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The pressure dependence of the electrical residual resistivity was calculated for a series of disordered Au-Pd
alloys by using the Korringa-Kohn-Rostoker coherent-potential approximation and the Kubo-Greenwood equa-
tion. The changes of the density of states and of the Fermi surface caused by an external pressure applied to the
alloy are discussed and related to the change in residual resistivity. The volume coefficient of the residual
resistivity is calculated from the pressure-dependent resistivity and found to be in accordance with experimen-
tal findings.

I. INTRODUCTION

The theoretical understanding and the ability to calculate
electronic properties of disordered alloys has greatly im-
proved in the last ten years. The key for this success has been
the Korringa-Kohn-Rostoker~KKR! coherent-potential ap-
proximation~CPA!, which allows for a rigorous, parameter-
free description of the electronic structure of disordered
systems.1,2 Historically the KKR-CPA was first used to de-
termine equilibrium observables such as the linear coefficient
of the low-temperature specific heat, magnetic properties, or
total energies.2 Then the calculations were extended to non-
equilibrium transport properties, namely, the electrical
conductivity,3,4 the thermoelectric power,3,5 the ordinary6 and
extraordinary7 Hall coefficient or the spontaneous resistance
anisotropy in ferromagnetic alloys.7 In most cases theory was
seen to yield numerical values that were in good agreement
with experimental findings.

A future task will be the extension of the theory to other,
more complicated transport coefficients in order to find out
whether the theoretical concepts are still appropriate for the
description of the corresponding phenomena. We want to
contribute to this task in the present paper by calculating the
pressure dependence of the residual resistivity for the exem-
plary alloy system gold-palladium.

It is well known that the interatomic distance is an impor-
tant parameter in metal physics and that measurements of the
pressure dependence of electronic observables provide a
wealth of information.8 The most common investigations
carried out for pure metals at high pressures are electrical
resistance measurements or, more precisely, measurements
of the resistance caused by lattice vibrations at various tem-
peratures and pressures. This quantity is a very sensitive
probe of the lattice spacing due to the change of the Debye
temperature under pressure. However, impurities or grain
boundaries, e.g., can also affect the measurements and make
the interpretation in terms of theoretical models difficult. In
contrast to pure metals, experimental investigations on con-
centrated alloys at low temperatures, where disorder scatter-
ing is the prime source of resistance, are rather scarce~e.g.,
Ref. 9!.

It is the objective of this paper to show how the residual
resistivity of a series of Au-Pd alloys changes under the in-
fluence of pressure. It is the first computation of this quantity

that is completely parameter free and treats the electronic
structure problem of the alloy and the electrical conductivity
problem on a high level of sophistication. There have been
calculations of the change of the band structure of pure met-
als under the influence of pressure~e.g., Refs. 10–12! and
simple calculations of the pressure effect on the resistivity of
alloys. Povey,13 e.g., determined the residual resistivity of an
alkali-metal alloy for various lattice volumina using a
muffin-tin model and simple transport theory.

Until the present there have been, to our knowledge, no
experimental investigations of the pressure dependence of
the residual resistivity for Au-Pd alloys at low temperatures.
The pressure dependence in palladium diluted with nickel,
however, has been measured for low temperatures and shall
be compared to the calculated values for palladium-rich
Au-Pd alloys. Moreover, there are room-temperature investi-
gations forAuPd alloys (xPd,4 at.%! ~Ref. 14! and for the
isoelectronic system Ag-Pd~Ref. 15! that can be used for
interpretation.

By presenting the calculations on Au-Pd, I wish to stimu-
late interest in experimental investigations of the pressure
dependence of the electrical resistivity at low temperatures.

II. THEORY

The resistivity of an alloy can be split up into a
temperature-dependent thermal contribution and the residual
resistivity due to impurity or disorder scattering according to
Matthiessen’s rule:

r tot~T!5rph~T!1r0 . ~1!

A similar partition applies to the pressure coefficient of
the resistivity:
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In general, the pressure dependence of the thermal and of
the residual resistivity can be quite different and must be
determined separately by choosing such conditions that ei-
therr ph or r0 is negligible. In this paper I perform electronic
structure calculations on static lattices with various lattice
spacings; i.e., the resistivity does not contain any
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temperature-dependent contributions so that one is able to
assess the pressure coefficient of the residual resistivity.

All one needs to be able to evaluate this coefficient is the
electrical resistivity for varying lattice constants. The resis-
tivity can be calculated by means of the Korringa-Kohn-
Rostoker coherent-potential approximation~KKR-CPA! and
the Kubo-Greenwood equation. The KKR-CPA describes the
electronic structure of the disordered alloy in terms of an
averaged Green function, which represents an effective me-
dium approximating the true disordered system. From this
Green function all important observables can be calculated.
Whereas the determination of simple quantities such as the
density of states is rather straightforward, the electrical resis-
tivity leads to complicated equations. The starting point for
the conductivity calculation is given by an expression of the
form

s5
1

r
}^ ImGJ ImGJ&conf, ~3!

where theG are one-particle Green functions and theJ elec-
trical current operators. The brackets denote an average over
all possible configurations of the~infinite! disordered system,
which has to be performed analytically. A scheme for this
was developed by Butler.16 It allows for the full calculation
of the electrical conductivity tensor without having to make a
semiclassical approximation and without neglecting impor-
tant contributions to the conductivity such as the vertex cor-
rections. The derivation of the Kubo-Greenwood equation in
the framework of the KKR-CPA shall not be repeated here.
The reader should refer to the literature for details.2,16 The
formalism has been shown to yield good and reliable results
for a number of alloy systems~e.g., Refs. 4, 5, and 17! and
has been adapted to deal with fully relativistic electronic
structure calculations.7,18

III. CALCULATIONS

The KKR-CPA equations were solved for a number of
gold-palladium alloys of various compositions. For each
composition the lattice constant was varied with values
around the known experimental lattice spacing. The calcula-
tion was carried out relativistically in order to take account
of the relativistic effects known to be important for gold. The
lattice potentials were determined in a self-consistent manner
in the usual way. Examples of relativistic KKR-CPA calcu-
lations for Au-Pd alloys are found in the literature.19,20

Figure 1 shows the density of states for three Au25Pd75
alloys with various lattice constants. Because in the alloys
with the smaller lattice constant the muffin-tin zeroes are
shifted to lower energies, the energy scale in Fig. 1 was
chosen in a way that the Fermi energies of all alloys coincide
in order to allow for a better comparison of the various pres-
sure levels.

Naturally, the density of states at the Fermi energy level is
of major interest. Figure 2 shows this quantity for some of
the alloys as a function of the lattice constant.

For each composition and lattice constant the residual re-
sistivity was calculated by means of the Kubo-Greenwood
equation. The relativistic version of this formalism was used
as described in Ref. 18. The results of the calculations are
shown in Fig. 3 for three selected alloys. From the values

shown in this figure the quantitydr/dauaexp can be calcu-

lated, whereaexp is the experimental lattice constant at nor-
mal conditions~atmospherical pressure 105 Pa!. The values
for the residual resistivity and its derivative are shown in
Table I.

IV. DISCUSSION

The effect of pressure on the electronic structure of the
disordered alloy Au25Pd75 can be seen from Fig. 1: pressure,

FIG. 1. Density of states for Au25Pd75 alloys with three different
lattice constants~full line: 7.40 a.u.; dashed: 7.50 a.u.; dotted: 7.60
a.u. The muffin-tin zeroes for the three lattice constants are indi-
cated by vertical arrows.

FIG. 2. Density of states of various Au-Pd alloys as a function
of the lattice constant. The full lines serve as a guide for the eye.
The short vertical bars denote the experimental lattice constants at
atmospherical pressurep05105 Pa.
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accompanied by a reduction of the lattice spacing, leads to a
broadening of the alloyd band and a corresponding reduc-
tion of the density of states of thed band. The reduction of
the density of states is more pronounced for low-lying states
and rather small for the states near the Fermi energy. In Fig.
2 the density of states at the Fermi energy level is shown as
a function of the lattice constant for various different alloy
compositions. Pressure leads to a slight reduction of the
Fermi energy density of states for all the alloys. The reduc-
tion is strongest for the palladium-rich alloys where the
Fermi level runs through the upper edge of thed band and
small for the gold-rich alloys where the Fermi energy is in a
region of relatively constant density of states. For the alloy
Au25Pd75, e.g., a lattice constant change from 7.6 to 7.4. a.u.
decreases thes density of states~DOS! ns by about 14%, the
d DOSnd by about 11% and the productnsnd by about 26%
~see below!.

The behavior of the residual resistivity as a function of the
lattice constant shown in Fig. 3 is similar to that of the den-
sity of states because the electrical conductivity is also a

property related to the electronic structure at the Fermi en-
ergy level. The most obvious feature is that the resistivities
increase with increasing lattice constant for all alloy compo-
sitions or, in an equivalent formulation, pressure reduces the
electrical resistivity. For the said alloy Au25Pd75 a lattice re-
duction from 7.6 to 7.4 a.u. reduces the electrical resistivity
by 25%, a value that is almost identical to the reduction of
nsnd . This allows a link to the traditionalsd picture of elec-
trical conduction in transition-metal alloys, where the resis-
tivity is mainly caused by scattering froms to d states for
Pd-rich alloys and the resistivity is therefore proportional to
nsnd . Of course this picture is only true in limited cases and
does, e.g., not apply to gold-rich Au-Pd alloys.

A discussion of the electrical resistivity in terms of the
DOS can be misleading. The reason for this is that the DOS
merely gives the number of states that may contribute to
dissipative scattering events but does not contain any infor-
mation about how inelastic such events are and how much
they contribute to the resistivity. This is most obvious for
pure palladium, which has the highest DOS in the system
Au-Pd, but has no residual resistivity at all.

From a more formal viewpoint this can be seen as fol-
lows: the DOS, defined by

n~E!52
1

p
Im Tr^G~E!&conf ~4!

contains an average over a single Green function, whereas
the Kubo-Greenwood equation@Eq. ~3!# contains a product
of two Green functions and current operators. There is no
reason to believe that the two expressions should behave in a
similar fashion except for very limited cases.

The effect of a change of the lattice constant on the resis-
tivity is difficult to trace directly from the Kubo-Greenwood
equation, because there are many matrix elements involved
in this equation and most of the elements vary with the lat-
tice constant. However, there is a quantity that is closely
related to the electrical resistivity: the Bloch spectral func-
tion ~BSF!. The BSF,AB(kW ,E), is a k-resolved density of
states.2 For a translationally invariant system it is a collection
of d functions that maps the dispersion relationE(kW ). For
random alloys, however, thed-function peaks are broadened
due to impurity scattering, thus expressing the fact that the
wave vectorkW is no longer a good quantum number. There-
fore, in contrast to the ordinary DOS, the BSF carries infor-
mation not only about the number of states but also about the
level of disorder in the system. In particular, the BSF at the
Fermi energyAB(kW ,EF) defines an alloy Fermi surface by
the positions of its~broadened! peaks. The half width of
these peaks is a measure of disorder. Provided that the BSF
along a particular rayeW in the Brillouin zone can be approxi-
mated by a Lorentzian function,

AB~k•eW ,E!5
a

@~kF2k!21g2#
, ~5!

a mean free path for the particulareW can be defined as
l (kWF)}1/2g, where kFW5kF•eW defines the positions of the
Fermi surface. Ifl (kWF) is sufficiently large in comparison

FIG. 3. Residual resistivity of various Au-Pd alloys as a function
of the lattice constant. The full lines serve as a guide for the eye.
The short vertical bars denote the experimental lattice constants at
atmospherical pressurep05105 Pa.

TABLE I. Experimental lattice constants and calculated resistiv-
ities and their derivatives for disordered Au-Pd alloys.

at.% Au aexp r(aexp) dr/dauaexp

20 7.395 12.8 20
25 7.410 15.8 22
30 7.425 18.0 13
40 7.460 21.2 13
50 7.495 17.2 2
60 7.525 12.5 3.3
70 7.565 10.2 5.3
75 7.580 9.1 5
80 7.600 7.4 5
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with the lattice spacing, a simple version of the Boltzmann
equation can be applied to calculate the electrical
conductivity:21,22

s}E E
FS
l ~kW !dS. ~6!

However, the Kubo-Greenwood equation is superior to
this approach so that the BSF are merely used to locate the
Fermi surface and to determine the degree of disorder in this
work. Figure 4 shows the Fermi surface of two Au-Pd alloys
calculated from BSF. The Fermi surfaces are represented by
cuts through the~100! and the~111! plane in this figure and
for each alloy the Fermi surface for two different lattice con-
stants is given.

The ~111! plane ~right-hand side! contains the necks,
which are typical for noble metals and which intersect the
Brillouin zone boundary only for the gold-rich alloys. More-
over, the gold-rich alloys have a connected Fermi surface,
whereas alloys with more than 30% palladium show a sec-
ond sheet in the first Brillouin zone. The Fermi surfaces in
the~100! plane~left-hand side! are simpler: the inner sheet is
closed and has flat portions in theK directions. There is an
outer sheet intersecting the Brillouin zone between theK and
W points for Pd-rich alloys.

In the context of the present paper it is interesting to see
how a variation of the lattice constant changes the Fermi
surface: for Au25Pd75 the Fermi surface corresponding to the
higher lattice constant~dashed lines! lies closer to theG
point for allk directions shown in Fig. 4 and both sheets, i.e.,
all k vectorskWF are smaller for the higher lattice constant.
The changes are rather small and are therefore not easy to
see. As the strongest reductions occur in theX andL direc-

tions, the Fermi surface becomes ‘‘rounder’’ and smaller for
increasing lattice constant. For the alloy Au70Pd30 the higher
lattice constant is also associated with smallerk vectors in
the X andL directions, whereas the Fermi surface expands
around theK direction. As for the Pd-rich alloy the Fermi
surface is rounder and therefore closer to the free electron
surface for the higher lattice constant.

The described changes in the Fermi surface shape do cer-
tainly affect the electrical resistivity. In the picture based on
the mean free pathl (kWF) @Eq. ~6!# there are two possibilities
for the resistivity to change: by increasing the mean free path
or by increasing the Fermi surface area. The area may either
vary continuously when the Fermi surface moves in or out
with respect to the originG, or discontinuously when the
topology of the Fermi surface changes. This may happen
when new sheets of the Fermi surface appear. Such so-called
electronical topological transitions23 were not observed for
Au-Pd when the lattice constant was changed in the narrow
range that plays a role for the present paper. The change of
the area of the inner sheet of the Fermi surface, which con-
tributes predominantly to the electrical conductivity, is
shown in Fig. 5. The area was determined by calculating
BSF along 1176 rays originating from theG point of the
Brillouin zone, locating the Fermi surface on these lines, and
finally calculating the area of the Fermi surface numerically.
This calculation was performed for each alloy composition
and for the lowest and highest lattice constant for each alloy.
As already said, the Fermi surface shrinks with increasing
lattice constant for all the alloys, the change being largest for
the palladium-rich alloys.

The mean free path averaged over the Fermi surface,
l̄ F,also decreases for increasing lattice constants for all the
alloys. However, here the effect is largest for the palladium-
and gold-rich alloys and small for the alloy Au50Pd50. This
finding is perfectly compatible with the results fordr/da
obtained in the rigorous calculation listed in Table I: the
resistivity of the alloy Au50Pd50 is less sensitive to lattice
constant changes than that of the other alloys. The change of

FIG. 4. Fermi surface cuts for Au25Pd75 ~top! and Au70Pd30
~bottom! alloys. Left panels:~100! plane; right panels:~111! plane.
Full lines: lower lattice constant; dashed line: higher lattice con-
stant.

FIG. 5. Change of Fermi surface areaSF (L) and averaged
mean free pathl̄ F (n) with lattice constant for Au-Pd alloys.

53 7131PRESSURE DEPENDENCE OF THE ELECTRICAL RESIDUAL . . .



the mean free path obviously is the main reason for the re-
sistivity change and is enhanced by the reduction of the
Fermi surface area.

Turning back to Fig. 3 one can see that within the range of
lattice constants considered the resistivity varies approxi-
mately linearly with the applied pressure. The pressure range
associated with the range of lattice constants used is about
250 to 100 kbar for the alloy Au25Pd75 and similar for the
other alloys. This range is comparable to the pressures usu-
ally applied in measurements~only p.0!.

The quantity that can be determined experimentally is the
pressure coefficient of the resistivity

1

r S dr

dpD
T

.

In order to be able to compare experimental values with
calculated ones, it is useful to define a dimensionless volume
coefficientyr :

yr5
V

r S dr

dVD
T

52
1

r S dr

dpD
T

1

kT
, ~7!

wherekT is the isothermal compressibility of the alloy. Be-
cause the volumeV is proportional toa3 one can also write

yr5
a

3r S dr

daD
T

. ~8!

By inserting the values of Table I into Eq.~8!, the volume
coefficient can be calculated. Its composition dependence is
shown in Fig. 6. The values are all positive, reflecting the
fact that the resistivity decreases with increasing pressure for
all compositions. Alloying gold to palladium leads to a rapid

decrease of the volume coefficient and a minimum around
50% Au. Further addition of gold slightly increasesyr again.

As was already mentioned, there are experimental sources
for the pressure coefficient of pure palladium and Pd-Ni al-
loys at low temperatures.24 Using experimental values for the
isothermal compressibility25 of Pd, the volume coefficient
can be calculated by means of Eq.~7! from these data
(kT55.4310212 Pa21 was used for Pd!. The resulting ex-
perimental quantitiesyr are summarized in Table II.

Obviously, addition of Ni to Pd leads to a rapid increase
of yr as the source of resistivity shifts from thermal to dis-
order scattering upon addition of Ni.yr seems to saturate out
for small contents of the nickel impurities already. The value
for 1% Ni ~4.17! is compared to the calculated volume coef-
ficients of Au-Pd in Fig. 6. Apparently, this experimental
low-temperature value for ‘‘dirty’’ palladium fits nicely to
the calculated ones on the palladium-rich side if one extrapo-
lates the calculated values~see the dotted line!. Also, the
room-temperature value for pure palladium~4.3! is very
close to this figure, showing that thermal and disorder in-
ducedy are comparable in this particular case.

For the gold-rich side of the alloy system there is a series
of experimental room-temperature values ofy for AuPd
ranging between 3.5 and 5.6. This fits to a~rather specula-
tive! curve obtained by extrapolating the calculated values to
pure gold~dotted line in Fig. 6!. However, this comparison is
doubtful because for pure goldy is strongly temperature de-
pendent: for temperatures higher that room temperature it is
seen to vary slowly26 and for low temperatures (125 K! the
sign ofdr/dp can even change: application of pressure then
increases the residual resistivity andyr is negative.

27 In the
latter case the effect is caused by lattice defects, which are
influenced by pressure changes and cause a pressure depen-
dence this way. This demonstrates that the pressure depen-
dence induced by other mechanisms than disorder scattering
cannot be compared with the pressure coefficient of the
disorder-induced resistivity in a straightforward way.

Figure 6 also shows room-temperature measurements of
y for the alloy system Ag-Pd. As this system is isoelectronic
to Au-Pd, one can expect that the composition dependence of
y at least resembles that for Au-Pd. This is indeed the case:
for Ag-Pd the maximum values fory are found for the pure
components and a minimum is observed that is slightly
shifted to Ag-rich alloys. This is exactly what was calculated
for Au-Pd. Of course the agreement cannot be perfect be-
cause two different alloy systems are compared. Moreover,
the measurements were made at room temperature.

FIG. 6. Volume coefficient of the residual resistivity of Au-Pd.
L: calculated values;% : experimental value for PdNi1 (T54.2
K!; ^ : experimental values for Au-Pd~300 K!; n: experimental
value for Pd~300 K!. Dashed line: volume coefficient for Ag-Pd
~300 K!.

TABLE II. Experimental low-temperature values for the volume
coefficient of the residual resistivityyr of pure Pd and PdNi alloys
~calculated from Ref. 24!. For comparison: room-temperature value
for pure Pd~Ref. 15!.

Ni concentration yr

0 ~pure Pd! 0.77
0.32 3.76
0.55 4.00
1.0 4.17
0 ~pure Pd!, T5300 K 4.30
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V. SUMMARY

The pressure dependence of the residual resistivity of dis-
ordered alloys can be calculated first principles by applying
the Kubo-Greenwood equation in the framework of the
Korringa-Kohn-Rostoker coherent-potential approximation.
For the alloy sytem Au-Pd the calculations show a strong
pressure dependence of the residual resitivity for Pd-rich al-
loys, a nearly pressure-independent resistivity for 50% Au
and, as one approaches pure gold, a rise of the pressure de-
pendence. The resistivities vary approximately linearly with
the applied pressure. Experimental low-temperature values
for PdNi alloys and room-temperature values for pure Pd
agree well with the calculations, if one extrapolates the cal-
culated coefficients toPdAu. For gold-rich alloys, measured
room-temperature values re compatible with the calculations,

but the temperature dependence makes the comparison
doubtful for very dilute alloys. The experimental data for
Ag-Pd shows a composition behavior similar to that calcu-
lated for Au-Pd.

In conclusion the method presented in this paper yields
excellent results for a transport quantity without any use of
adjustable parameters. The very encouraging results demand
futher applications of the method and will hopefully stimu-
late experimental low-temperature work.
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