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We investigate a class of two-dimensional hexagonal structures that possess photonic band gaps. This class
includes the previously studied triangular structure as a particular case. By symmetry analysis, we obtain a
clear insight into the gap opening and we show how the photonic band gaps are affected by the characteristics
of materials, according to whether the dielectric constant of the cylinders is larger or smaller than the back-
ground one. The photonic band structures present numerous gaps, and we study the evolution of these gaps as
functions of the diameter and nature of cylinders. Our results demonstrate the existence of absolute band gaps
for many configurations, largest gaps being obtained for triangular and graphite structures.

I. INTRODUCTION

In the last few years, the study of periodic dielectric struc-
ture has received considerable interest because it presents the
ability to prevent the propagation of electromagnetic waves
in a certain frequency range.1–8 This results from the re-
moval of degeneracies of the free-photon states at the Bragg
planes provoked by the periodicity, which produces forbid-
den frequency gaps—so-called photonic band gaps~PBG’s!.
It is very attractive to describe the propagation of the elec-
tromagnetic waves in these artificial materials in the same
way as that of the electron waves in natural crystals, in spite
of the large difference between the wavelengths. The disper-
sion relation gives photonic band structures and some con-
cepts, such as impurity states and effective masses, which are
very usual for electrons, can be extended to photons. The
existence of such PBG’s when they overlap with the elec-
tronic gaps is particularly promising with regards to the con-
trol the spontaneous emission of light, which is essential for
the realization of thresholdless and low-noise semiconductor
lasers. The search for structures that possess wide PBG’s in
the frequency range of interest for the applications has mo-
tivated a lot of research.9–11 To prevent the propagation of
the waves, whatever its direction is, the gaps opened at dif-
ferent points of the Brillouin zone must overlap as much as
possible so as to give large absolute band gaps. Thus, it is
desirable that the different gaps are large and centered on
neighboring frequencies. Such a condition can be achieved
for the Brillouin zone by deviating slightly from the spheri-
cal shape. So, theoretical and experimental investigations on
PBG’s in three dimensions have first concerned the face-
centered cubic lattice. Until now, the experimental realiza-
tions of these structures exhibit PBG at microwave frequen-
cies because of the limitations in the fabrication of such
materials at submicrometer length scales. Recent attempts to
increase the frequency of the gaps have led to the use of
more sophisticated structure designs with lower symmetry
lattices.12,13 However, the feasibility of such three-
dimensional~3D! structures with the idea of using them in
optoelectronic devices is still an important challenge and a
way in which to obtain photonic crystals with gaps situated
in the infrared is to fabricate 2D crystals consisting of paral-
lel dielectric rods arranged on 2D lattices. As the PBG’s

yielded by these structures only suppress the propagation of
the electromagnetic waves in the lattice plane, the inhibition
of the propagation in the third direction can be obtained by
inserting the crystal between two Bragg mirrors. For in-plane
propagation, two types of electromagnetic modes exist ac-
cording to whether the electric (E polarization! or magnetic
(H polarization! field is parallel to the rod axis. The band
gaps occurring in each case must overlap to form an absolute
band gap that prevents the propagation of the light of any
polarization. Among the 2D Bravais lattices, the hexagonal
one possesses the Brillouin zone with the most circular
shape, and it is now a well accepted fact that the crystal
patterns deduced from it are good candidates to produce
large absolute band gaps. Among the systems recently inves-
tigated, the triangular structure of air cylinders in GaAs was
found to possess large PBG’s for a large volume fraction of
air.14–16Studies depending on the cylinder shape have shown
that the largest absolute band gaps are achieved for circular
cross sections17 that are also the most convenient to realize.
If the feasibility of such 2D photonic crystals is at that time
well demonstrated at the submicrometer lengths,18–20 no at-
tempt exists to optimize the design of these structures by
modifying the configuration of the cylinders in the hexagonal
unit cell, their cross section being kept circular.

We are concerned in this paper with the simplest pattern,
which is obtained from a hexagonal Bravais lattice by intro-
ducing two cylinders in the unit cell, and we consider a class
of structures consisting of periodic arrays of two kinds of
infinitely long parallel cylinders with circular shaped cross
sections, embedded in material with a different dielectric
constant. In Sec. II, we present the crystal patterns concerned
in this work and we give the main lines of the calculation
method. Before carrying out detailed calculations, we first
proceed in Sec. III to a symmetry analysis in order to get a
clear physical insight into the gap opening. We determine the
features of the photonic band structures originating from the
lattice symmetry and we show how the nature of photonic
crystal plays a fundamental role according to whether the
structures are constituted by air cylinders in GaAs or by
GaAs cylinders in air. In Sec. IV, we study the evolution of
the numerous PBG’s that appear as functions of the diam-
eters of the two kinds of cylinders. When the diameter of one
cylinder is infinitely small, the already widely studied trian-
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gular structure is obtained. For two identical cylinders, struc-
tures with the same crystal pattern as the graphite one are
generated.21 In this case, we found that two absolute PBG’s
can be achieved for systems far from the close-packed con-
figuration. This opportunity could allow an easier realization
of photonic crystals by avoiding the etching of thin semicon-
ductor layers, which are necessary in the triangular structure.

II. MODEL AND METHOD

To determine the absolute band gaps, we study the propa-
gation of the waves from Maxwell’s equations. In inhomo-
geneous dielectric materials, the magnetic field is

“3@h~r !“3H~r !#5
v2

c2
H~r !, ~1!

whereh(r ) is the inverse of the dielectric constant. Because
of the relation“•H(r )50, H(r ) is transverse. For periodic
systems, it can be expressed as a sum of plane waves:7

H~r !5(
G

(
l51

2

hG,lêle
i ~k1G!•r, ~2!

wherek is a wave vector in the Brillouin zone andG is a 2D
reciprocal lattice vector. For eachG, ê1 and ê2 are unit vec-
tors perpendicular tok1G. So Eq. ~1! is expressed as a
matrix equation:

(
G8,l8

HG,G8
l,l8 hG8,l85

v2

c2
hG,l , ~3!

where

HG,G85uk1Guuk1G8uh~G2G8!F ê2•ê28 2ê2•ê18

2ê1•ê28 ê1•ê18 G .
~4!

h(G) is the Fourier transform of the inverse of«(r ).
We study a periodic array of parallel dielectric cylinders.

We assume that these cylinders are in the direction of thez
axis. Their intersections with thex-y plane form a two-
dimensional periodic dielectric structure. In this case,

h~G!5
1

Scell
E
cell

h~r !e2 iG•rdr , ~5!

whereScell is the surface of the primitive cell of the lattice.
We investigate the propagation of the electromagnetic waves
in the xy plane.k1G is in thex-y plane for allG’s, so we
can choose all theê1 vectors identical in thez direction and
all the ê2 in the x-y plane. In this case,ê2•ê1850 and
ê1•ê2850. Hence, the matrix equation~4! can be separated
into two very different equations. This gives rise to two po-
larizations. In theE polarization case,E(r ) is parallel to the
z axis,H(r ) is in thex-y plane,hG,150 for all Gs and we
obtain

(
G8

uk1Guuk1G8uh~G2G8!hG8,25
v2

c2
hG,2 . ~6!

For theH polarization,H(r ) is in thez direction,hG,250 for
all G. Seeing thatuk1Guuk1G8uê2•ê285(k1G)•(k1G8),
Eq. ~4! gives

(
G8

~k1G!•~k1G8!h~G2G8!hG8,15
v2

c2
hG,1 . ~7!

These results have been obtained in another way.14 Consider
the 2D periodic structure shown in Fig. 1. This structure
allows us to describe the different structures studied in this
work by defining two kinds of lattice sitesA andB. When all
the sites are occupied by identical cylinders, they form a
two-dimensional arrangement of hexagons. By analogy with
the crystal structure of the graphite, we call this arrangement
a graphite structure; it can be considered as being composed
of two 2D sublattices made up of identical cylinders. If only
theA andB sites are alternatively occupied by cylinders that
differ between them by their dimension, or that are made up
of different materials, the crystal structure of the boron ni-
tride ~BN! is obtained. In this case, the lattice is formed by
two sublattices, each one being formed by only one sort of
cylinder. Lastly, when only one kind of site is occupied, the
triangular structure is found. We limit our study to the struc-
tures formed by cylinders with circular cross sections. A set
of boron nitride configurations can be generated by varying
continuously the ratio of the radius of the two kinds of cyl-
inders between 0 and 1. This class includes the triangular and
graphite21 structures previously studied as special cases. The
Bravais lattice is hexagonal. With the choice of coordinate
axis of Fig. 1, the primitive lattice vectors for the graphite
and boron nitride structures are

t15
aA3
2

~1,A3!, ~8a!

FIG. 1. Two-dimensional triangular, graphite, and boron nitride
structures.
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t25
aA3
2

~21,A3!. ~8b!

The unit cell contains two cylinders at the positions:

u152u25a~0,1!. ~9!

The nearest-neighbor distance for the graphite and BN struc-
tures isa. Because of the removal of one kind of cylinder in
the triangular structure, it becomesaA3 in triangular con-
figuration.

The primitive vectors of the reciprocal lattice are

h15
2p

aA3 S 1, 1A3D , ~10a!

h25
2p

aA3 S 21,
1

A3D . ~10b!

The first Brillouin zone turns out to be a hexagon as shown
in Fig. 2 where the Lommer notations22 are used to denote
the symmetry points. The point group of the triangular and
2D graphite structure isD6h . In the case of the 2D BN
structure, the point group isD3h because of the lack of the
inversion operation.

To calculate the photonic band structures, we must first
perform the Fourier transforms ofh(r ) when the cylinders
are filled with a material of dielectric constant«a and em-
bedded in a background of dielectric constant«b . For struc-
tures with a unit cell including some cylinders of radiusr i
centered atui , the inverse of the dielectric constant is ex-
pressed as

h~r !5«b
211(

i
(
R

h~ i !~r2ui2R!, ~11!

whereR denotes the translation vectors of the Bravais lattice
and

h~ i !~r !5~«a
212«b

21!u~r i2ur u!. ~12!

The Fourier transforms ofh(r ) are

h~G!5«b
21dG01(

i
h~ i !~G!e2 iG•ui. ~13!

For cylinders with circular cross sections, the Fourier trans-
forms h ( i )(G) only depend onG5uGu. If the cylinders are
not overlapping, we obtain

h~ i !~G!5~«a
212«b

21!b i

2J1~Gr i !

Gr i
, ~14!

whereb i5pr i
2/Scell andJ1(x) is the Bessel function of the

first order. The graphite structure contains two identical cyl-
inders located atu1 and u252u1 . So, h(G) can be ex-
pressed as

h~G!5«b
21dG012cos~G•u1!h

~1!~G!, ~15!

whereas, by choosing the origin on the cylinder axis, we
obtain for the triangular structure:

h~G!5«b
21dG01h~1!~G!. ~16!

We define the filling factorb of these structures as the frac-
tion of the cell area occupied by cylinders. These formulas
underscore the effect of the arrangement and of the shape of
the cylinders in the unit cell. Changes in the profile of the
cross section modifyh ( i )(G), the presence of two cylinders
in the unit cell acts on the structure factors by introducing
modulation depending on reciprocal lattice vectors.

III. SYMMETRY ANALYSIS OF THE PHOTONIC STATES
OF 2D HEXAGONAL BRAVAIS LATTICE

In this section, we investigate the opening of the gaps for
two-dimensional hexagonal structures both of air cylinders in
dielectric and also of dielectric cylinders in air from the sym-
metry properties. First, we are interested in the photonic
states of the triangular structure. To classify the photonic
states at the three high-symmetry points of the Brillouin
zone, we must consider the irreducible representations ofk
group at theG, P, andQ points. The representations that are
even~odd! under the inversion operation — if present — are
labeled by the subscriptsg (u) whereas the parity with re-
spect to the reflection in thex-y plane, which is normal to the
cylinders, is indicated by the superscripts1 or 2. More
information relative to the space groups concerned by this
study are reported by Bassani and Pastori-Parravicini.23

There are two sorts of polarization for the photonic states
propagating in 2D lattices. TheE polarization corresponds to
states with the electric field parallel to the cylinders. So, the
magnetic field lies in the lattice plane and is odd under the
reflection in this plane and the corresponding Bloch states
transform like the basis functions of the irreducible represen-
tations with superscript2. In the case ofH polarization, the
magnetic field is perpendicular to the lattice plane and invari-
ant in the reflection. So, the photonic states are even and
transform like the basis functions of the irreducible represen-
tations with superscript1.

Firstly, we examine the free-photon modes for the 2D
hexagonal lattice following the lines well known in the study
of the electronic band structures. The main difference lies in
the dispersion relation that is linear for the photonic modes
as opposed to the parabolic dispersion of free electrons.

FIG. 2. Two-dimensional Brillouin zone for hexagonal lattice.
The symmetry pointsP andQ are labeled using the Lommer nota-
tions ~Ref. 22!.
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Moreover, as the photonic states withE andH polarizations
have the same frequency in the free-photon approximation,
all the states are, at least, two-fold degenerate. The free-
photon band structure for the 2D hexagonal lattice is plotted
in Fig. 3 for the k vector belonging to the first Brillouin
zone, along the two high-symmetry axes joining theG point
to theP andQ points. The irreducible representations corre-
sponding to each state are shown as well as the plane waves
that contribute to this state. AtG, a nondegenerate state
G1g

6 appears as well as a sixfold degenerate state consisting
of two nondegenerate statesG1g

6 , G1u
6 and two two-

degenerate statesG3g
6 , G3u

6 . The states at theP point are due
to the degeneracy between the nondegenerate stateP1

6 and
the two-degenerate stateP3

6 . To make a qualitative analysis
of the formation of these gaps, we can research approximate
solutions to Maxwell’s equations by the perturbation theory,
assuming that the spatial variations of the dielectric constant
are small. Hereafter, we denote byEi (Hi) the gap that oc-
curs between thei th and (i11)th bands forE (H) polariza-
tion.

A. E polarization

We will start to consider theE polarized photonic states
of a hexagonal lattice and, first, we will study the opening of
the gaps near the lowest free-photon modes at theP point.
The threefold degeneracy existing in homogeneous materials
would be split in two states,P1

2 and P3
2 , with different

energies. The symmetrized linear combinations of plane
waves that transform like the rows of the irreducible repre-
sentations are easily obtained from Ref. 23. As the same
results hold for theP1 andP2 basis functions, we omit the
superscript in their notation,

uc~P1!&5
1

A3
~ ukP&1ukP2h1&1ukP1h2&!, ~17!

uc1~P3!&5
1

A6
~2ukP&2ukP2h1&2ukP1h2&!, ~18!

uc2~P3!&5
1

A2
~ ukP2h1&2ukP1h2&!, ~19!

with kP5(2p/aA3)(2/3,0). In this basis, Eq.~6! is auto-
matically diagonal. First, there is a nondegenerate state at

v1
25^c~P1!uHuc~P1!&5c2kP

2 ~h012h1!, ~20!

and a twofold degenerate stateP3
2 at

v3
25^c~P3!uHuc~P3!&5c2kP

2 ~h02h1!, ~21!

whereh0 is the average of the inverse of the dielectric con-
stant andh1 holds for h(uh1u). The splitting between the
squared frequencies is equal to 3h1 . For triangular structure
consisting of cylinders with a dielectric constant«a , embed-
ded in air,h(G) has the opposite sign toJ1(Gr) and is thus
negative forGr,3.9. On the contrary, in the case of air
cylinders in a dielectric,h(G) is positive in the same range.
For nonoverlapping cylinders r,aA3/2 and
uh1ur,2p/A3, which gives positive values forJ1(Gr).
These results allow us to discuss the creation at theP point
of a photonic band gap centered aroundv25c2kP

2h0 . For a
2D lattice of dielectric rods in air, the presence of a periodic
dielectric constant leads toP1

2,P3
2 . As the lowest state is

nondegenerate, anE1 gap opens between the first and second
bands as can be seen in Fig. 4. Inversely, for lattices of
circular voids in dielectric materials,P1

2.P3
2 and no gap

appears at theP point. It is clear that anE1 gap can only
exist in triangular structures of dielectric rods in air with a
difference between the squared frequencies equal to 3h1 .
The same qualitative estimations can be obtained for the
photonic states at other points of the Brillouin zone. At the
G point, the lowest photonic state with a nonzero frequency

FIG. 3. Free-photon hexagonal bands. (n1n2) refers to plane
waves withG5n1h11n2h2. Qig,u

6 meansQ2g
2 , Q2u

2 for E polariza-
tion andQ1g

1 , Q1u
1 for H polarization.

FIG. 4. Schematic representation of the opening of the gaps for
2D triangular structures of dielectric cylinders in air:~a! E polar-
ization; ~b! H polarization and for structures of air cylinders in
dielectric material :~a! E polarization,~b! H polarization.
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is sixfold degenerate, consisting of two nondegenerate states
G1g

2 andG1u
2 and of two nondegenerate statesG3g

2 andG3u
2 .

From the application of the first-order perturbation theory,
we obtain

v1«
2 5^c~G1«!uHuc~G1«!&

5c2kG
2@h012h21«~2h11h3!#, ~22a!

v3«
2 5^c~G3«!uHuc~G3«!&

5c2kG
2@h02h22«~h12h3!#, ~22b!

where kG
25(2p/aA3)2(4/3)2, h25h(uh12h2u), and

h35h(u2h1u). « equals 1 or21 according to whether the
irreducible representations are even (g) or odd (u) with re-
spect to the inversion operation. For dielectric rods in air, at
small filling factors, the photonic stateG1g

2 , which has the
characteristics of a bonding state, is the lowest-frequency
state, because all theh contributions are negative and add to
each other. The photonic statesG1g

2 andG1u
2 are expected to

be widely separated in frequency. The position of the other
states is rather sensitive to the characteristics of the band-gap
material and mainly depends on the radius of the cylinders,
because, for large filling factorsb, h(G), which varies as
J1(Gr), changes its sign forGr53.9. The difference be-
tween the squared frequencies of the statesG1g

2 andG1u
2 cal-

culated from Eq.~22! is

v3u
2 2v1g

2 52c2kG
2~h113h212h3!. ~23!

For smallb values, all theh contributions are negative and
G3u

2 is aboveG1g
2 . The largest contribution to Eq.~23! is due

to h2 andh3 terms that become positive forb larger than
about 0.35 whereash1 always remains negative. So, the dif-
ference between the squared frequencies changes its sign and
causes a crossing of the two statesG1g

2 andG1u
2 . Therefore,

we can predict the sequence of the statesG1g
2 ,G3u

2 ,
G3g

2 ,G1u
2 for low filling factors and the sequence

G3u
2 ,G3g

2 'G1g
2 ,G1u

2 for largerb values. In this case, there
is the opening of anE3 gap between the third and fourth
bands. Consider now the case of air cylinders in a dielectric
material. For the same geometry, the Fourier transforms
h(G) have the opposite sign to those of a lattice of dielectric
cylinders in air. The order of the states is reversed giving, at
low filling levels, the sequenceG1u

2 ,G3g
2 , G3u

2 ,G1g
2 . How-

ever, the order of the two states depends on theb values. The
difference between the squared frequencies is

v3g
2 2v1u

2 5c2kG
2~h123h212h3!. ~24!

In this case, the contributions ofh2 andh3 are opposite and
h1 determines the sign of the difference. We expect the se-
quenceG1u

2 ,G3g
2 for the lowest states, which leads to the

opening of anE2 gap between the second and third bands.
Similar analysis can be made at theQ point for which the
free-photon states are twofold degenerate. The periodic
variation of the dielectric constant splits these states between
two nondegenerate statesQ2g

2 and Q2u
2 separated by 2h1

whatever the nature of the cylinder and of the background.
We can now describe the formation of the photonic band
gaps on the whole of the Brillouin zone for theE polariza-

tion in 2D triangular structures of cylinders. In the case of air
cylinders in a dielectric, anE2 gap can be opened. For di-
electric cylinders embedded in air, there is anE1 gap and, for
not too smallb values, anotherE3 gap appears.

B. H polarization

A similar study can be carried out in order to estimate the
gap opening for theH polarization. The differences between
the two polarizations are due to the modifications of the ma-
trix to be diagonalized. In theH polarization, the matrix
elements depend on the scalar product (k1G)•(k1G8) @see
Eq. ~7!# whereas inE polarization, this is the product of the
modulus that is to be considered. At theP point, there are
three equivalent vectors that contribute to the lowest-
frequency state and the angles between them are equal to
2p/3. So, the scalar product is obtained by multiplying the
product of the modulus by21/2. With respect to theE po-
larization, the inversion of theP1 andP3 states occurs, and
there is a reduction by half of the gap width. Considering, for
instance, a 2D lattice of dielectric cylinders in air, theP3

1

state lies under theP1
1 state. In fact, this situation only exists

for smallb values because the splitting is much smaller than
for the E polarization. The influence of plane waves with
larger wave vectors can be estimated in the framework of the
perturbation theory. Considering the contribution due to the
first upper band, we obtain

d~v1
2!52c2kP

2 4~h12h2!
2

3h0
with v1

25c2kP
2 ~h02h1!,

~25a!

d~v3
2!52c2kP

2 ~h112h2!
2

3h0
with v3

25c2kP
2 S h01

h1

2 D .
~25b!

At low filling factors, for a lattice of dielectric cylinders in
air,h1 andh2 are negative andd(v1

2) is small because of the
cancellation of the two contributions. TheP1

1 state is slightly
repelled by the nearest upper state in comparison with the
P3

1 state, which remains the lowest-lying state. For larger
b values,h2 becomes positive. The two contributionsh1

andh2 add up ford(v1
2), whereas they cancel each other out

for d(v3
2). In this case, theP1

1 state is strongly repelled by
the upper state and lies lower than theP3

1 state. For lattices
of air cylinders in dielectric material, the states at theP point
are obtained from Eq.~25!. In this case, the Fourier trans-
forms h(G) are positive.P1

1 is lower thanP3
1 and the se-

quence is not affected by increasing the filling factor because
the repulsive effect of the upper bands is not dependent on
the sign ofh(G) and repelsP1

1 more thanP3
1 . At the G

point, the situation is more complicated because the lowest
state is formed by six equivalent plane waves. At the first
order of the perturbation theory, the squared frequencies are

v1«
2 5c2kG

2@h02h21«~h12h3!#, ~26a!

v3«
2 5c2kG

2Fh01
h2

2
2«S h1

2
1h3D G . ~26b!
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In the case of dielectric cylinders in air, all theh(G) are
negative at low filling levels andG3u

1 is the lowest state. The
difference between the squared frequency of this state with
its nearest-neighborG1g

1 is given by

v3u
2 2v1g

2 5c2kG
2~h123h224h3!, ~27!

which is of the same type as Eq.~23!. By the same analysis
as for theE polarization, we conclude that increasing the
filling factor changes the sign of the dominant contribution
due toh2 andh3 . The difference becomes positive and the
sequenceG1g

1 ,G3u
1 is expected. Consequently, considering

lattices of dielectric cylinders in air, the lowest states are
P1

1 andG1g
1 and we expect the opening of theH1 gap. For

lattices of air cylinders in dielectric material, we deduce from
Eq. ~26! the sequenceG1u

1 ,G3g
1 ,G3u

1 ,G1g
1 at low filling

levels. To see theb dependence of the position of these
states, we calculate

v3g
2 2v1u

2 5 1
2 c

2kG
2~h112h222h3!. ~28!

Theh2 andh3 contributions cancel each other out. The dif-
ference is positive because it has the sign ofh1 . Therefore,
we expect in the case of air cylinders the sequence
G1u

1 ,G3g
1 for various filling levels. As the degeneracies of

the free-photon bands at theQ point are always lifted, the
H1 gap can occur for this configuration.

We wish to draw some general rules from this study of the
2D triangular structure of cylinders embedded in a back-
ground with a different dielectric constant for not too small
filling factors. First, for theE polarization, the opening of the
gap varies according to whether the dielectric constant of the
cylinders is larger or smaller than that of the background. For
hole cylinders in dielectric material, only theE2 gap can
occur at low frequencies whereas the two gapsE1 andE3
can exist for dielectric cylinders in air. However, on the other
hand, for theH polarization, the opening of the gap does not
depend on the nature of the cylinders and theH1 gap is
present in both cases. All these results are confirmed by the
numerical calculations carried out on 2D triangular
structures.14–17 Comparison with the results of our analysis
shows that our predictions on the opening of the gap remain
valid on a large range of filling factors. Our quantitative
analysis of photonic band gaps by a perturbative approach
from the free-photon bands gives a good account of the basic
properties of the 2D hexagonal lattices and should make the
research of optimized structures easier.

As the point group of the triangular and graphite struc-
tures is the same (D6h), similar analysis can be carried out
for the graphite structure, provided that the modifications of
the Fourier transforms of the dielectric constant due to the
structure factors are taken into account. For the first star of
theG vectors formed by the set of vectors generated from
the h1 , the structure factor is21, for the second and the
third stars, it is respectively equal to 2 and21. As the split-
ting of the lowestP state only depends onh1 as seen above,
the results obtained for the triangular structure can be applied
to the graphite structure by only changing the sign of the
h1 contribution. It follows that the order of theP1 andP3
states is opposite in both structures. For instance, in the case
of E polarization, theE1 gap, which exists at theP point for

a triangular arrangement of air cylinder in dielectric, must
disappear when going to the graphite structure by removing
the cylinders at the hexagon centers. The analysis of the
opening of gaps can be carried out at other symmetry points
and for theH polarization along the same lines as for the
triangular structure.

Also, in the BN structure, one can make predictions on
the sequence of photonic states. Since the inversion is not
present in the point group (D3h), the even and odd irreduc-
ible representations coincide at theG andQ points. On the
other hand, the representations for theP point are not related
simply to those at theP point of graphite. The most striking
difference between the two structures lies in the fact that
there is no two-dimensional irreducible representations in
BN so that the degeneracy is completely lifted, always lead-
ing to the existence of gaps at the zone edges. It can be
expected that there are more openings of gaps in the boron
nitride structure than in the triangular and graphite ones for
which the symmetry induces degeneracies.

IV. PHOTONIC BAND GAPS

To optimize the structures in order to maximize the width
of the absolute PBG’s, we have considered a whole class of
BN structures consisting of two hexagonal sublattices made
up of parallel cylinders of the same material with different
radii r1 and r2 . These structures can be characterized by
two parameters, the filling factorb and the radius ratio
a5r1 /r2 . Note that this set includes the triangular structure
for a50 and the graphite one fora51. We have studied the
evolution of PBG’s as functions ofa for b given values,
which allows the description of structures with the same av-
erage dielectric constant«av. Configurations with different
filling factors have been examined and we present here the
most significant results. As we only consider here the case of
nonoverlapping cylinders, the maximum filling factor for the
graphite structureb560% is reached when the cylinder di-
ameter is equal to the distance between two nearest-neighbor
cylinders. This is smaller than for the triangular case because
the cylinders at the hexagon centers have been removed. We
examine the two following complementary configurations.
The first one consists of air cylinders («a51) in GaAs
(«b513.6). The second one is formed by cylinders of GaAs
in air. GaAs has been chosen because it presents interesting
optical properties in the infrared domain and is representa-
tive of many semiconductors. This limitation is not essential
and calculations on other systems of the same nature give
similar results. We use 475 plane waves in the calculations,
which ensures sufficient convergence for the frequencies of
interest for the studied structures.

We first consider the BN structure of air cylinders in
GaAs atb560%, which corresponds to the graphite close-
packed configuration. We show in Fig. 5, the evolution of
PBG’s with respect to the radius ratio. Many gaps appear for
E polarization, their number varying according to thea val-
ues. As predicted by symmetry analysis, anE1 gap that can-
not exist in the triangular structure opens up fora.0 and
reaches its maximum width for the graphite structure at
a51. The E2 gap evolves in a complementary way. It is
maximum fora50 and closes over 0.1. New gaps due to the
lower symmetry of the BN structure appear only at interme-
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diate values ofa. ForH polarization, only oneH1 gap oc-
curs in the triangular structure. Its width decreases for an
increasing value ofa. This gap closes fora50.6 and opens
again for 0.8,a,1. Some other gaps only lie in the inter-
mediate range ofa and do not exist at the two higher-
symmetry limit structures. There are three absolute PBG’s in
this configuration. The first one is due to the overlap ofE2
andH1 gaps and its greater width is obtained for the trian-
gular configuration. Its existence has been previously re-
ported by some other authors.14–17 Two other gapsE32H2
andE62H4 occur for 0.5,a,1. They are characteristic of
BN structure and their maximum widths are 7% and 4%,
respectively. Figure 6 shows the photonic band structure of
the BN structure forb560% anda50.8, which is the con-
figuration giving theE32H2 gap maximum. This structure is
not very different from the triangular one for the same filling
factor apart from the appearance of many gaps at theP point,
whatever the polarization may be. This effect is due to the
lack of the inversion operation and can be analyzed within
the perturbation theory. The BN structure with an average
dielectric constant« av can be seen as a triangular structure

with «av8 5(2/3)«av, perturbed by an antisymmetric contribu-
tion depending ona. Symmetry considerations show that
only the two-dimensionalP3 states at the zone edges are
perturbated at the first order. This allows us to understand
qualitatively the opening of gaps at theP point whereas the
overall behavior of the photonic band structure is hardly af-
fected. At b560%, the cylinders are in the close-packed
configuration and these structures will be probably rather
difficult to realize because the dielectric layers between the
cylinders are very thin. We have investigated the evolution of
the PBG’s for a smaller value of the filling factorb550%.
Comparison between Fig. 5~a! and 5~b! shows that gap
widths strongly depend on the filling factor. All the gaps
shrink and the narrowest ones likeE2 , H2 , andH4 are sup-
pressed. So, absolute PBG’s will be only observed for large
filling factors. Consequently, the most promising hexagonal
structure of air cylinders in GaAs is the triangular one for
which the absolute band gapE22H1 can be widened by
increasing the filling factor up to 0.91. In fact, to keep suffi-
ciently rather thick layers between the cylinders,b must be
limited to 70%.

We have also examined the case of BN structures formed
by GaAs rods in air. In Fig. 7, we present the dependence of
PBG’s on the radius ratio forb530%. This value has been
chosen because it is in this vicinity that the absolute band
gaps are the largest. ForE polarization,E1 andE3 gaps close
when going from triangular to graphite structure whereas the
E2 gap opens up. This confirms the correctness of symmetry
analysis, which predicts at once an opposite variation of the
widths of theE1 andE2 gaps versusa for a given configu-
ration, as well as of the width of theE1 gap for two comple-
mentary structures like air cylinders in GaAs and GaAs rods
in air. LargeE4 andE7 gaps occur for the intermediate val-
ues ofa and close near the two limit values. Some gaps also
appear forH polarization. The lowest-frequency gapH1
shrinks for increasinga values and closes abovea50.7.
The H2 gap only exists for BN structures with
0.1,a,0.7. More interesting is the appearance ofH3 and
H5 gaps abovea50.7. These gaps widen whena increases.

FIG. 5. Photonic band gaps forE polarization~solid line! andH
polarization~dashed line! of boron nitride structures of air cylinders
in GaAs for~a! b560%, and~b! b550%. The absolute band gaps
are represented in black.

FIG. 6. Photonic band structure forE polarization~solid line!
andH polarization~dashed line! of boron nitride structure of air
cylinders in GaAs forb560%, a50.8.

7140 53D. CASSAGNE, C. JOUANIN, AND D. BERTHO



TheE32H2 gap exists for 0.1,a,0.4; however, its width
remains small. The most important result is the appearance
of two absolute band gapsE62H3 andE72H5 , which are
not present in triangular structure of GaAs rods in air.17 As
their widths are maximum fora51, the graphite structure
appears as the most interesting configuration to get optimal
absolute band gaps for lattices of GaAs rods in air. The dis-
persion of the low-frequency photonic bands of the graphite
structure21 presents some similarities with those of triangular
structures of air cylinders in GaAs.19 Results forE polariza-
tion have the same features. In particular, the sequence of the
lowest-frequency states and the opening of the gaps are the
same. More differences exist forH polarization because of
the smallness of the gaps. In the triangular structure, there is
only aH1 gap due to the splitting at theP point, whereas for
the graphite structure, this gap has disappeared and two other
gapsH3 andH5 open. This resemblance can be easily un-
derstood from the geometric disposition of the cylinders in
the graphite structure. For close-packed arrangement, this
configuration is equivalent to a triangular structure with the
lattice constantaA3 formed by air cylinders with a noncir-
cular section. The lowest gapE62H3 is centered at
va/2pc50.37 forb530% with a 10% relative width. This
can be compared with PBG’s obtained for an optimized tri-
angular structure of hole cylinders in GaAs.17 Taking into
account the fabrication limits, the largest absolute PBG at-
tainable in this case is centered atva/2pc'0.4 for

b'70% ~where herea is the lattice parameter!. As for a
lattice of air cylinders in GaAs, the proportion of material is
equal to 12b; it can be seen that this proportion is the same
as for the two considered structures that have consequently
the same average dielectric constant. For such a graphite
structure, PBG’s can be centered in the near infrared. For
instance, a graphite structure formed by GaAs rods with
0.24-mm diameter separated by a distancea50.50mm gives
an absolute PBG centered atl50.9 mm. A second absolute
band gap of the same width is obtained forva/2pc50.55 at
b515% by the superposition ofE7 andH5 gaps. It will be
centered on the same wavelength for a lattice with rods of
the same diameter separated by the distancea50.34mm. In
these two structures, the diameter of the rods is large and the
realization of these lattices does not require etching of thin
dielectric layers. The appearance of these gaps is essential
and shows that the graphite structure of dielectric rods has
good potential for the realization of photonic-band-gap ma-
terials.

V. CONCLUSION

We have presented in this paper a class of two-
dimensional photonic crystals based on the 2D hexagonal
lattice. These structures consist of parallel cylindrical rods
whose axis forms a two-dimensional arrangement of hexa-
gons. By a perturbation approach using symmetry argu-
ments, we have drawn some general rules on the sequence of
the photonic states at the high-symmetry points and we have
been able to study the gap opening according to whether the
dielectric constant of the cylinders is larger or smaller than
that of the background. The photonic band structure and the
numerous gaps occurring in these systems have been calcu-
lated as functions of the cylinder diameter. We show that
absolute band gaps are obtained for large variation ranges.
Among these hexagonal structures, the largest absolute band
gaps appear for triangular structures of cylindrical holes in
dielectric as well as for graphite structures of dielectric rods
in air.
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