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We investigate a class of two-dimensional hexagonal structures that possess photonic band gaps. This class
includes the previously studied triangular structure as a particular case. By symmetry analysis, we obtain a
clear insight into the gap opening and we show how the photonic band gaps are affected by the characteristics
of materials, according to whether the dielectric constant of the cylinders is larger or smaller than the back-
ground one. The photonic band structures present numerous gaps, and we study the evolution of these gaps as
functions of the diameter and nature of cylinders. Our results demonstrate the existence of absolute band gaps
for many configurations, largest gaps being obtained for triangular and graphite structures.

I. INTRODUCTION yielded by these structures only suppress the propagation of
the electromagnetic waves in the lattice plane, the inhibition
In the last few years, the study of periodic dielectric struc-of the propagation in the third direction can be obtained by
ture has received considerable interest because it presents iheerting the crystal between two Bragg mirrors. For in-plane
ability to prevent the propagation of electromagnetic wavegpropagation, two types of electromagnetic modes exist ac-
in a certain frequency rande® This results from the re- cording to whether the electrid(polarization or magnetic
moval of degeneracies of the free-photon states at the BragdH polarization field is parallel to the rod axis. The band
planes provoked by the periodicity, which produces forbid-gaps occurring in each case must overlap to form an absolute
den frequency gaps—so-called photonic band gRBG’s). band gap that prevents the propagation of the light of any
It is very attractive to describe the propagation of the elecpolarization. Among the 2D Bravais lattices, the hexagonal
tromagnetic waves in these artificial materials in the sam@ne possesses the Brillouin zone with the most circular
way as that of the electron waves in natural crystals, in spitshape, and it is now a well accepted fact that the crystal
of the large difference between the wavelengths. The dispepatterns deduced from it are good candidates to produce
sion relation gives photonic band structures and some corarge absolute band gaps. Among the systems recently inves-
cepts, such as impurity states and effective masses, which atigated, the triangular structure of air cylinders in GaAs was
very usual for electrons, can be extended to photons. Thtound to possess large PBG's for a large volume fraction of
existence of such PBG's when they overlap with the elecair!*~**Studies depending on the cylinder shape have shown
tronic gaps is particularly promising with regards to the con-that the largest absolute band gaps are achieved for circular
trol the spontaneous emission of light, which is essential focross sectiortd that are also the most convenient to realize.
the realization of thresholdless and low-noise semiconductdf the feasibility of such 2D photonic crystals is at that time
lasers. The search for structures that possess wide PBG'’s well demonstrated at the submicrometer lengté’no at-
the frequency range of interest for the applications has motempt exists to optimize the design of these structures by
tivated a lot of research.!! To prevent the propagation of modifying the configuration of the cylinders in the hexagonal
the waves, whatever its direction is, the gaps opened at difanit cell, their cross section being kept circular.
ferent points of the Brillouin zone must overlap as much as We are concerned in this paper with the simplest pattern,
possible so as to give large absolute band gaps. Thus, it ishich is obtained from a hexagonal Bravais lattice by intro-
desirable that the different gaps are large and centered afucing two cylinders in the unit cell, and we consider a class
neighboring frequencies. Such a condition can be achievedf structures consisting of periodic arrays of two kinds of
for the Brillouin zone by deviating slightly from the spheri- infinitely long parallel cylinders with circular shaped cross
cal shape. So, theoretical and experimental investigations asections, embedded in material with a different dielectric
PBG'’s in three dimensions have first concerned the faceeonstant. In Sec. Il, we present the crystal patterns concerned
centered cubic lattice. Until now, the experimental realiza-in this work and we give the main lines of the calculation
tions of these structures exhibit PBG at microwave frequenmethod. Before carrying out detailed calculations, we first
cies because of the limitations in the fabrication of suchproceed in Sec. Ill to a symmetry analysis in order to get a
materials at submicrometer length scales. Recent attempts ¢dear physical insight into the gap opening. We determine the
increase the frequency of the gaps have led to the use d&éatures of the photonic band structures originating from the
more sophisticated structure designs with lower symmetryattice symmetry and we show how the nature of photonic
lattices?>*® However, the feasibility of such three- crystal plays a fundamental role according to whether the
dimensional(3D) structures with the idea of using them in structures are constituted by air cylinders in GaAs or by
optoelectronic devices is still an important challenge and &aAs cylinders in air. In Sec. IV, we study the evolution of
way in which to obtain photonic crystals with gaps situatedthe numerous PBG’s that appear as functions of the diam-
in the infrared is to fabricate 2D crystals consisting of paral-eters of the two kinds of cylinders. When the diameter of one
lel dielectric rods arranged on 2D lattices. As the PBG'scylinder is infinitely small, the already widely studied trian-
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gular structure is obtained. For two identical cylinders, struc-
tures with the same crystal pattern as the graphite one are Y
generated! In this case, we found that two absolute PBG'’s
can be achieved for systems far from the close-packed con-
figuration. This opportunity could allow an easier realization
of photonic crystals by avoiding the etching of thin semicon-
ductor layers, which are necessary in the triangular structure.

Il. MODEL AND METHOD

To determine the absolute band gaps, we study the propa-
gation of the waves from Maxwell's equations. In inhomo-
geneous dielectric materials, the magnetic field is

2
VX[ ()Y XH(r)]= o H(D), ®

where7(r) is the inverse of the dielectric constant. Because
of the relationV -H(r)=0, H(r) is transverse. For periodic B
systems, it can be expressed as a sum of plane waves:

2
_ A ai(k+G)-r
H(r) % }\21 he,.6.€ ! 2 FIG. 1. Two-dimensional triangular, graphite, and boron nitride
structures.
wherek is a wave vector in the Brillouin zone a@lis a 2D

reciprocal lattice vector. For eadh, & and@, are unit vec-  For theH polarizationH(r) is in thez direction,hg ,= 0 for
tors perpendicular t&+G. So Eq.(1) is expressed as a )| G. Seeing thalk+G||k+G'|&,-&=(k+G)- (k+G'),
matrix equation: Eq. (4) gives

2

2 AN _@ 2

He oMoy = EZhG,x ; 3 ®

G\ 2(k+G)~(k+G’)77(G—G’)hG,,1=?hevl. 7)
G/

where

o the 2D periodic structure shown in Fig. 1. This structure
e-e | allows us to describe the different structures studied in this
work by defining two kinds of lattice sites andB. When all
() the sites are occupied by identical cylinders, they form a
7(G) is the Fourier transform of the inverse ofr). two-dimensional arrangement of hexagons. By analogy with
We study a periodic array of parallel dielectric cylinders. the crystal structure of the graphite, we call this arrangement
We assume that these cylinders are in the direction ofzthe @ graphite structure; it can be considered as being composed
axis. Their intersections with the&-y plane form a two- of two 2D sublattices made up of identical cylinders. If only

dimensional periodic dielectric structure. In this case, the A andB sites are alternatively occupied by cylinders that
differ between them by their dimension, or that are made up

1 s of different materials, the crystal structure of the boron ni-
n(G)=g— Il??(f)e =rdr, (5 tride (BN) is obtained. In this case, the lattice is formed by
cell/ ce two sublattices, each one being formed by only one sort of

where S, is the surface of the primitive cell of the lattice. cylinder. Lastly, when only one kind of site is occupied, the
We investigate the propagation of the electromagnetic waveliangular structure is found. We limit our study to the struc-
in the xy plane.k+G is in thex-y plane for allG’s, so we tures formed by cylinders with circular cross sections. A set
can choose all thé; vectors identical in the direction and ~ Of boron nitride configurations can be generated by varying
all the & in the x-y plane. In this caseg,-&=0 and continuously the ratio of the radius of the two kinds of cyl-

d inders between 0 and 1. This class includes the triangular and
graphité! structures previously studied as special cases. The
Bravais lattice is hexagonal. With the choice of coordinate
axis of Fig. 1, the primitive lattice vectors for the graphite
and boron nitride structures are

A ny A ny These results have been obtained in another’v&pnsider
He. e =|k+G|lk+G'|n(G—-G") —8,-8

e,-&,=0. Hence, the matrix equatiof@#) can be separate
into two very different equations. This gives rise to two po-
larizations. In theE polarization casek:(r) is parallel to the

z axis, H(r) is in thex-y plane,hg ;=0 for all Gs and we
obtain

2
w
g |k+G||k+G'|77(G_G’)hG',2:?he,z- (6) 7-12612—\/5(1,\/5), (89
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k, n(G)=ey oot 2 7'(Ge 1O, (13)

For cylinders with circular cross sections, the Fourier trans-
Q forms »()(G) only depend orG=|G|. If the cylinders are
not overlapping, we obtain

. 23,(Gp;
T Pl n<'><G>=<s;1—sal>ﬁié—pi”), (14

whereB;= 'n'pizlsce” andJ,(x) is the Bessel function of the
first order. The graphite structure contains two identical cyl-
inders located ati; and u,=—u;. So, n(G) can be ex-
pressed as

7(G)=¢ep "Sgot2c0$G- uy) 'V(G), (15)

FIG. 2. Two-dimensional Brillouin zone for hexagonal lattice. whereas, by choosing the origin on the cylinder axis, we
The symmetry point® andQ are labeled using the Lommer nota- obtain for the triangular structure:
tions (Ref. 22.
7(G)=¢y 'S0+ 7V(G). (16)

- :ig(_l J3) (8b) We define the filling factop of these structures as the frac-
20 2 e tion of the cell area occupied by cylinders. These formulas
The unit cell contains two cylinders at the positions: unders_core th_e effect O.f the arrangement and of th.e shape of
: the cylinders in the unit cell. Changes in the profile of the
U= —u,=a(0,1). (9) cross sec_tion modify;()(G), the presence of two_cylinder_s
in the unit cell acts on the structure factors by introducing
The nearest-neighbor distance for the graphite and BN strugnodulation depending on reciprocal lattice vectors.
tures isa. Because of the removal of one kind of cylinder in
the triangular structure, it becomas/§ in triangular con-  Ill. SYMMETRY ANALYSIS OF THE PHOTONIC STATES
figuration. OF 2D HEXAGONAL BRAVAIS LATTICE
The primitive vectors of the reciprocal lattice are

In this section, we investigate the opening of the gaps for

2@ 1 two-dimensional hexagonal structures both of air cylinders in
hl:ﬁ 1’% ' (103 gielectric and also of dielectric cylinders in air from the sym-

metry properties. First, we are interested in the photonic

o 1 states of the triangular structure. To classify the photonic
hzz_( _1'_). (100 states at the three high-symmetry points of the Brillouin
a\/§ \/§ zone, we must consider the irreducible representatioris of

. N roup at thd’, P, and oints. The representations that are
The first Brillouin zone turns out to be a hexagon as showrg b QPp P

L ! ven(odd under the inversion operation — if present — are
in Fig. 2 where the Lommer potatlozr?sare used to denote 1 q|aq by the subscrip (u) whereas the parity with re-
the symmetry points. The point group of the triangular an

. . ect to the reflection in they plane, which is normal to the
2D graphite structure i®g,. In the case of the 2D BN P yb

H . | b ¢ the lack of th cylinders, is indicated by the superscripts or —. More
structure, the point group B3, because of the lack of the ¢ mation relative to the space groups concerned by this

Inversion operation. _ _ study are reported by Bassani and Pastori-Parravigini.
To calculate th_e photonic band structures, we _mUSt f'rsﬁ'here are two sorts of polarization for the photonic states
perform the Fourier transforms of(r) when the cylinders 000 4ating in 2D lattices. THe polarization corresponds to
are filled with a material of dielectric constanj and em-  gate5 with the electric field parallel to the cylinders. So, the
bedded in a background of dielectric constagt For struc-  agnetic field lies in the lattice plane and is odd under the
tures with a unit cell including some cylinders of radipis  reflection in this plane and the corresponding Bloch states
centered auj;, the inverse of the dielectric constant is ex- {ransform like the basis functions of the irreducible represen-
pressed as tations with superscript . In the case oH polarization, the
magnetic field is perpendicular to the lattice plane and invari-
n(r)zgglJrE > 7(r—u—R), (11) antin the _reﬂection. So, thg photonic states are even and
i R transform like the basis functions of the irreducible represen-
whereR denotes the translation vectors of the Bravais Iatticé[at'girr]:ﬂ\;v'tcvesugf;:irr:?t'he free-photon modes for the 2D
and hexagonal lattice following the lines well known in the study
77<i)(r):(8;1_8£1) o(pi—1r]). (12) of the_ eIect_ronic band structpre_s. The main differenpe lies in
the dispersion relation that is linear for the photonic modes
The Fourier transforms ofy(r) are as opposed to the parabolic dispersion of free electrons.
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FIG. 3. Free-photon hexagonal bands;r(,) refers to plane P3 1
waves withG=n;h; +n,h,. Qitgyu meansQ,q , Q,, for E polariza-

tion andQ,, Q;,, for H polarization.

Moreover, as the photonic states wihandH polarizations (C) (d)

have the same frequency in the free-photon approximation, . . )

all the states are, at least, two-fold degenerate. The free- FIG. 4. Schematic representation of the opening of the gaps for
photon band structure for the 2D hexagonal lattice is plottec? friangular structures of dielectric cylinders in aig) E polar-

in Fig. 3 for thek vector belonging to the first Brillouin 2aton: (b) H polarization and for structures of air cylinders in
zone, along the two high-symmetry axes joining th@oint dielectric material (&) E polarization,(b) H polarization.

to theP andQ points. The irreducible representations corre-
sponding to each state are shown as well as the plane waves
that contribute to this state. Af, a nondegenerate state
I'7, appears as well as a sixfold degenerate state consisting _ . _
of two nondegenerate stateBy,, I';, and two two- With kp=(2m/ay3)(2/3,0). In this basis, Eq6) is auto-
degenerate statégg, I';,. The states at the point are due matically diagonal. First, there is a nondegenerate state at
to the degeneracy betwe+en the nondegengrat.e B_f{atend. w§:<¢(P1)|H|¢(P1)>=Czk§>( mo+271), (20)
the two-degenerate stalRg . To make a qualitative analysis

of the formation of these gaps, we can research approxima®@nd a twofold degenerate stdg at

solutions to Maxwell’s equations by the perturbation theory, ) 5 2

assuming that the spatial variations of the dielectric constant w3=((P3)[H|(P3))=c?kp( 70— 71), (21)
are small. Hereafter, we denote By (H,) the gap that oc-
curs between thgh and { +1)th bands fole (H) polariza-
tion.

1
|l/f2(P3)>:E(|kp_h1>_|kp+h2>)a (19

where 7, is the average of the inverse of the dielectric con-
stant andz, holds for %(|h;|). The splitting between the
squared frequencies is equal tg3 For triangular structure
consisting of cylinders with a dielectric constant, embed-
A. E polarization ded in air,7(G) has the opposite sign th (Gp) and is thus
We will start to consider th& polarized photonic states Nnegative forGp<3.9. On the contrary, in the case of air
of a hexagonal lattice and, first, we will study the opening ofcYlinders in a dielectricy(G) is positive in the same range.
the gaps near the lowest free-photon modes afttpoint.  For  nonoverlapping  cylinders p<ay3/2  and
The threefold degeneracy existing in homogeneous materia|91|p<27-r/\/§, which gives positive values fod,(Gp).
would be split in two statesP; and P;, with different  These results allow us to discuss the creation atPthmoint
energies. The symmetrized linear combinations of plan@f a photonic band gap centered arount=c?k37,. For a
waves that transform like the rows of the irreducible repre-2D lattice of dielectric rods in air, the presence of a periodic
sentations are easily obtained from Ref. 23. As the samdielectric constant leads #; <P3 . As the lowest state is
results hold for the®™ and P~ basis functions, we omit the nondegenerate, @, gap opens between the first and second
superscript in their notation, bands as can be seen in Fig. 4. Inversely, for lattices of
circular voids in dielectric material®?; >P,; and no gap
1 appears at th@ point. It is clear that arE; gap can only
[ (P1)= ﬁ(|kp>+|kp_h1>+|kp+h2>)' an exist in triangular structures of dielectric rods in air with a
difference between the squared frequencies equaltp. 3
The same qualitative estimations can be obtained for the
|1(P3))= i(Zlkp)—|kp—h1>—|kp+h2>), (18) photonic states at other points of the Brillouin zone. At the
J6 I' point, the lowest photonic state with a nonzero frequency
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is sixfold degenerate, consisting of two nondegenerate statei®n in 2D triangular structures of cylinders. In the case of air

I';g andI';, and of two nondegenerate staleg; andl'y,. cylinders in a dielectric, afE, gap can be opened. For di-
From the application of the first-order perturbation theory,electric cylinders embedded in air, there isEngap and, for
we obtain not too smallB values, anotheE; gap appears.
w7, = (I ) HW(T 1)) B. H polarization
=CKE[ o+ 2mp+e(271+ 7)), (229 A similar study can be carried out in order to estimate the
gap opening for théd polarization. The differences between
03, = (¥(T3,)[H[¢(T3,)) the two polarizations are due to the modifications of the ma-
K2 e — o B b trix to be diagonalized. In théd polarization, the matrix
=ckil o= n2= (1= n3)], (22 elements depend on the scalar prodict G) - (k+G') [see

where k§=(2w/a\/§)2(4/3)2, m=n(lh;—hy|), and Eq. (7)] wheregs inE polarizgtion, this is the 'product of the
ns=7(|2h]). & equals 1 or—1 according to whether the modulus that is to be considered. At tRepoint, there are

irreducible representations are eve) or odd () with re- three equivalent vectors that contribute to the lowest-
requency state and the angles between them are equal to

spect to the inversion operation. For dielectric rods in air, aé ) . =
P P /3. So, the scalar product is obtained by multiplying the

small filling factors, the photonic staté,,, which has the :
characteristics of a bonding state, is the lowest-frequenc rqduc;t of the'modullus by- 1/2. With respect to th& po-
arization, the inversion of th®, and P5 states occurs, and

state, because all the co_ntrlbutlgns are Qegatlve and add to there is a reduction by half of the gap width. Considering, for
each other. The photonic statEg, andT';, are expected to . . . ; . o
. ; 9 o instance, a 2D lattice of dielectric cylinders in air, tRg
be widely separated in frequency. The position of the other te der the~ state. In fact. this situati | ist
states is rather sensitive to the characteristics of the band-g ale IeIT un ?r 1 State. E ac I IS situa 'OE on yltaXIshS
material and mainly depends on the radius of the cylinders®’ Small 5 values because the splitting is much smaller than
for the E polarization. The influence of plane waves with

because, for large filling factor8, »(G), which varies as . .
¢ g 8, 7(G) larger wave vectors can be estimated in the framework of the

J1(Gp), changes its sign fo6p=3.9. The difference be- _ S oo
tv%/(eeg)the squgaredl freqlgenciespof the stéite elmdl“’ cal- perturbation theory. Considering the contribution due to the
£ Lu first upper band, we obtain

culated from Eq(22) is

2

w5,— 07y= —C?Ki(71+ 37,1 273). (23 , 4(n1—12)?

S(wf)=—ckp 3 with wi=c?k3( 7= 71),

For smallB values, all then contributions are negative and 0 (259
I3, is abovel’;4. The largest contribution to E¢R3) is due
to n, and 55 terms that become positive f@ larger than

2
about 0.35 whereas, always remains negative. So, the dif-  5(2)= — Czkgw with w2=c2Kk3| o+ 2|,
ference between the squared frequencies changes its sign and 370 2
causes a crossing of the two stateg andI';,,. Therefore, (25b

we can predict the sequence of the staleg<I';,,
[3y<I’y, for low filing factors and the sequence

gy <T'gg~T44<I"y, for larger 5 values. In this case, there ., o|jation of the two contributions. TR state is slightly

E tr;je Oge”"?g of aﬂEihgap betvxlfegn thlfe (;hird.anddfolurtr: .repelled by the nearest upper state in comparison with the
ands. L-onsider now the case of air cylinders in a dielectrig, + state, which remains the lowest-lying state. For larger

material. For the same geometry, the Fourier transforms,? " o
L ! ) . B values, n, becomes positive. The two contributiong
7(G) have the opposite sign to those of a lattice of dielectri nd 7, add up foré(w?), whereas they cancel each other out
cylinders in air. The order of the states is reversed giving, a 5’72 2) | ph' “1) he+ %4 | led b
low filling levels, the sequencE,,<T 3,, I'3,<I';,. How- Ef (w3). In this Cgsl?, tl 1 Str?te Ifn% strongly rePT ed by
ever, the order of the two states depends orglvalues. The the upper state_ and lies _owert an g state. For att|_ces
difference between the squared frequencies is of air cyll_nders in dielectric mate_rlal, the states at t_:hpomt
are obtained from Eq(25). In this case, the Fourier trans-
w3y~ w3, =C?kE(11— 375+ 273). (24  forms 7(G) are positive.P_l+ is lower than_ng and the se-
_ o _ guence is not affected by increasing the filling factor because
In this case, the contributions ef, and 7; are opposite and  the repulsive effect of the upper bands is not dependent on
71 determines the sign of the difference. We expect the sete sign of 7(G) and repelsP, more thanP; . At the T
quencel’;,<I'yq for the lowest states, which leads to the point, the situation is more complicated because the lowest
opening of anE, gap between the second and third bandsstate is formed by six equivalent plane waves. At the first

Similar analysis can be made at tRepoint for which the  order of the perturbation theory, the squared frequencies are
free-photon states are twofold degenerate. The periodic

variation of the dielectric constant splits these states between 2 _ .22 _
two nondegenerate stat€3,, and Q, separated by #; ©1,= Kl 7o~ mo+ (7= 73)], (263
whatever the nature of the cylinder and of the background.

We can now describe the formation of the photonic band w2 =c2K2
gaps on the whole of the Brillouin zone for tiepolariza- 8e r

At low filling factors, for a lattice of dielectric cylinders in
air, », and , are negative and(wi) is small because of the

72

Y
7]0+7_8 !

—+
2 73

_—
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In the case of dielectric cylinders in air, all thg{G) are a triangular arrangement of air cylinder in dielectric, must
negative at low filling levels anf 3, is the lowest state. The disappear when going to the graphite structure by removing
difference between the squared frequency of this state witthe cylinders at the hexagon centers. The analysis of the

its nearest-neighbd?fg is given by opening of gaps can be carried out at other symmetry points
and for theH polarization along the same lines as for the
w3,— wng c?K2(p— 37— 473), (27)  triangular structure.

Also, in the BN structure, one can make predictions on
which is of the same type as E@®3). By the same analysis the sequence of photonic states. Since the inversion is not
as for theE polarization, we conclude that increasing the present in the point groupD,,), the even and odd irreduc-
filling factor changes the sign of the dominant contributionible representations coincide at theand Q points. On the
due ton, and n;. The difference becomes positive and theother hand, the representations for th@oint are not related
sequencd“1+g<l“3+u is expected. Consequently, consideringsimply to those at th@ point of graphite. The most striking
lattices of dielectric cylinders in air, the lowest states aredifference between the two structures lies in the fact that
Py andeg and we expect the opening of i, gap. For there is no two-dimensional irreducible representations in
lattices of air cylinders in dielectric material, we deduce fromBN so that the degeneracy is completely lifted, always lead-
Eq. (26) the sequencd“fu<l“§g<l“§u<l“l+g at low filing  ing to the existence of gaps at the zone edges. It can be

levels. To see thed dependence of the position of these expected that there are more openings of gaps in the boron
states, we calculate nitride structure than in the triangular and graphite ones for

which the symmetry induces degeneracies.

w5y~ 03,= 3 k{91 + 27, 273). (28

The 5, and 75 contributions cancel each other out. The dif- V- PHOTONIC BAND GAPS
ference is positive because it has the sigmef Therefore, To optimize the structures in order to maximize the width
we expect in the case of air cylinders the sequenc®f the absolute PBG's, we have considered a whole class of
;< l“;'g for various filling levels. As the degeneracies of BN structures consisting of two hexagonal sublattices made
the free-photon bands at ti@ point are always lifted, the up of parallel cylinders of the same material with different
H, gap can occur for this configuration. radii p; and p,. These structures can be characterized by
We wish to draw some general rules from this study of thetwo parameters, the filling factop and the radius ratio
2D triangular structure of cylinders embedded in a back-w=p;/p,. Note that this set includes the triangular structure
ground with a different dielectric constant for not too smallfor «=0 and the graphite one fer=1. We have studied the
filling factors. First, for theE polarization, the opening of the evolution of PBG’s as functions of for 8 given values,
gap varies according to whether the dielectric constant of thevhich allows the description of structures with the same av-
cylinders is larger or smaller than that of the background. Foerage dielectric constant,,. Configurations with different
hole cylinders in dielectric material, only tHe, gap can filling factors have been examined and we present here the
occur at low frequencies whereas the two gagsandE;  most significant results. As we only consider here the case of
can exist for dielectric cylinders in air. However, on the othernonoverlapping cylinders, the maximum filling factor for the
hand, for theH polarization, the opening of the gap does notgraphite structurg=60% is reached when the cylinder di-
depend on the nature of the cylinders and the gap is ameter is equal to the distance between two nearest-neighbor
present in both cases. All these results are confirmed by theylinders. This is smaller than for the triangular case because
numerical calculations carried out on 2D triangularthe cylinders at the hexagon centers have been removed. We
structures*~1 Comparison with the results of our analysis examine the two following complementary configurations.
shows that our predictions on the opening of the gap remaiithe first one consists of air cylinders{=1) in GaAs
valid on a large range of filling factors. Our quantitative (e,,=13.6). The second one is formed by cylinders of GaAs
analysis of photonic band gaps by a perturbative approacim air. GaAs has been chosen because it presents interesting
from the free-photon bands gives a good account of the basiaptical properties in the infrared domain and is representa-
properties of the 2D hexagonal lattices and should make thiéve of many semiconductors. This limitation is not essential
research of optimized structures easier. and calculations on other systems of the same nature give
As the point group of the triangular and graphite struc-similar results. We use 475 plane waves in the calculations,
tures is the samel;,), similar analysis can be carried out which ensures sufficient convergence for the frequencies of
for the graphite structure, provided that the modifications ofinterest for the studied structures.
the Fourier transforms of the dielectric constant due to the We first consider the BN structure of air cylinders in
structure factors are taken into account. For the first star o6aAs at3=60%, which corresponds to the graphite close-
the G vectors formed by the set of vectors generated frompacked configuration. We show in Fig. 5, the evolution of
the h,, the structure factor is-1, for the second and the PBG’s with respect to the radius ratio. Many gaps appear for
third stars, it is respectively equal to 2 andl. As the split-  E polarization, their number varying according to teval-
ting of the lowestP state only depends on, as seen above, ues. As predicted by symmetry analysis,EBngap that can-
the results obtained for the triangular structure can be appliedot exist in the triangular structure opens up &or0 and
to the graphite structure by only changing the sign of thereaches its maximum width for the graphite structure at
77, contribution. It follows that the order of the; and P, a=1. The E, gap evolves in a complementary way. It is
states is opposite in both structures. For instance, in the caseaximum fora=0 and closes over 0.1. New gaps due to the
of E polarization, theE; gap, which exists at the point for  lower symmetry of the BN structure appear only at interme-
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S== FIG. 6. Photonic band structure f& polarization(solid line)
e - 77z ZA
07 1 QWWZ@ and H polarization(dashed ling of boron nitride structure of air
= cylinders in GaAs forB8=60%, «=0.8.

0.6 = @zzyj/‘é’/'w H
/ E: with e/,= (2/3)e,,, perturbed by an antisymmetric contribu-

Q
051 TT====== —H, tion depending onw. Symmetry considerations show that
@ 04 1 m E only the two—dimengionaP3 states at the zone edges are
g 7/ s pertgrbgted at the f|r_st order. This allows us to understand
203 // ,///—/iﬁg H, qualitatively the opening of gaps at tiRepoint whereas the
Z E overall behavior of the photonic band structure is hardly af-
027 ! fected. At 3=60%, the cylinders are in the close-packed
01 - {b) configuration and these structures will be probably rather
' difficult to realize because the dielectric layers between the
0 —— cylinders are very thin. We have investigated the evolution of
0 0.2 0.4 0.6 08 1 the PBG’s for a smaller value of the filling fact@=50%.

a=p,/p, Comparison between Fig.(@ and 3b) shows that gap
widths strongly depend on the filling factor. All the gaps
FIG. 5. Photonic band gaps f&r polarization(solid line) andH shrink and the narrowest ones likg, H,, andH, are sup-
polarization(dashed lingof boron nitride structures of air cylinders pressed. So, absolute PBG’s will be only observed for large
in GaAs for(a) B=60%, andb) 8=50%. The absolute band gaps filling factors. Consequently, the most promising hexagonal
are represented in black. structure of air cylinders in GaAs is the triangular one for
which the absolute band gdp,—H; can be widened by
diate values ofx. For H polarization, only onéH, gap oc- increasing the filling factor up to 0.91. In fact, to keep suffi-
curs in the triangular structure. Its width decreases for armiently rather thick layers between the cylindgésmust be
increasing value ofr. This gap closes fow=0.6 and opens limited to 70%.
again for 0.8<a<1. Some other gaps only lie in the inter-  We have also examined the case of BN structures formed
mediate range ofxr and do not exist at the two higher- by GaAs rods in air. In Fig. 7, we present the dependence of
symmetry limit structures. There are three absolute PBG’s if°PBG’s on the radius ratio foB=30%. This value has been
this configuration. The first one is due to the overlagegf  chosen because it is in this vicinity that the absolute band
andH, gaps and its greater width is obtained for the trian-gaps are the largest. FrpolarizationE,; andE; gaps close
gular configuration. Its existence has been previously rewhen going from triangular to graphite structure whereas the
ported by some other authofs:'” Two other gapE;—H, E, gap opens up. This confirms the correctness of symmetry
andEg—H, occur for 0.5<a<1. They are characteristic of analysis, which predicts at once an opposite variation of the
BN structure and their maximum widths are 7% and 4% widths of theE; andE, gaps versus for a given configu-
respectively. Figure 6 shows the photonic band structure ofation, as well as of the width of the, gap for two comple-
the BN structure fol3=60% anda=0.8, which is the con- mentary structures like air cylinders in GaAs and GaAs rods
figuration giving theE;—H, gap maximum. This structure is in air. LargeE, andE; gaps occur for the intermediate val-
not very different from the triangular one for the same filling ues ofa and close near the two limit values. Some gaps also
factor apart from the appearance of many gaps aPtheint,  appear forH polarization. The lowest-frequency gafh;
whatever the polarization may be. This effect is due to theshrinks for increasingr values and closes abowe=0.7.
lack of the inversion operation and can be analyzed withinThe H, gap only exists for BN structures with
the perturbation theory. The BN structure with an averag®.1<«a<0.7. More interesting is the appearancetbf and
dielectric constant ,, can be seen as a triangular structureHg gaps abovex=0.7. These gaps widen whenincreases.
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0.8 - E, B~70% (where herea is the lattice parameterAs for a
H lattice of air cylinders in GaAs, the proportion of material is
077 E, equal to I- B; it can be seen that this proportion is the same
8 06 H, as for the two considered structures that have consequently
N the same average dielectric constant. For such a graphite
@ 051 Z H, structure, PBG's can be centered in the near infrared. For
] 3 . instance, a graphite structure formed by GaAs rods with
g 04 CzzZmzEEE zﬁm = 0.24um diarr?etgr separated by a distarax;eyO.SO um gives

0.3 1 m E an absolute PBG centered }0.9 um. A second absolute
1

band gap of the same width is obtained éa/27rc=0.55 at

02 B=15% by the superposition &, andHg gaps. It will be
0.1 1 centered on the same wavelength for a lattice with rods of
0 - the same diameter separated by the distare8.34 um. In
0 0.2 0.4 0.6 0.8 1 these two structures, the diameter of the rods is large and the

realization of these lattices does not require etching of thin

dielectric layers. The appearance of these gaps is essential
FIG. 7. Photonic band gaps for boron nitride structure of G«':\As"’mddshO\tNs tth?; thttehgrapf}!te t.StrUthuri Otf d!elgctrlcj: rods has
cylinders in air for8=30%. good potential for the realization of photonic-band-gap ma-

terials.

0L:pl/pz

The E;—H, gap exists for 0.&£ «<<0.4; however, its width
remains small. The most important result is the appearance
of two absolute band gafgSs—H3; andE;—Hs, which are We have presented in this paper a class of two-
not present in triangular structure of GaAs rods in‘&iks  dimensional photonic crystals based on the 2D hexagonal
their widths are maximum forr=1, the graphite structure |attice. These structures consist of parallel cylindrical rods
appears as the most interesting configuration to get optimajhose axis forms a two-dimensional arrangement of hexa-
absolute band gaps for lattices of GaAs rods in air. The disgons. By a perturbation approach using symmetry argu-
persion of the low-frequency photonic bands of the graphitenents, we have drawn some general rules on the sequence of
structuré! presents some similarities with those of triangularthe photonic states at the high-symmetry points and we have
structures of air cylinders in GaAs Results forE polariza-  peen able to study the gap opening according to whether the
tion have the same features. In particular, the sequence of thelectric constant of the cylinders is larger or smaller than
lowest-frequency states and the opening of the gaps are thgat of the background. The photonic band structure and the
same. More differences exist féf polarization because of numerous gaps occurring in these systems have been calcu-
the smallness of the gaps. In the triangular structure, there igted as functions of the cylinder diameter. We show that
only aH; gap due to the splitting at the point, whereas for absolute band gaps are obtained for large variation ranges.
the graphite structure, this gap has disappeared and two othRmong these hexagonal structures, the largest absolute band
gapsH; andHs open. This resemblance can be easily un-gaps appear for triangular structures of cylindrical holes in
derstood from the geometric disposition of the cylinders indielectric as well as for graphite structures of dielectric rods
the graphite structure. For close-packed arrangement, thjg air.
configuration is equivalent to a triangular structure with the
lattice constant\/3 formed by air cylinders with a noncir-

cular section. The lowest gafrg—H; is centered at
wal27wc=0.37 for B=30% with a 10% relative width. This The Groupe d’Etude des Semiconducteurs is “Urite
can be compared with PBG'’s obtained for an optimized tri-Recherche Assoaieau Centre National de la Recherche Sci-
angular structure of hole cylinders in GaAsTaking into  entifique No. 357.” We thank the “Centre National Univer-
account the fabrication limits, the largest absolute PBG atsitaire Sud de Calcul de Montpellier” for an allowance of
tainable in this case is centered ata/2mc~0.4 for  computer time.

V. CONCLUSION
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