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Electronic states in organic conductors, dicyanoquinonediimine-Cu~DCNQI-Cu! salts, which undergo the
metal-insulator~MI ! transition, have been studied based on the periodic Anderson model with electron-phonon
interaction. The dimensional effects on both the metallic and insulating states are examined by taking account
of the transverse hopping for the previous one-dimensional model@Phys. Rev. B51, 10 293~1995!#. Within
slave-boson mean-field theory, we obtain the characteristics of the strong correlation for energy bands, elec-
tronic density of states, the MI phase diagram, the specific heat, and the magnetic susceptibility. Further the MI
transition in the presence of a homogeneous magnetic field is examined and compared with the transition into
the antiferromagnetic state at low temperatures.

I. INTRODUCTION

Organic conductor dicyanoquinonediimine~DCNQI!-Cu
salts undergo an exotic metal-insulator~MI ! transition at low
temperatures.1,2The structure of these salts shows an array of
one-dimensional~1D! chains which consist of ap electron in
the DCNQI molecule, and a localizedd electron in the Cu
atom. The hybridization between thep electron and thed
electron is important in DCNQI-Cu salts since the Cu atom
shows a mixed valence given by Cu14/3 on average.2

Characteristics associated with the MI transition have
been found in several experiments under effective pressures,
e.g., helium gas pressure,3 and various types of
(R1 , R2-DCNQI! 2Cu with R1 , R25Me, MeO, Cl, and Br
~Ref. 4! and deutrization.5–8 The phase transition is of first
order with a large hysteresis, which originates in the Peierls
transition with a threefold lattice distortion along the chain
~the c axis!. The insulating state also exhibits a threefold
periodicity of the valence expressed as Cu1, Cu1, and
Cu21 along thec axis. The evidence of Cu21, i.e., the local
spin, has been found from the facts that the temperature de-
pendence of the magnetic susceptibility shows the Curie
law,9 and that the MI transition is also induced by the homo-
geneous magnetic field.10,11 Further, the transition from the
insulating phase with local spin to the antiferromagnetic state
has been found at lower temperatures below the MI transi-
tion temperature.12,13

The existence of a 1D band in these materials is crucial to
the MI transition, since the nesting condition gives rise to the
Peierls transition. However, certain facts indicate the impor-
tance of the role of the dimensional effect. The ratio of the
conductivity of thec axis to that of theab plane is about
10.14 The coexistence of a three-dimensional~3D! Fermi sur-
face with the 1D Fermi surface has been observed by the de
Haas–van Alphen method, and the corresponding band struc-
ture is calculated by use of the tight-binding
approximation.15 The electronic structures of the metallic
states have been studied from the first-principles method of
the local-density-functional theory.16 It was shown that the
essential features of the observed Fermi surface of

DCNQI-Cu salts, including the 3D behavior, are well repro-
duced, and that the electron correlation and electron-phonon
interaction may be of moderate strength for the explanation
of the electronic specific heat and the magnetic susceptibility.

Since the local spin of Cu21 indicates the large magni-
tude of the Coulomb interaction, the MI transition in the
presence of strongly correlated states has been studied
theoretically.17–25A 1D model has been proposed where the
chain consists of a periodic Anderson model with electron-
phonon interaction. The fact that the MI transition is trig-
gered by the Peierls transition has been shown by treating the
on-site repulsive interaction within the conventional Hartree-
Fock approximation.17 Further, the MI transition was exam-
ined by applying the slave-boson theory in order to treat
strongly correlated states with the local spin.21,23 The phase
diagram of the metallic state and the insulating state was
obtained on the plane of temperature and the electron-
phonon coupling constant. The temperature dependence of
the magnetic susceptibility and specific heat was calculated
within the 1D model and compared with those of
experiments.24 However, it is not yet clear what effect the 3D
band has on the MI transition and the electronic states.

In the present paper, the MI transition is examined by
taking account of the transverse hopping for the previous 1D
model.24 In Sec. II, a formulation is given by use of the
slave-boson mean-field theory. The electronic density of
states is also obtained. In Sec. III, a phase diagram of metal
vs insulator is examined on the plane of temperature and the
electron-phonon coupling constant. We calculate the elec-
tronic density of states, the temperature dependence of the
specific heat, and the magnetic susceptibility. Further, the
effect of the magnetic field on the MI transition is examined.
Section IV is devoted to a discussion.

II. SLAVE-BOSON MEAN-FIELD THEORY

We consider a model given by an array of 1D chains
which consist of both the conduction electron in DCNQI
molecules and thed electron in Cu atoms. The Hamiltonian
is given by21,24
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where the hole picture is used.i denotes the lattice site along
the 1D chain~the z axis!. The vectorlW denotes the square
lattice point of the unit cell in thex-y plane, where two
vectorsdW x anddW y are those for the nearest neighbors oflW. In
Fig. 1, the schematic structure in thex-y plane perpendicular
to the chain is shown, where the open and closed circles
denote the DCNQI molecule and the Cu atom, respectively.
The unit cell enclosed by the dotted square corresponds to
the 1D model studied previously.24 In Eq. ~1!, quantities
Ca is
† ( lW) and dis

† ( lW) represent the creation operators of the
p electron for two kinds of DCNQI (a5x,y) and thed
electron in the Cu atom, respectively. Quantitiest, «d , and
U are the hopping energy along thez axis, the energy level
of thed electron, and the magnitude of the on-site repulsive
interaction, respectively. TheV term, the hybridization of
which is shown by the solid line between the open and
closed circles in Fig. 1, gives rise to the three-dimensional
effect due to the transverse hopping perpendicular to the
chain. The quantityBq

† denotes the creation operator of the
phonon with momentumq and energyvq , wheregp (gd) is
the matrix element of interaction between the phonon and the
p electron (d electron!. The case in which
q56Q562p/3 is examined due to the threefold lattice
distortion in the insulating state. Quantitiest and\ and the

lattice constants are taken as unity.
We deal with Eq.~1! as follows.
~i! In the insulating state, a threefold periodicity along the

chain is assumed for the magnitude of the lattice distortion,
i.e., ^B6Q&Þ0 with Q52p/3, which is calculated self-
consistently. Then the interaction between the electron and
phonon in Eq.~1! induces the molecular fields acting on the
p electron (d electron!, which is expressed as

W5
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The ratio ofgd to gp is fixed by considering a phonon mode
with spectrumvQ .

21

~ii ! The strongly correlated states originating in largeU
are treated in terms of the slave-boson method with the re-
placement ofdi lW
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which is added to Eq.~1!. In the present paper, mean-field
theory is applied to the slave boson with threefold periodic-
ity, i.e., ^b3n1 j , lW&5^bj& andl3n1 j , lW5l j , wherej51, 2, and
3 andn is an integer. The quantitŷbj& can be taken as real.
Note that the valenceX of Cu1X is expressed in terms of
^bj& as

X522 1
3 (
j51

3

^bj&
2. ~4!

Since DCNQI-Cu salts correspond to the case ofX.4/3,
parameters are chosen so as to satisfy( j^bj&

2/3. 2
3 for the

metallic state at zero temperature.
~iii ! TheV term is diagonalized by rewriting operators as

CipW s5
1

K0~pW !
$CxipW s~11e2 ipW •dW x!1CyipW s~11e2 ipW •dW y!%,

~5a!

FIG. 1. Schematic structure of DCNQI-Cu salts in the plane
perpendicular to the one-dimensional chain, where open and closed
circles denote the DCNQI molecule and Cu atom, respectively. The
domain enclosed by the dotted square is the unit cell for the 1D

model~Refs. 23 and 24!. The vectorsdW x anddW y are unit vectors for
the square lattice.
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where Eqs.~5a! and ~5b! correspond to bonding state and
antibonding states of thep electron, respectively, and
K0(pW ) is given by
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2

D 21S cospW •dW y
2

D 2G1/2. ~6!

In Eqs.~5a! and~5b!, Ca ipW s with a5x andy are the Fourier
transform for the momentumpW in the x-y plane, and are
given by
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In addition to Eqs.~7a! and~7b!, we make use of the Fourier
transform for thez component,k (3n1 j5 i , j51,2,3),
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n
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which is useful for calculating the state with threefold peri-
odicity along the chain.
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Matrices ~10! and ~11! are represented on the basis of
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mensional effect is determined by the termVj (pW ) in Eq. ~10!,
sincepW is the momentum perpendicular to the 1D axis. The
case ofVj (pW )50, which is obtained atpW 5(6p,6p) or
pW 5(6p,7p), leads to the crucial effect on the electronic
state. Quantitieŝbj&, l j , andW in Eq. ~9! are determined
self-consistently by
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The chemical potentialm in Eqs.~12!–~14! is determined by
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which denotes the fact that the total number of electrons per
unit cell is three. The quantitŷ & in Eqs. ~12!–~15! is cal-
culated by use of Eq.~9! as
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wheref (x)51/(eb(z2m)11), andT(5b21) is the tempera-
ture. Equations~16a! and ~16b! are derived by use of the
Green function given by@vn5(2n11)pT#,
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5ĒkpW
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† 5(ām,1* ,ām,2* ,ām,3* ) for Eq. ~11!.
The MI transition is examined by substituting self-consistent
solutions of Eqs.~12!–~14! into the Helmholtz free energy
per unit cell, which is expressed as
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Self-consistency equations~12!–~15! lead to the following
characteristic for the MI transition. Since Eqs.~14! and~12!
are conditions for the extremum of Eq.~18! with respect to
W and^bj&, respectively, there are two kinds of critical tem-
peratures corresponding toWÞ0 and ^bj&50. Generally
speaking, the critical temperature forWÞ0 does not coin-
cide with that of ^b3&50, and then one can consider the
following three states:24 ~i! the metallic state in the case of
W50 and ^b1&5^b2&5^b3&Þ0; ~ii ! the insulating state in
the case ofWÞ0, ^b3&50, and^b1&5^b2&Þ0; and~iii ! an-
other metallic state in the case ofWÞ0, ^b3&Þ0, and
^b1&5^b2&Þ0. In the case of DCNQI-Cu salts, the first two
states have been found, while the third one has never been
observed. In the present model, we also obtain only the first
two states by choosing largeg, which leads to the absence of
the third state due to the large jump ofW at the Peierls
transition. Such a first-order phase transition reveals three
kinds of critical temperatures which depend on the rate of
variation of temperature: a rapid increase (A), a quasistatic
variation (B), and a rapid decrease (C). Note that the point
corresponding to the transition from̂b3&Þ0 into ^b3&50
coincides with pointA in the present choice of numerical
parameters. When̂b3& becomes zero, the hybridization is
disconnected at every third lattice point, resulting in the pe-
riodic array of Cu1, Cu1, Cu21, . . . for the Cu atom.

For studying the dimensional effect on the electronic
properties, we calculate the density of states per spin and per
unit cell D(v) expressed as

D~v!5Dc~v!1Dd~v!1Dc̄~v!, ~19!

whereDc(v), Dd(v), andDc̄(v) denote the components of
the density of states for the bondingp electron, thed elec-
tron, and the nonbondingp electron, respectively. The nota-

tion c is used for thep electron. By takingivn→v1 i0 in
Eqs. ~17a! and ~17b!, quantities Dc(v), Dd(v), and
Dc̄(v) are obtained as
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Note that*dv D(v)53 and*dv Da(v)51 for a5c,
d, andc̄, respectively. We calculate Eqs.~21a! and~21b! by
use of the formula d(v2EkpW ).1/(v1) for
0,uv2EkpW u,v1 /2 and zero otherwise, wherev1!1.
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III. METAL VS INSULATOR IN STRONG CORRELATION

We examine the MI transition and the electronic states by
calculating Eqs.~12!–~15! self-consistently. Parameters are
chosen as«d50.85,V50.4, andgd /gp50.7, which lead to
Z54/3 for CuX in the metallic state atT50.24 A MI transi-
tion similar to that in the present section is also obtained by
taking V50.2 and 0.3, and a corresponding value of«d .
There is a reasonable range for the choice of parameters
leading to such a transition.

By diagonalizing Eqs.~10! and ~11!, the energy-band
spectrum is obtained in terms of the extended zone scheme
which is expressed asE( k̃,pW )5EkpW

(m) and k̃5k1mQ. Al-
though the calculations are performed by adopting the hole
picture from Sec. II, the numerical results of both the energy-
band spectrum and the density of states are expressed by use
of the electron picture in this section for comparison with
other work. The transformations are given by
Ee( k̃,pW )52E( k̃,pW ), De(v)5D(2v), andme52m.

In the case of the metallic state (W50), the energy spec-
trum of the electron picture for the antibonding state is given
by 22cosk̃ leading to the flat Fermi surface, while that for
the bonding state is expressed as

E~6 !~ k̃,pW !5 1
2 @22 cosk̃2E6A~2cosk̃2E!214uV~pW !u2#.

~22!

In Eq. ~22!, V(pW )5Vj (pW ) ( j51, 2, and 3!, and1 (2) de-
notes the upper~lower! band. The Fermi surface of the bond-
ing state, which is obtained fromE(1)( k̃,pW )5me , is shown
in Fig. 2~a!, where ^b1&5^b2&5^b3&.0.82,
E15E25E35E.1.40, andm52me50.90. The wave vec-
tors (k̃,px ,py), corresponding to corners, are given byG
~0,0,0!, X(p,0,0), Y(p,p,0), U(p,0,p), Z(0,0,p), and
V(p,p,p), respectively. In Fig. 2~b!, the energy-band spec-
trum of the electron picture,Ee( k̃,pW ), for the metallic state is
shown, where the chemical potentialme is indicated by the
arrow. The two solid curves denote bands of the bonding
state,E(6)( k̃,pW ), consisting of ap electron and ad electron,
while the dashed curve shows that of the antibonding state.
In the interval region between pointV and pointY, the p
band of the bonding state coincides with that of the antibond-
ing state, and thed band becomes flat due toV(pW )50. The
energy band is compared with those obtained by Miyazaki
et al.16 and Uji et al.15 by noting that electrons of our unit
cell are half of theirs. The general features of the energy
band seem to agree qualitatively. However, the details of
electronic states around the Fermi surface which is shown in
the interval region ofY-G-X depend on the method which
treats the interaction and correlation. In Fig. 2~c!, the energy-
band spectrum of the electron picture for the insulating state
is shown in the case ofg50.7, which leads toW50.76,
E15E251.75, E350.95, ^b1&5^b2&50.94, ^b3&50, and
m52me50.95. The gap appears atk̃5pn/3 (n51,2),
whereW(Þ0) is induced by the Peierls transition with three-
fold lattice distortion. The localized level is located at the
chemical potential and is half-filled due to the local con-
straint of Eq.~3! with ^b3&50.

In Fig. 3, the phase diagram on the plane of the coupling
constant of the electron-phonon interactiong and tempera-

tureT is shown, where the solid curves and closed square are
the boundaries of the MI transition in the case of the rapid

FIG. 2. ~a! Fermi surface of the bonding band in the metallic
state whereV50.4 andW50. The quantityk̃ denotes the 1D wave
number in the extended zone scheme. The wave vectors (k̃, px ,
py) for the corners are given byG(0,0,0), X(p,0,0),
Y(p,p,0), U(p,0,p), Z(0,0,p), andV(p,p,p), respectively.~b!
Energy-band spectrum of the electron picture for the metallic state
where parameters are the same as in~a!. The arrow denotes the
location of the chemical potential,me520.90. ~c! Energy-band
spectrum of the electron picture for the insulating state with
g50.7 andW50.76, where the arrow denotes the location of the
chemical potential,me520.95.
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increase (A), the quasistatic variation (B), and the rapid
increase (C) of temperatures. The first-order phase transition
in the present case is followed by a remarkable hysteresis
which comes from the large entropy of the local spin.20 The
MI boundary is steep compared with that of the conventional
Hartree-Fock approximation,22 and shows the critical value
of g below which the insulating state does not exist. The
existence of the critical value ofg is the characteristic of the
strong correlation since the energy gain by the Peierls gap
competes with the vanishing of the coherent energy of the
hybridization due tô b3&50 in the insulating state. The MI
boundary for the quasistatic process~curveB) is compared
with that of the 1D case~dashed curve!.24 The MI boundary
for the present case~3D case! is similar to that of the 1D
case, where the critical value ofg of the 3D case is larger
than that of the 1D case. Both cases show the reentrant
metal-insulator-metal~MIM ! transition as a function ofT.
Phase transitions are classified into three groups: the metallic
state down to zero temperature~group I!, the metallic state
into the insulating state~group II!, and the reentrant transi-
tion given by MIM ~group III!. In Fig. 3, there is the small
variation of valenceX in CuX. The quantityX increases by
the increase ofT, but decreases by the increase ofg. For
example, we obtain thatX51.33, 1.37, and 1.47 forT50,
0.2, and 0.4 in the metallic state, and thatX51.45, 1.43, and
1.41 for g50.6, 0.7, and 0.8 with the fixedT50.2 in the
insulating state. At theM→I transition, there is a jump of
X which is.10.1. As mentioned in Sec. II, the insulating
state is always followed bŷb3&50 due to the large jump of
W at the boundary of the MI transition.

By substituting the energy-band spectrum into Eqs.~21a!
and ~21b!, we calculate the density of states of the electron
picture, De(v) @5D(2v)# per spin and per unit cell at
T50. The quantityDe(v) for the metallic state is shown in
Fig. 4, where the dotted curve denotes the component of the
d electron. The hybridization gap which exists in the 1D case
vanishes in the 3D case sinceV(pW ) changes continuously
and becomes zero atpW 5(6p,6p) or (6p,7p). There are

two kinds of anomalies: one is the cusp due to the 3D van
Hove singularity in the bonding band, and the other is the 1D
singularity in the antibonding band which is proportional to
uv72u21/2 at v562. The arrow denotes the chemical po-
tentialme(52m). The dip just below the chemical potential
shows the point at which the matrix element of the hybrid-
ization,V(pW ), vanishes. The double peaks of the density of
states for thed electron is due to the effect of the hybridiza-
tion. Note that the filling of thed hole aboveme is given by
(12( j^bj&

2/3)/2 from Eq. ~3!, and then becomes equal to
1
6 in the metallic case. In Fig. 5, the density of states
De(v) for the insulating state is shown where a large gap
opens due toWÞ0 in the Peierls state. The singularity at the
chemical potential, which is expressed as1

3d(v2me), is at-
tributable to the localized level of thed electron in Fig. 2~c!.
At the energy level withv5me , thed electron is half-filled,
resulting in the local spin. Such a singularity also exists in
the insulating state of the 1D case. The band edge
(v5211W) just above the chemical potential is deter-

FIG. 3. Phase diagram of the metal insulator~MI ! on theg-T
plane where«d50.85,Wd /W50.7, andV50.4. g5gp

2 /vQ . The
solid curves and closed square denote boundaries of the MI transi-
tion determined by the rapid increase (A), the quasistatic variation
(B), and the rapid decrease (C) of temperatures. The dashed curve
shows the boundary ofB for the 1D model~Ref. 24!.

FIG. 4. Density of states of the electron picture for the metallic
state corresponding to Fig. 2~b!. The dotted curve denotes the com-
ponent of thed electron, andme is the chemical potential.

FIG. 5. Density of states of the electron picture for the insulat-
ing state corresponding to Fig. 2~c!. The dotted curve denotes the
component of thed electron, andme is the chemical potential.
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mined by both the antibonding electron and the bonding
electron, which leads to the divergence ofDe(v) due to the
1D band and zero due to the 3D band, respectively. The band
edge just below the chemical potential is determined only by
the bonding electron. The filling of thed hole in the insulat-
ing state is slightly larger than16 due to^b1&5^b2&Þ1.

Based on Figs. 3, 4, and 5, we study theT dependence of
the specific heat and magnetic susceptibility by choosing
g50.48~I!, 0.7~II !, and 0.6~III ! which belong to parameters
for groups I, II, III, respectively, in the quasistatic process.
The ground state in the case ofg50 and 0.6 (g50.7) is
given by the metallic state~the insulating state!, the energy
band for which is shown in Fig. 2~b! @Fig. 2~c!#.

The specific heat per unit cell,CV , is obtained by substi-
tuting Eq.~18! into CV52T@]2F(W)/]T2#. Figure 6 shows
CV in the case ofg50~I!, 0.7~II !, and 0.6~III ! where the
dashed curve denotesCV of the metallic state for the 1D
model. In the metallic state,CV shows theT-linear depen-
dence at low temperatures. Curve I shows thatg.5.3, where
the coefficientg is defined byg[ limT→0CV /T. We also
obtain g.5.3 by use of the conventional formulas
g5(2p2/3)De(me) andDe(me).0.80 in Fig. 4. There is a
T dependence ofDe(me) which comes from botĥbj& and
l j , e.g.,^bj&.0.8220.65T2 andl j.0.5420.85T2 for the
metallic state in Fig. 6. However, the effect of theT depen-
dence ofDe(me) ong is negligible since a good coincidence
between these two results forg is obtained. There is the
enhancement ofg due to the correlation since the case of
kF5p/3 in the absence of hybridization leads to
De(me);2/(pvF).0.37 and theng.2.4. The small reduc-
tion ofCV from theT-linear dependence at low temperatures
comes from the dip ofDe(v) in Fig. 4 which is located
below the chemical potential. Such a reduction is enhanced
in the 1D case due to the hybridization gap as is shown in
Fig. 6. The fact that 1Dg is larger than 3Dg comes from the
fact thatDe(me) of the 1D case is large compared with that
of the 3D case. Thus we found the visible effect of dimen-
sion for the metallic state. In the insulating state, curves II
and III show the exponential decrease ofCV which originates
in the Peierls gap (WÞ0) around the chemical poten-

tial in Fig. 5. Actually, we obtainCV}exp@2WG#, where
WG.211W2me . There is a jump of specific heat at the
critical temperature TC , which is defined by
DCV@[CV(T→TC20)2CV(T→TC10)#. The fact that
DCV.0 in curve II is similar to that of the second-order
phase transition, while curve III showsDCV,0 at the upper
TC . Since the first-order phase transition into the insulating
state is followed by both the latent heat and the entropy of
the local spin,Sl5

2
3ln2, the large reduction ofCV can be

expected in the case of smallTC from the conservation law
of the entropy. We note that such a fact could be useful in
understanding the recent experiment on deuterized~DMe-
DCNQI! 2Cu, which indicatesDCV,0 at the upperTC in the
case of the reentrant transition.28

The static magnetic susceptibility per atom,x, under the
uniform field is calculated by taking account of the Zeeman
energy

HZeeman52(
s

sgn~s!MsB, ~23!

where Ms5( i , lW(Ci lWs
†
Ci lWs1C̄i lWs

†
C̄i lWs1 f i lWs

†
f i lWs). The sus-

ceptibility x is defined by x5 limB→0(^M ↑&B
2^M ↓&B)/(BNN'), wheremB51 and^ &B denotes the av-
erage in the presence of the Zeeman energy. In Fig. 7, the
magnetic susceptibilityx is shown forg50(I), 0.7~II !, and
0.6(III ), where the dashed curve denotesx of the metallic
state in the 1D case. In the case of the metallic state~curve
I ), theT dependence ofx is similar to that of the paramag-
netic susceptibility. The fact thatx;1.6 atT50 indicates
the validity of x52De(me) in the limit of zero temperature
sinceDe(me).0.80 in Fig. 4. It is found that the enhance-
ment ofx in the 1D case is reduced by the transverse hop-
ping which suppresses the density of states aroundv5me .
In the region belonging to the insulating state in curves II
and III, one finds the Curie law given byx.1/(6T) which
originates in the local spin of thed electron situated on the
Fermi surface. The Curie law is also obtained in the 1D
model,24 since the decoupled state of thed electron is inde-
pendent of the dimension in the present approximation. The
jump of x shows a negative change at theM→I transition

FIG. 6. TheT dependence of the specific heat,CV , in the case
of g,0.58(I), g50.7(II), andg50.6(III), which show the transi-
tion of M , MI and MIM by the decrease ofT, respectively. The
parameters are the same as in Fig. 3. The dashed curve denotes
CV for the 1D metallic state~Ref. 24!.

FIG. 7. TheT dependence of the magnetic susceptibility (x) in
the case ofg,0.58~I!, g50.7~II !, and g50.6~III !. The dashed
curve denotesx for the 1D metallic state~Ref. 24!.
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since the effect of the formation of the Peierls gap at the
Fermi surface is larger than that of the local spin. However,
the enhancement ofx at the MI transition can be expected by
the strict treatment of the local constraint,27 which would
result inx51/(3T) being twice as large as the present one.

Now we examine the MI transition in the presence of the
magnetic fieldB by adding Eq.~23! to Eq.~9!. In Fig. 8, the
boundary of the MI transition in the case ofB50.025 is
shown by the solid curve on the plane ofg andT where the
boundary in the case ofB50 is indicated by the dashed
curve. The fact that the domain for the insulating state in-
creases at low temperatures is due to the following reason.
Since the energy gain by the Zeeman energy is expressed as
2x IB

2 and2xMB
2 for the insulating and metallic states,

respectively, in the case of the smallB, the MI boundary is
determined by the condition thatDxB2@[(x I2xM)B

2.0#
becomes equal toDF@[F(W)2F(0)#. Figure 7 shows the
increase ofDxB2 with the decrease of temperature, and then
the domain of the insulating state is enhanced. For the small
B, the B dependence ofTC is rewritten as TC(B)
.TC(0)2KB2, whereK52(g/W)2(dTC /dg)(Dx/2). Ac-
tually, the quantityK in the case ofg50.6 is given by
K;3.7, whereudTC /dgu;4.7, Dx;1.5, andW;0.58. We
note that such aB dependence ofTC is similar to that ob-
served in partially deuterated~DM-DCNQI! 2Cu salt.

11 From
the MI boundary in the limit of zero temperature, it turns out
that the quantitydTC /dg is infinite ~finite! for B50.025
(B50). Such a result comes from the fact that the entropy of
the local spin reduces experimentally~remains finite! at low
temperatures in the presence~absence! of magnetic field.
Therefore it is expected that the interaction between local-
izedd electrons leads to the MI boundary, similar to the solid
curve, as is discussed in Sec. IV.

IV. DISCUSSION

We examined the MI transition in DCNQI-Cu salts by
making use of the 3D model where the transverse hopping is
taken into account between chains of the previous 1D model.

The hybridization gap existing in the 1D case vanishes due
to the transverse hopping, and then a remarkable effect ap-
pears in the metallic states as is found in the density of states
of Fig. 4. This feature leads to the suppression of thermody-
namic quantities at low temperatures, e.g., reductions of both
g andx which are consistent with those of the experiment of
~DMe-DCNQI! 2-Cu salts.

4 The similarity of the boundary of
the MI transition in Fig. 3 to that of the 1D model comes
from the property of the insulating state in which the dimen-
sional effect is small due to thed electron being discon-
nected from thep electron. The existence of the critical
value of g for the MI transition is a consequence of the
strong correlation which leads to the competition between
the energy gain of the Peierls gap and that of the hybridiza-
tion gap.

In addition to the variation ofg, it is significant to note
the effect of«d on the MI transition, since pressure changes
the energy of the localized level«d through the deformation
of the tetragonal structure around the Cu atom. We obtained
a MI boundary on the plane of«d andT which is similar to
Fig. 3. In the case ofg50.59, the relation between«d and
g is estimated as«d.0.852(g20.59)/0.11. Therefore one
must take into account the variation of bothg and«d as the
effective pressure.

Finally we comment on the antiferromagnetic~AF! state
which has been observed at low temperatures in the insulat-
ing state.13 The AF state is examined by adding the interac-
tion

Hspin5J(
i

(
^ lW, lW8&

Si lW
Z
Si lW8
Z

~24!

to the present model, Eq.~9!, where Si lW
Z

5( f i lW↑
†
f i lW↑

2 f i lW↓
†
f i lW↓)/2. In the case of DCNQI-Cu, the axis of the spin

orderingZ is oriented to the direction perpendicular to the
1D axis.4,13By use of the mean-field approximation, Eq.~24!
is rewritten as

Hspin5(
i S (

lW
2D i~21! l x~21! l ySi lW

Z
1N'D i

2/8JD ,
~25!

where D i[4JN'
21( lW^Si lW

Z
&(21)l x(21)l y and D j5D3m1 j

( j51, 2, and 3!. The AF state in Eq.~25! is calculated by
choosing a smallJ in which AF ordering occurs only for the
site of the local spin. Then self-consistency equation forD i is
written asD15D250 andD352J tanh(bD3 /4), which is
derived by treating Eq.~3! under the global constraint. The
boundary for the MI transition is calculated by adding the
excess energydFspin to Eq. ~18!, where dEspin(D3)
52(2T/3)ln@cosh(bD3 /4)#1D3

2/(24J). In Fig. 8, the
boundaries corresponding to both theM -AF transition and
the I -AF transition are shown by the dotted curve for
J50.05. The difference between the solid and dashed curves
is small at low temperatures. This is understood from the fact
that the energy per localizedd electron is given by2B for
Eq. ~23! and is given by2D2/(8J) (52J/2) for Eq. ~25!,
respectively.

It will be interesting to study the interplay of the magnetic
field B and the AF interaction and the jump ofx at TC in
terms of the 1/N expansion which treats the local constraint
strictly.27

FIG. 8. Phase diagram in the presence of the homogeneous mag-
netic field B(50.025), where the dashed curve denotes the MI
boundary forB50 in Fig. 3. The hatched region belongs to the
antiferromagnetic state in the presence of the AF interaction
(J50.05 andB50).
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21Y. Suzumura and Y. Ōno, J. Phys. Soc. Jpn.62, 3244~1993!.
22T. Ogawa and Y. Suzumura, J. Phys. Soc. Jpn.63, 1494~1994!.
23T. Ogawa and Y. Suzumura, J. Phys. Soc. Jpn.63, 2066~1994!.
24T. Ogawa and Y. Suzumura, Phys. Rev. B51, 10 293~1995!.
25M. Nakano, M. Kato, and K. Yamada, Physica B186-188, 1077

~1993!.
26P. Coleman, Phys. Rev. B29, 3035~1984!.
27B. Jin and Y. Kuroda, J. Phys. Soc. Jpn.57, 1687~1988!.
28N. Someya, Y. Nishio, K. Kajita, H. Kobayashi, S. Aonuma, H.

Sawa, and R. Kato~unpublished!.

53 7093ELECTRONIC PROPERTIES OF STRONGLY CORRELATED . . .


