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The effective dielectric-permeability tensors, including off-diagonal terms, for magnetized composites are
derived. Based on Bragg and Pippard’s average field approximation, the effective tensor is derived for a
composite containing an ensemble of oriented ellipsoidal particles embedded in a host medium, which is
magnetized along an arbitrary direction. The effective tensor elements are given by the average of the tensor
elements of particles and the host medium weighted by ‘‘virtual volume fractions.’’ The average electric field
at the particle is shown to be a local Lorentz field generalized to ellipsoids. Based on Bruggeman’s symme-
trized effective-medium theory, the effective permeability tensor is derived self-consistently for the magnetized
composite involvingn types of ensembles of randomly oriented ellipsoidal particles. The diagonal effective
tensor elementê is obtained by solving the equation forê of order 2n, independently of the off-diagonal
effective tensor elementĜ, while Ĝ is given as the average of the off-diagonal permeabilities of the constituents
weighted by ‘‘symmetrized virtual volume fractions.’’ Bruggeman’s effective permeability tensor, including
off-diagonal terms, is calculated for Fe-SiO2 cermet, which falls between the theoretical upper and lower
bounds derived by Hashin and Shtrikman.

I. INTRODUCTION

Light wave propagates in a granular composite as if it
were a continuous medium, provided the extension of the
inhomogeneity is much smaller than the wavelength of the
light. The optical and magneto-optical properties of such a
composite can be characterized by the effective dielectric
permeability, which is the space average of the dielectric
permeability over all components of the composite.

Effective dielectric permeability has been long known to
exist. In the beginning of this century Maxwell-Garnett1 de-
rived an effective dielectric constant for metal glasses in
which metal fine aggregates spherical in shape are dispersed.
He generalized the Clausius-Mossotti equation2 for spherical
atoms to spherical metal particles by approximating the local
field acting on the particles by the local Lorentz field. The
Maxwell-Garnett effective permeability has been used fre-
quently to describe the optical properties of a wide variety of
aggregated systems.3

Cohen et al.,3 by direct inspection, generalized the
Maxwell-Garnett effective dielectric constant for aggregates
of spherical particles to oriented ellipsoidal particles by sub-
stitution of the appropriate depolarization factor. The
Maxwell-Garnett effective dielectric constant was general-
ized to randomly oriented ellipsoids by Polder and Van
Santen4 and Hayashi, Nakamori, and Kanamori;5 they ap-
plied averaged electric polarizability to the random ensemble
of the ellipsoids.

The effective permeability has also been derived in a way
different from that used by Maxwell-Garnett. Approximating
the local field acting on the particles by the average field in
the medium surrounding the particles, Bragg and Pippard6

derived an effective dielectric permeability for an ensemble
of ellipsoidal particles. They, and later Landauer,7 pointed
out that the average field approximation is equivalent to the

Lorentz field approximation. The theory derived by
Maxwell-Garnett, or Bragg and Pippard, includes interac-
tions between the particles only through the Lorentz field.
This limits its applicability to situations in which the par-
ticles are sparsely dispersed, or the volume fractions occu-
pied by the particles is small. When the volume fractions of
constituent components in a two-component composite be-
come of the same order of magnitude, the roles of host and
inclusions become ambiguous; we will have two different
values of the Maxwell-Garnett effective permeability by in-
terchanging the roles of host and inclusions, even if the re-
spective volume fractions are kept constant.

A better description of the effective dielectric permeabil-
ity can be achieved within a self-consistent theory, which
was originally put forward by Bruggeman8 and has since
been rediscovered by Landauer.7,9 In the self-consistent
theory, inclusion and host are treated symmetrically; both are
considered particles, and a particle of either inclusion or host
is embedded in an effective medium~involving the two com-
ponents! whose effective dielectric permeability is to be de-
termined self-consistently. The self-consistency requirement
is derived by claiming that the deviation of the electric field
vanishes when averaged over the total volume of the com-
posite. This symmetrical approximation theory is called
Bruggeman’s effective-medium theory, which has a close
analogy with the coherent potential approximation for alloys.

Based on Bruggeman’s symmetrical approximation,
Granqvist and Hunderi10,11 derived the self-consistent effec-
tive dielectric permeability for composites involving ran-
domly oriented ellipsoidal granules. They analyzed the opti-
cal transmittance in metal-rich Ag-SiO2 cermet films
containing randomly oriented ellipsoidal SiO2 granules in an
Ag matrix in terms of the effective permeability derived
from Bruggeman’s self-consistent theory. In their model the
host was assumed to be composed of spherical grains, which
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were later generalized to randomly oriented ellipsoidal grains
by Norris, Sheng, and Callegari12 and Pecharroman and
Iglesias.13

The effective-medium theory was combined with scatter-
ing theories to explain light absorption in composite films14

and poorly crystallized films,15 birefringence in phase-
separated glasses,16 and microwave loss in granular
YBa2Cu3Oh2d superconductors.17 The effective-medium
theory was also combined with percolation scaling theory to
account for the dielectric response in porous media.18 The
effective-medium approximation was further applied suc-
cessfully to explain various effects in composites, which in-
clude electrical resistivity and its percolation,19 the Hall
effect,20 and the nonlinear optical effect.21

The effective dielectric permeability has also been calcu-
lated by the Fourier expansion method for a periodic array of
spheres,22 and by various scattering theories for periodic and
random arrays of spheres.23

Most physical effects thus far studied on composites are
expressed in terms of diagonal tensors; exceptions are the
Hall effect and the magneto-optical effect which are charac-
terized by the off-diagonal terms of the conductivity and di-
electric permeability tensors, respectively. However, studies
of them, especially of the latter, are small in number.

To our knowledge there have been only two theoretical
studies on the nondiagonal effective dielectric-permeability
tensors for granular composites. Lissberger and Saunders24

extended the Maxwell-Garnett effective dielectric constant to
tensor form, including off-diagonal terms, for a composite
containing magnetized spherical particles embedded in a di-
electric matrix. The present author25 has derived the effective
permeability tensor for an array of magnetized ellipsoids dis-
persed in a dielectric host medium, extending Bragg and Pip-
pard’s permeability. However, there was an error in the ap-
proximation in our previous work, as will be shown below.

Recently a monograph dealing with an extended range of
optical properties of metal cluster composites was written by
Kreibig and Vollmer.26 They did not, however, deal with the
off-diagonal effective dielectric tensor.

This paper is concerned with the off-diagonal dielectric
tensor for magnetized composites. We will first generalize
Bragg and Pippard’s effective dielectric permeability to a
nondiagonal tensor for a magnetized composite in which ori-
ented ellipsoidal granules are dispersed in a host medium.
Next we will generalize Bruggeman’s self-consistent effec-
tive permeability to a nondiagonal tensor for a magnetized
composite containing multiple ensembles of randomly ori-
ented ellipsoidal granules.

In Sec. II we will solve the quasistatic potential boundary
problem for the electric field induced in a magnetized ellip-
soid, and the electric polarizability of the ellipsoid will be
derived. The result is used in Sec. III to derive the effective
dielectric permeability tensors for magnetized composites
based on Bragg and Pippard’s approximation and Brugge-
man’s self-consistent approximation. We will also show that
the self-consistent permeability tensor calculated for a Fe-
SiO2 granular composite falls between the upper and lower
bounds derived by Hashin and Shtrikman.27

II. POLARIZABILITY OF MAGNETIZED ELLIPSOIDS

A. Potential boundary problem

Here we solve the potential boundary problem for the
electric field induced in a magnetized ellipsoid in order to

obtain the electric polarizability for the ellipsoid, based on a
quasistatic approximation, keeping the time but not the spa-
tial dependence of the electromagnetic field.

Consider, as shown in Fig. 1, that a uniform, isotropic
medium with a wavelength-dependent dielectric constante1
has in it a uniform, or quasistatic electric field

F5S Fx

Fy

Fz

D . ~2.1!

Let a rotational ellipsoid, uniform and isotropic with a
wavelength-dependent dielectric constante2 , be immersed
in the medium. We assume that both the ellipsoid and the
host medium are magnetized along the same, arbitrary direc-
tion. The dielectric permeability tensor is expressed to the
first order of magnetization

@e1#5S e1 g1 2d1
2g1 e1 z1

d1 2z1 e1
D ~2.2!

for the medium and

@e2#5S e2 g2 2d2
2g2 e2 z2

d2 2z2 e2
D , ~2.3!

for the ellipsoid, differences among the diagonal terms being
neglected. The gyration vectorsG1(z1 ,d1 ,g1) and
G2(z2 ,d2 ,g2) are parallel to each other and to the direction
of the magnetization in the particle and the surrounding me-
dium.

Inside the ellipsoid the fieldF induces an electric field

FIG. 1. Electric fields outside and inside a rotational ellipsoid of
dielectric tensor@e2# embedded in host material of@e1#, with the
rotational axis parallel to thez direction. Both the host material and
ellipsoid are magnetized along an arbitrary direction, having gyra-
tion vectorsG1 and G2 , respectively, which are parallel to the
magnetization direction.
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E25S E2
x

E2
y

E2
z
D , ~2.4!

and an electric polarizationP. Due to the depolarizing effect
of P, E2 is depressed belowF, while the field

E15S E1
x

E1
y

E1
z
D , ~2.5!

induced outside the ellipsoid, exceedsF due to the dipole
field fromP. Since the dipole field reduces with the distance,
the field E1 converges to the fieldF at infinity from the
ellipsoid.

The electric fieldsE1 andE2 induce electric flux density
fields

D15S D1
x

D1
y

D1
z
D ~2.6!

and

D25S D2
x

D2
y

D2
z
D ~2.7!

in the medium and ellipsoid, respectively, which satisfy the
relations

D15@e1#E1 , ~2.8!

D25@e2#E2 . ~2.9!

The electric fieldsF, E1 , andE2 are described in terms of
potentialsf0 , f1 , andf2 as

F52¹f0 , ~2.10!

E152¹f1 , ~2.11!

E252¹f2 . ~2.12!

Let the principal radii of the ellipsoid perpendicular and par-
allel to the rotational axis bea andc, respectively, and in-
troduce spheroidal coordinatesj, h, andf, relating to the
Cartesian coordinates as follows:28

x5$~j1a2!~h1a2!/~a22c2!%1/2cosf, ~2.13a!

y5$~j1a2!~h1a2!/~a22c2!%1/2sinf, ~2.13b!

z5$~j1c2!~h1c2!/~c22a2!%1/2. ~2.13c!

The coordinates lie in the range

0<f<2p, ~2.14a!

2c2~or a2!,j, ~2.14b!

2a2~or c2!,h,2c2~or a2!, ~2.14c!

where quantities outside and inside the parentheses corre-
spond to oblate (a.c) and prolate (a,c) spheroidal coor-
dinates, respectively. Whenc5a, the coordinates reduce to
spherical coordinates.

In the spheroidal coordinate system the electric fields are
expressed as

F5S Fj

Fh

Ff
D 5S 2h1

21]f0 /]j

2h2
21]f0 /]h

2h3
21]f0 /]f

D , ~2.15!

E15S E1
j

E1
h

E1
f
D 5S 2h1

21]f1 /]j

2h2
21]f1 /]h

2h3
21]f1 /]f

D , ~2.16!

E25S E2
j

E2
h

E2
f
D 5S 2h1

21]f2 /]j

2h2
21]f2 /]h

2h3
21]f2 /]f

D , ~2.17!

whereh1 , h2 , andh3 are metrical coefficients given by Eq.
~A3! in Appendix A.

On the surface of the spheroid, wherej50, the induced
fields must satisfy boundary conditions,29 the continuity of
the tangential component of theE vector

~E1
h!05~E2

h!0 , ~2.18!

~E1
f!05~E2

f!0 , ~2.19!

and the continuity of the normal component of theD vector

~D1
j !05~D2

j !0 , ~2.20!

where 0 on the parentheses meansj50. Using Eqs.~2.16!
and ~2.17!, Eqs. ~2.18! and ~2.19! are rewritten in terms of
the field potential as

S ]f1

]h D
0

5S ]f2

]h D
0

, ~2.21!

S ]f1

]f D
0

5S ]f2

]f D
0

, ~2.22!

and the left-hand side of Eq.~2.20!, multiplied by2(h1)0 , is
expressed by the field potential as

2~h1!0~D1
j !05e1S ]f1

]j D
0

1S h1
h2h3D

0

Fg1H S ]z

]f D
0

S ]f1

]h D
0

2S ]z

]h D
0

S ]f1

]f D
0
J 1d1H S ]y

]f D
0

S ]f1

]h D
0

2S ]y

]h D
0

S ]f1

]f D
0
J 1z1H S ]x

]f D
0

S ]f1

]h D
0

2S ]x

]h D
0

S ]f1

]f D
0
J G , ~2.23!

as shown in Appendix A.
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Now we assume that the field potentialsf1 andf2 are
expressed in a similar way as expressed when both the par-
ticle and matrix are nonmagnetic ~i.e.,
z15d15g15z25d25g250),28,29

f152$Fx1cxA~j!%x2$Fy1cyA~j!%y2$Fz1c2A8~j!%z,

~2.24!

f252$E2
xx1E2

yy1E2
zz%, ~2.25!

wherecx, cy, andcz are constants, and

A~j!5E
j

` ds

~s1a2!2~s1c2!1/2
, ~2.26a!

A8~j!5E
j

` ds

~s1c2!2~s1a2!1/2
. ~2.26b!

That is, we assume that inside the ellipsoid a uniform electric
field is induced, while outside the ellipsoid the electric dipole
field due to the polarization of the ellipsoid superimposes on
the applied external field. Our task is to expressE2

x , E2
y , and

E2
z in terms ofFx, Fy, andFz by eliminatingcx, cy, and

cz using the boundary conditions of Eqs.~2.20!–~2.22!. In
the case when both the ellipsoid and host medium are not
magnetized, one component, e.g.,E2

x , is solved independent
of componentsE2

y and E2
z . In our case, where the off-

diagonal dielectric permeabilities correlate thex component
with the y and z components, we must solve simultaneous
equations forE2

x , E2
y , andE2

z.
A calculation shown in Appendix B yields the results

$e11N~e22e1!%E2
x1N~g22g1!E2

y2N8~d22d1!E2
z

5e1F
x, ~2.27a!

2N~g22g1!E2
x1$e11N~e22e1!%E2

y1N8~z22z1!E2
z

5e1F
y, ~2.27b!

N~d22d1!E2
x2N~z22z1!E2

y1$e11N8~e22e1!%E2
z5e1F

z.
~2.27c!

Here we put

N5a2cA~0!/2, ~2.28a!

N85ac2A8~0!/2, ~2.28b!

which are depolarization factors of the ellipsoid alongx ~or
y) andz directions, respectively, satisfying the relation

2N1N851. ~2.29!

Equation~2.27! is expressed in a vector form

E25$@1#1@N#~@e2#2@e1# !e1
21%21F, ~2.30!

where@1# is an identical tensor and

@N#5S N 0 0

0 N 0

0 0 N8
D ~2.31!

is the depolarization factor tensor.

B. Polarizability of magnetized ellipsoid

The polarizationP induced byF, in the ellipsoid having a
permeability@e2# with respect to the host medium having a
permeability@e1#, is given by the equation

@e2#E25@e1#E21P, ~2.32!

which is obtained by replacing@e1# for e0 ~dielectric perme-
ability of vacuum! in ordinary definition ofP. The polariz-
ability tensor @a# of the ellipsoid with respect to the sur-
rounding medium defined by

P5@a#F ~2.33!

is calculated from Eqs.~2.30!, ~2.32!, and~2.33! as

@a#5~@e2#2@e1# !$11@N#~@e2#2@e1# !e1
21%21. ~2.34!

For a nonmagnetized ellipsoid embedded in a nonmagnetized
host medium, the polarizability tensor has been obtained
as28,29

@a#5~e22e1!$@1#1@N#~e22e1!e1
21%21. ~2.35!

Comparing Eqs.~2.34! and ~2.35!, we notice that generaliz-
ing the nonmagnetized ellipsoid and matrix to magnetized
ones changes (e22e1) to tensor form,@e2#2@e1#, but keeps
e1

21 of the scalar form.
Since@e1# and@e2# are approximated to the first order of

magnetization as expressed by Eqs.~2.2! and ~2.3!, the fol-
lowing relation holds:

ue i u@uz i u, ud i u, and ug i u ~ i51,2!. ~2.36!

Consequently, we can neglect the second and higher terms of
z i , d i , andg i , and Eq.~2.34! is calculated as

@a#5S ~e22e1!/b ~g22g1!/b
2 2~d22d1!/~bb8!

2~g22g1!/b
2 ~e22e1!/b ~z22z1!/~bb8!

~d22d1!/~bb8! 2~z22z1!/~bb8! ~e22e1!/b8
D , ~2.37!
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where we put

b511N~e22e1!/e1 , ~2.38a!

b8511N8~e22e1!/e1 . ~2.38b!

III. EFFECTIVE DIELECTRIC PERMEABILITY TENSOR

A. Average field approximation

In this section we first derive the effective permeability
tensor based on the average field approximation theory pro-
posed by Bragg and Pippard.6 Let us consider, as shown in
Fig. 2, a composite containing rotational-ellipsoidal particles,
which are the same in shape but not necessarily in size, dis-
persed in a host medium. The particles are oriented with their
rotational axes parallel to thez axis. They occupy a fraction

f of the total volume of the composite. The host medium and
the particles are magnetized along an arbitrary direction,
having permeabilities@e1# and @e2# as expressed by Eqs.
~2.2! and ~2.3!.

Now we assume that an external electric field, or light
wave fieldE0 , is applied to the composite. Due to the elec-
tric dipole interaction between the ellipsoids, the fieldF act-
ing on the ellipsoids is not equal to the external field. Fol-
lowing Bragg and Pippard, we approximate the local field
F acting on the ellipsoids by the average field in the host
medium, and also approximate the average field in the ellip-
soids byE2 which is induced byF in the ellipsoid following
Eq. ~2.30!; here the applied external fieldE0 must be the
same as the average field over the whole space inside and
outside the ellipsoids:

E05 fE21~12 f !F. ~3.1!

The total electric flux density fieldD̂ of the composite is
expressed in terms of the permeability@e1# of the host and
the polarizability@a# of the inclusions with respect to the
host as

D̂5@e1#E01 f @a#F. ~3.2!

The effective dielectric-permeability tensor@ ê# relatesD̂ to
E0 as

D̂5@ ê#E0 . ~3.3!

Substituting Eq.~2.30! into Eq. ~3.1! we obtain

F5†@1#1@N#$~@e2#2@e1# !e1
21%‡†@1#1~12 f !@N#$~@e2#

2@e1# !e1
21%21

‡E0 , ~3.4!

which is further substituted into Eq.~3.2! to yield

@ ê#5@e1#1 f ~@e2#2@e1# !$@1#1~12 f !@N#~@e2#

2@e1# !e1
21%21 ~3.5!

on referring to Eq.~3.3!. Neglecting the second and higher
terms of the off-diagonal permeabilities, the second term in
the right-hand side of Eq.~3.5! is calculated as

fS ~e22e1!/A ~g22g1!/A
2 2~d22d1!/~AA8!

2~g22g1!/A
2 ~e22e1!/A ~z22z1!/~AA8!

~d22d1!/~AA8! 2~z22z1!/~AA8! ~e22e1!/A8
D ~3.6a!

where we put

A511~12 f !N~e22e1!/e1 , ~3.6b!

A8511~12 f !N8~e22e1!/e1 . ~3.6c!

Thus the effective tensor elementsê i j ( i , j5x,y,z) are ex-
pressed

êxx5 êyy5~12g!e11ge2 , ~3.7a!

êzz5~12g8!e11g8e2 , ~3.7b!

êxy52 êyx5~12h!g11hg2 , ~3.7c!

êyz52 êzy5~12h8!z11h8z2 , ~3.7d!

êzx52 êxz5~12h8!d11h8d2 , ~3.7e!

where we replaced

FIG. 2. A magnetized composite containing an oriented, spa-
tially random, array of rotational ellipsoidal particles embedded in a
host material. Arrows show magnetization~or gyration! vectors,
which are directed along an arbitrary direction.
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g5 f /A, ~3.8a!

g85 f /A8, ~3.8b!

h5 f /A2, ~3.8c!

h85 f /~AA8!. ~3.8d!

We call g, g8, h, and h8, virtual volume fractions, with
which the effective dielectric tensor elements are proportion-
ally allotted between those of the particle and the matrix. In
other words, the effective dielectric tensor elements are the
average of the dielectric tensor elements of a fictitious com-
posite having virtual volume fractions, though their defini-
tion differs for different elements of the tensor. The virtual
volume fractions are given by the true fractions divided by
A or A8, or their products, which express the effect of the
Lorentz field correction for the dipole interactions between
particles as well as the depolarizing effect in the ellipsoid.

We want to call attention to an error in our previous
work,25 where the ellipsoids were magnetized along the ro-
tational axis, or thez axis (z15z25d15d250). We incor-
rectly neglected terms ofg2 in calculatingêxy which is of the
same order asg2 . This error leads toh5 f /A rather than the
definition in Eq.~3.8c! above.

B. Effective-medium approximation

Next we derive the effective dielectric tensor based on
Bruggeman’s effective-medium theory. As mentioned in Sec.
I, the self-consistency requirement in Bruggeman’s theory is
derived by requiring that the deviation of electric field is
space averaged to zero. Since electric polarization causes the
deviation of electric field, the self-consistency requirement is
met when the electric dipole moment averaged over all ele-
ments of the composite vanishes. Therefore, for a composite
involving multiple types of components, 1,2,. . . ,n which
occupy fractions,D1 ,D2 , . . . ,Dn , respectively, of total vol-
ume of the composite (( i51

n D i51), the self-consistency re-
quirement is expressed as follows:7

(
i51

n

$D i@âi #%50. ~3.9!

Here @âi # is the symmetrized polarizability tensor for the
component of typei (51,2, . . . ,n), which is expressed in
terms not only of@ei #, the permeability of thei th compo-
nent, but also of@ ê#, the effective permeability tensor to be
determined self-consistently. We assume that ellipsoids be-
longing to the ensemble of typei are characterized by the
depolarization factorNi ~andNi85122Ni), which are the
same in shape but not necessarily in size, as shown in Fig. 3.

In order to calculate the symmetrized polarizability@âi #
for the ellipsoid ensemble, we assign, as shown in Fig. 3, the
x,y,z coordinates to one of the ellipsoids with thez axis
parallel to the rotational axis, as before. We also assign the
x8,y8,z8 coordinates with thez8 axis parallel to the magne-
tization or gyration vector. In thex8,y8,z8 system, the per-
meability tensor of the ellipsoid belonging to thei th en-
semble is expressed as

@ei8#5S e i G i 0

2G i e i 0

0 0 e i
D , ~3.10!

and the symmetrized effective permeability tensor as

@ ê8#5S ê Ĝ 0

2Ĝ ê 0

0 0 ê
D . ~3.11!

Now we introduce a unitary matrix

U5S U11 U12 U13

U21 U22 U23

U31 U32 U33

D , ~3.12!

which transforms thex,y,z coordinate system to the
x8,y8,z8 system. The average polarizability for thei th en-
semble of the ellipsoids is obtained by averaging over all
unitary transformations which transform the rotational axis
of all the ellipsoids belonging to thei th ensemble to thez8
axis, as described in Appendix C. The result is

@âi #5S ~e i2 ê !/b̄ i ~G i2Ĝ!/b̄ i
2 0

2~G i2Ĝ!/b̄ i
2 ~e i2 ê !/b̄ i 0

0 0 ~e i2 ê !/b̄ i

D ,

~3.13a!

where

1/b̄ i5
2
3 $11Ni~e i2 ê !/ ê%211 1

3 $11Ni8~e i2 ê !/ ê%21,
~3.13b!

1/b̄ i
25 1

3 $11Ni~e i2 ê !/ ê%221 2
3 $11Ni~e i2 ê !/ ê%21

3$11Ni8~e i2 ê !/ ê%21. ~3.13c!

FIG. 3. An ensemble of randomly oriented rotational ellipsoids
of similar shapes embedded in a host medium, magnetized along
the z8 direction. Thex, y, andz coordinate system, which is as-
signed to one of the ellipsoids with its rotational axis parallel to the
z axis, is transformed byU to thex8,y8,z8 system with thez8 axis
parallel to the magnetization~or gyration! vector.
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Substituting Eq.~3.13! into the tensorial equation, Eq.
~3.9!, from the diagonal terms we obtain

(
i51

n

$D i~e i2 ê !/b̄ i%50, ~3.14!

and, from the off-diagonal terms,

(
i51

n

$D i~G i2Ĝ!/b̄ i
2%50. ~3.15!

From Eq.~3.15! we obtain

Ĝ5

(
i51

n

$G iD i /b̄ i
2%

(
i51

n

$D i /b̄ i
2%

5(
i51

n

$G iD̄i%, ~3.16!

where we put

D̄i5
D i /b̄ i

2

(
j51

n

$D j /b̄ j
2%

, ~3.17!

which we call symmetrized virtual volume fractions for the
i th ensemble of the ellipsoids. Equation~3.14! is an equation
for ê of order 2n, which does not containĜ or G i . Thus we
obtain ê independently ofĜ by solving the equation of order
2n. From Eq.~3.16! we obtainĜ by averagingG i , weighted
by D̄i .

Settingn52, Eq.~3.14! for the diagonal term agrees with
Eqs. ~2! and ~8! given in Refs. 12 and 13, respectively, for
the composite composed of two randomly oriented kinds of
ellipsoidal grains.

When the composite has a host composed of spherical
grains, the average polarizability for the host is expressed

@â1#5S ~e12 ê !/b1 ~G12Ĝ!/b1
2 0

2~G12Ĝ!/b1
2 ~e12 ê !/b1 0

0 0 ~e12 ê !/b1

D ,
~3.18a!

b15~e112ê !/~3ê !, ~3.18b!

by putting i51 andN15N85 1
3 in Eq. ~3.13!. Substituting

Eq. ~3.18b! into Eq. ~3.15!, after some manipulation we ob-
tain

ê5e1

D11
1
3(
i52

n

D i b̄ i

D12
2
3(
i52

n

D i b̄ i

. ~3.19!

This agrees with the formula derived by Granqvist and Hun-
deri @Eq. ~10! in Ref. 10# for n21 ensembles of the ran-
domly oriented ellipsoids embedded in a spherical granular
host. Whenn52, or the composite has only one ensemble of
the randomly oriented ellipsoids in the spherical grain host,
Eq. ~3.14! is expressed

D1

ê2e1
2ê1e1

1D2

~ ê2e2!$~113N2!ê1~223N2!e2%

9$~12N2!ê1N2e2%$~12N28!ê1N28e2%

50. ~3.20!

This is a cubic equation ofê, which agrees with Eq.~9! in
Ref. 13. When the inclusions are also spheres (N25N28
5 1

3), Eq. ~3.20! reduces to the following quadratic equation
for ê,

D1~ ê2e1!~2ê1e2!1D2~ ê2e2!~2ê1e1!50,
~3.21!

and the off-diagonal term, Eq.~3.16! is expressed as

Ĝ5
D1G1~2ê1e2!

21D2G2~2ê1e1!
2

D1~2ê1e2!
21D2~2ê1e1!

2 . ~3.22!

Equation~3.21! agrees with that given by Landauer.7,9

C. Effective permeability and bounds calculated for cermet

As an example, Bruggeman’s effective permeability is
calculated at a wavelength of 0.8mm for Fe-SiO2 cermet,
assuming both Fe and SiO2 are isotropically characterized
by the spherical depolarization factor (N5 1

3). As Fig. 4
shows, the diagonal termê, or the off-diagonal termĜ, falls
between the two values, or theoretical bounds,27 calculated
from the Maxwell-Garnett theory assuming that Fe and
SiO2 are playing the role of inclusions and host medium,
respectively, and vice versa.

IV. DISCUSSION

Solving the potential boundary problem, we derived the
electric fieldE2 induced in a magnetized ellipsoid exposed to
electric fieldF. The result is given by Eq.~2.30!, which is
rewritten, by combining Eqs.~2.33! and ~2.34! with Eq.
~2.30!, as

E25F2@N#P/e1 , ~4.1!

whereP is the polarization induced in the ellipsoid. There-
fore, a uniform depolarizing field expressed as@N#P/e1 is
working in the magnetized ellipsoid as well as in a nonmag-
netized ellipsoid.28,29 It should be noted that this is derived
on approximating the permeability tensor to the first order of
magnetization, or settingexx5eyy5ezz in Eqs. ~2.2! and
~2.3!.

Based on the average field approximation proposed by
Bragg and Pippard,6 we derived a nondiagonal effective per-
meability tensor for a two-component composite containing
oriented ellipsoidal particles in a host medium, which is
magnetized along an arbitrary direction. The average field
F acting on the particles is rewritten as

F5E01@N#p/e1 ~4.2!

by combining Eqs.~2.33! and ~2.34! with Eq. ~3.4! and set-
ting

p5 fP. ~4.3!

Sincep represents the polarization induced with respect to
the host medium of the dielectric constant@e1# per unit vol-
ume of the total composite, Eq.~4.2! reduces to the local
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Lorentz field if we put@N#5@1#/3. This reveals that Bragg
and Pippard’s approximation is a generalization of Maxwell-
Garnett’s or Clausius-Mossotti’s approximation, as has been
suggested previously,6,7 though not by formula.

Our Maxwell-Garnett effective dielectric permeability ex-
tended to the magnetized composite is expressed by a simple
formula, Eq.~3.7!, using virtual volume fractions. However,
we found that the effective tensor cannot be expressed by a
simple formula when the composite involves many compo-
nents~i.e., n>3) and/or randomly oriented ellipsoidal par-
ticles. Conversely, Bruggeman’s effective permeability ten-
sor for a magnetized composite is derived from a simple
formula @Eqs.~3.14! and~3.16!# even when it contains many
(n>3) ensembles of randomly oriented ellipsoidal particles.

V. CONCLUSION

The main results of this study are summarized as follows.
~1! Using the dielectric permeability tensor approximated

to the first order of magnetization, we solved the quasistatic
potential boundary problem for electric field induced inside a
magnetized ellipsoid which is exposed to a uniform external
electric field. A uniform depolarizing field@N#P/e1 is super-
imposing the external field in the magnetized ellipsoid, simi-
lar as in a nonmagnetized ellipsoid.

~2! Bragg and Pippard’s effective dielectric permeability
for the composite containing oriented ellipsoidal particles
embedded in a matrix was generalized to the magnetized
composite. The off-diagonal, as well as diagonal, terms of
the effective permeability are given by the average of those
for the particles and the matrix, weighted by the virtual vol-
ume fractions. The field acting on the particles was revealed
to be a local Lorentz field,E01@N#p/e1 , generalized to the
ellipsoidal particles.

~3! Bruggeman’s self-consistent effective permeability
was generalized to the magnetized composite which contains
n different ensembles of randomly oriented ellipsoidal par-
ticles. The diagonal effective permeabilityê is obtained by
solving the equation of order 2n, independently of the off-
diagonal permeabilityĜ, while Ĝ is given by averaging the
off-diagonal permeabilitiesG i of the components weighted
by the symmetrized virtual volume fractionsD̄i . When the
composite contains only two ensembles of spherical par-
ticles, the equation ofê reduces to a quadratic one.

~4! Bruggeman’s effective permeability tensor calculated
for Fe-SiO2 cermet falls between theoretical upper and lower
bounds derived by Hashin and Shtrikman. An experimental
study is in progress to describe the magneto-optical proper-
ties of metal granular composite in terms of the effective
permeability tensors.
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APPENDIX A: FIELD POTENTIAL EXPRESSION OF D j

Let us derive Eq.~2.23!, the normal component ofD vec-
tor expressed in terms of field potentials. The normal, orj,
component ofD vector is written as

D1
j5nj•D15nj

xD1
x1nj

yD1
y1nj

zD1
z . ~A1!

Herenj is one of the following unitary vectors along thej,
h, andf coordinates,

nj5S nj
x

nj
y

nj
z
D 5

1

h1 S ]x/]j

]y/]j

]z/]j
D 5h1S ]j/]x

]j/]y

]j/]z
D , ~A2a!

nh5S nh
x

nh
y

nh
z
D 5

1

h2 S ]x/]h

]y/]h

]z/]h
D 5h2S ]h/]x

]h/]y

]h/]z
D , ~A2b!

FIG. 4. Real and imaginary parts of diagonal (ê) and off-
diagonal (Ĝ) effective dielectric permeabilities calculated at
l50.8mm for Fe-SiO2 cermet as a function of Fe volume fraction,
assuming the spherical depolarization factor (N5

1
3) for both Fe and

SiO2 . Circles: Bruggeman’s permeability. Solid lines: Maxwell-
Garnett’s permeability for Fe particles in a SiO2 matrix. Dashed
lines: the same for SiO2 particles in an Fe matrix. Diagonal and
off-diagonal permeabilities of Fe are taken from Refs. 30 and 31,
respectively.
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nf5S nf
x

nf
y

nf
z
D 5

1

h3 S ]x/]f

]y/]f

]z/]f
D 5h3S ]f/]x

]f/]y

]f/]z
D , ~A2c!

whereh1 , h2 , andh3 are metrical coefficients given by29

h15H S ]x

]j D 21S ]y

]j D 21S ]z

]j D 2J 1/2, ~A3a!

h25H S ]x

]h D 21S ]y

]h D 21S ]z

]h D 2J 1/2, ~A3b!

h35H S ]x

]f D 21S ]y

]f D 21S ]z

]f D 2J 1/2. ~A3c!

From Eqs.~2.2!, ~2.8!, and~2.11!, we obtain

2D1
x5e1

]f1

]x
1g1

]f1

]y
2d1

]f1

]z
, ~A4a!

2D1
y52g1

]f1

]x
1e1

]f1

]y
1z1

]f1

]z
, ~A4b!

2D1
z5d1

]f1

]x
2z1

]f1

]y
1e1

]f1

]z
. ~A4c!

Using Eq.~A2!, the partial derivatives in the right-hand side
of Eq. ~A4! are given as

]f1

]x
5

]j

]x

]f1

]j
1

]h

]x

]f1

]h
1

]f

]x

]f1

]f

5
nj
x

h1

]f1

]j
1
nh
x

h2

]f1

]h
1
nf
x

h3

]f1

]f
, ~A5a!

]f1

]y
5
nj
y

h1

]f1

]j
1
nh
y

h2

]f1

]h
1
nf
y

h3

]f1

]f
, ~A5b!

]f1

]z
5
nj
z

h1

]f1

]j
1
nh
z

h2

]f1

]h
1
nf
z

h3

]f1

]f
. ~A5c!

Equation~A5! is substituted into Eq.~A4!, which is fur-
ther substituted into Eq.~A1! to yield after some manipula-
tion

2D1
j5

e1
h1

~nj•nj!
]f1

]j
1g1H ~nj3nh!z

h2

]f1

]h

1
~nj3nf!z

h3

]f1

]f J 2d1H ~nh3nj!
y

h2

]f1

]h

1
~nf3nj!

y

h3

]f1

]f J 1z1H ~nj3nh!x

h2

]f1

]h

1
~nj3nf!x

h3

]f1

]f J . ~A6!

Here superscriptsx, y, andzmean respective components of
the vector products. The unitary vectors satisfy

nj•nj51, ~A7a!

nj3nh5nf , nh3nf5nj , nf3nj5nh . ~A7b!

On the surface of the ellipsoid, wherej50, we have from
Eqs.~2.13! and ~A3!

~h1!05
A2h

2ac
, ~A8a!

~h2!05
1

2 S 2h

~h1a2!~h1c2! D
1/2

, ~A8b!

~h3!05aS h1a2

a22c2D
1/2

. ~A8c!

Substituting Eqs.~A7! and ~A8! into Eq. ~A6! yields Eq.
~2.23!.

APPENDIX B: DERIVATION OF ELECTRIC FIELD
INDUCED IN MAGNETIZED ELLIPSOID

Let us derive Eq.~2.27!, starting from Eq.~2.23!.
The partial differential coefficient appearing in the first

term of the right-hand side of Eq.~2.23! is calculated from
Eq. ~2.24! as

S ]f1

]j D
0

52$Fx1cxA~0!%S ]x

]j D
0

2cxS ]A

]j D
0

~x!0

2$Fy1cyA~0!%S ]y

]j D
0

2cyS ]A

]j D
0

~y!0

2$Fz1czA8~0!%S ]z

]j D
0

2czS ]A8

]j D
0

~z!0 .

~B1!

Calculating partial derivatives appearing in the right-hand
side of Eq.~B1! from Eqs.~2.13! and ~2.26!, we obtain

S ]f1

]j D
0

52XKcosf2YKsinf2ZL, ~B2!

where we replaced

X5Fx1cxHA~0!2
2

a2c J , ~B3a!

Y5Fy1cyHA~0!2
2

a2c J , ~B3b!

Z5Fz1czHA8~0!2
2

c2a J , ~B3c!

K5
1

2a S h1a2

a22c2D
1/2

, ~B4a!

L5
1

2c S h1c2

c22a2D
1/2

. ~B4b!

In a similar way, from Eqs.~2.24! and ~2.13! we obtain
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S ]f1

]h D
0

52X8S ]x

]f D
0

2Y8S ]y

]f D
0

5X82a2K sinf2Y82a2K cosf, ~B5!

S ]f1

]f D
0

52X8S ]x

]h D
0

2Y8S ]y

]h D
0

2Z8S ]z

]f D
0

52X8a2~h1a2!21K cosf

2Y8a2~h1a2!21K sinf

2Z8c2~h1c2!21L, ~B6!

where we replaced

X85Fx1cxA~0!, Y85Fy1cyA~0!, Z85Fz1czA8~0!.
~B7!

Substituting Eqs.~B2!, ~B5!, and ~B6! into Eq. ~2.23!, we
obtain

~h1D1
j !05~e1X1g1Y82d1Z8!K cosf1~2g1X81e1Y

1z1Z8!K sinf1~d1X82z1Y81e1Z!L ~B8!

after some manipulation.
On comparing Eqs.~2.25! and ~2.24!, we notice that an

equation similar to Eq.~B8! also holds forD2 as follows:

~h1D2
j !05~e2E2

x1g2E2
y2d2E2

z!K cosf1~2g2E2
x1e2E2

y

1z2E2
z!K sinf1~d2E2

x2z2E2
y1e2E2

z!L. ~B9!

In order to equate Eqs.~B9! and~B8! for all values ofh and
f, we must have

e1X1g1Y82d1Z85e2E2
x1g2E2

y2d2E2
z , ~B10a!

2g1X81e1Y1z1Z852g2E2
x1e2E2

y1z2E2
z ,

~B10b!

d1X82z1Y81e1Z5d2E2
x2z2E2

y1e2E2
z . ~B10c!

In a similar way, the boundary condition of Eq.~2.21! is
transformed into

2X8a2K cosf2Y8a2K sinf2Z8acL

52E2
xa2K cosf2E2

ya2K sinf2E2
zacL ~B11!

for which to hold for all values off, we must have

X85E2
x , Y85E2

y , Z85E2
z . ~B12!

The remaining boundary condition of Eq.~2.22! yields Eq.
~B12!, as well.

Eliminatingcx, cy, andcz by combining Eqs.~B3!, ~B7!,
and ~B12! with Eq. ~B10!, we obtain Eq.~2.27!.

APPENDIX C: AVERAGE POLARIZABILITY
FOR RANDOMLY ORIENTED ELLIPSOIDS

Here we derive Eq.~3.13!, the average polarizability for
the i th ensemble of the randomly oriented ellipsoids. On re-
ferring to Eq.~2.37!, the symmetrized polarizability@ai # for
the i th ensemble is expressed in thexyz system as

@ai #5S ~e i2 ê !/b i ~g i2ĝ !/b i
2 2~d i2 d̂ !/~b ib i8!

2~g i2ĝ !/b i
2 ~e i2 ê !/b i ~z i2 ẑ !/~b ib i8!

~d i2 d̂ !/~b ib i8! 2~z i2 ẑ !/~b ib i8! ~e i2 ê !/b i8
D . ~C1a!

Here

b i511Ni~e i2 ê !/ ê, ~C1b!

b i8511Ni8~e i2 ê !/ ê, ~C1c!

and ẑ, d̂, and ĝ are the off-diagonal terms of the symme-
trized effective tensor~to be determined! expressed in the
x,y,z system. Since the off-diagonal polarizabilities given by
Eq. ~C1a! are antisymmetric (amj52a jm , mÞ j ), they are
transformed byU to be expressed in thex8,y8,z8 system as

amj8 5 (
k,l51

3

UmkU jlakl5 (
k51

3

UmkU jkakk

1(
kÞ l

8 ~UmkU jl2UmlU jk!akl , ~C2!

where we omitted the suffixi for simplicity and(kÞ l8 means
summing only fork,l51,2; 2,3; and 3,1. Equation~C2! is
rewritten as

amj8 5 (
k51

3

UmkU jkakk1(
kÞ l

8 ~Um3Uj !S~k,l !akl , ~C3!

whereUj ( j51,2,3) is thej th unitary vector, and subscript
S(k,l ) on the parentheses designates the component of the
vector product as follows:

S~k,l !5H 3 ~k,l51,2 and 2,1!

1 ~k,l52,3 and 3,2!

2 ~k,l53,1 and 1,3!
J . ~C4!

Since the unitary vectors satisfy the relation

Um3Uj56US~m, j ! , ~C5!

where the complex sign takes1 for m, j51,2; 2,3; and 3,1;
and2 for m, j52,1; 3,2; and 1,3, Eq.~C3! is transformed to

amj8 5 (
k51

3

UmkU jkakk6(
kÞ l

8 US~m, j !S~k,l !akl . ~C6!
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Substitutingakl given by Eq.~C1! into Eq. ~C6!, we obtain

amj8 5~e i2 ê !~Um1Uj1 /b i1Um2Uj2 /b i1Um3Uj3 /b i8!

6$US~m, j !3~g i2ĝ !/b i
21US~m, j !2~d i2 d̂ !/~b ib i8!

1US~m, j !1~z i2 ẑ !/~b ib i8!%. ~C7!

Becauseẑ, d̂, and ĝ ~or z i , d i , andg i) are projection
elements of the gyration vector~which is directed along the
z axis! to thex8, y8, andz8 axes, respectively, we have the
following relations:

U31Ĝ5 ẑ, U32Ĝ5 d̂, U33Ĝ5ĝ. ~C8a!

U31G i5z i , U32G i5d i , U33G i5g i . ~C8b!

Substituting Eqs.~C8! into Eq. ~C7! yields

amj8 5~e i2 ê !~Um1Uj1 /b i1Um2Uj2 /b i1Um3Uj3 /b i8!

6~G i2Ĝ!$US~m, j !3
2 /b i

21US~m, j !2
2 /~b ib i8!

1US~m, j !1
2 /~b ib i8!%. ~C9!

Averaging the polarizability over all ellipsoids is equiva-
lent to averaging over all unitary transformations which

transform rotational axes of all ellipsoids to thez8 direction.
We now assume that the randomness of the orientation of the
ellipsoids in the ensemble is so complete that averaging over
all unitary transformations is equivalent to averagingUmj in
Eq. ~C9! over all directions or solid angles. Then we have the
averages~denoted bŷ &) of the polarizability elements as

@â i #mj5^amj8 &

5~e i2 ê !$^Um1Uj1&/b i1^Um2Uj2&/b i

1^Um3Uj3&/b i8%6~G i2Ĝ!$^US~m, j !3
2 &/b i

2

1^US~m, j !2
2 &/~b ib i8!1^US~m, j !1

2 &/~b ib i8!%. ~C10!

SinceUmj is themth component of thej th unitary vector, we
can write Uj5(x1 /r ,x2 /r ,x3 /r ), where r5(x1

21x2
2

1x3
2)1/2. Then we have

^UmkU jk&5E ~xmxj /r
2!dV YE dV5dmj/3,

~C11!

where integration is performed over the total range of solid
angle V, and dmj is Kronecker’s delta. Substituting Eq.
~C11! into Eq. ~C10! yields Eq.~3.13!.
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