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A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in
detail. The method is based on a formulation of density-functional theory in which the ground-state energy is
determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of
the latter lie in the rangfD,1]. Linear-scaling behavior is achieved by requiring that the density matrix should
vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is
imposed by the method of Li, Nunes, and Vanderbilt. The scheme is implemented by calculating all terms in
the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method.
Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix
is increased. A discussion of the relation between the present method and other linear-scaling methods is given,
and some problems that still require solution are indicated.

I. INTRODUCTION fully applied to study the electronic structure of large mo-
lecular system$.Baroni and Giannozzialso proposed a
During the last decade, first-principles total-energy meth-scheme that directly determines the electron density. They do
ods based on density-functional thedBFT) combined with  this by discretizing the Kohn-Sham Hamiltonian on a real-
the pseudopotential method have become established assgace grid, and then using the recursion method of Haydock,
major tool in the study of condensed maftefhe DFT  Heine and Kelly* to obtain the diagonal elements of the
pseudopotential approach is now widely used for both stati&reen’s function, from which the electron density can be
and dynamic simulations on an enormous range ofomputed by contour integration. In this case linear scaling
condensed-matter problems. However, these methods suffegsults from the fact that the continued fraction used to
from a severe drawback in that their computational cost geneévaluate a particular diagonal element of the Green’s func-
erally increases as the cube of the number of atoms in théon can be truncated once a certain neighborhood of each
system. This unfavorable scaling limits the size of system$oint has been explored. This neighborhood is independent
that can be studied with current methods and today’s comof the system size for sufficiently large systems.
puters to a few hundred atoms at most. TBIEN®) scaling More recently, several new schemes that resemble tradi-
appears in spite of the fact that the complexity of the probdional first-principles methods have been reported. Galli and
lem increases only linearly with the system size. This obserParrinelld pointed out that some improvement could be
vation suggests that the unfavorable scaling of current mettchieved in the scaling of a conventional DFT calculation by
ods is a consequence of the way in which the electroni¢equiring spatial localization of the electronic orbitals. This
structure problem is being addressed. Conventional method@calization was achieved by adding certain nonlocal con-
rely either on diagonalization of the Hamiltonian or or- straining terms to the Hamiltonian, or by using a filtering
thonormalization of a set of occupied orbitals, both of whichProcedure. The total energy can then be obtained as a func-
are intrinsicallyO(N?) operations. It is clear that more effi- tional of the localized orbitalkg;) and theirconjugateorbit-
cient methods in which the effort is proportional to the num—a|S|¢i)=Eij_il|¢j), but in order to obtain these conjugate
ber of atoms must be possible, and in recent years a consid+bitals, the overlap matri$ has to be inverted. Since spatial
erable effort has been devoted to finding such “linear-localization implies sparsity of, this can be achieved in
scaling” scheme$:2° O(N?) operations, so that some improvement with respect to
The earliest linear-scaling scheme appears to be the “diO(N?) is obtained. A step further in this direction was made
vide and conquer” method of Yarfef This obtains the elec- independently by Mauri, Galli, and Cdt (hereafter referred
tronic density and hence the total energy by dividing theto as MGQ and by Ordeja et al®!° They introduced a new
system into overlapping subsystems that can be treated ind&inctional of the occupied orbitals that possesses the same
pendently. The density is calculated for each subsystem withround state as the conventional energy functional, but with
conventional linear combination of atomic orbitals DFT. Thethe added advantage of leading naturally to orthogonal orbit-
Hamiltonian for each subsystem, which includes the potenals when minimized. If this new functional is minimized
tial due to the other subsystems, is diagonalized indeperwith respect to orbitals that are constrained to remain local-
dently, thus avoiding the need to diagonalize the full Hamil-ized in chosen regions of space, as suggested by Galli and
tonian. This procedure is repeated until self-consistency i®arrinello® a linear scaling method results. In the original
achieved. The divide-and-conquer strategy is being succestrmulation, the number of orbitals entering the new func-
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tional is equal to half the number of electrons in the systemthe method is then described in Sec. IIl. The tests we have

This restriction seems to lead to very slow convergence, anderformed to probe the practical usefulness of the scheme are

to the appearance of spurious local minima in the functionalpresented in Sec. IV. In Sec. V, we assess what has been

This problem has been recently overcome by Kim, Mauri,achieved and we discuss possible future developments, with

and Galli** by generalizing the functional so that it dependsparticular attention to the problems that need to be overcome

on an arbitrary number of orbitals. before the method can be generally applied. Some of the
The linear-scaling scheme most relevant to the presennathematical analysis is reported in an Appendix.

work is that put forward by Li, Nunes, and Vanderhilt

(hereafter referred to as LN\in the context of tight-binding II. FORMULATION OF DFT IN TERMS

semiempirical calculations. In this method, linear scaling is OF THE DENSITY MATRIX

achieved by taking advantage of the real-space localization

properties of the density matrix(r,r’). By introducing a

spatial cutoffR; in p, such thatp(r,r’) is set to zero if We need to recall briefly the principles of DE¥The total

[r—r'|=R., the number of nonzero elementsgrincreases energyE,, of the system of valence electrons and atomic

only linearly with the system size. The electronic structurecores is expressed as

problem is then formulated as a minimization of the total

energy with respect to the truncated density matrix, subject Etot= Ek +Epst En+ Exct Em, v

to the constraints of |dgmpotencp2(= p) and correct trace \yhere the terms on the right are the kinetic, pseudopotential,

(2Trp=Ne, where N, is the number of electronsThe  partree, and exchange-correlation energies of the electrons,

scheme of LNV consists of an algorithm for imposing these, g E, is the Madelung energy of the cores. The first two

constraints that at the same time fulfills the goal of ””earenergies are

scaling. The idempotency @fis the most difficult constraint

to impose, and this scheme achieves it by expresgirig N 2

terms of an auxiliary matrix, which we denote in this paper EK=22 <l//i‘ - ﬁVz wi>,

by o. This is subjected to purifying transformation due to =1

McWeeny? If ¢ is a near-idempotent matrix, i.e., if its ei- N

genvalues lie close_to 0 or 1, this transformatlor) WI|| return Eps= 22 <¢i|Vsz o), 3)

p as a more nearly idempotent matrix, and thus it is possible i=1

to minimize the total energy with respectgowhile ensuring

the near idempotency qgf. By construction, the method is

variational [i.e., minE(R)=minE(«)], and it has been

shown that the convergence of calculated properties with th

parameteR; is fairly rapid!>*31t is now being widely used

in tight-binding simulations of large systems. 1
Recently, the idea of working with the density matrix has Eszezf drdr'n(r)yn(r")/|r—r’],

been applied to DFT linear scaling schemes. This has been

done independently by Hierse and Ste¢hahd by Herna-

dez and Gillart® In both cases, the density matrix is repre- EXCZJ dr n(nen(n], ()
sented in real space as

A. Density-functional theory

where ¢; are the Kohn-ShantKs) orbitals, V is the total
pseudopotential operator, amdt= 3N, is the number of oc-
8upied orbitals. The energids, and E,. can be written in
terms of the electron number densityr):

where for simplicity we assume the local density approxima-
N %/ tion (LDA) for E,., with €,. the exchange-correlation en-
plr.r )_QZB Po(NKapdp(r'), @ ergy per electron. The number density is
. . . N
where theq&a are a set of localized functlons, ah’d_w is a n(r)—zz PO ®)
symmetric matrix. The total energy is expressed in terms of a1 i '
p(r,r"), and minimization is carried out with respect to both ] o )
the ¢,, and theK 5. Hierse and Stech¥luse a number of The important principle for the present purposes is that the
functions ¢, equal to the number of occupied orbitals, but 'ue ground-state energy and electron density are obtained by
this restriction is not present in our scheme. The conseMinimizing Eq with respect to the KS orbitals, subject to the
quences of this and other differences between the two mettgonstraint that the latter are kept orthonormal. .
ods will be addressed later in this paper. Other methods have In the standard formulation of DFT, which we have just
been proposed recently. Among them are the method due g#/mmarized, all the occupied orbitals are fully occupied.
Stechel, Williams, and Feibelmahthe method of Kohd? ~ However, itis frequently convenient, for physical, computa-
the density-matrix method of Yang and L¥eand the tional, or formal reasons, to generalize the theory so that
method due to GoedeckEr?° orbitals can be partially occupied. Spatial orbitaj(r),
Previously, only a brief description of our method hasrather than containing two electrons, may now contaip 2
been published In this paper we give a detailed description electrons, where the occupation numtbeties in the range
of the method, together with some illustrations of its practi-O<fi=<1. The number density(r) now becomes
cal performance and a discussion of its relation to other
method;. In Sec. I'I, the method is outll_ned and its theor_etlcal n(r)=22 fly(r)|2, 6)
foundations are discussed. The practical implementation of .
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and the kinetic and pseudopotential energies are ration of its argument§r —r’| increases. This strongly sug-
52 gests the usefulness of estimatifg by searching over
EK—ZZ fi< " ﬁVz i/fi>, p(r,r") with the following restriction:
p(r,r’y=0, |r—r'|>R;, (10
Eps:zzi fi<¢i|Vsz i) (7)  where R. is a chosen cutoff radius. The resulting estimate

Emin(Re) will tend to Ey from above afk,— . The manner

The expressions foE, and E,. in terms ofn(r) are un- in whichp(r,r’') goes to zero at large separations depends on
changed. the electronic structure of the system, and particularly on

The usual physical reason for making this generalizatiorwhether there is a gap between the highest occupied and
is that one wishes to treat the electrons at a nonzero temperwest unoccupied states. It is rigourously established that in
ture, in which case thef; are Fermi-Dirac occupation one-dimensional systems having a gaplecays exponen-
numbers®* computationally, the generalization is sometimestially with separation, while in gapless systems it decays
made in order to get rid of the troublesome discontinuity atonly as an inverse powéf. It is presumed that three-
the Fermi level in metallic systen?$2® Our reason for con- dimensional systems behave similarly. This suggests—
sidering it here is that it will be relevant to the density matrixthough to our knowledge it is unproven—that
formulation. We shall assume thatH is minimized both  E;,(R.)— Eo exponentially for insulators and algebraically
with respect to they; (subject to orthonormalijyand with  for metals.
respect to thd; (subject to the restriction89f;<1 and the Clearly in practical calculations we cannot work directly
condition that the sunf; be equal to;N,), then we arrive at  with a six-dimensional functiop(r,r’), even if it vanishes
exactly the ground state that is obtained by the more usudleyond a chosen radius. It is essential thate separable,
minimization with respect to fully occupied statés. An-  i.e., representable in the form
other way of putting this is that the energy cannot be reduced
below the normal ground state by allowing partial occupa-
tion. p(rr)=2, ¢u(NKapbs(r’). (12)

Now we turn to the density matrix, which is defined by op

For practical purposes, there must be only a finite number of
p(r,rf)zz figi(r) g (r'). (8) ¢,(r) functions, which will be referred to as support func-
i tions. Forp to be Hermitian, we must require that the matrix
K. be Hermitian. The restriction to a finite number of sup-
port functions is equivalent to the condition thahave only
this number of nonzero eigenvalues, and this is the essence
of the separability requirement. With this, we now have two
independent restrictions om: localization and separability.
IZ,'_he localization ofp can be imposed by requiring that the
support functions be nonzero only within chosen regions,
which we call the support regions, and that the coefficients
52 K g vanish if the separation of the support regiongpgfand
Exk=— Ef dr[VZp(r,r) =, #5 exceeds a chosen cutoff.
We now have a general framework for linear-scaling DFT
schemes. In practical calculations, the functions will be
Eps— Zf drdr’Vodr',r)p(r,r'), (9)  represented either as a linear combination of basis functions,
or simply by numerical values on a grid. Either way, the
n(r)=2p(r.1) amount of information co.ntained in a support function will
o be independent of the size of the system. The amount of
with E,; and E,. expressed in the usual way in terms of information in the support functions will then scale linearly
n(r). It follows from what we have said before thatfif, is ~ With the size of the system, and the numberkof, coeffi-
minimized with respect tg(r,r’) subject to the condition cients will scale in the same way. This in turn implies that
that the eigenvalues of the latter are in the required intervaihe electron density(r) and all the terms in the total energy
and add up t@N,, then we arrive at the usual ground state.can be calculated in a number of operations that scale lin-
This is the density-matrix formulation of DFT. early with system size.

It follows from this definition thatp(r,r’) is a Hermitian
operator whose eigenvalues are all in the intef@al]. The
converse is also true: a Hermitian operapdr,r’) whose
eigenvalues arg and whose eigenfunctions agg(r) can be
written as in Eq(8). In terms of such an operatp(r,r’), let
the kinetic energy, pseudopotential energy, and number de
sity be defined as

B. Localization of the density matrix C. Eigenvalue range of the density matrix

Since DFT is variational, any restriction placed on the In this general scheme, the ground state is determined by
class of density matrices(r,r’) that can be searched over searching over support functions a#g,; matrices. How-
has the effect of raising the minimum eneffgy,, above its  ever, it is essential that this search be confined to thiyse
true ground-state valugy; progressive relaxation of such a andK g for which the eigenvalues qf(r,r’) lie in the in-
restriction make<£,,, tend toE,. Now in general the den- terval[0,1]. This is a troublesome condition to impose, be-
sity matrix in the true ground state tends to zero as the sep&ause we certainly do not wish to work directly with these
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eigenvalues. We can achieve what we want by expressinghe result is that-(r,r’) must have the form
p in a form that satisfies the condition automatically.
The scheme developed in this paper is the DFT analogue N (s) (S)¢pr
of the tight-binding scheme of LNY We write the density o(r.r )_ES: XX, (20
matrix as
where
p=30*0c—20* o* 7, (12
where o(r,r’) is an auxiliary function. The asterisk here x2()=2 b¥¢.(r). (21)
indicates the continuum analogue of matrix multiplication. a

For arbitrary two-point functiong\(r,r’) and B(r,r’), we

use the notatiol€=A*B as a short-hand for the statement Following arguments presented by Nunes and Vandéftitt,

can now be shown that this scheme is exactly equivalent to
the linear-scaling DFT scheme of MGC.
C(r,r')=J dr”A(r,r")B(r",r'"). (13
The reason this works is that the eigenvalagsof p auto-
matically satisfy G=\ <1 provided the eigenvalues, of

. f §' . . .
o are in the range- ;<\, =<3; in addition, A, has turning We now give a prescription for the calculation of the en-

p‘?'”ts at the values 0 and 1. Sln_ce the ground state IS O%rgy functional, and of its derivatives with respect to the

tained whenh,=0 or 1, there is a natural mechanism g6t functionss, and thel ,; parameters, and we de-
whereby variation ofr drivesp towards idempotency. scribe how minimization of the energy can be carried out in
To obtain the separable form pf[Eq. (11)], we write practice. Central to our implementation of the method de-
scribed in the previous section is the use of a regular cubic

lll. PRACTICAL IMPLEMENTATION OF THE METHOD

A. The real-space grid

o(rr’)=2> Do(NLpdp(r’), (14)  real-space grid, spanning the whole system under study.

ap There have been a number of recent implementations of con-

which implies the matrix relation ventiggagl4DFT—pseudopotentiaI calculations using real-space
grids==~

K=3LSL—-2LSLSL (15 The support functions are represented by their values at

the grid points. Since these functions are required to be spa-
tially localized, they have nonzero values only on the grid
points inside the localization regions. In the present work,
these regions are chosen to be spherical, and their centers are
at the atomic positions. Real-space integration is replaced by
summation over grid points, so that, e.g., the overlap matrix
elements are calculated as

whereS,; is the overlap matrix of support functions:

Sup= f dr () (). (16
The ground state is now obtained by minimizigg, with
respect to thep, and thel ,; matrix, with theK ,z matrix
given by Eq.(15). In the practical calculations reported later,
the ¢, are nonzero only inside spherical regions of radius
Rieg, @and thel .5 are nonzero only if the centers of the
regionsa and B are separated by less than a cutoff distance
R, . where the sum goes over the set of grid pomt€ommon to
It will be useful for the purposes of later discussion tothe localization regions of botk, and ¢4, and dw is the
note how a closely related scheme leads back to the MG@olume per grid point.

S.p= 6er Ga(r )41, (22)

method’ This scheme is obtained by writing

7

where ¢ is required to be positive semidefinite. Since the
eigenvalues. , can be expressed aé wherex, is real, the
eigenvalues op are given by

p=0*(2-0),

N, =No(2=N ) =K5(2—K5). (18)

This quartic function lies in the randg®,1] for |«,|<2%?
and has turning points when,=0 and 1. This gives an
alternative mechanism for driving towards idempotency.
With o given, as before, by Eq14), it is straightforward to
show thato is positive semidefinite if and only if the matrix
L.p is positive semidefinite, and this is equivalent to the
condition thatl ,; be expressible as

LQB=ES bbbl (19)

The action of the kinetic energy operator on the support
functions is evaluated using a finite difference technique. To
nth order in the grid spacindy, we have that

P,
Ix?

1 n
(nx Ny !nz): Fm;n C\m\d’a(nx—i_mvny vnz)v
(23

wheren, ,ny, andn, are integer indices labeling grid point
r,, and the coefficient€,, can be calculated beforehand.
Equivalent expressions can be used f&f¢,/dy? and
d?¢,19z%, and it is thus possible to evalusieé ¢, approxi-
mately at each grid point. From Eq®) and(11), the kinetic
energy is given by

Ex=22 KagT e (24)
ap

where
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#2 5 at larger, whereZ is the core charge. In order to obtain a
Tga=— ﬁf drép(r)Vig,(r). (25 linear-scaling algorithm foE,s, we proceed as follows. The
ionic pseudopotential is represented as the sum of the Cou-
OnceV?2¢,(r) has been evaluated at each grid point usingomb potential due to a Gaussian charge distributig(n)
Eq.(23), theT,; matrix elements are calculated by summingand a short-range potentiaf(r). The total charge in(r)
over grid points, just as fo8,; [see Eq.(22)]. It is worth s Z|e|, and the distribution is given by
noting that the use of a finite-difference approach can pro-
duce either positive or negative errors in the kinetic energy n(r)=2Z|e|(alm)*%exp — ar?), (3D
_ev_aluation. Thus, str_ictly spe_aking, t_he variat_ional Ch"?‘r"]‘c"er\'/vhere the parametew governs the rate of decay of the
istic of the method is lost with the introduction of this ap- Gaussian. We therefore have
proximation. Nevertheless, the error incurred by such a '
finite-difference scheme will be small provided that the grid Z|e|?
is sufficiently fine and the Laplacian approximation is of a vpdl) =~ — erfa™)+vpqr). (32)
sufficiently high order in the grid spacirtg Practical appli-
cations will be carried out using finite values of the param-The part ofV,s coming fromv s can now be calculated as a
etersR. and Ry, and since the method is still variational direct sum over ions, as in E¢30). Sincevgs can be ne-
with respect to these, it is to be expected that the minimunglected beyond a certain radius, this part of the calculation
energy provides an upper bound to the exact ground state.scales linearly. The part of,s coming from the array of
In order to evaluate the exchange-correlation, Hartreegaussians can be treated in exactly the same way as the

and pseudopotential contributions to the total energy, we firsjartree potential. The pseudopotential energy is then calcu-
need to evaluate the electron density at each grid point. Fromated by summation over the real-space grid:

Egs.(9) and(11), the density at grid point, is

E = 0w, Vo dr,)n(r,). (33
ps ps\! / /
(1) =225 $alt ) Kapdg(r,). (26) 7
From this, it is straightforward to evaluate the exchange- B. Derivatives and minimization

correlation _energy . by __summing the quanpty Once the contributions to the total energy have been ob-
n(r,)edn(r,)] over grid points. The exchange-correlation tained as outlined above, we need to vary hioffy and ¢,

potential u,. can also be calculated at each point, and IS0 order to minimize it. Thel,; and ¢, are independent

given as variables, and the problem breaks naturally into two separate
d minimizations that can be carried out in an alternating man-

MyT )= ﬁ{n(r/)exc[n(r/)]}. (27 ner: one with respect t@ . with fixed ¢,, and the pther

with respect tog, with fixed L,;. Indeed, the choice of

To obtain the Hartree energy and potential we use the faﬁbjECt function can be_ d_iffere_nt for the two types of_varia-
Fourier transform(FFT) method to transform the calculated 1Ons, and when m|n|m|2|ng_W|th respect to thg, we find
electronic density into reciprocal space, thus obtaining itdt MOre convenient to takl = E,— uN, as our object func-

Fourier components, . The Hartree energy is then given as tion, wherep is the chemical potential ard, is the electron
number. We return to this point below.

5 < 2o Expressions for the derivatives with respectlLtg, and
En=27Qe ;;0 Ing|?/G?, (28) ¢, are obtained in the Appendix. The partial derivative of
Q) with respect td_,,; is given by
where(Q is the volume of the simulation cell. The Hartree
potential in reciprocal space is

iy —[6(SLH +H'LS)

Vh(G)=4mQe’hs/G2. (29)

) . . —4(SLSLH+SLHLS+H'LSLS ]z, (34
This can be constructed on the reciprocal-space grid, and _ _ _
transformed to obtain the Hartree potential in real space. FFwhereH’=H—uS, andH is the matrix representation of
is, of course, arO(Nlog,N) operation rather than a@(N) the KS Hamiltonian in the support function representation. It
operation, but the difference is negligible for the present puris worth noting that this expression is exactly the same as
poses. would be obtained in a nonorthogonal tight-binding

We restrict ourselves here to local pseudopotentials, sérmalism® There is, however, one important difference: in
that the value of the total pseudopotentigl{r,) at grid self-consistent DFT calculations the Hamiltonian matrix ele-
pointr . is formally given by ments depend ok .z through the electronic density(r).

The partial derivative of the total energy with respeciftp
at grid pointr . is given by
Vedt )= 25 vpd T~ R, (30
aEtot _ E ~
wherev (r) is the ionic pseudopotential aiR} is the posi- Ib (1) =4d0 3 [KagH+3(LHL) 44
tion of ion . In practice, howeve ,(r ) cannot be calcu- '
lated like this, because,qr) has a Coulomb tail-Z|e|?/r —2(LSLHL+LHLSL),gl¢p(r,), (35
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whereH is the Kohn-Sham operator, which is made to act onrespect to the support functions. The minimizatiofdfhas

support functione s . practical advantages in that it avoids the updating of the
It is important to notice that because of the spatial localHamiltonian at each step, and, because of its construction, it
ization of the support functions, and the finite rangé.pfll  is a cubic polynomial in every possible search direction, so it

the matrices involved in the calculation of these derivativeds possible to find the exact location of line minima during its
are sparse, when the system is large enough. Provided thiginimization.
sparsity is exploited in the computational scheme, the The minimization with respect tg,(r,) can be carried
method scales linearly with the size of the system. out by simply moving along the gradiedE,y/d¢,(r,) Eq.
In the scheme of LNV? it is proposed to work at constant (35) (steepest desceitsr by using this expression to con-
chemical potential, rather than at constant electron numbestruct mutually conjugate directiorfsonjugate gradients
We prefer to maintain the electron number constant. The
variations with respect ta,,; and ¢, will in general cause
the electron number to differ from the correct value, and it is
therefore necessary to correct this effect as the minimization In order to test ourO(N) DFT scheme, we have per-
proceeds. We achieve this in the following manner: duringiormed calculations on a system of 512 Si atoms treated
the minimization with respect th, the current search direc- using a local pseudopotential. The purpose of these tests is to
tion is projected so that it is tangential to the local surface ofind out how the total energy depends on the two spatial
constantNe, i.e., perpendicular t& N, at the current posi-  cutoff radii: the support-region radilg.q, and thel.-matrix
tion. This ensures that the minimization along this directioncutoff radiusR, . The practical usefulness of the scheme, and
will cause only a small change M., and it is expected that the size of system for which linear-scaling behavior is at-
at the new minimumN, will differ only slightly from the  tained depend on the rate of convergenc&gfto its exact
required value. In any case, it is possible to return to a posivalue asR,.;andR, are increased. Here, “exact” refers only
tion as close as desired to the constdpsurface by follow- to the absence of errors due to the truncationo@f,r’);
ing the local gradienV N. If the value of the chemical other sources of inexactness, such as the use of a discrete
potential « is appropriately chosen, this correction step cangrid and a local pseudopotential, are of no concern here.
be carried out without losing the reduction@hobtained by The system treated is a periodically repeating cell contain-
performing the line minimization, and this is why we prefering 512 atoms of diamond-structure Si having the experi-
to take() as the object function instead of the total energy,mental lattice parametéb.43 A). The local pseudopotential
when minimizing with respect th. We find that this scheme is the one constructed by Appelbaum and Ham&Enmhich
is capable of maintaining the electron number close to itds known to give a satisfactory representation of the self-
correct value throughout the minimization, and is also simpleconsistent band structure. The LDA exchange-correlation en-
to implement. The gradier N, has elements ergy is calculated using the Ceperley-Alder formtfiave
use a grid spacing of 0.34 A, which is similar to the spacing
typically used in pseudopotential plane-wave calculations on
Si, and is sufficient to give reasonable accuracy. The second
_ i _ ) derivatives of the¢, needed in the calculation dy are
wh|ch,_ as all other grqdlents d_|s.cu.sse_d earl!er, can be Ca'%‘omputed using the second-order formula given in @8).
lated in O(N) operations. Minimization with respect to A gypport region is centered on every atom, and each such
$o(r,) will also have the effect of changing the electron region contains four support functions. One can imagine that
number. However, given that the _two typ_es of vz_irl_atl_ons ar§hese support functions correspond roughly to the single 3
performed alternately, the correction during theninimiza-  nction and the threepfunctions that would be used in a
tion is sufficient to counteract this effect. _ . tight-binding description, but we stress that nothing obliges
Given that variation ot ,; causes the electronic density s 1o work with this number of support functions. In keeping
to change, and this in turn implies that the Hamiltonian mav,ith the tight-binding picture, the initial guess for the sup-
trix elements change, it would seem necessary to update theyt functions is taken to be a Gaussian multiplied by a con-
Hamiltonian at each step of the minimization with respect togiant y, or z, so that the functions have the symmetry of
L. However, we find that this can be avoided by considering; andp states. As an initial guess for thematrix, we take
H fixed during this part of the minimization. Strictly speak- {he quantity 2— S, whereS is the overlap matrix calculated
ing, if H is held fixed whileL is \’/arlefj, we are not MINIMIZ= for the initial support functions. This guess fér, which
ing Q=E—uN but ratherQ’=E"—uN, whereE’ is  epresents the expansion 8f=[1—(1—S)]* to first or-

IV. TEST CALCULATIONS

Ne

FT

=12SLS-SLSLS,;, (36)

given by der, is crude, and does not yield the correct value ¢f. Tr
;o B This error is corrected by displacing iteratively along the
E'=T(6LSL—4LSLSLH]. 87 gradientV N, until N, is within a required tolerance of the
If this minimization were carried out through to conver- correct value.
gence, this would be equivalent to diagonalizidgin the The initial guesses for the, and thel ,; define the

representation of the current support functions. At converinitial Hamiltonian and overlap matrices. From this starting
gence, it will be found in general thatandH are not mu-  point, we make a number of conjugate-gradient line searches
tually consistent, and if consistency is required, one needs t® minimize() by varyingL, with the Hamiltonian and over-
updateH and repeat the minimization, iterating this cycle lap matrices held fixed. This is followed by a sequence of
until consistency was achieved. This is not necessary in pradine searches in which the, are varied. We refer to the
tice, becaused will be updated at the next variation with sequence of moves followed by a sequence ¢fmoves as
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FIG. 1. (a) Total energy per atom as a function of the support _ FIG. 2. Support functions after minimization of th(_e total energy
region radiusR ¢, with R_ = 5 A. (b) Total energy per atom as a With Reeg= 3.05andR, = 5.0 A. (a) s-like support function, an¢b)
function of the range of the matrix, R, , for two different support ~ Px-like support function.

region radii,Re;= 2.04 and 2.38 A. o _ _
It is interesting to know the form of the support functions

. o . for the self-consistent ground state. These are shown in Fig.
acycle The entire energy minimization consists of a set of; ¢or the casR... = 3.05 R_=5 A. The support functions
re " ' .

c_ycles. In practice, we have found that. cycles. consisting Oghown here aregthe firgtnitially s Gaussiah and second
five L moves and twap moves work satisfactorily, and that (p, Gaussian Profiles of the support functions along the

Eiot is converged to within 10° eV/atom after typically [100], [110], and [111] directions are shown. The support
50-60 cycles. This would not be an efficient rate of conversnctions are seen to be symmetric with respect to the center
gence for routine applications, but is more than adequate fqf¢ 1,0 support regionr(=0) along the[100] and[110] di-

the present purposes. rections. Along thd111] direction there is a slight asymme-

Our test calculations confirm our earlier findffighat for try resulting from the presence of a nearest-neighbor ion,
the Si perfect crystak, is already quite close to its exact \hich |ies at 2.35 A from the origin in the positive direction.
value wherR, =5.0 A. We have therefore used this value of Remarkably, thes-like support function seems to be almost

R_ to make calculations dE, as a function oReg[se€ Fig.  perfectly spherically symmetric, except near the peak at
1(a)]. The results show thd ; converges very quickly with o g A_ It is encouraging to see that the support functions
increasingReg, and that it is within~ 0.1 eV of its fully g5 rather smoothly to zero at the region boundary, and this

converged value foR.q = 3.05 A. This would be a signifi-  ¢onfirms that the boundary has little effect on the results.
cant error on an absolute scale, but we would expect energy

differences calculated with this technique to be much
smaller. It is worth noting that errors of 0.1 eV/atom in the
total energy are usually regarded as acceptable in conven- We have tried to do three things in this work: to develop

tional plane-wave calculations. the basic formalism needed to under@gN) DFT pseudo-

In order to show howE,, depends o, , we present a potential methods; to implement one such method and iden-
series of results at the two region raBi,; = 2.04 and 2.38 tify the main technical issues in doing so; and to present the
A [see Fig. W)]. These results indicate that there is only aresults of tests on a simple but important system, which al-
slow variation withR, and that this variation is almost the low us to gauge the usefulness of the method. We have
same for different values d® 4. This means that it is pos- shown that a rather general class@fN) DFT pseudopo-
sible to converge the total energy to satisfactory accuractential methods can be based on a formulation of DFT in
with easily manageable spatial cutoffs. terms of the density matrix, and that this formulation is

V. DISCUSSION
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equivalent to commonly used versions of DFT that operateencompassing several linear-scaling methodologies. In both
with fractional occupation numbers. From this viewpoint, thethe MGC and the Hierse-Stechel methods, the number of
key challenge is to ensure that the eigenvalues of the variabfeinctions employed is equal to the number of occupied or-
density matrix lie between 0 and 1, and we have seen that thaitals. If this is the case, it is not necessary to use the trans-
method of LNV (Ref. 12 gives a way of doing this. The formation Eq.(12) to impose the approximate idempotency
implementation of the basic ideas has been achieved by pe?f the density operator, because it is only required that all
forming all calculations in real space, with the DFT integrals€igenvalues op be equalor close tg unity. To achieve this,

approximated by sums on a grid—except for the use of FFt is sufficient to use Eq(17) as the purifying transformation.

to treat the Hartree term. An alternative here would be tol "€ Scheme discussed in this paper and introduced in Ref.

work with atomiclike basis functions, but we note that the 1> as Well as the original tight-binding density matrix for-
use of a grid preserves an important link with conventionalmal's,m of LNV, allows for the use of a numb-er of support
plane-wave methods, as will be analyzed in more detail elsgUnctions¢, greater than the number of occupied orbitals. In
where. Our test results on perfect-crystal Si show that thdliS €@se it is necessary to use the transformation given by
total energy converges rapidly as the real-space cutoffs ared- (12 to ensure the near idempotencyyofAt first sight it

increased, and that it is straightforward to achieve a precisiolf®uld seem that the use of a higher number of support func-
comparable with that of normal plane-wave calculations. tONS than occupied orbitaland thus the need to use Eq.

An important question for an@(N) method is the system (12) rather t_han Eq(l_?)] _is unnecessary and wasteful. How-
size at which it starts to beat a stand®@N®) method—a  €Vel: there is some indication that restricting the number of

plane-wave method in the present case. This will clearly deSUPPOrt functions to the number of occupied orbitals can
pend strongly on the system, but even for Si it is too soon tg€Sult in slow convergence of the minimization and multiple-
answer it on the basis of practical calculations. The crossovdf!N'Mma problems. Our experience is that relaxing this con-

point depends on the prefactor in the linear scaling, and thiS@int eliminates the multiple-minima problem. It is worth

is strongly affected by the efficiency of the coding. All we POInting out that Kim, Mauri, and Galft found it necessary

have attempted to do here is to address the problem dp increase the number of orbitals above the number of oc-
achievingO(N) behavior. The question of the prefactor is g cupied orbitals in their generalization of the MGC scheme in

separate matter, which will need separate investigation. ~ ©rder to avoid this problem. . .

It should be clear that there is much more to do before the Finally, we note that our linear-scaling scheme is intended
present method can be routinely applied to real problems. WEPF calculations on very large systems, and this means that
have deliberately not discussed in detail the problems of doP2rallel implementation will play a key role. The test calcu-

ing calculations on a real-space grid. Such problems havitions we have presented were, in fact, performed on a mas-

been discussed outside the linear-scaling context in severdlVe!y parallel machine, and the parallel-coding techniques

recent paper&®and it should be possible to apply the ad- Ve have developed will be described in a separate paper.
vances reported there @(N) DFT calculations. In particu-

lar, curvilinear grid3'~34for the treatment of strongly attrac- ACKNOWLEDGMENTS

tive pseudopotentials are likely to be very important for

when the boundaries of support regions cross grid pointsJ

) . ; . ... .J01967. The major calculations were done on the Cray T3D
and the general question of translational invariance withi

id-based techni "t Edinburgh Parallel Computing Centre using an allocation
grid-based techniques. . of time from the HPCI. Code development and subsidiary
In our current implementation, the rate of the convergencgJlnalysis were made using local hardware funded by EPSRC

of the total energy during the minimization is somewhat SIOWGrant No. GR/J36266. We gratefully acknowledge useful
for routine applications. In order to improve this Conver'discussioﬁs with D Vaﬁderbilt

gence rate, a possible course of action would be tonuge

tigrid techniques®®® It is well known that standard relax- _
ation techniques for the solution of partial differential iSO SR AU SRS L SRR e S S

ing the Fourier components of the error of a trial S°|Uti0n<9Etot/(9LaB and SE o,/ 56,(r).

with wavelengths in the range of the grid spacisg-called
oscillatory componenjs However, components of the error
with longer wavelengthgsmooth componenksare left al-
most unchanged. Thus, the rate of convergence of relaxation In DFT, the total energy Eq2) has two types of contri-
methods is poor. By bringing into play multiple grids with butions: those that can be written as the trace of some opera-
different degrees of coarseness, it is possible to improve thtr acting on the density matrix, as is the case for the kinetic
rate of convergence, because smooth components on a fin@d pseudopotential energigsee Eq.(9)], and those that
grid will become oscillatory on a coarser grid. Multigrid depend only on the diagonal elementspofi.e., the electron
methods are being recognized as a useful tool in electronidensity, namely, the Hartree and exchange-correlation ener-
structure calculation®:4041 gies. The Madelung ternk,, does not depend on either
We have noted already that our method is related to othel .z Or ¢, , S0 it will make no contribution to the variation in
recently proposed methods. It was first pointed out bytotal energy as these are changed. Denoting bthe kinetic
Vanderbilf? that Eq.(14) can be regarded as a general ansator pseudopotential contribution to the energy, we have

1. Derivative with respect toL ,g
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ECZZ% [3(LSL),s—2(LSLSD 5]Cs,,  (AL) vaﬁzf dr o(NV(r) dg(r). (A10)

where By comparing this expression with EGA4), it is easy to see
that the partial derivative of the total energy with respect to
L.z can be written more compactly as

h2
Cﬁy:f dr ¢(S(r)(_ﬁvz)¢y(r) (A2)

IE ot
g

for the kinetic energy, and for the pseudopotential =[6(SLH+HLS)z,

—4(SLSLH+SLHLS+HLSLS 4,], (ALD)

Csy:f drdr’ ¢ s(r")Vps(r,r') ¢, (r), (A3) _ _ _
whereH 4 is the sum of the corresponding matrix elements

whereV, is in general a nonlocal pseudopotential operator0f the kinetic, pseudopotential, Hartree, and exchange-
Clearly, C,,; does not depend oh,; for either operator, so correlation operators, i.e., the matrix representation of the

this term does not change hgy is varied. It is thus easy to Kohn-Sham Hamiltonian in the basis of the support func-
see that tions. Recall that in practice, we do not véEy, but rather

vary () =E;— uN with respect td_, ;. However, it is trivial
JE to obtaindQ/dL .z from Eq.(48) by simply substituting the
¢ —[6(SLC+ CLS)4q matrix elements oH by those ofH— uS. Once this is done,
L ap Eq. (A11) corresponds to Eq34).

—4(SLSLCHSLCLS+CLSLSg,], (A4)
) ) _ ) 2. Functional derivative of E,; with respect to ¢,
where C is the matrix representation of the corresponding

operator(kinetic energy or pseudopoteniiah the basis of . iy
the support functions. total energy, can be regarded as a function of the quantities

For the Hartree and exchange-correlation contributions®« @1dKas. Whene, is varied,E y therefore varies firstly
because of its direct dependence ép, and secondly be-
denoted byE,, we have that N ,
cause of the implicit dependence of tkeg,; matrix on ¢,
through its dependence on the overlap matrix elem&pts

According to Eq.(11), the density matrix, and hence the

3_EUZJ . oE, an(r) (A5) [see Eq.(15)]; we call these two types of variations type 1
L g on(r) dl,g - and type 2.
) o To see how variations of type 1 behave, consider first the
The electron density(r) is simply 2p(r,r), so that kinetic and pseudopotential energies. The type 1 variation of
either of these is given by
an(r) d
L =22 by —[3(LSL),s
af Yo afB ~
(0Eo)1=22, Kﬁyaf drg,(NCesr),  (A2)
—2(LSLSD ,sls(1). (AB) &
In the case of the Hartree contribution, we have whereC represents the kinetic energy or the pseudopotential
operator. The variation of the integral gives
SEy ) , n(r’)
5n(r)_e fdr |r_r,|—fI)(r), (A7)

<6Ec>1=2§6 Ksy f dr(6¢,Cst ¢,Cps)

where®d(r) is the Hartree potential, while in the case of the

exchange-correlation contribution we have ~ ~
= 225 Kﬁvf dr(6¢,Chs+4;Ch,). (A13)
Y
SE  d )
an(r aninecn]=pux(r), (A8)  The last equality follows from the fact that is a Hermitian

operator. The type 1 variation d&; can therefore be ex-
where u,. is the exchange-correlation potential. If we take pressed as
V(r) to represent eitheb(r) or u,(r) as the case may be,

we see that expressidd?2) reduces to SE
(5¢ (‘})) =42 Kyg(Cp)(n), (A1)
aEU a 1 B
=[6(SLV+VLY)4, . _ N
ILap where Cdap)(r) represents the action of the opera®ion

—A(SLSLW SLVLS+VLSL A ¢ evaluated at the point
(SLS S SFVLSLSgal,  (A9) Now consider the type 2 variation & due to the varia-

where tion of the overlap matrix elements. The variationS)f, is
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on(r’)
5S.5= f dr(¢odby+ Sbadp),  (ALS) g =200 T2 (96K gat Kagdp(r)]
and the type 2 variation dE, is then obtained by applying S
this expression to EqAl). After a little manipulation, one +2> dp(r')p(r' )
obtains By Oe,(1)
5E, X[3(LSL)g,—2(LSLSD g, ]. (A20)
5o =122 (LCL)usd(r)
P 2 B Substituting this expression into
—8> (LSLCL+LCLSL),z¢4(r). SE, sn(r’
7 s =f arv(ry ) (A21)
Oep,(1) $alr)
(A16)
Here,C is the matrix whose elements are where the quantity/(r)=JE,/on(r’) represents the Har-
tree or exchange-correlation potential, we find, after some
Cw:j dr¢>aé¢ﬁ. (AL7) manipulation:
Combining Eqs(A14) and (A16), we obtain the following Sk,

v - +
expression for the total variations of the kinetic and pseudo- S, (1) 42,; [KagV(r)+3(LVL)ap

potential energies:
—2(LSLVL+LVLSLD) ,p]dp(r). (A22)

SE, -
So(r) :4% [KapCH3(LCL) o Combining this expression for the Hartree and exchange-
correlation derivatives with Eq(A18) for the kinetic and
—2(LSLCL+LCLSL) ,5]¢p(r). (A18) pseudopotential derivatives, we find

For the remaining terms(Hartree and exchange-

correlation, variation in the energy results from variation in OBt =4 [Ka,3|:| +3(LHL) 44
the electron density. Thus we need to calculate O, (r) B
sn(r') ) —2(LSLHL+LHLSL) ,p]4(r), (A23)

= 22, $p(r')
0ball)  8bal1) Ty whereH is the Kohn-Sham operator, arid is its matrix
X[3(LSL)g,—2(LSLSD g, 1p,(r"). representation in the basis of support functions.
Note that in the practical grid-based calculations, the de-

(A19) rivative we actually want i9E,/d¢,(r ), which describes
Again, we will have variations coming directly from the the variation ofg,y with respect to change @b, at the grid
change in¢,(r) and variations coming indirectly from pointr,. The formula fordE,./d¢,(r ) is identical to Eq.
changes in the overlap matrix elements. The total variation ofA23) except that we need to multiply by the volume per grid
n(r") will be point w.
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