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Green’s-function theory for row and periodic defect arrays in photonic band structures
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The defect modes associated with a row or a periodic array of defects in a two-dimensional photonic band
structure are studied using exact Green’s-function methods. Specifically, we consider the above-described
defect problems created in a pure photonic band-structure system that models an experimental system recently
investigated by McCalkt al. This is a square lattice array of cylindrical rods formed of linear dielectric
material with e=9 surrounded by vacuum and of filling fractidn=0.4488. In one study a row of rods is
replaced in the photonic band structure by a row of impurity rods that may be of either linear or nonlinear
dielectric material, and conditions are determined for the existence of impurity modes, associated with the
impurity array, in the photonic band gap. The electric fields of the impurity modes are computed for impurity
modes in the gaps. In a second study, a two-dimensionally periodic array of defects is introduced into the
photonic band structure such that the periodicity of the defect array may or may not coincide with the
periodicity of the original photonic band structure. The defect rods are treated in the cases for which the
impurities are formed from both linear and nonlinear dielectric materials, and the conditions necessary for
defect modes to exist in the photonic band gaps are determined.

Recently there has been considerable interest in defects Bingle-site defect structure, studied experimentally by Smith
photonic band structures as related to laser or optical circuiét al,* in which a single rod was removed from an otherwise
applications, and a number of different defect types havequare lattice array of dielectric rods. Only defect modes
been studied in these regards including single-site defectsyith the electric field polarized parallel to the axes of the
multiple-site defects, rows of defects, and surfadc@sThe rods were considered and good agreement between theory
goal of these studies has been the determination of the comand experiment was found. In Alget al.’ the general prob-
ditions under which the impurity modes exist for frequencieslem of a single dielectric impurity rod or a cluster of five
in the band gaps of photonic band structures and the examdlielectric impurity rods with general impurity dielectric con-
nation of practical uses which can be made of such impuritystant in a square lattice truncated photonic band structure
structures. Calculations of impurity modes have been pemas considered(The system is truncated as the photonic
formed using supercell methdds which are based on com- band structure is bounded between two perfectly conducting
puter simulation techniques and exact Green's-functionplates which perpendicularly intersect the axes of the dielec-
methods,~8 which yield solutions of impurity problems in tric rods forming a square lattice arrp method was then
terms of the eigenvalues and eigenfunctions of the photonigiven by Algul et al. which allowed for the determination of
band structure in the absence of impurity dielectric materialthe impurity dielectric constants needed to observe impurity
Most of the early calculations of impurity modes have beemmodes of a given frequency in the band gaps of the photonic
performed using supercell methdd$ with exact Green’s band structure. In general it was found that for a fixed impu-
function calculations® of the type discussed in this paper rity mode frequency, the solution for the impurity mode di-
only appearing in the last two to three years. While exacelectric contrast was multiple valued. This represented an
Green’s-function methods have been applied to single anddvancement over other non-Green’s-function-based meth-
finite clusters of defects, these techniques have not been apds for the study of the single impurity problem as non-
plied to infinite clusters of defects, and in this paper weGreen’s-function-based methods do not readily yield the
present results for the exact Green’s-function method appliethultiple-valued impurity dielectric constants corresponding
to rows of defects and to periodic arrays of defects in twoto a given impurity mode frequency. More recently, in
dimensional(2D) photonic band structures formed from an McGurn and Khazhinsl?yit was shown how the single im-
array of cylindrical rods. Both of these defect systems therpurity problem solutions for the impurity dielectric constant
involve an infinite number of impurity rods. The conditions determined as a function of the impurity mode frequency for
needed for defect modes to exist at frequencies in the banghe-dimensionalslabg and two-dimensionalsquare lattice
gaps of the photonic band structures are determined and egsray of dielectric rodsphotonic band structures could be
pressions for the electric fields of these defect modes aresed to solve the problem of a single impurity formed from
given. In both of these studies, impurities formed from bothfrequency-dependent dielectric material in photonic band
linear and nonlinear dielectric media will be treated. structures otherwise composed from frequency-independent

The application of exact Green’s-function methods to thedielectric materials. In particular, results were presented for
study of defect modes in photonic band structures was give®aAs impurities in photonic band structures formed from air
by Maradudin and McGurtfor a two-dimensional photonic and aluminum composites. One feature common to all of
band structure formed from an array of cylindrical dielectricthese single impurities and finite clusters of impurities is that
rods. In this work a calculation was given for the particularthe impurity modes at frequencies in the band gaps are lo-
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calized about the impurity media with fields that decay w\?

quickly as one leaves the site of the impurity media. E3(x)=(E) f dx'? G(x,x") Se(x)E3(x'),  (2)
In the work discussed below we give an exact Green’s-

function treatment of a new type of impurity problem. where

Whereas past Green's-function works considered impurities

obtained by replacing one or five dielectric rods in a two- e W00 ()
dimensional photonic band structure by impurity rods, in the G(x,x )—kEj T wo\Z ©)
work presented below we replace an infinite number of rods A= E)

in a two-dimensional photonic band structure by impurity

rods. In particular, in one problem we replace a row of rodsand 4{)(x),\{) are the orthonormal eigenvectors and eigen-

in the two-dimensional photonic band structure by a row ofyajues of the purédefect-fre¢ photonic band structure ob-
impurity rods. The row of impurity rods is found to act as atgjned from

type of wave guide which propagates waves through the sys-
tem at frequencies which are in the stop bands of the photo- [V2+e(x)A Ty (x)=0. (4)
nic band structure in the absence of impurities. We solve for ) )
the impurity dielectric constant as a function of impurity I EQ.(4), k=(ky k) is the wave vector in the reduced zone
mode frequency and wave vector, obtaining multiple-valuedscheme anglis a band index label.
solutions not previously obtained by other means. Results for Let us consider the addition of a row of defects to the pure
the electric field are also presented. In a second problem whotonic band structure. Specifically, we take
replace a two-dimensional periodic array of rods in the two-
dimensional photonic band structure by impurity ro(his
system has not been previously been considered by any other
means. Again propagating modes are associated with this ) )
new impurity type. Solutions for the impurity dielectric con- WhereS, n=[nx;+mXx;]a for n andmintegers, and(x) is
stant as a function of impurity mode frequency and wavean arbitrary continuous function of within the primitive
vector in the band gaps are given. In both cases considerel@ftice cell centered about o but zero outside the primitive
expressions of the electric fields about the impurity medidattice cell (PLC) centered aboutq,. Substituting Eq.(5)
are given, and results for nonlinear and frequency-dependekito Eq. (2), we find fory in the primitive lattice cell cen-
impurity media are presented. We will begin by first treatingtered onr g,
a system with a row of defects, and then in a second study )
we shall consider two-dimensional periodic arrays of defects dv'2 2) E G(
in photonic band structures. Yot n y
We consider a two-dimensional photonic band structure
which in the absence of impurities is formed of infinitely 1S, m, Y +hS, ) F(Y)Es(y +hS, ),
long cylindrical rods of circular cross section, composed (6)
from linear dielectric material. The axes of the rdtiken to
be parallel to thex; axi9) are arrayed in a square lattice of Wherel andh range over the integers.
lattice constant in the x; —x, plane such that the position If we write
vectors of the rod axes are given by ,=(nk;+m)a, iq.1s,
where n, m are integers and the rods are surrounded by Ea(y+1S, m)=€%""nmEg(y), @)
vacuum. The dielectric constant of the rodseis9, their
filling fraction is f=0.4488, and only modes propagating
perpendicularly to the rod axes with electric fi@lgolarized
parallel to the axes of the rods are considered. This system _ i <q
corresponds to an experimental system recently studied by TN
McCall et al® (n"+m)a
In the absence of defects or other dielectric modificationsihen
the periodic dielectric constant of the above described sys-
tem e(x) is defined by

Se)=A 2 f(x=1Sm), (5)

ES(y—HSn,m):Af

PLC aboutrg g

whereq= q[nX; + m%,]/\Vn?+m? for

s
$ t
V(n?+m?)a

w 2
Eso(Y):Af d ’2<—) {GO(Y'Y’)
. PLC aboutrg o c
€,|X—rn,m/<r, for somen,m integers '
€X)=11 otherwise @ ”
+2 2 Gi(y,y')coda- 1S, ml | (¥ )Eadly'),
where x=X;X;+X,X,, I is the radius of the cylinders in -
our system, and we take=9 for the results presented below. €]
In the presence of defects or any other modification to th%vhere
dielectric properties of the system in E{), we can write
the total dielectric constard;gra (X) = €(X) + de(x), where " ,
Se(x) is the change frome(x). Proceeding in the usual Gy ) =Gy +ISm y)- ©
way,>"®we find that the electric fiel&(x) of the impurity  (Note: The equation for a single-site impurity centered about

system is given by looiS just given by
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FIG. 1. Plot ofA versusw/c for (a) S gand(b) S, ;. Curves are FIG. 2. Plot ofw/c versusqd for (&) S, pand(b) S, ,. Curves
labeled from bottom to top agd=0, w/4, =/2, 3w/4, andw. All are labeled as states of constAnill lengths are measured in units
lengths are measured in units af of a
w2 the defect modes decays quickly with increasing distance
E3(y)=Af dY'z(—) Go(y,y" ) f(y")Es(y’'), perpendicularly from the plane of defects.
PLC aboutrg o c

(10 In Fig. 1 we plot results foA versusw/c in the second
band gap (0.41& wa/27wc=<0.468) of our photonic band

and its solution yields localized impurity modes bound to theStructure for states of impurity mode wave veatoiin Figs.
single impurity site). The solution of Eq(10) yields impurity ~ (&) and 1b) results are shown, respectively, 8, and
modes of wave vectay traveling along the row of impurity Stz type impurities. Curves are presented in each case for a
rods. number of values ofid whered=a for the S, ;, case andl

In the case that(y) = é(y), Eq.(8) can be readily solved = \/5 a for the Sl,ll case are the lattice constants of the re-
for A as a function ofj andw/c chosen in the photonic band SPective rows of impurities.

gap. We find In order to obtain a better understanding of the dispersion
relations of the gap impurity modes, we use the results in
2 o 1 Fig. 1 to present in Fig. 2 plots of the impurity mode fre-
w . ) X LT
A= Z) |Gy 0,00+23 G(0,0 N ’ guencies as a function q_ﬁforf_lxedA. Agam_Flgs. Zg) and
[( c) { o(0.0 ;1 1(0,0)codq S”'m]“ 2(b) are forS; o and S, ; impurities, respectively. It is seen

(11  that for fixedA=0.2, 0.3, and 0.4 in Fig.(3) and for fixed
A=0.25, 0.30, 0.35 in Fig. (®), there are gaps in the fre-
where0=0(X;+X,) gives the value ol needed to observe quency spectrum of propagating impurity modes. For fixed
a defect mode of wave vectgrat a frequencys/c chosento A=0.2 and 0.4 in Fig. @ there are gaps imd for the
be in a photonic band gap. These defect modes are thepropagation of impurity modes.
propagating modes, confined to move along the row of im- An expression for the electric field of the defect mode in
purities. As we shall see below, the electric-field intensity ofthe case that(y) = (y) is given from
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FIG. 3. Plot of|E3(0,y,)/E5¢(0,0)|% versusy,. The curves are
labeled as states afd and wa/27c=0.450. FIG. 4. Plot of A versusw/c for t=0.0la (dashed and t
=0.1a (solid). Curves ofqd=0 andqd= = are labeled. For each
t, the curves for exqd<= fall between theqd=0 andqd=m

2
w . . .
Eso(Y)/Eso(O):A(E) [Go(y,O) limits. All lengths are measured in units af

ity on the defect gap modes predicted by Etl). Specifi-
(12) cally, if we take the Kerr form,

+2§1 Gi(y,00c0§q- 1S, m]

whereA is obtained from Eq(11). Specifically, the modulus Se(X)=Ag(1+ x|E3(x)|?) Z S(x—1S, ), (15
squared of the electric field of the defect mode divided by I=—c '

E30(0)|? is given b
[Ea(0) . y then substituting into Eq(2) we find solutions forA, as a

o 2 function of impurity(in the gap mode frequencw given by
2 | Go(y,00+2>, Gi(y,0)c0§q- 1S, ]
E30(Y)’ _ =1 RE
E30(0)| ~ ' Ap= s (1+ x|Eo|?)| Go(0,0)
Go(0,0)+22, Gi(0,0)co8 1S, ]
(13

o -1
+2> G,(0,0)coiq'lsmm]H , (16)
In Fig. 3 we present results foEy(y)/E3o(0)|? versusy, =1
for S, o for y;=0. The curves are again labelgd.

In the case in which we take L B L I BN B
04 —

1 - qd=3m/4 .

—, Iyillyal<t N -

fy)={ 4 7 14 ]

0, otherwise, 0.3 —

Eq. (8) can be discretized into the form of a matrix eigen- A

value problem. We have done this for0.01a and 0.1@ 0.2
using a 25-pt. Gaussian quadratureyin For a givengqd and

impurity mode frequencyw/c, in the band gap there are

now a number of eigenvalue solutions férwhich support 0.1
an impurity mode of frequency/c in the gap. Only in the
case thaf (y)= 6(y) do we find a single solution fak cor-

responding to am/c in the gap. In Fig. 4 we ploA versus
impurity mode frequencyw/c in the 0.4l4&wal2mc

0.0 Lt 1 | | ! I I | | L1 1 | | | T | | 1.1
042 043 044 045 046

=0.468 band gap, presenting curves of varigds We do wa/27Tc

not show all of the eigenvalues fdy but present only the

eigenvalues which are closest to the resultsfigr) = 5(y) FIG. 5. Plot ofA versusw/c for the two-dimensional impurity
shown in Fig. 1. array described in the text. The curves are labeled bottom to top as

The results in Eq(11) for the case oi-function defects states ofqd=0, =/4, w/2,7, and 37/4. (Note: The curves for
can be readily extended to consider the effects of nonlineafgd= /2 and « coincide) All lengths are measured in units af
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where|Ey| is the amplitude of the electric field a§o. We  Egs.(1) and(2) upon taking the B periodic array of defects
see that from Eq(16) that A, now depends on the field
strengthE,. This allows for the adjustment of the impurity
mode frequencies for fixed, and q through changes in
Ey. (Similarly, for fixed A, and w, adjustments irg can be
made by changing,.) Comparing Egs(11) and (16), we

se)=A 2 X fOx-I1Sn1'Sym), (18
~, =

where S, n=[nx;+mX]Ja, Sy w=[n'X;+m’X,Ja for
n,m,n’,m’ integers are orthogonal vectors, af() is de-

see that fined as in Eq(5). This gives a 2D periodic system but the
periodicity of de(x) may or may not be the same as that of
&(X).
A=(1+ x|Eo|D) Ao, (17) Substituting Eq(18) in to Egs.(1) and(2) and writing
Eg(y+1Sym+ 1’ Sy ) =4S Sm B (y),
19
so that the results foA in Fig. 1 are readily taken over to for y in the primitive lattice cell ofe(x) centered about o
solve the nonlinear problem. andq a wave vector in the first Brillouin zone of the lattice

An additional case of interest is the system obtained fronwith primitive lattice vectorsS, ,, and S, ,», we find

2 o0
Eso(Y):ALLC - dy’z(% Goo(y,y’)+2|21 1Gio(y,y")co8q-1S, ml+Gai(y,y")cog - 1Sy 1}
aboutr oo =
+4|21 .2 G (y,y)coga-1S, mcoga-1' Sy m 1 |Eadly"), (20)
=ly=1
where
Gi/(y,Y)=Gy+IS mt1'Sy muY"). (21

The solution of Eq(20) then yields traveling-wave impurity modes of wave vealor
If we now takef(x)=6(x), we find

-

+42, > Gy/(0,0c04q-1S, mlcog a-1'Sy ]

1=1yr=1

2

Gool0,0)+22, {G10(0,0)c04q1Sy m] + G0y (0,0)c08.q 1Sy 1}

-1
] (22)

specifies thel needed to obtain a mode of wave vedjaand  arbitrary f(x) is again obtained by discretizing EQO0) into

frequencyw in the band gap. In obtaining E¢22) we as-  the form of a matrix eigenvalue problem far

sume that Eq(18) is a weak enough perturbation that the |y Fig. 5 we present results from E(R2) evaluated for
edges of the band gap are little changed from those in thg, =9 system in the case th§$, ;,S; _1,S.11,S_14 are
unperturbed system. This will be the case for smadind for 4 only nonzeroS, , and S,/ in E’q_ (18).1 We blot A

I_Smm|'|KSn’,mt’|>a' Ind_the case of the introduction of & NoN- a5, in the second band gap for curves labetetvhere
Inear kerr-type medium giving q=qv2%, for — m/\2a<q<m/\2a andd= \2a is the lat-

o o tice constant of the impurity array.
Se(X)=Ag[1+ x|Ese¥)|?] > > O(X—=18, m _In this paper we present an exact Green’s-function .calcu—
=== —o lation for a two-dimensional photonic band structure with an
'Sy ) (23) infinite row of impurities or an infinite two-dimensional ar-

ray of impurities. Previous Green’s-function treatments con-

sidered only single impurities or finite impurity clusters. Un-

like results for single impurities and finite clusters of
Bo=A/(1+ X|Eol), (24) impurities the modes found in our infinite impurity systems
whereA is from Eq.(22) and|Ey| is the field amplitude at are propagating, not localized modes. Conditions on the di-
the site of the nonlinearity. Again the bands of modes in theelectric constant of the impurity material are found for im-
gaps of thee(x) system can be frequency tuned in the casepurity modes of a given frequency in the gap and wave vec-
x#0 by adjustingE,. The general solution of Eq20) for  tor to exist in the impurity system. These results are used to

we find that
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discuss the problem of nonlinear impurity dielectric materi-
als. In addition, the solution of the problem of frequency-
dependent impurity dielectric matefawith frequency-
dependent dielectric constard,,(w) for either of the
systems considered above can be obtained as a solution
the equation

A(w,q)=Aj[ €imp( @) — €], (29

ARTHUR R. McGURN
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cally (1) rows of imperfections have been suggested as alter-
natives to optic fibers in optical circuitly,and (2) two-
dimensional arrays of impurities can be used to create very
narrow band transmission filters in the band gaps of photonic
band structures. The introduction of nonlinearity into the im-
perfections forming these impurity systems allows for the
tuning of the impurity modes in frequency and wave vector
by varying the amplitude of the electric field, and the use of
frequency-dependent impurity dielectric materials is found to

whereA, is the area in units of the lattice constant of a singleg,jjitate the observation of impurity gap modes near the

impurity rod in the row of rods for rows of defects or the
two-dimensional array of rods for the periodic array of de-
fects. In Eq(25), A(w,q) is one of the frequency- and wave-
vector-dependent solutions fdrgiven in either Figs. 1, 4, or
5, and Eq.(25) is solved self-consistently fap as discussed
in Ref. 8.

dielectric resonances of such materfal€ne additionally
useful feature of photonic band structures that has been dem-
onstrated is that, as photonic band structures can be con-
structed of very low loss dielectric materials, the impurity
modes can often exhibit states of very higtt

The types of impurity modes discussed above suggest This work is supported in part by NSF Grant No. DMR

themselves to various technological applications. Specifi
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