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The defect modes associated with a row or a periodic array of defects in a two-dimensional photonic band
structure are studied using exact Green’s-function methods. Specifically, we consider the above-described
defect problems created in a pure photonic band-structure system that models an experimental system recently
investigated by McCallet al. This is a square lattice array of cylindrical rods formed of linear dielectric
material withe59 surrounded by vacuum and of filling fractionf50.4488. In one study a row of rods is
replaced in the photonic band structure by a row of impurity rods that may be of either linear or nonlinear
dielectric material, and conditions are determined for the existence of impurity modes, associated with the
impurity array, in the photonic band gap. The electric fields of the impurity modes are computed for impurity
modes in the gaps. In a second study, a two-dimensionally periodic array of defects is introduced into the
photonic band structure such that the periodicity of the defect array may or may not coincide with the
periodicity of the original photonic band structure. The defect rods are treated in the cases for which the
impurities are formed from both linear and nonlinear dielectric materials, and the conditions necessary for
defect modes to exist in the photonic band gaps are determined.

Recently there has been considerable interest in defects in
photonic band structures as related to laser or optical circuit
applications, and a number of different defect types have
been studied in these regards including single-site defects,
multiple-site defects, rows of defects, and surfaces.1–9 The
goal of these studies has been the determination of the con-
ditions under which the impurity modes exist for frequencies
in the band gaps of photonic band structures and the exami-
nation of practical uses which can be made of such impurity
structures. Calculations of impurity modes have been per-
formed using supercell methods1–3 which are based on com-
puter simulation techniques and exact Green’s-functions
methods,5–8 which yield solutions of impurity problems in
terms of the eigenvalues and eigenfunctions of the photonic
band structure in the absence of impurity dielectric material.
Most of the early calculations of impurity modes have been
performed using supercell methods1–4 with exact Green’s
function calculations5–8 of the type discussed in this paper
only appearing in the last two to three years. While exact
Green’s-function methods have been applied to single and
finite clusters of defects, these techniques have not been ap-
plied to infinite clusters of defects, and in this paper we
present results for the exact Green’s-function method applied
to rows of defects and to periodic arrays of defects in two-
dimensional~2D! photonic band structures formed from an
array of cylindrical rods. Both of these defect systems then
involve an infinite number of impurity rods. The conditions
needed for defect modes to exist at frequencies in the band
gaps of the photonic band structures are determined and ex-
pressions for the electric fields of these defect modes are
given. In both of these studies, impurities formed from both
linear and nonlinear dielectric media will be treated.

The application of exact Green’s-function methods to the
study of defect modes in photonic band structures was given
by Maradudin and McGurn5 for a two-dimensional photonic
band structure formed from an array of cylindrical dielectric
rods. In this work a calculation was given for the particular

single-site defect structure, studied experimentally by Smith
et al.,4 in which a single rod was removed from an otherwise
square lattice array of dielectric rods. Only defect modes
with the electric field polarized parallel to the axes of the
rods were considered and good agreement between theory
and experiment was found. In Algulet al.7 the general prob-
lem of a single dielectric impurity rod or a cluster of five
dielectric impurity rods with general impurity dielectric con-
stant in a square lattice truncated photonic band structure
was considered.~The system is truncated as the photonic
band structure is bounded between two perfectly conducting
plates which perpendicularly intersect the axes of the dielec-
tric rods forming a square lattice array.! A method was then
given by Algulet al.which allowed for the determination of
the impurity dielectric constants needed to observe impurity
modes of a given frequency in the band gaps of the photonic
band structure. In general it was found that for a fixed impu-
rity mode frequency, the solution for the impurity mode di-
electric contrast was multiple valued. This represented an
advancement over other non-Green’s-function-based meth-
ods for the study of the single impurity problem as non-
Green’s-function-based methods do not readily yield the
multiple-valued impurity dielectric constants corresponding
to a given impurity mode frequency. More recently, in
McGurn and Khazhinsky8 it was shown how the single im-
purity problem solutions for the impurity dielectric constant
determined as a function of the impurity mode frequency for
one-dimensional~slabs! and two-dimensional~square lattice
array of dielectric rods! photonic band structures could be
used to solve the problem of a single impurity formed from
frequency-dependent dielectric material in photonic band
structures otherwise composed from frequency-independent
dielectric materials. In particular, results were presented for
GaAs impurities in photonic band structures formed from air
and aluminum composites. One feature common to all of
these single impurities and finite clusters of impurities is that
the impurity modes at frequencies in the band gaps are lo-
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calized about the impurity media with fields that decay
quickly as one leaves the site of the impurity media.

In the work discussed below we give an exact Green’s-
function treatment of a new type of impurity problem.
Whereas past Green’s-function works considered impurities
obtained by replacing one or five dielectric rods in a two-
dimensional photonic band structure by impurity rods, in the
work presented below we replace an infinite number of rods
in a two-dimensional photonic band structure by impurity
rods. In particular, in one problem we replace a row of rods
in the two-dimensional photonic band structure by a row of
impurity rods. The row of impurity rods is found to act as a
type of wave guide which propagates waves through the sys-
tem at frequencies which are in the stop bands of the photo-
nic band structure in the absence of impurities. We solve for
the impurity dielectric constant as a function of impurity
mode frequency and wave vector, obtaining multiple-valued
solutions not previously obtained by other means. Results for
the electric field are also presented. In a second problem we
replace a two-dimensional periodic array of rods in the two-
dimensional photonic band structure by impurity rods.~This
system has not been previously been considered by any other
means.! Again propagating modes are associated with this
new impurity type. Solutions for the impurity dielectric con-
stant as a function of impurity mode frequency and wave
vector in the band gaps are given. In both cases considered,
expressions of the electric fields about the impurity media
are given, and results for nonlinear and frequency-dependent
impurity media are presented. We will begin by first treating
a system with a row of defects, and then in a second study
we shall consider two-dimensional periodic arrays of defects
in photonic band structures.

We consider a two-dimensional photonic band structure
which in the absence of impurities is formed of infinitely
long cylindrical rods of circular cross section, composed
from linear dielectric material. The axes of the rods~taken to
be parallel to thex3 axis! are arrayed in a square lattice of
lattice constanta in the x12x2 plane such that the position
vectors of the rod axes are given byrn,m5(nx̂11mx̂2)a,
where n, m are integers and the rods are surrounded by
vacuum. The dielectric constant of the rods ise59, their
filling fraction is f50.4488, and only modes propagating
perpendicularly to the rod axes with electric fieldE polarized
parallel to the axes of the rods are considered. This system
corresponds to an experimental system recently studied by
McCall et al.9

In the absence of defects or other dielectric modifications,
the periodic dielectric constant of the above described sys-
tem e(x) is defined by

e~x!5 H e,ux2rn,mu,r , for some n,m integers
1, otherwise ~1!

wherex5x1x̂11x2x̂2 , r is the radius of the cylinders in
our system, and we takee59 for the results presented below.
In the presence of defects or any other modification to the
dielectric properties of the system in Eq.~1!, we can write
the total dielectric constanteTOTAL(x)5e(x)1de(x), where
de~x! is the change frome~x!. Proceeding in the usual
way,5,7,8 we find that the electric fieldE3(x) of the impurity
system is given by

E3~x!5S v

c D 2E dx82 G~x,x8!de~x8!E3~x8!, ~2!

where

G~x,x8!5(
k, j

ck
~ j !~x!ck

~ j !* ~x8!

lk
~ j !2S v

c D 2 , ~3!

andck
( j )(x),lk

( j ) are the orthonormal eigenvectors and eigen-
values of the pure~defect-free! photonic band structure ob-
tained from

@¹21e~x!lk
~ j !#ck

~ j !~x!50. ~4!

In Eq. ~4!, k5(k1 ,k2) is the wave vector in the reduced zone
scheme andj is a band index label.

Let us consider the addition of a row of defects to the pure
photonic band structure. Specifically, we take

de~x!5D (
l52`

`

f ~x2 lSn,m…, ~5!

whereSn,m5@nx̂11mx̂2#a for n andm integers, andf (x) is
an arbitrary continuous function ofx within the primitive
lattice cell centered aboutr0,0 but zero outside the primitive
lattice cell ~PLC! centered aboutr00. Substituting Eq.~5!
into Eq. ~2!, we find for y in the primitive lattice cell cen-
tered onr00,

E3~y1 lSn,m!5DE
PLC about r0,0

dy82S v

c D 2(
h

G~y

1 lSn,m ,y81hSn,m! f ~y8!E3~y81hSn,m!,

~6!

wherel andh range over the integers.
If we write

E3~y1 lSn,m!5eiq• lSn,mE30~y!, ~7!

whereq5 q@nx̂11mx̂2#/An21m2 for

2
p

A~n21m2!a
<q<

p

A~n21m2!a
,

then

E30~y!5DE
PLC aboutr0,0

dy82S v

c D 2FG0~y,y8!

12 (
l51

`

Gl~y,y8!cos@q• lSn,m#G f ~y8!E30~y8!,

~8!

where

Gl~y,y8!5G~y1 lSn,m, y8!. ~9!

~Note: The equation for a single-site impurity centered about
r0,0 is just given by
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E3~y!5DE
PLC aboutr0,0

dy82S v

c D 2G0~y,y8! f ~y8!E3~y8!,

~10!

and its solution yields localized impurity modes bound to the
single impurity site.! The solution of Eq.~10! yields impurity
modes of wave vectorq traveling along the row of impurity
rods.

In the case thatf (y)5d(y), Eq. ~8! can be readily solved
for D as a function ofq andv/c chosen in the photonic band
gap. We find

D5H S v

c D 2FG0~0,0!12(
l51

`

Gl~0,0!cos@q• lSn,m#G J 21

,

~11!

where050(x̂11 x̂2) gives the value ofD needed to observe
a defect mode of wave vectorq at a frequencyv/c chosen to
be in a photonic band gap. These defect modes are then
propagating modes, confined to move along the row of im-
purities. As we shall see below, the electric-field intensity of

the defect modes decays quickly with increasing distance
perpendicularly from the plane of defects.

In Fig. 1 we plot results forD versusv/c in the second
band gap (0.414<va/2pc<0.468) of our photonic band
structure for states of impurity mode wave vectorq. In Figs.
1~a! and 1~b! results are shown, respectively, forS10 and
S11 type impurities. Curves are presented in each case for a
number of values ofqd whered5a for theS1,0 case andd
5A2 a for the S1,1 case are the lattice constants of the re-
spective rows of impurities.

In order to obtain a better understanding of the dispersion
relations of the gap impurity modes, we use the results in
Fig. 1 to present in Fig. 2 plots of the impurity mode fre-
quencies as a function ofqd for fixedD. Again Figs. 2~a! and
2~b! are forS1,0 andS1,1 impurities, respectively. It is seen
that for fixedD50.2, 0.3, and 0.4 in Fig. 2~a! and for fixed
D50.25, 0.30, 0.35 in Fig. 2~b!, there are gaps in the fre-
quency spectrum of propagating impurity modes. For fixed
D50.2 and 0.4 in Fig. 2~a! there are gaps inqd for the
propagation of impurity modes.

An expression for the electric field of the defect mode in
the case thatf (y)5d(y) is given from

FIG. 1. Plot ofD versusv/c for ~a! S1,0 and~b! S1,1. Curves are
labeled from bottom to top asqd50, p/4, p/2, 3p/4, andp. All
lengths are measured in units ofa.

FIG. 2. Plot ofv/c versusqd for ~a! S1,0 and ~b! S1,1. Curves
are labeled as states of constantD. All lengths are measured in units
of a.
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E30~y!/E30~0!5DS v

c D 2FG0~y,0!

12(
l51

`

Gl~y,0!cos@q• lSn,m#G , ~12!

whereD is obtained from Eq.~11!. Specifically, the modulus
squared of the electric field of the defect mode divided by
uE30(0)u2 is given by

UE30~y!

E30~0!
U25UG0~y,0!12(

l51

`

Gl~y,0!cos@q• lSn,m#

G0~0,0!12(
l51

`

Gl~0,0!cos@q• lSn,m#
U 2.

~13!

In Fig. 3 we present results foruE30(y)/E30(0)u2 versusy2
for S1,0 for y150. The curves are again labeledqd.

In the case in which we take

f ~y!5H 1

4t2
, uy1u,uy2u<t

0, otherwise,

~14!

Eq. ~8! can be discretized into the form of a matrix eigen-
value problem. We have done this fort50.01a and 0.10a
using a 25-pt. Gaussian quadrature iny8. For a givenqd and
impurity mode frequency,v/c, in the band gap there are
now a number of eigenvalue solutions forD which support
an impurity mode of frequencyv/c in the gap. Only in the
case thatf (y)5d(y) do we find a single solution forD cor-
responding to anv/c in the gap. In Fig. 4 we plotD versus
impurity mode frequencyv/c in the 0.414<va/2pc
<0.468 band gap, presenting curves of variousqd. We do
not show all of the eigenvalues forD but present only the
eigenvalues which are closest to the results forf (y)5d(y)
shown in Fig. 1.

The results in Eq.~11! for the case ofd-function defects
can be readily extended to consider the effects of nonlinear-

ity on the defect gap modes predicted by Eq.~11!. Specifi-
cally, if we take the Kerr form,

de~x!5D0~11xuE3~x!u2! (
l52`

`

d~x2 lSn,m!, ~15!

then substituting into Eq.~2! we find solutions forD0 as a
function of impurity~in the gap! mode frequencyv given by

D05H S v

c D 2~11xuE0u2!FG0~0,0!

12(
l51

`

Gl~0,0!cos@q• lSn,m#G J 21

, ~16!

FIG. 5. Plot ofD versusv/c for the two-dimensional impurity
array described in the text. The curves are labeled bottom to top as
states ofqd50, p/4, p/2,p, and 3p/4. ~Note: The curves for
qd5p/2 andp coincide.! All lengths are measured in units ofa.

FIG. 3. Plot ofuE30(0,y2)/E30(0,0)u2 versusy2 . The curves are
labeled as states ofqd andva/2pc50.450. FIG. 4. Plot of D versusv/c for t50.01a ~dashed! and t

50.1a ~solid!. Curves ofqd50 andqd5p are labeled. For each
t, the curves for 0,qd,p fall between theqd50 and qd5p
limits. All lengths are measured in units ofa.
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whereuE0u is the amplitude of the electric field atr0,0. We
see that from Eq.~16! that D0 now depends on the field
strengthE0 . This allows for the adjustment of the impurity
mode frequencies for fixedD0 and q through changes in
E0 . ~Similarly, for fixedD0 andv, adjustments inq can be
made by changingE0 .) Comparing Eqs.~11! and ~16!, we
see that

D5~11xuE0u2!D0 , ~17!

so that the results forD in Fig. 1 are readily taken over to
solve the nonlinear problem.

An additional case of interest is the system obtained from

Eqs.~1! and~2! upon taking the 2D periodic array of defects

de~x!5D (
l52`

`

(
l 852`

`

f ~x2 lSn,m2 l 8Sn8,m8!, ~18!

where Sn,m5@nx11mx̂2#a, Sn8,m85@n8x̂11m8x̂2#a for
n,m,n8,m8 integers are orthogonal vectors, andf (x) is de-
fined as in Eq.~5!. This gives a 2D periodic system but the
periodicity of de~x! may or may not be the same as that of
e~x!.

Substituting Eq.~18! in to Eqs.~1! and ~2! and writing

E3~y1 lSn,m1 l 8Sn8,m8!5eiq•@ lSn,m1 l 8Sn8,m8#E30~y!,
~19!

for y in the primitive lattice cell ofe~x! centered aboutr0,0
andq a wave vector in the first Brillouin zone of the lattice
with primitive lattice vectorsSn,m andSn8,m8 , we find

E30~y!5DE
PLC aboutr00

dy82S v

c D 2FG00~y,y8!12(
l51

`

$Gl0~y,y8!cos@q• lSn,m#1G0l~y,y8!cos@q• lSn8,m8#%

14(
l51

`

(
l 851

`

Gll 8~y,y8!cos@q• lSn,m#cos@q• l 8Sn8,m8#GE30~y8!, ~20!

where

Gll 8~y,y8!5G~y1 lSn,m1 l 8Sn8,m8 ,y8!. ~21!

The solution of Eq.~20! then yields traveling-wave impurity modes of wave vectorq.
If we now takef (x)5d(x), we find

D5H S v

c D 2SG00~0,0!12(
l51

`

$Gl0~0,0!cos@q• lSn,m#1G0,l~0,0!cos@q• lSn8,m8#%

14(
l51

`

(
l 851

`

Gll 8~0,0!cos@q• lSn,m#cos@q• l 8Sn8,m8# D J 21

~22!

specifies theD needed to obtain a mode of wave vectorq and
frequencyv in the band gap. In obtaining Eq.~22! we as-
sume that Eq.~18! is a weak enough perturbation that the
edges of the band gap are little changed from those in the
unperturbed system. This will be the case for smallD and for
uSn,mu,uSn8,m8u@a. In the case of the introduction of a non-
linear Kerr-type medium giving

de~x!5D0@11xuE30~x!u2# (
l52`

`

(
l 852`

`

d~x2 lSn,m

2 l 8Sn8,m8!, ~23!

we find that

D05D/~11xuE0u2!, ~24!

whereD is from Eq. ~22! and uE0u is the field amplitude at
the site of the nonlinearity. Again the bands of modes in the
gaps of thee~x! system can be frequency tuned in the case
xÞ0 by adjustingE0 . The general solution of Eq.~20! for

arbitrary f (x) is again obtained by discretizing Eq.~20! into
the form of a matrix eigenvalue problem forD.

In Fig. 5 we present results from Eq.~22! evaluated for
our e59 system in the case that$S1,1,S1,21 ,S21,1,S21,1% are
the only nonzeroSn,m and Sn8,m8 in Eq. ~18!. We plot D
versusv in the second band gap for curves labeledqdwhere
q5qA2x̂1 for 2p/A2a<q<p/A2a andd5A2a is the lat-
tice constant of the impurity array.

In this paper we present an exact Green’s-function calcu-
lation for a two-dimensional photonic band structure with an
infinite row of impurities or an infinite two-dimensional ar-
ray of impurities. Previous Green’s-function treatments con-
sidered only single impurities or finite impurity clusters. Un-
like results for single impurities and finite clusters of
impurities the modes found in our infinite impurity systems
are propagating, not localized modes. Conditions on the di-
electric constant of the impurity material are found for im-
purity modes of a given frequency in the gap and wave vec-
tor to exist in the impurity system. These results are used to
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discuss the problem of nonlinear impurity dielectric materi-
als. In addition, the solution of the problem of frequency-
dependent impurity dielectric material8 with frequency-
dependent dielectric constante imp(v) for either of the
systems considered above can be obtained as a solution of
the equation

D~v,q!5Ai@e imp~v!2e#, ~25!

whereAi is the area in units of the lattice constant of a single
impurity rod in the row of rods for rows of defects or the
two-dimensional array of rods for the periodic array of de-
fects. In Eq.~25!, D(v,q) is one of the frequency- and wave-
vector-dependent solutions forD given in either Figs. 1, 4, or
5, and Eq.~25! is solved self-consistently forv as discussed
in Ref. 8.

The types of impurity modes discussed above suggest
themselves to various technological applications. Specifi-

cally ~1! rows of imperfections have been suggested as alter-
natives to optic fibers in optical circuitry,1 and ~2! two-
dimensional arrays of impurities can be used to create very
narrow band transmission filters in the band gaps of photonic
band structures. The introduction of nonlinearity into the im-
perfections forming these impurity systems allows for the
tuning of the impurity modes in frequency and wave vector
by varying the amplitude of the electric field, and the use of
frequency-dependent impurity dielectric materials is found to
facilitate the observation of impurity gap modes near the
dielectric resonances of such materials.8 One additionally
useful feature of photonic band structures that has been dem-
onstrated is that, as photonic band structures can be con-
structed of very low loss dielectric materials, the impurity
modes can often exhibit states of very highQ.1

This work is supported in part by NSF Grant No. DMR
92-13793.
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