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The effective dielectric-permeability tensors, including off-diagonal terms, for magnetized composites are
derived. Based on Bragg and Pippard’'s average field approximation, the effective tensor is derived for a
composite containing an ensemble of oriented ellipsoidal particles embedded in a host medium, which is
magnetized along an arbitrary direction. The effective tensor elements are given by the average of the tensor
elements of particles and the host medium weighted by “virtual volume fractions.” The average electric field
at the particle is shown to be a local Lorentz field generalized to ellipsoids. Based on Bruggeman'’s symme-
trized effective-medium theory, the effective permeability tensor is derived self-consistently for the magnetized
composite involvingn types of ensembles of randomly oriented ellipsoidal particles. The diagonal effective
tensor element is obtained by solving the equation farof order n, independently of the off-diagonal
effective tensor elemelﬂ, whileI' is given as the average of the off-diagonal permeabilities of the constituents
weighted by “symmetrized virtual volume fractions.” Bruggeman'’s effective permeability tensor, including
off-diagonal terms, is calculated for Fe-Si@ermet, which falls between the theoretical upper and lower
bounds derived by Hashin and Shtrikman.

I. INTRODUCTION Lorentz field approximation. The theory derived by
Maxwell-Garnett, or Bragg and Pippard, includes interac-
Light wave propagates in a granular composite as if ittions between the particles only through the Lorentz field.
were a continuous medium, provided the extension of th&his limits its applicability to situations in which the par-
inhomogeneity is much smaller than the wavelength of thdicles are sparsely dispersed, or the volume fractions occu-
light. The optical and magneto-optical properties of such gied by the particles is small. When the volume fractions of
composite can be characterized by the effective dielectriconstituent components in a two-component composite be-
permeability, which is the space average of the dielectricome of the same order of magnitude, the roles of host and
permeability over all components of the composite. inclusions become ambiguous; we will have two different
Effective dielectric permeability has been long known tovalues of the Maxwell-Garnett effective permeability by in-
exist. In the beginning of this century Maxwell-Garrete-  terchanging the roles of host and inclusions, even if the re-
rived an effective dielectric constant for metal glasses irspective volume fractions are kept constant.
which metal fine aggregates spherical in shape are dispersed. A better description of the effective dielectric permeabil-
He generalized the Clausius-Mossotti equétitmm spherical ity can be achieved within a self-consistent theory, which
atoms to spherical metal particles by approximating the localvas originally put forward by Bruggem&rand has since
field acting on the particles by the local Lorentz field. Thebeen rediscovered by Landadér.ln the self-consistent
Maxwell-Garnett effective permeability has been used fretheory, inclusion and host are treated symmetrically; both are
qguently to describe the optical properties of a wide variety ofconsidered particles, and a patrticle of either inclusion or host
aggregated systems. is embedded in an effective mediuimvolving the two com-
Cohen etal,® by direct inspection, generalized the ponent$ whose effective dielectric permeability is to be de-
Maxwell-Garnett effective dielectric constant for aggregategermined self-consistently. The self-consistency requirement
of spherical particles to oriented ellipsoidal particles by subdis derived by claiming that the deviation of the electric field
stitution of the appropriate depolarization factor. Thevanishes when averaged over the total volume of the com-
Maxwell-Garnett effective dielectric constant was generalposite. This symmetrical approximation theory is called
ized to randomly oriented ellipsoids by Polder and VanBruggeman's effective-medium theory, which has a close
Santefi and Hayashi, Nakamori, and Kanamdrihey ap- analogy with the coherent potential approximation for alloys.
plied averaged electric polarizability to the random ensemble Based on Bruggeman’s symmetrical approximation,
of the ellipsoids. Granqvist and Hundéfi*! derived the self-consistent effec-
The effective permeability has also been derived in a wayive dielectric permeability for composites involving ran-
different from that used by Maxwell-Garnett. Approximating domly oriented ellipsoidal granules. They analyzed the opti-
the local field acting on the particles by the average field incal transmittance in metal-rich Ag-SiO cermet films
the medium surrounding the particles, Bragg and Pigpardcontaining randomly oriented ellipsoidal Sj@ranules in an
derived an effective dielectric permeability for an ensembleAg matrix in terms of the effective permeability derived
of ellipsoidal particles. They, and later Landafigrpinted  from Bruggeman’s self-consistent theory. In their model the
out that the average field approximation is equivalent to théost was assumed to be composed of spherical grains, which
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were later generalized to randomly oriented ellipsoidal grains
by Norris, Sheng, and Calleg&riand Pecharroman and
Iglesias®®
The effective-medium theory was combined with scatter-
ing theories to explain light absorption in composite fitths
and poorly crystallized film& birefringence in phase-
separated glassé%, and microwave loss in granular
YBa,Cus0,, 5 superconductorS. The effective-medium
theory was also combined with percolation scaling theory to z
account for the dielectric response in porous médiahe
effective-medium approximation was further applied suc-
cessfully to explain various effects in composites, which in-
clude electrical resistivity and its percolatibhthe Hall
effect?’ and the nonlinear optical effett.
The effective dielectric permeability has also been calcu- y G,
lated by the Fourier expansion method for a periodic array of 0 \
sphere$? and by various scattering theories for periodic and
random arrays of spherés. X
Most physical effects thus far studied on composites are
expressed in terms of diagonal tensors; exceptions are the FIG. 1. Electric fields outside and inside a rotational ellipsoid of
Hall effect and the magneto-optical effect which are characdielectric tensof e,] embedded in host material pg; ], with the
terized by the off-diagonal terms of the conductivity and di- rotational axis parallel to the direction. Both the host material and
electric permeability tensors, respectively. However, studie§llipsoid are magnetized along an arbitrary direction, having gyra-
of them, especially of the latter, are small in number. tion vectorsG; and G,, respectively, which are parallel to the
To our knowledge there have been only two theoreticamagnetization direction.
studies on the nondiagonal effective dielectric-permeability
tensors for granular composites. Lissberger and Sautfdersobtain the electric polarizability for the ellipsoid, based on a
extended the Maxwell-Garnett effective dielectric constant taquasistatic approximation, keeping the time but not the spa-
tensor form, including off-diagonal terms, for a compositetial dependence of the electromagnetic field.
containing magnetized spherical particles embedded in a di- Consider, as shown in Fig. 1, that a uniform, isotropic
electric matrix. The present autidhas derived the effective medium with a wavelength-dependent dielectric conséant
permeability tensor for an array of magnetized ellipsoids dishas in it a uniform, or quasistatic electric field
persed in a dielectric host medium, extending Bragg and Pip-
pard’'s permeability. However, there was an error in the ap- =
proximation in our previous work, as will be shown below.
Recently a monograph dealing with an extended range of F=| Fy|. (2.1
optical properties of metal cluster composites was written by F
Kreibig and Vollmer?® They did not, however, deal with the
off-diagonal effective dielectric tensor.

\Ha

ﬂm\k o

Thi . d with the off-di | dielectri Let a rotational ellipsoid, uniform and isotropic with a
Is paper Is concerned with the off-diagonal die ecmcwavelength-dependent dielectric constant be immersed

tensor for magnetized composites. We will first generalizqn the medium. We assume that both the ellipsoid and the

Bragg and Pippard’s effective dielectric permeability to a . . . g
nondiagonal tensor for a magnetized composite in which ori—hoSt medium are magnetized along the same, arbitrary direc

ented ellipsoidal granules are dispersed in a host mediunﬁ!.on' The dielectric permeability tensor is expressed to the
Next we will generalize Bruggeman’s self-consistent effec- Irst order of magnetization
tive permeability to a nondiagonal tensor for a magnetized

composite containing multiple ensembles of randomly ori- €1 Y1 —61

ented ellipsoidal granules. N € 22
In Sec. Il we will solve the quasistatic potential boundary L€l 7 ! f1 2.2

problem for the electric field induced in a magnetized ellip- 61 —41 &

soid, and the electric polarizability of the ellipsoid will be )
derived. The result is used in Sec. Ill to derive the effectivefor the medium and
dielectric permeability tensors for magnetized composites

based on Bragg and Pippar_d’s approxima_tion and Brugge- € vy =6y

man’s self-consistent approximation. We will also show that le,]=| - e ¢ 2.3
the self-consistent permeability tensor calculated for a Fe- €=~ 2 :
SiO, granular composite falls between the upper and lower 6 L €&

bounds derived by Hashin and Shtriknfdn. o ) ]
for the ellipsoid, differences among the diagonal terms being

Il. POLARIZABILITY OF MAGNETIZED ELLIPSOIDS neglected. The gyration vectorsG,({;,d1,y1) and

G,(¢5,65,7,) are parallel to each other and to the direction

of the magnetization in the particle and the surrounding me-
Here we solve the potential boundary problem for thedium.

electric field induced in a magnetized ellipsoid in order to Inside the ellipsoid the fieléF induces an electric field

A. Potential boundary problem
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EX where quantities outside and inside the parentheses corre-
v spond to oblategd>c) and prolate §<c) spheroidal coor-
E.=| E2 |, (2.4 dinates, respectively. Whes=a, the coordinates reduce to
E; spherical coordinates.

. o o In the spheroidal coordinate system the electric fields are
and an electric polarizatioR. Due to the depolarizing effect expressed as

of P, E, is depressed below, while the field

£x Fé —hitapelo¢
1 -1
= F7|=| —h, d¢pgld
E,= EY |, (2.5 F ® 31 boldm |, 2.19
1
induced outside the ellipsoid, exceeBlsdue to the dipole Ef —h;ta¢10¢
field from P. Since the dipole field reduces with the distance, E,=| E7|=| - h,Yag,lan |, (2.16
the field E; converges to the fieldr at infinity from the & _1
ellipsoid. E1 —h3 d¢,1d¢
The electric fieldsE; andE, induce electric flux density ¢ _1
fields = —hy 9,108
DX E,=| EZ |=| —hyto¢,109 |, (2.17
1
ES —h3tap,lo
D,= D)l, 2.6 2 3 dpaldgp
Dz whereh,, h,, andh; are metrical coefficients given by Eq.
1 (A3) in Appendix A.
and On the surface of the spheroid, whefe 0, the induced
fields must satisfy boundary conditioffsthe continuity of
D} the tangential component of tit& vector
D,=| D2 @7 (EDo=(EDo. (218
> E?)o=(E3) (2.19
in the medium and ellipsoid, respectively, which satisfy the (ED)o=(E2)o. '
relations and the continuity of the normal component of thevector
D.=[&]E;, (2.8) (D$)o=(D%)o, (2.20
D,=[&,]E,. (2.9 where 0 on the parentheses medns0. Using Eqs.(2.16

and (2.17), Egs.(2.18 and (2.19 are rewritten in terms of
The electric fields, E;, andE, are described in terms of the field potential as

potentials¢q, ¢4, and ¢, as

L) )
F=—V o, (2.10 3_771)02(‘9_772)0’ (229
E1=—V¢1, (21])
151,715,
E,=—V,. (2.12 g, \dd/,

Let the principal radii of the ellipsoid perpendicular and par-and the left-hand side of E¢R.20, multiplied by — (h;),, is
allel to the rotational axis ba andc, respectively, and in- expressed by the field potential as
troduce spheroidal coordinatés », and ¢, relating to the

Cartesian coordinates as follofs: ~ (hy)y(DE)g= 91 hy 9z\ [d¢s
(h1)o(D1)o= €1 Y hohs Y1 i an
x={(&+a%(n+a?)/(a?—c?)}Ycosp, (2.133 0 0 0 0
y={(§+a2)(77+a2)/(a2_02)}1/23in¢, (2.13b —(j—;) (% +51[ %) (%)
Z={(§+CZ)(n+02)/(02—a2)}1’2. (2130 N 0 s 0 N 0 y 0
The coordinates lie in the range —(%) ((9—(; + ﬁ) (9_1;1>
0<¢=<2m, (2.14a N 0 o 0 0 0
1
—c¥(or a®) <4, (2.14b —(5)0(5)0}}, (223

—a?(or cA)<p<-—c¥(or a?), (2.149  as shown in Appendix A.



7068 MASANORI ABE 53
Now we assume that the field potentialg and ¢, are IN+N’'=1. (2.29
expressed in a similar way as expressed when both the par- ) ) )
ticle and matrix are nonmagnetic (i.e.’ Equat|0n(2.27) IS expressed in a vector form
(1= 81= 71= [,= 6,=7,=0),%
, Ex={[11+[N]([e]-[e]e; '} 'F,  (2:30
=—{F*+c*A(é)}x—{F'+ A —{F*+c*A’(&)}z, : o
$1 { (O~ (O1y ()} where[ 1] is an identical tensor and
(2.29
b= —{Epx+EYy+E5z}, (2.29 N0 0
wherec*, ¢¥, andc” are constants, and [N]=] 0 N 0O (2.31)
0 0 N
* ds is the depolarization factor tensor.
A(§)= L (st a2)2%(s+ cD) 2 (2.268
B. Polarizability of magnetized ellipsoid
A(£)= * ds 296 The polarizatiorP induced byF, in the ellipsoid having a
()= ¢ (s+ c?)?(s+a?)l? (2.26h permeability[ e,] with respect to the host medium having a

. o o ) _permeability[ €, ], is given by the equation
That is, we assume that inside the ellipsoid a uniform electric

field is induced, while outside the ellipsoid the electric dipole
field due to the polarization of the ellipsoid superimposes on
the applied external field. Our task is to expr&ss E¥, and

[e]E;=[€]E,+P, (2.32

S . ) > E7 2 which is obtained by replacinge; ] for €, (dielectric perme-
Ezz in terms of £, FY, andF* by eliminatingc*, ¢’, and  apjlity of vacuun in ordinary definition ofP. The polariz-
c® using the boundary conditions of Eq®.20—(2.22. In  apility tensor[ ] of the ellipsoid with respect to the sur-
the case when both the ellipsoid and host medium are ngbunding medium defined by

magnetized, one component, e g}, is solved independent
of componentsE} and E5. In our case, where the off-

diagonal dielectric permeabilities correlate theomponent P=[alF (233
with the y andz components, we must solve simultaneousis calculated from Eq€2.30, (2.32, and(2.33 as
equations folE3, E¥, andE;3.
A calculation shown in Appendix B yields the results 1
PP y [a]=([&]-[aD{1+[NI(e]-[aDe ) (234

{e1+N(ex3— €1)}EZ+N(y2— y1)EZ—N'(8,— 61)E3
(2.273

For a nonmagnetized ellipsoid embedded in a nonmagnetized

host medium, the polarizability tensor has been obtained

=¢e,F%, 22829

—N(y,— y1)Ezt{e1t N(ex— €1) }EI+N'({,— {1)E3
=P, (2.27H

[a]=(e;— e){[1]+[N](e2—er)e; 171 (2.3

Comparing Egs(2.34) and(2.35, we natice that generaliz-
ing the nonmagnetized ellipsoid and matrix to magnetized

N(8,— 81)ES—N(Z— £1)ES+{e1+ N’ (e— €1)}E5= €, F2. ones changeseb— €;) to tensor form[e,]—[ €], but keeps

(2279 €, " of the scalar form.

Here we put Since[ €;] and[ e,] are approximated to the first order of
magnetization as expressed by E(s2) and(2.3), the fol-
lowing relation holds:

N=a?cA(0)/2, (2.28a
N’=ac?A’(0)/2, (2.280 l&l>gl, &l and [y  (i=12. (2.3

which are depolarization factors of the ellipsoid alongor
y) andz directions, respectively, satisfying the relation

(e2—€1)IB (72
_(?’2_3’1)/32 (e2

[a]=
(62— 61)/(BB)

— 1) B?
—€)IB
— (L= L)I(BB")

Consequently, we can neglect the second and higher terms of
i, 6, andy;, and Eq.(2.39 is calculated as

—(8,—6)/(BB")
(&= 4l(BB") |,
(e2—€)/ B’

(2.37
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f of the total volume of the composite. The host medium and
the particles are magnetized along an arbitrary direction,
having permeabilitieg ;] and[e,] as expressed by Egs.
(2.2) and(2.3).

Now we assume that an external electric field, or light
wave fieldEy, is applied to the composite. Due to the elec-
tric dipole interaction between the ellipsoids, the fiEldct-
ing on the ellipsoids is not equal to the external field. Fol-
lowing Bragg and Pippard, we approximate the local field
F acting on the ellipsoids by the average field in the host
medium, and also approximate the average field in the ellip-
soids byE, which is induced byF in the ellipsoid following
Eq. (2.30; here the applied external fiell, must be the
same as the average field over the whole space inside and
outside the ellipsoids:

y Eo=fE,+(1—f)F. (3.1

The total electric flux density fiel® of the composite is
X expressed in terms of the permeabilitg, ] of the host and
the polarizability[ @] of the inclusions with respect to the
FIG. 2. A magnetized composite containing an oriented, spahost as
tially random, array of rotational ellipsoidal particles embedded in a “
host material. Arrows show magnetizatid¢ar gyration vectors, D=[e€1]Eo+ fla]F. (3.2

which are directed along an arbitrary direction. The effective dielectric-permeability tenspg] relatesD to

where we put Eo as
B=1+N(ey—ey)l ey, (2.383 D=[elEo. (3.3
Substituting Eq(2.30 into Eg. (3.1) we obtain
ﬂ,=1+N,(EZ_El)/El. (238b _1
F=[[1]+[N}{([e2]—[€1] e F[1]+(1—F)[NH([ €]
IIl. EFFECTIVE DIELECTRIC PERMEABILITY TENSOR _[61])611}71]E0, (3.4
A. Average field approximation which is further substituted into E¢3.2) to yield

In this section we first derive the effective permeability .
tensor based on the average field approximation theory pro- [e]=[e]+ f([e]-[eD{[1]+(1-D[N]([e]
posed by Bragg and Pippafd.et us consider, as shown in —le ])6—1}71 (3.5
Fig. 2, a composite containing rotational-ellipsoidal particles, 1R '
which are the same in shape but not necessarily in size, dign referring to Eq(3.3). Neglecting the second and higher
persed in a host medium. The particles are oriented with theilerms of the off-diagonal permeabilities, the second term in
rotational axes parallel to theaxis. They occupy a fraction the right-hand side of Eq3.5) is calculated as

|
(e2—€)/A (v2=y)IA? = (8= 8)/(AA)

fl —(y2—y1)/A? (62— €1)/A (&= CLI(AA) (3.63
(6= 6DI(AA")  — (L= L)I(AA) (62— €1)/A’

where we put €,~(1—-9')e1+0 €y, (3.7

A:1+(1_f)N(€2_61)/61, (36b) %xy:_%yx:(l_h)71+h72! (37@
A'=1+(1-F)N'(ex—€1)/€;. 3.6 A A

(=N e e)le (3.69 &=~ en=(1-N) G+ G, (37d

Thus the effective tensor eIemen?tg(i,j =X,Y,Z) are ex-
pressed €= — €,=(1—h")8;+h’6,, (3.7¢

€xx= €yy=(1—0Q) e+ gey, (3.78  where we replaced
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g=f/A, (3.89 z'
g =flA’, (3.8b vy .
\
h=f/A?, (3.80 @
h'=f/(AA"). (3.89 ® ¥

We call g, g’, h, andh’, virtual volume fractions, with 0
which the effective dielectric tensor elements are proportion- y
ally allotted between those of the particle and the matrix. In @
other words, the effective dielectric tensor elements are the
average of the dielectric tensor elements of a fictitious com- ' ¥
posite having virtual volume fractions, though their defini- X

tion differs for different elements of the tensor. The virtual

volume fractions are given by the true fractions divided by G, 3. An ensemble of randomly oriented rotational ellipsoids

A or A’, or their products, which express the effect of theof similar shapes embedded in a host medium, magnetized along
Lorentz field correction for the dipole interactions betweenthe z’ direction. Thex, y, andz coordinate system, which is as-

particles as well as the depolarizing effect in the ellipsoid. signed to one of the ellipsoids with its rotational axis parallel to the
We want to call attention to an error in our previous z axis, is transformed by to thex’,y’,z’ system with thez’ axis

work,2® where the ellipsoids were magnetized along the roparallel to the magnetizatiofor gyration) vector.

tational axis, or the axis ({;={,=6,=5,=0). We incor-

rectly neglected terms of, in calculating%Xy which is of the g I; O

same order ay,. This error leads ttn= f/A rather than the ,

definition in Eq.(3.89 above. [e]=| ~Ti « 0], (3.10
O O €;j

B. Effective-medium approximation and the symmetrized effective permeability tensor as
Next we derive the effective dielectric tensor based on .

Bruggeman'’s effective-medium theory. As mentioned in Sec. r o

[, the self-consistency requirement in Bruggeman’s theory is [e]= T ¢ o0 (3.11)

derived by requiring that the deviation of electric field is .

space averaged to zero. Since electric polarization causes the 0 0 e

deviation of electric field, the self-consistency requirement is . . )

met when the electric dipole moment averaged over all ele- NOW We introduce a unitary matrix

ments of the composite vanishes. Therefore, for a composite

involving multiple types of components, 1,2,.,n which Ui Uz Ui

occupy fractionsA,A,, ... A, respectively, of total vol- U=| Uy Uy Uy, (3.12

ume of the compositeX[_;A;=1), the self-consistency re- Us; Usy Usg

quirement is expressed as follows:
which transforms thex,y,z coordinate system to the
n x',y’,z' system. The average polarizability for thin en-
E {A[e&]}=0. (3.9 semble of the ellipsoids is obtained by averaging over all
=1 unitary transformations which transform the rotational axis
of all the ellipsoids belonging to thieh ensemble to the’

Here[ a;] is the symmetrized polarizability tensor for the axis, as described in Appendix C. The result is

component of type (=1,2,...,n), which is expressed in
terms not only of[ ], the permeability of theéth compo-

/B T/ B2
nent, but also of €], the effective permeability tensor to be (e—elp (Ti=DIA; 0

determined self-consistently. We assume that ellipsoids be- [a;]= —(l“i—f)/,Ei2 (ei—%)/Ei 0 ,
longing to the ensemble of typeare characterized by the 0 0 (6__%)/5_
depolarization factoN; (and N/ =1—2N;), which are the : I(3.13a)

same in shape but not necessarily in size, as shown in Fig. 3.
In order to calculate the symmetrized polarizability,]  where
for the ellipsoid ensemble, we assign, as shown in Fig. 3, the

X,y,z coordinates to one of the ellipsoids with tleaxis 1Bi=5{1+Ni(—€) e} 1+ 3{1+N/(e—e)/e L,
parallel to the rotational axis, as before. We also assign the (3.13h
x",y’,z" coordinates with the’ axis parallel to the magne- _

tization or gyration vector. In the’,y’,z’ system, the per- UBZ=3{1+Ni(—¢€)/e} 2+ 2{1+N;(—¢)/e} *

meability tensor of the ellipsoid belonging to thth en- ) a1
semble is expressed as X{1+Nj(ei—€)/ e} " (3.130
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Substituting Eq.(3.13 into the tensorial equation, Eq. e— € (e—€){(1+3N,)e+(2—3Ny) ey}
(3.9, from the diagonal terms we obtain 1%+ e 29{(1_ Ny et NpeoH{(1— Np)et Njey)
n

3 {A(e—a)B)=0, (3.14 =0. (3.20

- This is a cubic equation of, which agrees with Eq(9) in
and, from the off-diagonal terms, Ref. 13. When the inclusions are also spherds=N,

n f:%); Eq. (3.20 reduces to the following quadratic equation

A= or €,
2, {a(ri=T)/Bf}=o0. (319

Al(%_ 61)(2%+ 62)+A2(%_ 62)(2%"!‘ 61)20,
From Eq.(3.15 we obtain (3.21

and the off-diagonal term, E3.16 is expressed as

n
- ) )
o2 AnAdEY (U AIT3(28+ )"+ Mgl (28 + €y)? -
=————=2 N (3.16 T A (2t €) 2+ Ay(2e+ €)2 (322
2
;1 {Ai1B7} Equation(3.21) agrees with that given by Landauet.
where we put C. Effective permeability and bounds calculated for cermet
A, /E; As an example, Bruggeman’s effective permeability is
o I I

=, (3.17) calculated at a wavelength of 08m for Fe-SiO, cermet,
E (A /E-Z assuming both Fe and SjCare isotropically characterized
ey VP by the spherical depolarization factoN€3). As Fig. 4
) . . . shows, the diagonal ter@ or the off-diagonal ternt’, falls
which we call symmetrized virtual volume fractions for the patween the two values, or theoretical boufdsalculated

ith ensemble of the ellipsoids. Equatith14) is an equation  from the Maxwell-Garnett theory assuming that Fe and
for e of order 2n, which does not contaifi or I'; . Thus we  sj0, are playing the role of inclusions and host medium,
obtaine independently of” by solving the equation of order respectively, and vice versa.
2n. From Eq.(3.16 we obtainl” by averagind’; , weighted
by A;. IV. DISCUSSION

Settingn=2, Eq.(3.14) for the diagonal term agrees with
Egs.(2) and(8) given in Refs. 12 and 13, respectively, for
the composite composed of two randomly oriented kinds o
ellipsoidal grains.

When the composite has a host composed of spheric
grains, the average polarizability for the host is expressed

(=8/fs - (T-1)iB; ° hereP is th larization induced in the ellipsoid. Th
R - - whereP is the polarization induced in the ellipsoid. There-
[a]=| —(Ti=D)/B7 (e1=e)lBy 0 ’ fore, a uniform depolarizing field expressed [&]P/¢; is
0 0 (e1— €)1 B working in the magnetized ellipsoid as well as in a nonmag-
(3.183  netized ellipsoid®?° It should be noted that this is derived
R R on approximating the permeability tensor to the first order of
B1=(e1t2¢€)/(3e), (3.180  magnetization, or setting,,= €,,=¢€,, in Egs. (2.2 and

by puttingi=1 andN;=N’=3 in Eq. (3.13. Substituting 2.3.

. ; : ) Based on the average field approximation proposed by
Eﬁn (3.180 into Eq. (3.19, after some manipulation we ob Bragg and Pipparfiwe derived a nondiagonal effective per-

meability tensor for a two-component composite containing
oriented ellipsoidal particles in a host medium, which is

Solving the potential boundary problem, we derived the
Flectric fieldE, induced in a magnetized ellipsoid exposed to
electric fieldF. The result is given by Eq2.30, which is
% written, by combining Eqs(2.33 and (2.34 with Eq.

.30, as

E,=F—[N]Ple,, 4.1

A+E> Aiﬁi magnetized along an arbitrary direction. The average field
- i=2 F acting on the particles is rewritten as
€e=eg——. (3.19

A-32 AB; F=Eo+[N]p/e; 4.2

by combining Eqs(2.33 and(2.34 with Eq. (3.4 and set-
This agrees with the formula derived by Grangvist and Hun+ing
deri [Eq. (10) in Ref. 1Q for n—1 ensembles of the ran-
domly oriented ellipsoids embedded in a spherical granular p=fP. 4.3
host. Whem=2, or the composite has only one ensemble ofSince p represents the polarization induced with respect to
the randomly oriented ellipsoids in the spherical grain hostthe host medium of the dielectric constduet ] per unit vol-
Eq. (3.14) is expressed ume of the total composite, E@4.2) reduces to the local
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to the first order of magnetization, we solved the quasistatic
potential boundary problem for electric field induced inside a
magnetized ellipsoid which is exposed to a uniform external
electric field. A uniform depolarizing fielgN]P/ e, is super-
imposing the external field in the magnetized ellipsoid, simi-
lar as in a nonmagnetized ellipsoid.

(2) Bragg and Pippard’s effective dielectric permeability
for the composite containing oriented ellipsoidal particles
embedded in a matrix was generalized to the magnetized
composite. The off-diagonal, as well as diagonal, terms of
the effective permeability are given by the average of those
for the particles and the matrix, weighted by the virtual vol-
ume fractions. The field acting on the particles was revealed
to be a local Lorentz fieldsy+[N]p/e;, generalized to the
ellipsoidal particles.

(3) Bruggeman’s self-consistent effective permeability
was generalized to the magnetized composite which contains

0 1.5 n different ensembles of randomly oriented ellipsoidal par-
i Fe-SiO, ticles. The diagonal effective permeabilityis obtained by
| SO A= 0.8 um . solving the equation of orderr? independently of the off-

A diagonal permeability’, while I" is given by averaging the

’ off-diagonal permeabilitied”; of the components weighted

by the symmetrized virtual volume fractiods. When the

S0, matrix A composite contains only two ensembles of spherical par-

Fe matrix ------ - ticles, the equation o# reduces to a quadratic one.

i e ~, 10- (4) Bruggeman'’s effective permeability tensor calculated

\o for Fe-SiO, cermet falls between theoretical upper and lower

° bounds derived by Hashin and Shtrikman. An experimental

i o study is in progress to describe the magneto-optical proper-

-0.15 o5 ¢ ties of metal granular composite in terms of the effective

f permeability tensors.

Bruggeman e e » A &
— ) o o0 o0

=
o -0.05[ Maxwell-Garnett

im(T)

FIG. 4. Real and imaginary parts of diagonad) (and off-
diagonal () effective dielectric permeabilities calculated at
A=0.8 um for Fe-SiO, cermet as a function of Fe volume fraction,
assuming the spherical depolarization facnsht(é) for both Fe and
SiO,. Circles: Bruggeman’s permeability. Solid lines: Maxwell-
Garnett's permeability for Fe particles in a Si@natrix. Dashed
lines: the same for Si@particles in an Fe matrix. Diagonal and

off-diagonal permeabilities of Fe are taken from Refs. 30 and 31, AppENDIX A: FIELD POTENTIAL EXPRESSION OF D £
respectively.
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Let us derive Eq(2.23), the normal component d@ vec-

Lorentz field if we puf N]=[1]/3. This reveals that Bragg tor expressed in terms of figld potentials. The normalé,or
and Pippard’s approximation is a generalization of Maxwell-component oD vector is written as
Garnett’s or Clausius-Mossotti's approximation, as has been
suggested previousfy, though not by formula.

Our Maxwell-Garnett effective dielectric permeability ex-
tended to the magnetized composite is expressed by a simp| . . .
formula, Eq.(3.7),gusing virtual F\)/olume fragtions. Hoz\/ever, pl—?ere N is one of the following unitary vectors along tée
we found that the effective tensor cannot be expressed by &
simple formula when the composite involves many compo-

D{=n; D;=n{D}+nDY+niD3. (A1)

, and ¢ coordinates,

r]ents(i.e., n=3) and/or randomly orier)ted eIIipsoing par- ny IXI9E A&l X
ticles. Conversely, Bruggeman'’s effective permeability ten- v 1 / y
sor for a magnetized composite is derived from a simple n,=\ Ng ~h, dylog | =hy| d&ldy |, (A2a)
formula[Egs.(3.14) and(3.16] even when it contains many n§ 0zl o€ 0&l oz
(n=3) ensembles of randomly oriented ellipsoidal particles.
V. CONCLUSION ") L[ om Il 9
_ _ _ =l nl|=—| dyldan|=h,| dnldy |, (A2b
The main results of this study are summarized as follows. M ;’ h, yrem 2| M (A2b)
(1) Using the dielectric permeability tensor approximated ny gzl on dnloz
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ny oxld e Al Ix ngXn,=ny, n,Xn,=ng, n,Xng=n,. (A7b)
n,=| n% | = P yldg | =hg| déldy |, (A2c)  On the surface of the ellipsoid, whete=0, we have from
n’, *\ az1a¢ adlaz Egs.(2.13 and(A3)
whereh,, h,, andh; are metrical coefficients given By (1) N (A8
ax\2 [ay\2 | az\2| V2 Vo™ 2ac’
T
1 ‘ Y IE 9E (A33) ) 1 — 12 ]
ax\2 [ ay 2) 112 (h2)o=3| Grad(nred)) (A8b)
R I
2 ( an on an ( ) A 7] +a2\ 12 8
s (U
={|== — — . c
S lag) g lag Substituting Eqs(A7) and (A8) into Eq. (A6) yields Eq.
From Egs.(2.2), (2.8), and(2.11), we obtain (2.23.
_D*— 9P dby Iy (Ada) APPENDIX B: DERIVATION OF ELECTRIC FIELD
T TNy T o INDUCED IN MAGNETIZED ELLIPSOID
adb I ad Let us derive Eq(2.27), starting from Eq(2.23.
—D{=—71—1+61—1 1_1, (A4db) The partial differential coefficient appearing in the first
24 Iy gz term of the right-hand side of E@2.23 is calculated from
o o 06 Eq.(2.29 as
1 1 1
_Di:‘le_ lW ElE. (Adc) i Ix
2 v 2] {2
Using Eq.(A2), the partial derivatives in the right-hand side i/, 29 29

of Eq. (A4) are given as

—{Fy+cyA(0>}(5—y) —cy(%) Yo
1713 0 7z 0

Ify_ 9891 Im Iy 9% Iy
X X dE X dp X db . A
Ngdy N, dpy Ny dpy _{FZ+CZA,(O)}(3_§> _Cz(é’_f) (2)o-
"R 9E Thom he g A5® ’ ’
1 2 07 3 (B1)
(9;151_”_%3;451 n; n 0P n¢ [z A5 Calculating partial derivatives appearing in the right-hand
gy hy ¢ h2 37] h3 ad, (ASb) side of Eq.(B1) from Egs.(2.13 and(2.26), we obtain
z z 07
1 2 3 0
Equation(A5) is substituted into Eq(A4), which is fur- ~ Where we replaced
ther substituted into EqAL) to yield after some manipula- )
tion X=F*+c* A(O)—%], (B3a)
dp (NgXn,)* d¢
-Dé= (ng Ne) §1 —gh ! a—l 5
2 Y=FY+cY A(O)—T], (B3b)
(ngx Ng)? aqsl s (n,Xng)Y (9;451 ac
h3 &d’ ! h2 2
— z —_
(n¢Xn§)y 3(751 (nann)X Iy Z=F*+c [A (0)— =2 a)’ (B30
- ® 7 +i ——— —
h3 04) h2 2\ 1/2
1(nta
X = —| ———
- % %] (A6) “=32alaz=c?) - (B43)
3
Here superscripts, y, andz mean respective components of _ i n+c? |12 (B4b)
the vector products. The unitary vectors satisfy - 2c\c’-a’

n§~n§=1,

(A7a)

In a similar way, from Eqgs(2.24) and(2.13 we obtain
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8] --x(3 13
an, i), ad
=X'2a’K sing—Y'2a’K cosp,
aqsl) ax) ( ay) ( az)
_r+ :_X/ _ _Yr 7 _Z/ _
(ﬁrﬁ 0 anl, anl, b/,

=—X'a?(p+a? 'K cosp
—Y'a?(p+a?) K sing

0
(B5)

—Z'c?(p+c?) L, (B6)

where we replaced
X' =F*+c*A(0),

Y'=F'+cA(0), Z'=F*+c*A’(0).

(B7)
Substituting Eqs(B2), (B5), and (B6) into Eq. (2.23, we
obtain
(h1D%)o=(e1X+ y1Y' — 6,2")K cosp+(— y X' + &Y
+§lZ’)K S|n¢+(5lx,_€lY’+€1Z)L (BB)

after some manipulation.
On comparing Eqs(2.25 and (2.24), we notice that an
equation similar to Eq(B8) also holds forD, as follows:

(h1D5)o=(&:E5+ ¥2EY— 8,E5)K cosp+(— y,E5+ €,

+ 0,EL)K sing+ (5,E5— LB+ e,EZ)L.  (BI)
|

(€—€)lB; (%

[a]=| —(n=WIB (&

(5-0I(BB) —(Gi—

Here

Bi=1+Ni(€—€)le, (C1lb
Bl =1+N!(—e)le, (C10
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In order to equate Eq$B9) and(B8) for all values ofy and
¢, we must have

e X+yY' = 8,2 =e,E5+ y,EY— 5,E5, (B103
—yiX'teY+0HZ' =~ yEr+ eE)+ (F5,

(B10b)

51XI_§1Y,+612252E)2(_§2E¥+62E§. (B].OC)

In a similar way, the boundary condition of ER.21) is
transformed into

—X'a?K cosp—Y'a’K sing—2Z'acL
= —Eja’K cosp—E%a’K sing—E3aclL

for which to hold for all values ofp, we must have

(B11)

X'=E, Y'=E, (B12)

The remaining boundary condition of E(.22) yields Eq.
(B12), as well.

Eliminatingc*, ¢¥, andc? by combining Eqs(B3), (B7),
and (B12) with Eq. (B10), we obtain Eq(2.27).

7' =EZ.

APPENDIX C: AVERAGE POLARIZABILITY
FOR RANDOMLY ORIENTED ELLIPSOIDS

Here we derive Eq(3.13), the average polarizability for
theith ensemble of the randomly oriented ellipsoids. On re-
ferring to Eq.(2.37), the symmetrized polarizabilitye; ] for
theith ensemble is expressed in thgz system as

- (85— (BB
oIB; (&G—OI(BiB]) (C19
OIBB)  (e—e)lB

3
ar’njzgl UmkUjkakkJFgI’ (UnXUjsinax, (C3)

where U;(j=1,2,3) is thejth unitary vector, and subscript
S(k,lI) on the parentheses designates the component of the

andZ, 8, andy are the off-diagonal terms of the symme- Vector product as follows:

trized effective tensofto be determinedexpressed in the
X,Y,z system. Since the off-diagonal polarizabilities given by

Eqg. (C1g are antisymmetric ¢m= — ajm,, M#j), they are
transformed byJ to be expressed in the',y’,z’ system as

3 3
r _
U= 21 UmkUankI_kz_:l Ui jkakk

+g|, (UnilUji—UnUj) ay, (C2

where we omitted the suffixfor simplicity andX .., means
summing only fork,1=1,2; 2,3; and 3,1. EquatiofC2) is

rewritten as

3 (kJ=12 and 2,1

S(k,)=y1 (kl=23 and 32 (C9
2 (k=31 and 1,3
Since the unitary vectors satisfy the relation
UnXUj=*Ugmj) (CH

where the complex sign takeis for m,j=1,2; 2,3; and 3,1;
and— form,j=2,1; 3,2; and 1,3, EqC3J) is transformed to

3
ar,njzz UmkUjkakkikE#, Usmjsknax - (C6)
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Substitutingey, given by Eq.(C1) into Eq. (C6), we obtain
ami= (€= €)(UnUj1/Bi+UmpUj2/ Bi+UnsgUj3/B)
{Ugm,js(vi— ) B2+ Usgm,j2(0i— 3)/(,3#3{)

+UAS(n1,j)1(§i_§)/(Bi:3i,)}- (Cv)
Becausel, 8, andy (or ¢;, &, andy,;) are projection
elements of the gyration vectéwhich is directed along the
Z axis) to thex’, y’, andz’ axes, respectively, we have the
following relations:

Usf=%.  (C8a
Uszsl'i=v.
Substituting Eqs(C8) into Eq. (C7) yields
ami=(€6—€)(UnUj1/Bi+UmpUjo/Bi+UpnsUjs/Bl)
i(ri_f){ué(m,j)3lﬁi2+Ué(m,j)zl(ﬁiﬁi’)

+U§(m,j)1/(ﬂiﬂi/)}- (C9
Averaging the polarizability over all ellipsoids is equiva-
lent to averaging over all unitary transformations which

U31f:2, ngf: A(S)‘,

Uail'i=¢i, Ugli=46;, (C8b
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transform rotational axes of all ellipsoids to thedirection.

We now assume that the randomness of the orientation of the
ellipsoids in the ensemble is so complete that averaging over
all unitary transformations is equivalent to averaging; in

Eq. (C9) over all directions or solid angles. Then we have the
averagegdenoted by)) of the polarizability elements as

[&i]mj:<ar,nj>
=(€&— ){(UmUj1)/ Bi+(UmUj2)! Bi
+<Um3U13>/,3i'}i(Fi_f){<U§(m,j)3>/,3i2

(U m 2 (BB +{(Usmp (BiB)}.  (C10

SinceU,; is themth component of th¢th unitary vector, we
can write U;=(x;/r,xo/r,x3/r), where r=(x{+x5
+x3)Y2. Then we have

<UmkUjk>:f (Xij/rZ)dQ /j dQ:5m]/3,
(C1)
where integration is performed over the total range of solid

angle Q, and én,; is Kronecker’s delta. Substituting Eq.
(C1)) into Eq.(C10 yields Eq.(3.13.
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