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Quantum version of a spherical model: Crossover from quantum to classical critical behavior
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We investigate a quantum version of the spherical model which is obtained from the classical Berlin-Kac
spherical model by a simple canonical quantization scheme. We find a complete solution of the model for
short-range as well as for long-range interactions. At finite temperatures the critical behavior is the same as in
the classical spherical model whereas at zero temperature we find a quantum phase transition characterized by
new critical exponents. Based on a functional-integral representation of the partition function the free energy of
the model is shown to be equivalent to that of the nonlineanodel in the limit of infinite order-parameter
dimensionality.

[. INTRODUCTION as well as at the zero-temperature quantum fixed point. We
also derive a functional-integral representation of our model.
The classical spherical model introduced by Berlin andBased on this representation we investigate the relation to
Kact is one of the simplest toy models in statistical physicsfie|d-theoretic models and find that the free energy is identi-
showing nontrivial critical behavior. It appears to be univer-cal to that of anO(n) o model in the limitn—-ce.
sally applicable to studying a variety of critical phenomena.
The classical spherical model can be solved exactly not only
for nearest-neighbor interactiondut also for long-range
power-law interactioné? random interaction$? systems in
random magnetic fields” and disordered electronic systems  We consider a classical spherical mddefi N=LP (D is
with localized state&.In addition it has been used as a testthe spatial dimensionalijyreal variablesS, ranging from—o«
case for the finite-size scaling hypothest§ Reviews on the  to = that interact via a pair potential;; which we assume to
classical spherical model were given by Joyemd more pe translationally invariarfi.e.,U;; =U(r;—r;)] for simplic-

recently by Khorunzhet al* for spherical models with dis- ity. The Hamiltonian of the model is given by
order.

In recent years there has been a renewed interest in the
theory of zero-temperature quantum phase transitions studied 1
by HertZ2 in 1976 in the context of itinerant ferromagnets. Ha=5 2 U;ss+hY s, 1)
The newer investigations include metal-insulator h '
transitions®> the superconductor-insulator transitih,as
well as order-di_sorder transitions in quantum antiferro-yhereh is an external “magnetic” field. The values of tige
magnet® and spin glasse’ﬁ,to name a few._Desplte much 5re subject to the mean spherical constraint
effort we are far from having a complete picture of the be-
havior near quantum phase transitions. Thus it would be very
useful to have a quantum version of the spherical model
which can be used as universally as the classical spherical 2 (Sy=N/4, 2
model. :
Actually the idea of a quantum spherical model is not
new; it dates back more than 20 years when Obefrhsiig-  where (---) denotes the thermodynamic average. In other
gested a simple canonical quantization scheme for a dynamstudies of the spherical model this constraint is often im-
cal spherical model. This was also used later to investigate posed not on the averages but on the values of the variables
quantum spin glas¥ However, these studies focused on thethemselves(strict spherical constraint Usually both ver-
usual finite-temperature critical behavior and did not deakions of the constraint yield the same results for the thermo-
with the quantum phase transition at zero temperature. Simdynamic quantities although different results have been re-
lar models were also studied in the context of structuraported for a spherical spin gla&s.For a more detailed
phase transition® 2! Very recently a quantum version of the discussion of the relation between the mean spherical con-
spherical model was suggested based on path-integratraint and the strict spherical constraint see, e.g., Ref. 3. In
quantizatiorf? the following we will see, however, that the mean spherical
In this paper we consider a quantum version of the spherieonstraint(2) is easier to generalize to the quantum case than
cal model which is obtained by a canonical quantizationthe strict constraint.
scheme similar to that of Obermair. Like the classical model, To define a quantum version of the spherical mddgive
the quantum model is exactly solvable, and we calculate theeinterpret the variableS, as operators and define canoni-
critical behavior at the finite-temperature classical fixed pointally conjugate “momentum” operatorB; so that the fol-

II. CANONICAL QUANTIZATION
OF THE SPHERICAL MODEL
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lowing commutation relations are obeyewth 7 set equal to where is the inverse temperatug@=1/kgT. Therefore the

b: free energy per site reads

[Siusj]:Q [Pivpj]zov [S:Pj]:i5ij- ) ~ 1 ou h2 1 2 1
The quantum spherical model is then obtained fiamby '~ BN InZ=-7%- 2. BN % In| 2 sinhz Bo(k) |-
adding a kinetic energy term. The choice of this term is by no (8)

means unique, and depending on the form of the kinetic en- _ . . L
ergy the model shows different dynamical behavior. Here wel N€ spherical constraint which determiness given by
choose the simplest possible kinetic energy, a sum over the

« ' . of 1 h? 1 g 1
squares of the “momentum” operators. Thus the Hamil-g= - — _—, . — 2 -
tonian is given by 0 w4 i 4p? N > 2w(k) cothz Bell). (9

1 1 In the limit g—0 this equation approaches the corresponding
H=HyntHa=5 9> P2+ > > U;SS; classical resulfnote that the frequencies(k) also contain
' h gl, whereas the free enerd§) contains an extra term pro-
N portional to InBg which is absent in the solution of the clas-
+ hz S+u E 3.2— _), (4) sical model(1). This is connected with the pathological ther-
[ [ 4 modynamic behavior of the classical model at low

temperatures, which is fixed by the extra term in the quantum
case. Similar results were found in Refs. 18 and 22. It is also
interesting to look at the limit of vanishing interactions
U (k) =0 which corresponds to free spherical quantum “ro-
tors.” In this case Eq(9) yields a finite energy gaffinite w)
even for vanishing fieldh. In contrast, for free Heisenberg-
Dirac spins the energy gap vanishes for vanishing field.

where the coupling constagtdetermines the importance of
guantum fluctuations. Heigg—0 corresponds to the classical
limit. The mean spherical constraiff) is taken care of by a
Lagrange multiplierw. It is easy to see that an implementa-
tion of the strict spherical constraint is more difficult in the
guantum case, since here tBe are not real variables but
operators.

We want to emphasize that the commutation relati@s
together with the quadratic kinetic term in the Hamiltonian !ll- CRITICAL BEHAVIOR AT FINITE TEMPERATURES
(4) do not describe quantum Heisenberg-Dirac spins but |, this section we will discuss the critical behavior of the
quantum rotors as will become clearer in Sec. V. The quangantum spherical model at a finite-temperature phase tran-
tum rotors can E)e seen as a generalization of Ising Spins in &on. As usual in the spherical model, the critical behavior
transverse field® The reader may also be aware of mappingsis determined by the properties of E@) for the spherical
between. the low-temperature behavior of quantum HeiseNsgnstraint in the limitu—0. The system does not show a
berg antiferromagnets and models of quantum rotofs. phase transition if thé& sum on the right-hand side ¢®)

The quantum spherical mod#) is equivalent 0 & sys-  giyerges forN—w and u—0. If it converges the system has
tem of coupled harmonic oscillators. Therefore it can be, itical point ath=0 andg=g, with

solved very easily. A Fourier transformation of the Hamil-

tonian leads to 1 1 Jdc 1 112

(10

This integral converges fdd >x, wherex describes the as-
h2 ymptotic behavior ofU,: U,~|k|* for k—0. Conse-
—u E_ N_ (5) quently, the lower critical dimension is given by (In the
4 4u’ case of short-range interactions we hawve2.) In order to
calculate the behavior of the system near this critical point
whereP(k) and S(k) are the Fourier transforms of the op- We have to investigaté9d) for small but finite . The main
erators and the frequenciegk) are given by observation is that at any finite temperat(fiaite ) we can
expand the coth terms i®) and(10) in the long-wavelength
1 limit |k|—0 and for smallx. From this it follows that the
ut = U(k)). (6) leading terms in9) and(10) are the same as in the classical
2 spherical model. After subtracting.0) from (9) and calcu-
lating the remainindg sums we find
HereU (K) is the Fourier transform of the interaction matrix

1 1
H=2 |5 gP(P(—K)+ 5 0?(K)S(K)S(—k)
K g

w2(k)=29

, [CuP™ (D<2x)

Uj; and we have fixed our energy scale by assuming that the
Fourier component) (0) to k=0 is equal to zero. In analogy —tg~(— +{ CuInju] (D=2x) (11)
to a system of harmonic oscillators we can immediately write Cu (D>2x),

down the partition function ) _ N )
wherety=(g—9.)/d. is the distance from the critical point

and the prefacto€ is a smooth function of. If we define a
) 7) “magnetization”m=gf/oh=—h/2u [see Eq(8)] we obtain
' the equation of state

1 -1 N Nh?
z:l_k[ (2 sinhi ,Bw(k)) ex[{ B Z+ B4,u
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TABLE |. Critical exponents for the quantum spherical model at the zero-temperature quantum fixed
point and the finite-temperature classical fixed point as functions of dimensionality.

Quantum fixed point Classical fixed point Both fixed points

Exponent (D<D,=3x/2) (D<D,=2x) (D>D,)

a (2D —-3x)/(2D —x) (D—2x)/(D—x) 0

B 1/2 1/2 1/2

y 2x/(2D —x) x/(D—Xx) 1

1) (2D +3x)/(2D —x) (D+x)/(D—x) 3

v 2/(2D —x) 1/(D —x) 1/x

n 2—x 2—x 2—Xx

z X2 x/2 x/2

C(h/m)(P—x)/x (D<2x) hi2 Cu?P=X2 (D<3x/2)
—tg~m?+4 C(h/m)|in(h/m)|  (D=2x) (12 —th(; +1{ Cu In|ul (D=3x/2) (15)

C(h/m) (D>2x). Cu (D>3x/2).

From this equation we can easily determine the critical ex-

ponents of the thermodynamic quantities and the upper critipe equation of state is given by
cal dimension which is obviously given y,=2x. In order

to find the critical exponent of the correlation length we no-
tice that the only relevant length scale near the transition is (2D—x)/2x
determined by the long-wavelength behavioregk) which C(h/m) (D<3x/2)

is given byw?(k)~2g(u+Kk*), where we have omitted the —tg~m?+4{ C(h/m)[In(h/m)| (D=3x/2)  (16)
prefactor in front ofk*. Consequently we gei~u 2 and C(h/m) (D>3x/2).

together with(11) this yields the critical exponeni. The

exponent can be calculated frordS,S_,)~w >~k *.

The dynamical exponerzt can be obtained from the diver- Obviously the upper critical dimension ix2. All the criti-
gence of the time scale at the phase transitiongcal exponents can be easily calculated fr(ikh) and (16).
7(k)~ w(k) ~ 1~k 2 This yieldsz=x/2. The critical expo- They are summarized in Table I. As at the classical fixed
nents at the finite-temperature fixed point are summarized ipoint the dynamical exponeamtis given byx/2. A compari-
Table I. Except for the dynamical exponent which is notson with the results of Sec. Il shows that the critical expo-
defined in the static classical modd) all exponents at the nents at the quantum critical point of tHe-dimensional
finite-temperature critical point of the quantum model agreemodel are equal to those of ® (- z)-dimensional model at
with those of the classical model. So at any finite temperathe finite-temperature critical point, as is expected from gen-
ture the asymptotic critical behavior is controlled by the clas-eral renormalization-group argumentsThus all scaling re-
sical fixed point as is expected from general renormalizationtations are obeyed if one substitut®sby D + z.

group argument¥’ In order to investigate the crossover from quantum to
classical critical behavior arising at small but finite tempera-
IV. CRITICAL BEHAVIOR AT ZERO TEMPERATURE tures we first calculate the shift of the critical coupling due to

a small but finite temperature. To this end we subtract Eq.
We again investigate Eq9) for the mean spherical con- (14) from Eq.(10). After calculation of thek sum we find for
straint, now for zero temperature. In this case the coth termall dimensionalitied > x
in (9) is identical to 1 and the equation simplifies to

L L s 0 12 go Geo~ TP 7%, (17)
T AN E 2o P
] o Here g, is the critical coupling at finite temperatufle and
The k integral converges fob>x/2 which is therefore the s the critical coupling at zero temperature. Therefore the
lower critical dimension. The critical coupling strengfky is  shift exponent is given byp=(2D—x)/x. To derive the

given by crossover scaling form of the equation of state,
1 1 Jco
O=—4-> ——90 14
AN aU T o m=t8(h/tf? Ti), (18)

In order to calculate the critical exponents we proceed analo-
gously to Sec. lll by subtractin@l4) from (13). After calcu-  we subtract(14) from (9). Heret, measures the distance
lation of thek sum we obtain from the critical coupling at zero temperature. This yields
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h2 1 g B [1 9S;\ 2
=22 N % 22a0aT VR Z‘f D[S(T)]eXp[ - fo d{ﬁ ) (E>
1

X cothz B{2g[ n+ U(k)/2]}1’2—1> +H[Si(7)] ] (23

N i > g _ g HereD[S(7)] is, up to a normalization constant, the product
N € \2{2g[ u+U(K)/2]}Y? 2[gU(k)]*? of thed§ for all sitesi and all infinite imaginary time steps.

In this form the partition function is similar to that of a

1 \/5— Vdco model very recently suggested by NieuwenhuiZefhe ki-

+ N 4 2[Uk)]¥? 19 netic energy of his model, however, contains a first deriva-

tive with respect to imaginary time, whereas our model

where we have added two terms that are actually zero. Cafontains a second derivatiafter partial integration As a
culating the arising integrals requires some patience. Belowonsequence, his model can be defined only for com§lex
the upper critical dimensio® = 3x/2 we eventually find or by considering the system and its dual at the same time.

However, its behavior is closer to the behavior of quantum
h\ h h\ Yy Heisenberg-Dirac spins. In particular, there is no energy gap
m F(ﬁ =] tig, (200 for vanishing interactions and vanishing field. Consequently,
although both models are similar, the differences in the ki-
where we have omitted all prefactors and kept only the leadD€tiC energy result in different dynamical behavior. In par-
ing terms close to the zero-temperature fixed point. The functicular, the models belong to different universality classes at
tion F stems from the first of th& sums in(19). Equation ~ the zero-temperature quantum critical point. _
(20) can be easily transformed into a scaling form equivalent The critical properties of our model are determined only

0=m?+

to (18): by the long-wavelength behavior of the interactiorfk);
thus we can omit all but the leading term Of k) without
t h changing the critical behavior. After a Fourier transformation
T:t3/<2D*X)Y m_gz —ZDTRNZDX) | (21)  the partition function then reads

from which we extract the crossover exponent to be Z:f D[S(k,w)]
¢=x/(2D—x). The crossover exponent is equal to the in-
verse of the shift exponent and given ky=zv, as is ex- w2
pected from the analogy between the quantum-to-classical Xexp{ —,82 E — S(k,w)S(—k,—w) ¢,
crossover scaling in this model and finite-size scaling. w *\29

In dimensions above the upper critical dimensibr (24)
crossover scaling breaks down. The equation of state cannot
be written in a form analogous 1d.8). This behavior corre- wherec is a model-dependent constant. In the case of short-
sponds to the breakdown of finite-size scaling in the spheritange interactiongx=2) this partition function can be seen
cal model abovéd,, (see, e.g., Ref. 201t can be explained as the spherical version of the usual field-theoretic nonlinear
in terms of a dangerous irrelevant variable in the renormalo model® As follows from the arguments given by Stariéy
ization group?® We note that in agreement with the break- for the classical models its free energy is_identical to the
down of the crossover scaling the shift of the critical cou-largen limit of the O(n) nonlinear o modef® which de-
pling g, for D>D,, is not given by the naive scaling form scribes quantum rotors instead of Heisenberg-Dirac spins.
(9c—9eo) ~ T¥# but is much weakefsee Eq(17)]. (One major difference between rotors and spins is that the
different components of amcomponent rotor commute with
each other whereas the components of Heisenberg-Dirac spin
operators do not commuje.

+ck*

V. FUNCTIONAL-INTEGRAL REPRESENTATION
OF THE PARTITION FUNCTION

To shed some further light on the properties of the model VI. CONCLUSIONS
and its relations to other models for quantum phase transi- ] . . . )
tions we derive a functional-integral representation of the In this paper we have investigated the critical properties
partition function by a method analogous to the FeynmarPf & quantum version of the spherical model. We have ob-
functional integraﬁ7 for the propagator. We start with the tained a quantum description by reinterpreting the spherical

Trotter formula® “spins” as operators and defining conjugate “momentum”
operators via the canonical commutation relations. The

Z=Tre PHinHe) =Tr lim (e~ AHkn/ng=AHa/mn, (22) Hamilto_nian. of Fhe guantum model is given by ;he sum of a
N0 quadratic kinetic energy term and the classical spherical

Hamiltonian. Therefore our model describes quantum “ro-
Inserting appropriate sets of eigenstates of the oper&ors tors” rather than Heisenberg-Dirac spins. Such rotors can be
and P; between the exponentials allows us to perform theseen as generalization of Ising spins in a transverse field.
trace. In the limitn— the partition function may now be They arise, e.g., in effective models for the low-temperature
written as the functional integral behavior of quantum Heisenberg antiferromagn&fs.
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Writing the partition function as a functional integral given byx/2 where the exponemt describes the behavior of
shows that the free energy of our model with short-rangehe interactiorlJ (k) in the limit of smallk. We consider this
interactions is identical to that of the largelimit of the model as a starting point for the investigation of more com-
field-theoreticO(n) o model. Obviously there are many pos- plicated problems which arise, for instance, by adding
sible choices for the kinetic terfone being that of Ref. 22 quenched disorder to the model, which breaks the symmetry
different from ours. In general they lead to different univer- between spatial and temporal directions.
sality classes at the quantum critical point whereas the clas-
sical finite-temperature critical behavior is determined only
by the form of the classical spherical Hamiltonian. It is there-
fore not influenced by the choice of the kinetic energy. The author acknowledges valuable discussions with D.

For our choice of the kinetic energy the critical propertiesBelitz, T. R. Kirkpatrick, and M. Schreiber. This work was
of the D-dimensional model at the quantum critical point aresupported in part by the German Academic Exchange Ser-
identical to those of a @+ z)-dimensional model at the vice and by the NSF under Grants No. DMR-92-09879 and
finite-temperature critical point. The dynamical exporeis  No. DMR-95-10185.
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