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Electronic states in organic conductors, dicyanoquinonediiminéBZINQI-Cu) salts, which undergo the
metal-insulatoMI) transition, have been studied based on the periodic Anderson model with electron-phonon
interaction. The dimensional effects on both the metallic and insulating states are examined by taking account
of the transverse hopping for the previous one-dimensional niGdsils. Rev. B51, 10 293(1995]. Within
slave-boson mean-field theory, we obtain the characteristics of the strong correlation for energy bands, elec-
tronic density of states, the MI phase diagram, the specific heat, and the magnetic susceptibility. Further the Ml
transition in the presence of a homogeneous magnetic field is examined and compared with the transition into
the antiferromagnetic state at low temperatures.

I. INTRODUCTION DCNQI-Cu salts, including the 3D behavior, are well repro-
duced, and that the electron correlation and electron-phonon
interaction may be of moderate strength for the explanation
]pf the electronic specific heat and the magnetic susceptibility.
Since the local spin of Gt indicates the large magni-
. ) tude of the Coulomb interaction, the MI transition in the
the DCNQI mol_e(_:ule_, and a localizeti electron in the Cu presence of strongly correlated states has been studied
atom. Th.e hybndlzanpn between the elecftron and thel theoretically?7‘25A 1D model has been proposed where the
electron is important in DCNQI-Cu salts since the Cu atomcpain consists of a periodic Anderson model with electron-
shows a mixed valence given by Ct* on averagé. phonon interaction. The fact that the MI transition is trig-
Characteristics associated with the MI transition havegered by the Peierls transition has been shown by treating the
been found in several experiments under effective pressuregp-site repulsive interaction within the conventional Hartree-
e.g., helium gas pressute,and various types of Fock approximatiod? Further, the MI transition was exam-
(R;, R,-DCNQI),Cu withR;, R,=Me, MeO, Cl, and Br ined by applying the slave-boson theory in order to treat
(Ref. 4 and deutrization-® The phase transition is of first strongly correlated states with the local spif® The phase
order with a large hysteresis, which originates in the Peierlsliagram of the metallic state and the insulating state was
transition with a threefold lattice distortion along the chainobtained on the plane of temperature and the electron-
(the ¢ axis). The insulating state also exhibits a threefold phonon coupling constant. The temperature dependence of
periodicity of the valence expressed as ‘GuCu®, and the magnetic susceptibility and specific heat was calculated
Cu?* along thec axis. The evidence of Gif, i.e., the local ~Within the 1D model and compared with those of
spin, has been found from the facts that the temperature d€xperiments." However, it is not yet clear what effect the 3D
pendence of the magnetic susceptibility shows the Curi@@nd has on the Ml transition and the electronic states.
law? and that the MI transition is also induced by the homo- !N the present paper, the MI transition is examined by
geneous magnetic field:1! Further, the transition from the taking account of the transverse hopping for the previous 1D

: : : . . . odel?® In Sec. Il, a formulation is given by use of the
insulating ph with local spin to the antiferromagneti ' . .
sulating phase with local spin to the antiferromag etCStat.slave—boson mean-field theory. The electronic density of

Egﬁ tbeer;agefg:&cjézgltslower temperatures below the M| trans'éta_tes is alsp obtaingd. In Sec. lll, a phase diagram of metal
) ' . o .. vs insulator is examined on the plane of temperature and the

The eX|st_e_nce O.f a 1D band n these T‘?ate”?"s |S.cru0|al t%Iectron-phonon coupling constant. We calculate the elec-
the Ml transition, since the nesting condition gives rise to thg,jic density of states, the temperature dependence of the
Peierls transition. However, certain facts indicate the impor'specific heat, and the magnetic susceptibility. Further, the

tance of the role of the dimensional effect. The ratio of thegffect of the magnetic field on the MI transition is examined.
conductivity of thec axis to that of theab plane is about gection IV is devoted to a discussion.

10X* The coexistence of a three-dimensiof&D) Fermi sur-

face with the 1D Fermi surface has been observed by the de
Haas—van Alphen method, and the corresponding band struc-
ture is calculated by use of the tight-binding
approximatiort®> The electronic structures of the metallic ~ We consider a model given by an array of 1D chains
states have been studied from the first-principles method afhich consist of both the conduction electron in DCNQI
the local-density-functional theof§.It was shown that the molecules and the electron in Cu atoms. The Hamiltonian
essential features of the observed Fermi surface oi given by2*

Organic conductor dicyanoquinonediimitBCNQI)-Cu
salts undergo an exotic metal-insulafbftl ) transition at low
temperature$? The structure of these salts shows an array o
one-dimensionallD) chains which consist of & electron in

II. SLAVE-BOSON MEAN-FIELD THEORY
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where the hole picture is useiddenotes the lattice site along lattice constants are taken as unity.

the 1D chain(the z axis). The vectori denotes the square ~ We deal with Eq(1) as follows. o

lattice point of the unit cell in thex-y plane, where two (i) In the insulating state, a threefold periodicity along the
vectorsSX and Sy are those for the nearest neighborsfofn chain is assumed for the magnitude of the lattice distortion,

Fig. 1, the schematic structure in tkey plane perpendicular €., gBiQ#O with Q=2/3, which is calculated self-
to the chain is shown, where the open and closed CirClegonsstently. Then the interaction between the electron and

denote the DCNQI molecule and the Cu atom, respectivel)}?honon in Eq(1) induces Fhe _molecular fields acting on the
The unit cell enclosed by the dotted square corresponds t8 electron @ electron, which is expressed as
the 1D model studied previous!.In Eq. (1), quantities

c!..() andd! (I represent the creation operators of the We 7 (Bo+BT o) (28
. Q -Q/
7 electron for two kinds of DCNQI ¢=x,y) and thed VNN,
electron in the Cu atom, respectively. Quantities 4, and
U are the hopping energy along theaxis, the energy level Jq ;
of the d electron, and the magnitude of the on-site repulsive Wd=W<BQ+ Blg)=(94d/9-)W. (2b)
L

interaction, respectively. Th¥ term, the hybridization of

which is shown by the solid line between the open andrne ratio ofgy to g, is fixed by considering a phonon mode
closed circles in Fig. 1, gives rise to the three-dimensional;ip, spectrumwQ.Zl

effect due to the tr?nsverse hopping perpendicular to the i) The strongly correlated states originating in latde
chain. The quantityB, denotes the creation operator of the gre treated in terms of the slave-boson method with the re-

phonon with momentury and energyny, whereg,, (gq) is placement ofd=f'- b;; wheref'- andb- are creation
the matrix element of interaction between the phonon and th n,_ e o '
operators for the pseudofermion and the slave boson,

7 electron @ electron. The case in which . 6.27 ) N
g=*Q==*=27/3 is examined due to the threefold lattice respectively: . BY use OfT Lagrange's rTnuIanlek”_, the
local constraint given byo,-bji+2,-; f;; fir,=1 is ex-

distortion in the insulating state. Quantitiesnd# and the

pressed as
q 0) 0] D 2 Nir 2 f;rrofirﬁ biTrbi,*—l , ©)
il o
o—¢—oc—+ o O — o .
r—F———1 which is added to Eq(l). In the present paper, mean-field
q I O q theory is applied to the slave boson with threefold periodic-
: : ity, i.e.,(D3n+j. i) =(b;) and\z,+; i=\;, wherej=1, 2, and
- & o le o} & o—e——¢ 3 andn is an integer. The quantit§bj> can be taken as real.
- - Note that the valencX of Cu™* is expressed in terms of
By q D q (b;) as
f © * ~ f ~ S 1 : 2
x=2—§j§_)1 (bj)2. (4)
X D

Since DCNQI-Cu salts correspond to the caseXef4/3,
parameters are chosen so as to satIﬁbej>2/3:§ for the
metallic state at zero temperature.

FIG. 1. Schematic structure of DCNQI-Cu salts in the plane (i) The V term is diagonalized by rewriting operators as

perpendicular to the one-dimensional chain, where open and closed
circles denote the DCNQI molecule and Cu atom, respectively. The 1
domain enclosed by the dotted sqyare is the unlt. cell for the 1D Ciﬁa: _ {Cxi50(1+e—|p-5x)+c
model(Refs. 23 and 2} The vectorss, and d, are unit vectors for Ko(p)

the square lattice. (59
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where Egs.(5a) and (5b) correspond to bonding state and
antibonding states of ther electron,
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1 R
= {Cxi50(1+e'p'5y)—

Ko(p)

Ko(p) is given by

In Egs.(5a and(5b), C,iy, With a=x andy are the Fourier
transform for the momenturp in the x-y plane, and are Hyve=

> 2 2711/2
- p- oy p 5
Ko(p)=2 cosT + cosT .

Cyigo(1+€P 5},

respectively, and
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In addition to Eqs(7a) and(7h), we make use of the Fourier

transform for thez componentk (3n+j=i, j=1,2,3),
(Sb) 3 1/2N/3
OkiF(ﬁ) 2 Ogn+j,peXA —i(krgn)], ®

which is useful for calculating the state with threefold peri-
odicity along the chain.
Based on the above treatments (0f (ii), and (iii), we
©®  rewrite Eq.(1) as

> ; D [, (K D)W 5,
|k|<Q/2 ‘pxlv py|<77 U':T l

given by
NN
1 L U, D) Wi ]+ —5— 2 A((b))I*— 1)
cai50=f2 Caio(Dexp(—ip-T), (7a) ]
Ny | W2
+NNLE, 9
o= E fio(Dexp—ip-T). (7b)
fio IN,T whereg=29%/wq, and
|
-W 1 ek vy O 0
1 -w 1 0 Vyup) O
e'3k 1 2W 0 0 Vip)
T@ (1 A — .
Hye(k,p) V1(p) 0 0 E, 0 0 ) (10)
0 Vyp) O 0 E, 0
0 0 Vi(p) 0 0 Es
-W 1 e
Agkp=( Lt ~W 1 (11)
ek 1 2w
|
Matrlces (10) and (11) are represented on the basis of W 1 3 ; N
t T T T . .
_(Cklpo Ck21p0' Ck3_p_o’ fklﬁo” fk2[;0' k3p0') and _E = (<Ckiﬁ‘7ijpg>+<Cki|3(7ijpg>
kpg—(CklpU Ckng Ck3p ), respectively, where

E;=eq— 2WyCORr| + ande(5)=V<bj>K9(5). The di-
mensional effect is determined by the teviy{p) in Eq. (10),

- —(kaprka(,)) coNr;. (19

sinceﬁ is the momentum perpendicular to the 1D axis. The

case ofV;(p)=0, which is obtained ap=(*,* ) or

|5=(i77,1 7), leads to the crucial effect on the electronic

The chemical potentigk in Eqs.(12)—(14) is determined by

state. Quantitiegb;), \j, andW in Eq. (9) are determined 1
self-consistently by

\%
<bj>:_)\_

1=|(bj)[>+

[oa

‘U ¥

E <fkjpgfk1pa>

iR g

UL

E kao—fkjF;lT>K0( 5):

T . t .
3= NNLkE;‘; 2 ; ((CripoCripe) T {Frjpofkipe)
— =
(12 +<ijﬁgckjpo>)v (15
which denotes the fact that the total number of electrons per
(13 unit cell is three. The quantity ) in Egs.(12—(15) is cal-

culated by use of Eq9) as
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(W )i( W5 001 = Sk 85,5 B 2 FED) it Gy (i @y, k,p)= f AT, Wi (7) Wy, (0))€'n”
(163 —
Unut
_ o => - \ (17b
(Vo) (Vo)) = Ok 5.5 0 2 F(ELG )y 6t T logtp-Eg
(16b)
wheref(x)=1/(e/® # +1), andT(=8"1) is the tempera- where H{&(k,p)Un(k,p) = E(m)U w(k.p) and U i=(a%,,
ture. Equationg16a and (16b) are derived by use of the 4 TO) 1 SN[ >
Green function given byw,=(2n+1)7T], gz . amg) for Eq. (10)’ and_Huye(k,p)Um(k.p)

=EMUn(k,p) and Uf=(ahy, ahs ahe) for Eq. (1D).

H N\ — A - t io,T
Golion kp)=- Jo dT(TT\P"p"(T)\Pkfw(O»e solutions of Eqs(12)—(14) into the Helmholtz free energy

per unit cell, which is expressed as

Unul
Ern: fw,+p— E<m), (73
W2 3 _ 3
FOW)=3u+ —— —— >, (2 In{1+exd — B(E\" — w)1}+ > In{1+exd —B(E," — u) %E Nj((bj)2—1).
g NNJ_k’p’U kp =1 kp -

(18

Self-consistency equationid2)—(15) lead to the following tion c is used for ther electron. By taking w,— w+i0 in

characteristic for the MI transition. Since E¢§4) and(12) Egs. (178 and (17b), quantities D (w), Dy(w), and

are conditions for the extremum of E(L8) with respect to Dg(w) are obtained as

W and(b;), respectively, there are two kinds of critical tem-

peratures corresponding t/#0 and (b;)=0. Generally

speaking, the critical temperature f&¥#0 does not coin- De(w)=3

cide with that of(b3)=0, and then one can consider the

following three stated? (i) the metallic state in the case of 6

W=0 and(b,)=(b,)=(b3)#0; (ii) the insulating state in D ~13 p

the case ofN+0, (b3)=0, and(b;)=(b,)+0; and(iii) an- d(®)=32, Di(w),

other metallic state in the case &¥#0, (b3)#0, and

(b1)=(b,)#0. In the case of DCNQI-Cu salts, the first two 3

states have been found, while the third one has never been Di(w)=3%>, 5i(w), (200

observed. In the present model, we also obtain only the first i=1

two states by choosing largge which leads to the absence of

the third state due to the large jump W at the Peierls

transition. Such a first-order phase transition reveals three

kinds of critical temperatures which depend on the rate of Di(w)=——

variation of temperature: a rapid increag®) ( a quasistatic ! 7 NN,

variation B), and a rapid decreas€]). Note that the point 3

corresponding to the transition frofib;)#0 into (b3)=0 (m)

coincides with pointA in the present choice of numerical NNL k%:m @m0 Exp ) (213

parameters. Whefb;) becomes zero, the hybridization is

disconnected at every third lattice point, resulting in the pe- _ 1

riodic array of Cu", Cu*, Cu", ... for the Cu atom. Di(w)=—
For studying the dimensional effect on the electronic

properties, we calculate the density of states per spin and per 3 L

unit cell D(w) expressed as = > akamido— E(m)) (21b)

P

Il
=

Di(w), (209

(20b)

where

U(w_/-L+i5!k15)]i,i

D(w)=D D D), 19
(@)=D(@)+ Do)+ De(w) 19 Note thatfdw D(w)=3 andfdw D,(w)=1 for a=c,

whereD (), Dy(w), andDg(w) denote the components of d, andc, respectively. We calculate EqR18 and(21b) by
the density of states for the bondingelectron, thed elec- use of the formula &(w—Ep)=1/(w,) for
tron, and the nonbonding electron, respectively. The nota- 0<|w—E,;|<w;/2 and zero otherwise, where;<1.

The MI transition is examined by substituting self-consistent



53 ELECTRONIC PROPERTIES OF STRONGLY CORRELATED ... 7089

Ill. METAL VS INSULATOR IN STRONG CORRELATION

We examine the MI transition and the electronic states by
calculating Eqs(12)—(15) self-consistently. Parameters are
chosen ag4=0.85,V=0.4, andgy/g,.,=0.7, which lead to
Z=4/3 for Cu* in the metallic state af =0.2* A MI transi-
tion similar to that in the present section is also obtained by
taking V=0.2 and 0.3, and a corresponding valuegf.
There is a reasonable range for the choice of parameters
leading to such a transition.

By diagonalizing Eqgs.(10) and (11), the energy-band
spectrum is obtained in terms of the extended zone scheme Kk
which is expressed aE(k,ﬁ)zE(krg) and k=k+mQ. Al-
though the calculations are performed by adopting the hole
picture from Sec. Il, the numerical results of both the energy-
band spectrum and the density of states are expressed by use
of the electron picture in this section for comparison with
other work. The transformations are given by
Ee(k,p)=—E(k,p), De(w)=D(~w), andue=—pu. @

In the case of the metallic state/=0), the energy spec-
trum of the electron picture for the antibonding state is given
by —2cok leading to the flat Fermi surface, while that for
the bonding state is expressed as

~

E)(k,p) =4[ -2 cok—E+ \/(2cok—E)2+4|V(p)|?].

(22)
In Eqg. (22), V(p)=V,(p) (j=1, 2, and 3 and+ (—) de-
notes the uppeilower) band. The Fermi surface of the bond-
ing state, which is obtained frofa*)(k,p) = e, is shown
in  Fig. 2@, where (by)=(b,)=(b3)=0.82,
E1=E,=E3=E=1.40, andu= — ,=0.90. The wave vec-
tors (k,px,py), corresponding to corners, are given by
(0,0,0, X(7,0,0), Y(r,,0), U(w,0,m), 2(0,0,m), and i T P ]
V(m,,m), respectively. In Fig. @), the energy-band spec- 2\ 20 .
trum of the electron pictur&(k,p), for the metallic state is
shown, where the chemical potentjal is indicated by the o oo P .

arrow. The two solid curves denote bands of the bonding o \ A A A
state, E()(k,p), consisting of ar electron and a electron, = o A A
while the dashed curve shows that of the antibonding state. woo 1
In the interval region between pois and pointY, the 7 ——-—-—?—;r—f——'—'i—'-—'—'——é

band of the bonding state coincides with that of the antibond-

ing state, and the band becomes flat due tb(f))=0. The

energy band is compared with those obtained by Miyazaki

et all® and Uji et al’® by noting that electrons of our unit

cell are half of theirs. The general features of the energy (©)
band seem to agree qualitatively. However, the details of
electronic states around the Fermi surface which is shown in FIG. 2. (a) Fermi surface of the bonding band in the metallic
the interval region ofY-I'-X depend on the method which state wheré/=0.4 andW=0. The quantityk denotes the 1D wave
treats the interaction and correlation. In Figc)2the energy- number in the extended zone scheme. The wave veckory,
band spectrum of the electron picture for the insulating stat®,) for the corners are given byI'(0,0,0), X(,0,0),

is shown in the case af=0.7, which leads toN=0.76, Y(m70),U(m,0,m), Z(0,0m), andV(m,, ), respectively(b)
E,=E,=1.75, E3=0.95, (b;)=(b,)=0.94, (b5)=0, and Energy-band spectrum of the electron picture for the metallic state
pu=—pu.=0.95. The gap appears d~(t= i3 (n=1,2), where parameters are the same agan The arrow denotes the

. . o . location of the chemical potential,=—0.90. (c) Energy-band
¥VTder|e¥¥(¢%). If'?ducﬁfjhbylthe II.DEISrlls tre}n.s“:on V;”tg thtr?ﬁ' spectrum of the electron picture for the insulating state with
0 E.i Ice dis o_r 1on. _e ocal_ze evel IS located a eg=0.7 andW=0.76, where the arrow denotes the location of the
chemical potential and is half-filled due to the local con- ; ; __

. : chemical potentialpu,= —0.95.
straint of Eq.(3) with (b3)=0.

In Fig. 3, the phase diagram on the plane of the couplingureT is shown, where the solid curves and closed square are
constant of the electron-phonon interactigrand tempera- the boundaries of the MI transition in the case of the rapid

V Y T X Uz r
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0.4+ LI
L i 3 2r .

- 5

0.2+ .

Insulator | i
G 1

FIG. 3. Phase diagram of the metal insulathil) on theg-T
plane wheresy4=0.85, W,/W=0.7, andv=0.4. gzgi/wq- The FIG. 4. Density of states of the electron picture for the metallic
solid curves and closed square denote boundaries of the Ml transtate corresponding to Fig(l8. The dotted curve denotes the com-
tion determined by the rapid increas&)( the quasistatic variation ponent of thed electron, andu, is the chemical potential.
(B), and the rapid decreas€) of temperatures. The dashed curve

shows the boundary d@ for the 1D modelRef. 24. two kinds of anomalies: one is the cusp due to the 3D van
Hove singularity in the bonding band, and the other is the 1D

increase £). the quasistatic varla_tlonB(), and the rapu_j_ singularity in the antibonding band which is proportional to
increase C) of temperatures. The first-order phase tran3|t|on|w12|,1,2 at w=+2. The arrow denotes the chemical po-
: +2.

in the present case is followed by a remarkable hysteresis

which comes from the large entropy of the local SfiThe tential uo(= — ). The dip just below the chemical potential

MI boundary is steep compared with that of the conventiona_F‘hOWS the point at which the matrix element of the hybrid-

Hartree-Fock approximatioff,and shows the critical value iZation, V(p), vanishes. The double peaks of the density of
of g below which the insulating state does not exist. TheStates for thel electron is due to the effect of the hybridiza-
existence of the critical value af is the characteristic of the tion. Note that the filling of thel hole aboveu. is given by
strong correlation since the energy gain by the Peierls gapl —=;(bj)?/3)/2 from Eq. (3), and then becomes equal to
competes with the vanishing of the coherent energy of the in the metallic case. In Fig. 5, the density of states
hybridization due tqbs)=0 in the insulating state. The Ml De(®) for the insulating state is shown where a large gap
boundary for the quasistatic processirve B) is compared ©Pens due t&V=0 in the Peierls state. The singularity at the
with that of the 1D casédashed curye®® The MI boundary ~ chemical potential, which is expressed @ w— u,), is at-

for the present casé8D cas¢ is similar to that of the 1D tributable to the localized level of trgeelectron in Fig. Zc).
case, where the critical value of of the 3D case is larger At the energy level witho= 1., thed electron is half-filled,
than that of the 1D case. Both cases show the reentrafisulting in the local spin. Such a singularity also exists in
metal-insulator-meta(MIM) transition as a function of.  the insulating state of the 1D case. The band edge
Phase transitions are classified into three groups: the metallf@= —1+W) just above the chemical potential is deter-
state down to zero temperatufgroup l), the metallic state

into the insulating statégroup 1), and the reentrant transi-

tion given by MIM (group llI). In Fig. 3, there is the small a3l ' ' ' T
variation of valenceX in CuX. The quantityX increases by Insulator
the increase off, but decreases by the increasegofFor
example, we obtain thaX=1.33, 1.37, and 1.47 fof=0,
0.2, and 0.4 in the metallic state, and tiat 1.45, 1.43, and 3 2r
1.41 forg=0.6, 0.7, and 0.8 with the fixed=0.2 in the o
insulating state. At thél—1 transition, there is a jump of
X which is =+0.1. As mentioned in Sec. Il, the insulating
state is always followed b{bs) =0 due to the large jump of
W at the boundary of the MI transition.

By substituting the energy-band spectrum into EG4a
and (21b), we calculate the density of states of the electron 0
picture, Dg(w) [=D(—w)] per spin and per unit cell at
T=0. The quantityD(w) for the metallic state is shown in
Fig. 4, where the dotted curve denotes the component of the
d electron. The hybridization gap which exists in the 1D case FIG. 5. Density of states of the electron picture for the insulat-

vanishes in the 3D* case sindgp) changes continuously ing state corresponding to Fig(c2. The dotted curve denotes the
and becomes zero pt= (£ 7, = 7) or (= ar,* 7). There are  component of thel electron, andu, is the chemical potential.

N
f”’__\
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FIG. 6. TheT dependence of the specific he@t,, in the case
of g<0.58(1), g=0.7(ll), andg=0.6(l1l), which show the transi- FIG. 7. TheT dependence of the magnetic susceptibiligy (n

tion of M, MI and MIM by the decrease dof, respectively. The the case ofg<0.581), g=0.7(I1), and g=0.6(Il1). The dashed
parameters are the same as in Fig. 3. The dashed curve denotagve denoteg for the 1D metallic stat¢Ref. 24.
Cy for the 1D metallic statéRef. 24).

] . ] _ tial in Fig. 5. Actually, we obtainCy<exd —Wg], where
mined by both the antibonding electron and the bondlngNG:_lJrW_ we. There is a jump of specific heat at the
electron, which leads to the divergencef(w) due to the  cyitical temperature Tc, which is defined by
1D band and zero due to the 3D band, respectively. The banﬁCV[ECV(THTC—0)—CV(T—>TC+ 0)]. The fact that
edge just below the chemical potential is determined only byACV>0 in curve Il is similar to that of the second-order
Fhe bonding e]ectron. The filling of thet hole in the insulat- phase transition, while curve 11l showsC, <0 at the upper
ing state is slightly larger thaf due to(b;)=(b,)#1. Tc. Since the first-order phase transition into the insulating

Based on Figs. 3, 4, and 5, we study thelependence of = giate is followed by both the latent heat and the entropy of
the specific heat and magnetic susceptibility by choosingne |ocal spin,S = 2In2, the large reduction of, can be
g=0.481), 0.711), and 0.6(1ll) which belong to parameters gypected in the case of smalk from the conservation law
for groups |, II, Ill, respectively, in the quasistatic process.of the entropy. We note that such a fact could be useful in
The ground state in the case g0 and 0.6 §=0.7) is  ypderstanding the recent experiment on deuterii@e-
given by the metallic staté&he insulating stae the energy DCNQI),Cu, which indicated C,,<0 at the uppef ¢ in the
band for which is shown in Fig.(B) [Fig. 2(c)]. ~ case of the reentrant transitiéh.

The specific heat per unit celGy,, is obtained by substi- The static magnetic susceptibility per atogn, under the

tuting Eq.(18) into Cy= —T[4°F(W)/dT?]. Figure 6 shows niform field is calculated by taking account of the Zeeman
Cy in the case ofg=0(l), 0.71l), and 0.6lll) where the energy

dashed curve denotes,, of the metallic state for the 1D

model. In the metallic stateZ,, shows theT-linear depen- __

dence at low temperatures. Curve | shows #at5.3, where Hzeemar ; sgra)M,B, @3

the coefficienty is defined byy=Ilim;_,C,/T. We also : — — +

obtain y=5.3 by use of the conventional formulas Where M,=%; i(C,; Cij,+C;; Cij,+f;; fif,). The sus-
v=(2m?13)Dg(ue) andDg(uo)=0.80 in Fig. 4. There is a ceptibility y is defined by x=limg_o((M;)g

T dependence oD¢(ue) which comes from botib;) and ~ —(M)g)/(BNN,), whereug=1 and( )g denotes the av-
\j, e.9.,(b;)=0.82— 0.65T2 and )\,-20.54—0.85|'2 for the  erage in the presence of the Zeeman energy. In Fig. 7, the
metallic state in Fig. 6. However, the effect of thedepen- magnetic susceptibility is shown forg=0(l), 0.71l), and
dence oD () On 7y is negligible since a good coincidence 0.6(111), where the dashed curve denoje®f the metallic
between these two results for is obtained. There is the state in the 1D case. In the case of the metallic Sizteve
enhancement ofy due to the correlation since the case ofl), theT dependence of is similar to that of the paramag-
ke=w/3 in the absence of hybridization leads to netic susceptibility. The fact thgg~1.6 atT=0 indicates
De(pe) ~2/(mvg)=0.37 and theny=2.4. The small reduc- the validity of y=2Dg(u.) in the limit of zero temperature
tion of C, from theT-linear dependence at low temperaturessince D¢(ue) =0.80 in Fig. 4. It is found that the enhance-
comes from the dip oD (w) in Fig. 4 which is located ment ofx in the 1D case is reduced by the transverse hop-
below the chemical potential. Such a reduction is enhancegding which suppresses the density of states aravrgu,.

in the 1D case due to the hybridization gap as is shown inn the region belonging to the insulating state in curves Il
Fig. 6. The fact that 1Dy is larger than 3Dy comes from the and lll, one finds the Curie law given by=1/(6T) which
fact thatD.(ue) Of the 1D case is large compared with that originates in the local spin of the electron situated on the
of the 3D case. Thus we found the visible effect of dimen-Fermi surface. The Curie law is also obtained in the 1D
sion for the metallic state. In the insulating state, curves limodel?* since the decoupled state of tHeelectron is inde-
and Il show the exponential decreasedyf which originates pendent of the dimension in the present approximation. The
in the Peierls gap W#0) around the chemical poten- jump of y shows a negative change at the—1 transition
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The hybridization gap existing in the 1D case vanishes due
to the transverse hopping, and then a remarkable effect ap-
pears in the metallic states as is found in the density of states
of Fig. 4. This feature leads to the suppression of thermody-
namic quantities at low temperatures, e.g., reductions of both
v andy which are consistent with those of the experiment of
(DMe-DCNQI) ,-Cu salts? The similarity of the boundary of
the MI transition in Fig. 3 to that of the 1D model comes
from the property of the insulating state in which the dimen-
sional effect is small due to thd electron being discon-
nected from ther electron. The existence of the critical
value of g for the MI transition is a consequence of the
strong correlation which leads to the competition between
the energy gain of the Peierls gap and that of the hybridiza-
g tion gap.
In addition to the variation o, it is significant to note
FIG. 8. Phase diagram in the presence of the homogeneous matte effect ofs4 on the MI transition, since pressure changes
netic field B(=0.025), where the dashed curve denotes the Mlthe energy of the localized leve}, through the deformation
boundary forB=0 in Fig. 3. The hatched region belongs to the of the tetragonal structure around the Cu atom. We obtained
antiferromagnetic state in the presence of the AF interactiory boundary on the plane af; and T which is similar to
(J=0.05 andB=0). Fig. 3. In the case ofj=0.59, the relation betweesy and
g is estimated ag4=0.85-(g—0.59)/0.11. Therefore one
since the effect of the formation of the Peierls gap at themust take into account the variation of bajrande as the
Fermi surface is larger than that of the local spin. Howevereffective pressure.
the enhancement gf at the Ml transition can be expected by  Finally we comment on the antiferromagnetisF) state
the strict treatment of the local constraffitwhich would  which has been observed at low temperatures in the insulat-
result in y=1/(3T) being twice as large as the present one.ing state!® The AF state is examined by adding the interac-
Now we examine the MI transition in the presence of thetion
magnetic fieldB by adding Eq{(23) to Eq.(9). In Fig. 8, the _ I
boundary of the MI transition in the case 8=0.025 is Hspin_JZ E I
shown by the solid curve on the planeg@&ndT where the (& N
boundary in the case =0 is indicated by the dashed to the present model, Eq(9), where Sﬁ:(f”}fn}

curve. The fact that the domain for the insulating state in-_fiTl.Lfirl)/z_ In the case of DCNQI-Cu, the axis of the spin

creases at low temperatures is due to the following reasomyderingz is oriented to the direction perpendicular to the
Since the energy gain by the Zeeman energy is expressed af gxjs*13 By use of the mean-field approximation, E84)
— x1B? and — B2 for the insulating and metallic states, ig rewritten as

respectively, in the case of the smaBl] the MI boundary is

determined by the condition thAtXBZ[E.(X, —xm)B*>0] Hepin= > E —A(—1)x(— 1)Iysﬁ,+ N,A%/83 ],
becomes equal tAF[=F(W)—F(0)]. Figure 7 shows the i |

increase of\ yB? with the decrease of temperature, and then (25)

the domain of the insulating state is enhanced. For the small

B, the B dependence ofT. is rewritten as T¢(B)  where A,=4J N112(<Sﬁ~)(—1)'X(—1)'y and Aj=Agy
=Tc(0)—KB?, whereK=—(g/W)*(dTc/dg)(Ax/2). Ac-  (j=1, 2, and 3. The AF state in Eq(25) is calculated by
tually, the quantityK in the case ofg=0.6 is given by choosing a small in which AF ordering occurs only for the
K~3.7, whereldTc/dg|~4.7, Ax~1.5, andW~0.58. We  site of the local spin. Then self-consistency equationtfois
note that such 8 dependence of ¢ is similar to that ob-  written asA;=A,=0 andA;=2J tanh(8A3/4), which is
served in partially deuteratg®M-DCNQI) ,Cu salt™ From  derived by treating Eq(3) under the global constraint. The
the MI boundary in the limit of zero temperature, it turns outhoundary for the MI transition is calculated by adding the
that the quantitydT./dg is infinite (finite) for B=0.025  excess energysFqy, to Eq. (18), where SEqyA3)
(B=0). Such a result comes from the fact that the entropy o= _(2T/3)|n[cosh(3A3/4)]+A§/(24J)_ In Fig. 8, the
the local spin reduces experimentaftgmains finit¢ at low  poundaries corresponding to both the-AF transition and
temperatures in the presen¢absenck of magnetic field. the |-AF transition are shown by the dotted curve for
Therefore it is expected that the interaction between localy— g 05. The difference between the solid and dashed curves
izedd electrons leads to the MI boundary, similar to the solidis small at low temperatures. This is understood from the fact
curve, as is discussed in Sec. IV. that the energy per localizeti electron is given by-B for
Eq. (23) and is given by—A?/(8J) (=—J/2) for Eq.(25),
respectively.

It will be interesting to study the interplay of the magnetic
We examined the MI transition in DCNQI-Cu salts by field B and the AF interaction and the jump gfat T¢ in
making use of the 3D model where the transverse hopping ierms of the I expansion which treats the local constraint

taken into account between chains of the previous 1D modestrictly.?’

0.04

0.021

(24)

IV. DISCUSSION
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