order formula given in Eq.~23!.

A support region is centered on every atom, and each such
region contains four support functions. One can imagine that
these support functions correspond roughly to the single 3s
function and the three 3p functions that would be used in a
tight-binding description, but we stress that nothing obliges
us to work with this number of support functions. In keeping
with the tight-binding picture, the initial guess for the sup-
port functions is taken to be a Gaussian multiplied by a con-
stant,x, y, or z, so that the functions have the symmetry of
s andp states. As an initial guess for theL matrix, we take
the quantity 2I2S, whereS is the overlap matrix calculated
for the initial support functions. This guess forL, which
represents the expansion ofS21[@ I2(I2S)#21 to first or-
der, is crude, and does not yield the correct value of Trr.
This error is corrected by displacingL iteratively along the
gradient¹LNe until Ne is within a required tolerance of the
correct value.

The initial guesses for thefa and theLab define the
initial Hamiltonian and overlap matrices. From this starting
point, we make a number of conjugate-gradient line searches
to minimizeV by varyingL, with the Hamiltonian and over-
lap matrices held fixed. This is followed by a sequence of
line searches in which thefa are varied. We refer to the
sequence ofL moves followed by a sequence off moves as
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a cycle. The entire energy minimization consists of a set of
cycles. In practice, we have found that cycles consisting of
five L moves and twof moves work satisfactorily, and that
Etot is converged to within 1024 eV/atom after typically
50–60 cycles. This would not be an efficient rate of conver-
gence for routine applications, but is more than adequate for
the present purposes.

Our test calculations confirm our earlier finding15 that for
the Si perfect crystalEtot is already quite close to its exact
value whenRL55.0 Å. We have therefore used this value of
RL to make calculations ofEtot as a function ofRreg @see Fig.
1~a!#. The results show thatE tot converges very quickly with
increasingRreg, and that it is within; 0.1 eV of its fully
converged value forRreg 5 3.05 Å. This would be a signifi-
cant error on an absolute scale, but we would expect energy
differences calculated with this technique to be much
smaller. It is worth noting that errors of 0.1 eV/atom in the
total energy are usually regarded as acceptable in conven-
tional plane-wave calculations.

In order to show howEtot depends onRL , we present a
series of results at the two region radiiRreg 5 2.04 and 2.38
Å @see Fig. 1~b!#. These results indicate that there is only a
slow variation withRL and that this variation is almost the
same for different values ofRreg. This means that it is pos-
sible to converge the total energy to satisfactory accuracy
with easily manageable spatial cutoffs.

It is interesting to know the form of the support functions
for the self-consistent ground state. These are shown in Fig.
2 for the caseRreg 5 3.05,RL55 Å. The support functions
shown here are the first~initially s Gaussian! and second
(px Gaussian!. Profiles of the support functions along the
@100#, @110#, and @111# directions are shown. The support
functions are seen to be symmetric with respect to the center
of the support region (r50) along the@100# and @110# di-
rections. Along the@111# direction there is a slight asymme-
try resulting from the presence of a nearest-neighbor ion,
which lies at 2.35 Å from the origin in the positive direction.
Remarkably, thes-like support function seems to be almost
perfectly spherically symmetric, except near the peak at
r'0.8 Å. It is encouraging to see that the support functions
go rather smoothly to zero at the region boundary, and this
confirms that the boundary has little effect on the results.

V. DISCUSSION

We have tried to do three things in this work: to develop
the basic formalism needed to underpinO(N) DFT pseudo-
potential methods; to implement one such method and iden-
tify the main technical issues in doing so; and to present the
results of tests on a simple but important system, which al-
low us to gauge the usefulness of the method. We have
shown that a rather general class ofO(N) DFT pseudopo-
tential methods can be based on a formulation of DFT in
terms of the density matrix, and that this formulation is

FIG. 1. ~a! Total energy per atom as a function of the support
region radiusRreg with RL 5 5 Å. ~b! Total energy per atom as a
function of the range of theL matrix,RL , for two different support
region radii,Rreg5 2.04 and 2.38 Å.

FIG. 2. Support functions after minimization of the total energy
with Rreg5 3.05 andRL5 5.0 Å. ~a! s-like support function, and~b!
px-like support function.

53 7153LINEAR-SCALING DENSITY-FUNCTIONAL-THEORY . . .



equivalent to commonly used versions of DFT that operate
with fractional occupation numbers. From this viewpoint, the
key challenge is to ensure that the eigenvalues of the variable
density matrix lie between 0 and 1, and we have seen that the
method of LNV ~Ref. 12! gives a way of doing this. The
implementation of the basic ideas has been achieved by per-
forming all calculations in real space, with the DFT integrals
approximated by sums on a grid—except for the use of FFT
to treat the Hartree term. An alternative here would be to
work with atomiclike basis functions, but we note that the
use of a grid preserves an important link with conventional
plane-wave methods, as will be analyzed in more detail else-
where. Our test results on perfect-crystal Si show that the
total energy converges rapidly as the real-space cutoffs are
increased, and that it is straightforward to achieve a precision
comparable with that of normal plane-wave calculations.

An important question for anyO(N) method is the system
size at which it starts to beat a standardO(N3) method—a
plane-wave method in the present case. This will clearly de-
pend strongly on the system, but even for Si it is too soon to
answer it on the basis of practical calculations. The crossover
point depends on the prefactor in the linear scaling, and this
is strongly affected by the efficiency of the coding. All we
have attempted to do here is to address the problem of
achievingO(N) behavior. The question of the prefactor is a
separate matter, which will need separate investigation.

It should be clear that there is much more to do before the
present method can be routinely applied to real problems. We
have deliberately not discussed in detail the problems of do-
ing calculations on a real-space grid. Such problems have
been discussed outside the linear-scaling context in several
recent papers,29,30 and it should be possible to apply the ad-
vances reported there toO(N) DFT calculations. In particu-
lar, curvilinear grids31–34for the treatment of strongly attrac-
tive pseudopotentials are likely to be very important for
O(N) calculations. We have also not discussed here the cal-
culation of forces on the atoms, the problems that may arise
when the boundaries of support regions cross grid points,
and the general question of translational invariance within
grid-based techniques.

In our current implementation, the rate of the convergence
of the total energy during the minimization is somewhat slow
for routine applications. In order to improve this conver-
gence rate, a possible course of action would be to usemul-
tigrid techniques.38,39 It is well known that standard relax-
ation techniques for the solution of partial differential
equations~such as conjugate gradients! are efficient in reduc-
ing the Fourier components of the error of a trial solution
with wavelengths in the range of the grid spacing~so-called
oscillatory components!. However, components of the error
with longer wavelengths~smooth components! are left al-
most unchanged. Thus, the rate of convergence of relaxation
methods is poor. By bringing into play multiple grids with
different degrees of coarseness, it is possible to improve the
rate of convergence, because smooth components on a fine
grid will become oscillatory on a coarser grid. Multigrid
methods are being recognized as a useful tool in electronic
structure calculations.30,40,41

We have noted already that our method is related to other
recently proposed methods. It was first pointed out by
Vanderbilt42 that Eq.~14! can be regarded as a general ansatz

encompassing several linear-scaling methodologies. In both
the MGC and the Hierse-Stechel methods, the number of
functions employed is equal to the number of occupied or-
bitals. If this is the case, it is not necessary to use the trans-
formation Eq.~12! to impose the approximate idempotency
of the density operator, because it is only required that all
eigenvalues ofr be equal~or close to! unity. To achieve this,
it is sufficient to use Eq.~17! as the purifying transformation.
The scheme discussed in this paper and introduced in Ref.
15, as well as the original tight-binding density matrix for-
malism of LNV,12 allows for the use of a number of support
functionsfa greater than the number of occupied orbitals. In
this case it is necessary to use the transformation given by
Eq. ~12! to ensure the near idempotency ofr. At first sight it
would seem that the use of a higher number of support func-
tions than occupied orbitals@and thus the need to use Eq.
~12! rather than Eq.~17!# is unnecessary and wasteful. How-
ever, there is some indication that restricting the number of
support functions to the number of occupied orbitals can
result in slow convergence of the minimization and multiple-
minima problems.8 Our experience is that relaxing this con-
straint eliminates the multiple-minima problem. It is worth
pointing out that Kim, Mauri, and Galli11 found it necessary
to increase the number of orbitals above the number of oc-
cupied orbitals in their generalization of the MGC scheme in
order to avoid this problem.

Finally, we note that our linear-scaling scheme is intended
for calculations on very large systems, and this means that
parallel implementation will play a key role. The test calcu-
lations we have presented were, in fact, performed on a mas-
sively parallel machine, and the parallel-coding techniques
we have developed will be described in a separate paper.
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APPENDIX: DERIVATIVES OF THE TOTAL ENERGY

We derive here expressions for the derivatives
]Etot /]Lab anddE tot /dfa(r ).

1. Derivative with respect toLab

In DFT, the total energy Eq.~2! has two types of contri-
butions: those that can be written as the trace of some opera-
tor acting on the density matrix, as is the case for the kinetic
and pseudopotential energies@see Eq.~9!#, and those that
depend only on the diagonal elements ofr, i.e., the electron
density, namely, the Hartree and exchange-correlation ener-
gies. The Madelung termEM does not depend on either
Lab orfa , so it will make no contribution to the variation in
total energy as these are changed. Denoting byEc the kinetic
or pseudopotential contribution to the energy, we have
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Ec52(
gd

@3~LSL!gd22~LSLSL!gd#Cdg , ~A1!

where

Cdg5E dr fd~r !S 2
\2

2m
¹2Dfg~r ! ~A2!

for the kinetic energy, and for the pseudopotential

Cdg5E drdr 8fd~r 8!Vps~r ,r 8!fg~r !, ~A3!

whereVps is in general a nonlocal pseudopotential operator.
Clearly,Cgd does not depend onLab for either operator, so
this term does not change asLab is varied. It is thus easy to
see that

]Ec

]Lab
5@6~SLC1CLS!ba

24~SLSLC1SLCLS1CLSLS!ba#, ~A4!

whereC is the matrix representation of the corresponding
operator~kinetic energy or pseudopotential! in the basis of
the support functions.

For the Hartree and exchange-correlation contributions,
denoted byEv , we have that

]Ev

]Lab
5E dr

dEv

dn~r !

]n~r !

]Lab
. ~A5!

The electron densityn(r ) is simply 2r(r ,r ), so that

]n~r !

]Lab
52(

gd
fg~r !

]

]Lab
@3~LSL!gd

22~LSLSL!gd#fd~r !. ~A6!

In the case of the Hartree contribution, we have

dEH

dn~r !
5e2E dr 8

n~r 8!

ur2r 8u
5F~r !, ~A7!

whereF(r ) is the Hartree potential, while in the case of the
exchange-correlation contribution we have

dExc

dn~r !
5

d

dn
@nexc~n!#5mxc~r !, ~A8!

wheremxc is the exchange-correlation potential. If we take
V(r ) to represent eitherF(r ) or mxc(r ) as the case may be,
we see that expression~42! reduces to

]Ev

]Lab
5@6~SLV1VLS!ba

24~SLSLV1SLVLS1VLSLS!ba#, ~A9!

where

Vab5E drfa~r !V~r !fb~r !. ~A10!

By comparing this expression with Eq.~A4!, it is easy to see
that the partial derivative of the total energy with respect to
Lab can be written more compactly as

]Etot

]Lab
5@6~SLH1HLS!ba

24~SLSLH1SLHLS1HLSLS!ba#, ~A11!

whereHab is the sum of the corresponding matrix elements
of the kinetic, pseudopotential, Hartree, and exchange-
correlation operators, i.e., the matrix representation of the
Kohn-Sham Hamiltonian in the basis of the support func-
tions. Recall that in practice, we do not varyEtot but rather
varyV5Etot2mN with respect toLab . However, it is trivial
to obtain]V/]Lab from Eq. ~48! by simply substituting the
matrix elements ofH by those ofH2mS. Once this is done,
Eq. ~A11! corresponds to Eq.~34!.

2. Functional derivative of E tot with respect to fa

According to Eq.~11!, the density matrix, and hence the
total energy, can be regarded as a function of the quantities
fa andKab . Whenfa is varied,Etot therefore varies firstly
because of its direct dependence onfa , and secondly be-
cause of the implicit dependence of theKab matrix onfa
through its dependence on the overlap matrix elementsSab
@see Eq.~15!#; we call these two types of variations type 1
and type 2.

To see how variations of type 1 behave, consider first the
kinetic and pseudopotential energies. The type 1 variation of
either of these is given by

~dEc!152(
gd

KdgdE drfg~r !Ĉfd~r !, ~A12!

whereĈ represents the kinetic energy or the pseudopotential
operator. The variation of the integral gives

~dEc!152(
gd

KdgE dr ~dfgĈfd1fgĈdfd!

52(
gd

KdgE dr ~dfgĈfd1dfdĈfg!. ~A13!

The last equality follows from the fact thatĈ is a Hermitian
operator. The type 1 variation ofEc can therefore be ex-
pressed as

S dEc

dfa~r ! D
1

54(
b

Kab~Ĉfb!~r !, ~A14!

where (Ĉfb)(r ) represents the action of the operatorĈ on
fb evaluated at the pointr .

Now consider the type 2 variation ofEc due to the varia-
tion of the overlap matrix elements. The variation ofSab is
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dSab5E dr ~fadfb1dfafb!, ~A15!

and the type 2 variation ofEc is then obtained by applying
this expression to Eq.~A1!. After a little manipulation, one
obtains

S dEc

dfa~r ! D
2

512(
b

~LCL!abfb~r !

28(
b

~LSLCL1LCLSL!abfb~r !.

~A16!

Here,C is the matrix whose elements are

Cab5E drfaĈfb . ~A17!

Combining Eqs.~A14! and ~A16!, we obtain the following
expression for the total variations of the kinetic and pseudo-
potential energies:

dEc

dfa~r !
54(

b
@KabĈ13~LCL!ab

22~LSLCL1LCLSL!ab#fb~r !. ~A18!

For the remaining terms~Hartree and exchange-
correlation!, variation in the energy results from variation in
the electron density. Thus we need to calculate

dn~r 8!

dfa~r !
5

d

dfa~r !
2(

bg
fb~r 8!

3@3~LSL!bg22~LSLSL!bg#fg~r 8!.

~A19!

Again, we will have variations coming directly from the
change infa(r ) and variations coming indirectly from
changes in the overlap matrix elements. The total variation of
n(r 8) will be

dn~r 8!

dfa~r !
52d~r2r 8!(

b
@fb~r !Kba1Kabfb~r !#

12(
bg

fb~r 8!fg~r 8!
d

dfa~r !

3@3~LSL!bg22~LSLSL!bg#. ~A20!

Substituting this expression into

dEv

dfa~r !
5E dr 8V~r 8!

dn~r 8!

dfa~r !
, ~A21!

where the quantityV(r )[dEv /dn(r 8) represents the Har-
tree or exchange-correlation potential, we find, after some
manipulation:

dEv

dfa~r !
54(

b
@KabV~r !13~LVL!ab

22~LSLVL1LVLSL!ab#fb~r !. ~A22!

Combining this expression for the Hartree and exchange-
correlation derivatives with Eq.~A18! for the kinetic and
pseudopotential derivatives, we find

dEtot

dfa~r !
54(

b
@KabĤ13~LHL !ab

22~LSLHL1LHLSL!ab#fb~r !, ~A23!

where Ĥ is the Kohn-Sham operator, andH is its matrix
representation in the basis of support functions.

Note that in the practical grid-based calculations, the de-
rivative we actually want is]Etot /]fa(r l ), which describes
the variation ofEtot with respect to change offa at the grid
point r l . The formula for]Etot /]fa(r l ) is identical to Eq.
~A23! except that we need to multiply by the volume per grid
point dv.
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