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The Kubo formula for the conductance of a mesoscopic system is analyzed semiclassically, yielding simple
expressions for both weak localization and universal conductance fluctuations. In contrast to earlier work that
dealt with times shorter thanO~ln\21!, here longer times are taken to give the dominant contributions. For such
long times, many distinct classical orbits may obey essentially the same initial and final conditions on positions
and momenta, and the interference between pairs of such orbits is analyzed. Application to a chain ofk
classically ergodic scatterers connected in series gives2

1
3@12(k11)22# for the weak localization correction

to the zero-temperature dimensionless conductance, and2
15@12(k11)24# for the variance of its fluctuations.

These results interpolate between the well-known ones of random scattering matrices fork51, and those of the
one-dimensional diffusive wire fork→`.

I. INTRODUCTION

Semiclassical ideas have been central to the understand-
ing of transport effects in mesoscopic systems, specifically
weak localization~WL! and universal conductance fluctua-
tions ~UCF!, from the outset.1–3 However, they are usually
used for handwaving arguments, with the actual calculation
being done by resummation of perturbation theory
expressions4 ~Feynman diagrams!. In recent years, fabrica-
tion of ballistic mesoscopic systems has become feasible,
and it has been demonstrated that the chaotic or integrable
nature of the classical dynamics in such systems is reflected
in the quantum interference corrections to their transport
properties.5 The perturbative approach with respect to the
impurity potential is inapplicable to such systems, and in-
deed calculations using other theoretical tools such as ran-
dom matrix theory6 ~RMT! and the nonlinears model7 have
recently appeared. The recent progress in applications of the
semiclassical approximation~SCA! to classically chaotic
systems8,9 gives rise to a hope that quantitative results for the
mesoscopic transport effects could be obtained from it. This
hope is realized below, but it turns out to be necessary to
apply the SCA in a somewhat unorthodox manner.

The reason for the difficulty in the semiclassical descrip-
tion of WL and UCF is obvious: both effects involve quan-
tum interference corrections to the classical conductance,
which are smaller in powers of\. Various authors have dealt
with this difficulty in different ways. Some have followed the
diagrammatic derivation quite closely, and used it for cali-
bration of the magnitude of the effect.2 Others have limited
their attention to effects such as coherent backscattering,
where the quantum interference corrections appear in the
leading order, and are as large as the classical result.10 Still
others have concentrated on the magnetic field dependence
of UCF, and used RMT to calibrate the magnitude.11–13All
of these studies assume either diffusive or ergodic classical

dynamics, and do not give general semiclassical expressions.
Many of the recent analyses have used the Landauer for-

mula or scattering approach, rather than the bulk approach of
the Kubo formula. The proof of the equivalence of these two
formulas relies on the unitarity of the quantum-mechanical
evolution ~current conservation!. However, semiclassical
evolution in classically chaotic systems is only approxi-
mately unitary, and therefore application of the SCA to the
Kubo or Landauer formulas may lead to different results.
The experience gained from the diagrammatic calculations14

shows that higher-order corrections to the propagators~dia-
grams with Hikami boxes15! are necessary for an evaluation
of the conductance from the Landauer formula, but not when
the Kubo formula is used. For this reason, we use the latter
in the present work.

A semiclassical analysis has already been developed for
the Kubo formula in classically chaotic systems by
Wilkinson,16 with recent applications to transport in antidot
arrays.17 It was assumed there16 that the relevant propagation
times are shorter than the Ehrenfest time,tE;O~ln\21!, so
that a coherent state or wave packet maintains its correspon-
dence to a point in the classical phase space throughout its
evolution. However, it has since become known that semi-
classical expressions are applicable also to later times.18 At
such later times the region in classical phase space which
evolves from an initially minimal-uncertainty wave packet is
stretched and folded by the chaotic dynamics into a very
long and curved shape, which may intersect the region de-
fined by some final wave packet several times. The Ehrenfest
time thus marks the onset of interference between different
classical orbits which correspond to these different intersec-
tions ~called the mixing regime!, and not the breakdown of
the SCA. In the present work the focus is on times much
longer than the Ehrenfest time, and compact expressions for
the contribution of these interference terms to the conduc-
tance are developed. Interestingly, some of the terms~includ-
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ing the periodic orbit contributions studied by Wilkinson!
retain the same form whether the orbits under consideration
are short or long on the scale oftE , whereas other terms are
peculiar to times longer thantE and cannot be found by
studying the strict semiclassical limit\→0.

The semiclassical expressions derived below exhibit three
rather novel features: first, it will be assumed that the actions
of the classical orbits involved are large, and that they thus
contribute with essentially random phases and a statistical
description in appropriate; second, interference effects be-
tween continuous families of classical paths appear explic-
itly; third, the distribution of classical paths is described as
having a continuous density in phase space, even when the
initial position and momentum are given, i.e., it will be nec-
essary to introduce a small amount of averaging over the
initial ~and final! conditions. Such a description is relevant
not only for the average over an ensemble of similar meso-
scopic systems which differ in their microscopic details~the
disorder ensemble!, but also for a single system at times
longer than the Ehrenfest time. For example, in the expres-
sion for weak localization, orbits which start at some given
positionr and momentump, and end after some timet at the
same positionr but at momentum2p will be needed. Rather
than retaining only self-retracing paths, which would be im-
plied by strict classical mechanics, the results involve the
density of orbits in phase space around the point~r ,2p!
~note that a self-retracing path is not related to a distinct path
by time reversal, and is thus irrelevant for interference be-
tweenpairs of time-reversed paths!. In incorporating these
features we are following the approach of our previous
work,19 which pertains to density-of-states correlations in
mesoscopic systems; however, the need to account for con-
tributions which do no strictly obey the initial and final clas-
sical conditions did not arise there.

As in other applications of the semiclassical method, in-
teractions are ignored~apart from a possibly self-consistent
potential!, and the electron fluid is considered as a degener-
ate thermal distribution of noninteracting particles moving in
a mesoscopic sample. We have in mind a situation where the
electrons’ motion is mostly free, but occasionally they hit an
impurity or the boundary of the system and are scattered.
This corresponds~in the language of quantum chaos9! to the

motion of a ‘‘billiard ball’’ which is scattered by some ob-
stacles~see Fig. 1!. In order to apply the SCA, it is assumed
that all the classical dimensions, such as the mean free path
or the radius of curvature of the obstacles, are much larger
than the Fermi wavelength~i.e., \ is small!. The classical
dynamics is assumed to be completely chaotic, with all orbits
hyperbolically unstable~systems with integrable or interme-
diate dynamics require separate consideration!. The number
of dimensions or degrees of freedom,N, must thus be larger
than 1. The exponentially large number of orbits in such
systems justifies our statistical approach. Possible complica-
tions associated with caustics, etc., are ignored in the present
work, and only the generic contributions are considered. In
addition we assume that the spectrum is essentially continu-
ous, i.e., that the single-particle level spacingD is much
smaller than the other energy scales in the system, such as
those determined by the broadening of the levelsG due to the
external leads, the temperatureT, or the frequencyv ~even
when those tend to zero!. This also implies that there is no
exponential Anderson localization in the system even in two
or quasi-one-dimensions, i.e., the system is smaller than the
localization length, becauseD!Ec , whereEc is the Thouless
energy (Ec5\/tD with tD the time for an electron to traverse
the system!.

The various contributions to the conductivity and its fluc-
tuations will be expressed as integrals over the distribution
function of classical orbits in the system. Given a Hamil-
tonian,H~r ,p!, an initial point in phase space,~r ,p!, and a
propagation timet, classical dynamics generates a final point
which we denote by~r t ,pt!. The unaveraged distribution of
classical orbits is defined as ad function around this point:

f ~r 8,p8,t;r ,p!5d~r 82r t!d~p82pt!. ~1!

It is convenient to use a distribution functionfE limited to the
energy hypersurface, by factoring out the energy conserva-
tion condition:

f E~r 8,p8,t;r ,p!d@H~r 8,p8!2H~r ,p!#5 f ~r 8,p8,t;r ,p!. ~2!

Whereas these distribution functions describe the chaotic
classical dynamics in intricate detail, they can be averaged
over small ranges in initial and final conditions to give a
smooth distribution which describes the evolution in a statis-
tical sense. This averaging will be denoted by an overline:
f E(r 8,p8,t;r ,p), with the range of averaging determined by
\. For timest significantly longer than the Ehrenfest timetE ,
the distributionf E becomes independent of the specific de-
tails of the averaging procedure. For example, in an ergodic
system f E becomes independent of initial and final condi-
tions at long times. Apart from the distribution functionf E,
additional properties of the classical paths occasionally ap-
pear in the expressions~e.g., the distribution of areas en-
closed by the classical paths is relevant for the case of weak
magnetic fields!.

Whereas from the phase-space averaging is denoted by
the overline, angular brackets will be used in order to denote
averaging over the semiclassical phases, which are assumed
to be uncorrelated except for possible symmetries. For ex-
ample, ^eiSa/\&50 and ^ei (Sa2Sb)/\&5da,b1daT, b , where
Sa andSb are the actions of classical orbitsa andb, andaT

denotes the orbit time reversed toa. This assumes time re-

FIG. 1. Sketch of a path which together with its time reverse
contributes to weak localization. The initial and final points may be
varied along the segmentl. The source~S! and drain~D! regions are
connected through ideal leads to particle reservoirs.
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versal is the only symmetry in the system, and that the num-
ber of orbits is exponentially large so that the possibility of
self-symmetric orbits,a5aT, may be ignored. This second
averaging should be understood either as an averaging over
the specific positions of the obstacles~the disorder ensemble
average!, or, for a single system, as an averaging over a
range of possible values of the Fermi energym ~or a range of
values of Planck’s constant\!. The average quantum correc-
tion to the conductance will be denoted by^DG&, and its
variance bŷ (DG)2&Var . The fact that these qualities can be
written semiclassically as integrals over the distribution
function f E, without reference to individual classical orbits
and the plethora of their actions and amplitudes, is very use-
ful in applications to classically chaotic systems.19,20

The outline of the paper is as follows. In Sec. II the gen-
eral SCA expression for the Kubo conductance is derived,
and shown to reduce to the classical conductance when all
interference effects are ignored. The appropriate choice of
the electric-field distribution is discussed. Weak localization
is analyzed in Sec. III, and universal conductance fluctua-
tions in Sec. IV. In these sections the general expressions in
terms of f E(r 8,p8,t;r ,p) will be applied to diffusive and er-
godic systems, for which simple expressions forf E are
readily available. We concentrate on calculating the magni-
tude of the interference effects at zero temperature and mag-
netic field, in order not to repeat the considerations given in
the previous semiclassical analyses.1,2,10–12Extensions of the
analysis, e.g., to finite temperatures, and applications to more
complicated systems which consist of several cavities con-
nected in series through ideal leads, will be considered in
Sec. V, followed by a discussion in Sec. VI. A short descrip-
tion of this work has been published separately.21

II. THE KUBO FORMULA

According to linear-response theory, the real part of
the conductivity tensor is given by~see, e.g., Appendix A of
Ref. 2!

s jk~v!5
e2

vm2

1

vol
Re(

mn
^mu p̂ j un&

3^nu p̂kum& i
f FD~jm!2 f FD~jn!

\v1jm2jn1 i0
, ~3!

wherejm and um& are the single-particle eigenenergies and
eigenstates, respectively,p̂ is the momentum operator, and
f FD~j!51/$exp@b~j2m!#11% is the Fermi-Dirac distribution,
with m the chemical potential andb the inverse temperature
~e andm are the electron charge and mass, respectively,v is
the frequency, and vol is the volume of the system; we are
assuming a simple effective-mass description of the elec-
trons, but the derivation applies with minor modifications to
systems with a nonspherical Fermi surface!. This can be re-
written in terms of the single-particle propagator@e.g.,
d~Ĥ2e1)5(mum&d(jm2e1)^mu] as

s jk~v!5
e2

m2

\

vol
ReE de1de2

i

\v1e12e21 i0

3
f FD~e1!2 f FD~e2!

\v E drdr 8

3S \

i

]

]r j8
^r 8ud~Ĥ2e2!ur & D

3S \

i

]

]r k
^r ud~Ĥ2e1!ur 8& D , ~4!

where we have usedp̂k5*dr ur &(\/ i )]/]r k^r u, and ignored
spin ~a spin index summation should be understood with
each spatial integration; we avoid the extra indices below by
assuming spin degeneracy!.

For the purpose of a semiclassical analysis, it is conve-
nient to define quantities which are bilinear in the quantum-
mechanical propagators, and to transform them into a form
depending on one energy and one time variable, rather than
two energy variables.19 We are thus led to define the follow-
ing ‘‘form factor’’:

KI~E,t;r ,r 8![E dee2 i et/\Tr[ ĵ ~r 8!d~E1 1
2 e2Ĥ !

3 ĵ ~r !d~E2 1
2 e2Ĥ !], ~5!

where ĵ ~r ! is the current density operator~for a given spin
projection!. Some of the basic properties of this form factor
are~a! it is real; ~b! it is symmetric under the interchange of
all indices and the sign of the time variable,
Kjk(E,t;r ,r 8!5Kkj(E,2t;r 8,r !; and ~c! if an external mag-
netic field is the only source of time-reversal symmetry
breaking, then reversing the sign of this field~together with
the sign of the spin indices! has the same effect on KI as
reversing the sign oft. As we will discuss only weak mag-
netic fields and use the SCA, we can rewrite the form factor
as22

Kjk~E,t;r ,r 8!.
e2

m2E dee2 i et/\

3F\

i

]

]r j8
^r 8ud~E1 1

2 e2Ĥ !ur &G
3F\

i

]

]r k
^r ud~E2 1

2 e2Ĥ !ur 8&G . ~6!

The conductivity is given in terms of this form factor as
follows:

sJ~v!5E dEdt ReF~E,t !E drdr 8
vol

KI~E,t;r ,r 8!, ~7!

where
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F~E,t !5E de

2p
ei et/\

3
i

\v2e1 i0

f FD~E2 1
2 e!2 f FD~E1 1

2 e!

\v
.

~8!

Causality is reflected by the fact that replacingv by 2v
is tantamount to taking the complex conjugate ofF(E,t).
In order to elucidate the structure ofF(E,t), note that
[ f FD(E2 1

2e)2 f FD(E1 1
2e)]/ e plays a role similar tod(E

2m) ~it is a box function of widthe and height 1/e, smeared
by the temperature which will be assumed small; as we
will be interested in long timest, only small values ofe are
relevant!. In fact, it is straightforward to show that
*dEF(E,t)5eivtu(t)2( i /v)d(t), where u(t) is the step
function, and the last term cancels with the diamagnetic
term. The detailed form ofF(E,t) becomes considerably
simpler if only the time symmetric combination of its real
part is needed,12Re@F(E,t)1F(E,2t)]. Due to the proper-
ties of KI mentioned above, indeed only this combination
appears if one is interested in a symmetric integral over KI,
such as the longitudinal conductance, or if the magnetic field
vanishes~in the cases to be considered below both of these
conditions are satisfied!. The integration overe then becomes
trivial due to ad~e2\v! factor, and in the limit of small
frequencies we may write

s~v→0!5E
0

`

dtE dE„2 f FD8 ~E!…E drdr 8
vol

KI~E,t;r ,r 8!.

~9!

In the zero-temperature limit to be considered below, the
integration overEmay be omitted, and its value is identified
with the Fermi energym. Notice that the part ofF(E,t)
which is asymmetric int and responsible for the Hall effect
has been simplified in this analysis, whichassumesthatsI is
a Fermi surface property.23

In the case of restricted geometries or nondiffusive sys-
tems, the conductance rather than the volume-averaged con-
ductivity is the appropriate quantity to study. One defines the
space-dependent conductivitysI~r ,r 8! exactly as in Eqs.~7!
and ~9!, except that the integrations overr and r 8 and the
division by the volume are not performed. The current is
given by j ~r 8!5*drsI~r ,r 8!E~r !, whereE~r ! is the electric
field. This dissipative conductance of a sample of general
geometry with two leads, at zero frequency, can be written as
the dissipated power*dr 8E~r 8!•j ~r 8!, divided by the voltage
V squared:

G5
1

V2E drdr 8E~r 8!sJ~r ,r 8!E~r !. ~10!

Current conservation is expressed as¹r•sI~r ,r 8!5¹ r8•sI~r ,
r 8!50, in the absence of a magnetic field@¹ r•¹ r8•sI~r ,
r 8!50 still holds even if a magnetic field is present#. This can
be shown by integration by parts in Eq.~10! ~see e.g., Ref.
14! to imply that the electric fieldE~r ! need not be calculated
self-consistently, and instead one can use any electric-field
distribution which gives the voltageV when integrated along
any path connecting the two leads@the boundary conditions

require that the components ofE~r ! and ofsI~r ,r 8! perpen-
dicular to an insulating boundary vanish#. In fact, one may
take different electric-field distributions for the twoE~r ! fac-
tors in Eq.~10!—in the scattering approach of the Landauer
formula the electric field is in effect concentrated in the
source lead for one factor, and in the drain for the other
~another example is the case of multilead devices, for which
the conductanceGij is a matrix, and the boundary conditions
for the two electric-field factors may be different!. As already
mentioned, the semiclassical expressions derived below for
sJ (r ,r 8! do not necessarily obey current conservation, be-
cause higher-order corrections in\ are not included. Thus,
the SCA expressions for the conductance do depend on the
use of the actual electric-field distribution in the sample, as
discussed below.

The next step is to write down the semiclassical expres-
sion for KI(E,t;r ,r 8! of Eq. ~6!. As a starting point we use the
van Vleck formula:

^r 8uexp~2 iĤ t !ur &. (
aP$r ,r8;t%

Aae
iSa /\, ~11!

wherea is a discrete index which runs over all the classical
paths that start at the pointr and end after a timet at the
point r 8. The amplitude and action of the classical patha are
given by

Aa5 i naUdetS 1h ]pa

]r 8 D U1/2, Sa5E
r

r8
~pdr2Hdt!, ~12!

wherepa is the initial momentum of the patha andna is the
integer Maslov index~this and other factors ofi may be
ignored for the purposes of the present work!. After Fourier
transforming from timet to energyE, we have~see, e.g.,
Ref. 9!

^r 8ud~E2Ĥ !ur &. (
aP$r ,r8;E%

Ãae
iS̃a /\, ~13!

where the indexa counts classical paths of energyE, and the
modified amplitude and action are given by

Ãa5 i ñaUdetS 1h ]pa

]r 8 D U
1/2U1h dTa

dE U1/2, S̃a5E
r

r8
pdr . ~14!

The derivative]pa/]r 8 appearing in this amplitude is taken at
a constant duration of the orbitt5Ta @it is also possible to
reexpress this amplitude in terms of an (N11)3(N11) ma-
trix of derivatives taken at constant energyE, but this will
not be helpful here;N denotes the number of dimensions#.
Again, the Maslov indexña may be ignored, since only the
magnitude ofÃa will be needed below. It is necessary to note
the derivatives of the action:

]S̃a

]E
5Ta ,

]S̃a

]r
52pa ,

]S̃a

]r 8
5pa8 , ~15!

whereTa is the duration of the classical patha, pa is the
initial momentum mentioned above, andpa8 is the final mo-
mentum.
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Substituting Eq.~13! in the expression for the form factor,
Eq. ~6!, and using the fact that only contributions from small
values ofe will be important~becauset is integrated over a
large range! to develop the action around the mean energyE,
gives

KI~E,t;r ,r 8!.
e2

m2E de e2 i et/\

3 (
a,bP$r ,r8;E%

ÃaÃb* pa8pbe
i ~S̃a1

1
2eTa2S̃b1

1
2eTb)/\

5
e2

m2h (
a,bP$r ,r8;E%

ÃaÃb* pa8pbe
i ~S̃a2S̃b!/\

3dS t2 Ta1Tb

2 D . ~16!

The d function over time should be understood to have a
width determined by the higher-order corrections ine. Insert-
ing this result in Eqs.~9! and~10! will give the semiclassical
approximation for the conductivity and the conductance.

Before discussing quantum corrections to the conductiv-
ity, we observe how the classical results can be regained
from this expression. To this end, all interference terms in
Eq. ~16! are ignored, and only the ‘‘diagonal’’ part of the
double sum,a5b, is retained:

KID~E,t;r ,r 8!5
e2

m2h (
aP$r ,r8;E%

uÃau2pa8pad~ t2Ta!. ~17!

In order to proceed, the amplitudes of Eq.~14! should be
substituted here. As similar expressions will be used below,
we note here the general form of a sum of this type:

h (
aP$r ,r8;E%

uÃau2d~ t2Ta!~••• !a

5 (
aP$r ,r8;t%

uÃau2d~Ea2E!~••• !a

5E dr0dp0
hN

d@H~r0 ,p0!2E#

3d~r02r !d~r t2r 8!~••• !~r0 ,p0!

5
1

hNE dpEdpE8 f E~r 8,p8,t;r ,p!~••• !~r ,p! . ~18!

Again, the phase-space point~r t,pt! is that which evolves
from the initial point ~r0,p0! by following the classical dy-
namics for a time t. In the first equality the factor
u(1/h)dTa/dEu in uÃau2 was used to turn from a fixed energy
representation to fixed time. In the second equality the sum
overa was rewritten as an integral over the initial coordinate
and momentum, using the factoruAau25udet(1/h]pa/]r 8!u
~the integration over the initial position is trivial, and in fact
superfluous at this stage!. The result is an integral over the
phase-space energy hypersurface, where the properties of the
individual paths which were denoted by the dots are now
identified by the initial coordinate and momentum of each
path. Notice that all the determinants of derivatives which

appeared in the amplitudes have been replaced by inte-
grations overd functions,20 in such a way that allows
for the introduction of the classical distribution function
f E~r 8,p8,t; r ,p! in the last line„integration over the energy
surface is denoted by*dpE•••5*dpd @H~r ,p!2E#•••….

Applying this trick to the diagonal approximation of the
form factor, Eq.~17!, gives the classical contribution to the
conductivity of Eq.~9!:

sJcl5
e2

m2

1

hNvolE0
`

dtE drdpEdr 8dpE8pp8 f E~r 8,p8,t;r ,p!

~19!

~at zero frequency and temperature!. This may be rewritten
as

sJcl5
e2

m2 nE
0

`

dt^pp8& t , ~20!

where n5(1/hNvol!*drdpd @m2H~r ,p!# is the density of
states~implicitly including the spin summation!, and the last
factor is a momentum correlator:

^•••& t5
E drdpEdr 8dpE8 ••• f E~r 8,p8,t;r ,p!

E drdpE

~21!

@it is the classical counterpart of the Fermi-surface correlator
^p(0)p(t)& defined in Ref. 2#. Equation~2! is the classical
contribution to the Kubo conductivity. Notice that the density
of states contains a factor ofh2N, so that the quantum cor-
rections to the conductance, of the order ofe2/h, are small
corrections to it~higher power of\!. In the present work, the
semiclassical limit is considered with the Fermi momentum
and the mobility~or other characterization of the scattering
potential! taken as classical parameters, so that the density of
electrons and the conductance become trivially\ dependent.

For diffusive motion, given some initial value of the mo-
mentump, the average ofp8 at a timet shortly thereafter is
equal top multiplied by exp~2t/t!, wheret is the momen-
tum relaxation~or transport! mean free time. Integrating over
the directions of the initial momentum, the classical conduc-
tivity is found to be diagonal,s jk

cl5d j ,ks
D, and

sD~v!5
e2

m2ReE
0

`

dt cos~vt !exp~2t/t!n
pF
2

N
, ~22!

where the frequency dependence has been restored~pF de-
notes the Fermi momentum!. Since the density of electronsn
is equal ton(p F

2/2m)2/N, this evaluates to

sD~v!5
ne2

m
Re

t

12 i tv
, ~23!

which is just the Drude conductivity.
The simple description of the momentum correlations

used above is inadequate for the calculation of the space-
dependent conductivity. In fact, it is known from diagram-
matic theory that when all interference terms are ignored, it
may be written~for v50! as14

s jk
D ~r ,r 8!.sD~0!@d j ,kd̄~r2r 8!2¹ j¹k8d~r ,r 8!#. ~24!
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Here d̄~r2r 8! is a smearedd function of range equal to the
mean free pathl, which represents the short-range part of the
conductivity ~analogous to the Chambers formula!, and is
due to paths which have not scattered at all. The scaled ‘‘dif-
fuson’’ d~r ,r 8! represents the long-range contributions of
paths which have scattered at least once, and obeys the equa-
tion 2¹2d(r ,r 8)5 d̄(r2r 8) with vanishing boundary condi-
tions at the conducting leads and vanishing normal derivative
at insulating boundaries. This ensures thatsJD~r ,r 8! con-
serves current.

It is possible to render the long-range part unimportant by
using the classical electric-field distribution in Eq.~10! ~for
the standard rectangular geometry this is just a constant
field!. Indeed, if the condition¹•E50 is valid, then is fol-
lows from the boundary conditions onE and d~r ,r 8! that
*drdr 8¹ j¹k8d~r ,r 8!E~r !E~r 8! vanishes by integration by
parts. In this case one may use a simple approximation to the
space-dependent conductivity, keeping only the short-range
part @the first term in Eq.~24!#, without compromising the
accuracy of the classical conductanceGcl. It is emphasized
here that this choice of the electric field represents the actual
electric field in the sample, if it is interpreted as the gradient
of the electrochemical potential, rather than the externally
applied perturbation which can be arbitrary. In other words,
if charge neutrality is assumed~the chemical potential cannot
vary, and the self-consistent electric field is just that which
will not cause any charge perturbations!, then the long-range
part of the conductivity cannot contribute, because it repre-
sents the currents due to the gradient of the induced charge
perturbations.

This idea can be generalized to nondiffusive systems,
such as a chaotic cavity24 ~see Fig. 2!. We will assume that
the classical dynamics in such a cavity is not only ballistic,
but also ergodic, so that the probability for an electron at
any point r inside the cavity to leave through~or to have
come from! the left ~right! lead is proportional to its
widthWL (WR). The self-consistent electrostatic potential is
thus a constant within the cavity, and is equal to
(WLVL1WRVR)/(WL1WR!, whereVL and VR denote the
potentials in the corresponding reservoirs. All of the potential
drop occurs in the leads~or at the boundaries between the
leads and the cavity or the reservoirs!. Note that the velocity
correlator of Eq.~20! is multiplied by the electric field in Eq.
~10! and integrated over time, in such a way that the contri-
bution of a certain path@determined by its initial conditions
~r ,p!# to the conductivity has a simple interpretation; it is

proportional to the potential difference between the initial
point r and the reservoir which an electron with the given
initial conditions will eventually reach. If the electron passes
through an ergodic cavity on its way, and if the electrostatic
potential is chosen self-consistently, then it is no longer nec-
essary to integrate along the remainder of the path—the po-
tential in that cavity is already the averaged potential of the
reservoirs, weighted by the probability that the electron
would leave through the corresponding lead. The long-range
part of the electron paths, i.e., following the electron all the
way to the reservoirs, thus becomes unimportant~in the dif-
fusive case any elastic scattering event which randomizes the
electron’s direction of propagation plays the role of an er-
godic cavity, in that is ends the short-range part of the propa-
gation!.

According to this discussion, the precise form of the elec-
tric field in the leads does not matter. For specificity, we take
the classical electric fieldE~r ! to be constant over regions of
sizea in each lead. Combining Eq.~10! with Eq. ~19!, the
classical conductance may be written as

Gcl5
e2

m2

1

hNV2E
0

`

dtE drdpEdr 8dpE8 @p•E~r !#

3@p8•E~r 8!# f E~r 8,p8,t;r ,p!. ~25!

The contribution of the short-range part to the conductance
thus becomes@the integration overfE~r 8,p8,t! is trivial#

GC
cl5

e2

h (
i5R,L

DVi
2

V2a2Ei
drdpE
hN21 t~r ,p!vF

2cos2~u!, ~26!

wherevF is the Fermi velocity,DVi denotes the voltage drop
over the corresponding lead,u is the angle betweenp and the
direction of the lead,t~r ,p! is the time that an electron start-
ing at ~r ,p! spends in the regiona of the electric field, and
* idr denotes integration over the electric-field region in the
lead i. The integration over the directions in*dpE , together
with a factor ofvFucos~u!u, may be replaced by an integration
over the traverse momentum*dp' and a summation over the
two possible directions along the lead. When summed over
these two directions, the free timet~r ,p! givesa/vF/ ucos~u!u
The integration over the position along the lead gives a fur-
ther factor ofa, which thus cancels out as it should. The
remaining integral gives the number of transverse channels
in the leadgi5h2(N21)* idr'dp' , which is proportional to
the width of the lead~in two dimensionsgi52WipF/h, in
three dimensionsWi is an area andgi5pWip F

2/h2!. The
final result is~ignoring spin!

GC
cl5

e2

h F S gR
gR1gL

D 2gL1S gL
gR1gL

D 2gRG5
e2

h

gRgL
gR1gL

. ~27!

This result corresponds to adding the resistances of the two
ideal leads classically in series. Obviously, in order to reach
this result with any other choice of the electric-field factors,
one would have to evaluate also the contributions of the
long-range parts offE ~for example, the transmission which
enters the Landauer formula is due to paths that start in one
lead, scatter inside the cavity, and then leave through the
other lead!.

FIG. 2. Schematic sketch of conductance through a ballistic cav-
ity, which is considered to be completely chaotic and ergodic. The
electric field is taken to be concentrated in regions of sizea in the
left and right leads~the results are independent ofa!.
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The issue of an appropriate choice of the electric field
becomes much more important for the quantum corrections
to the conductivity, to be considered below. The reason is
that it is quite hard to find a current conserving approxima-
tion for sI~r ,r 8! which includes these quantum corrections,
even in the diffusive case which is treated well by perturba-
tion theory~see Ref. 13!. When the self-consistent electric-
field configuration is used, current conservation and the long-
range part of the conductivity become less important. For
example, if quantum interference gives an enhanced prob-
ability to find an electron at some~r ,p! at some timet, it
becomes unnecessary to follow the propagation of that elec-
tron to possibly correlated momentap8 at later times.25

Loosely speaking, the missing electrons represented by the
non-strictly-vanishing values of¹–j ~r ! may be thought of as
being reinjected into the system with a random direction, so
that the self-consistent potential atr automatically takes care
of their contribution. Unfortunately, the validity of this ap-
proach can only be strictly proven if one can write down an
expression for the higher-order corrections tosI~r ,r 8!, and
show that they do not contribute when integrated with the
electric-field factors. While this is readily done in the dia-
grammatic analysis, it is not easily generalized to other, non-
diffusive systems. In the following sections we proceed by
analogy with the diffusive case, and calculate the quantum
corrections to the conductivity of a general classically cha-
otic system, using the self-consistent electric-field configura-
tion and the leading order quantum corrections tosI~r ,r 8!. We
return to this issue in the final section and show that this
approach is indeed justifiable, at least for an ideally ergodic
cavity.

III. WEAK LOCALIZATION

In this section the SCA is used to calculate the average of
the quantum correction to the conductivity, i.e., the weak
localization correction.2,26We concentrate on the long-range
part of the conductivity, i.e., on timest larger than
tE;t—the short-range part does not have a weak localiza-
tion correction. As advertised, the actions of the classical
orbits in Eq. ~16! for the form factor KI(E,t;r ,r 8! will be
assumed random and uncorrelated, except if the two orbits
are related by a symmetry. After averaging, only two types of
contributions remain: the classical contributionb5a, and
that of interference between time-reversed orbitsb5aT ~it is
assumed that time-reversal symmetry is the only symmetry
in the system!. For any orbit aP$r ,r 8;E%, we have
aTP$r 8,r ;E%, with a andaT sharing the same values of ac-
tion, amplitude, and duration, butpaT52pa8 and
paT
8 52pa . The possibility of having a strict equalityb5aT

arises only in the case thatr 85r , giving rise to a factor of 2
enhancement of KI~E,t;r ,r ! relative to its classical value. As
the coordinatesr andr 8 are integrated over, it is necessary to
find how this enhancement is reduced whenr 8 deviates from
r . Therefore, we include in the weak localization term all
pairs of orbits for whichb.aT, in the sense thatb anda
smoothly deform into a pair of time-reversed orbits whenr 8
approachesr . Orbits which are self-symmetric are excluded,
because their contribution is already accounted for in the
classical term.

The expression for the weak localization correction to the
form factor thus reads

^DKI~E,t;r ,r 8!&.
e2

m2h (
a,bP$r ,r8;E%

b.aTÞa

uÃau2d~ t2Ta!pa8

3~2pa8 !ei ~S̃a2S̃b!/\, ~28!

where it is assumed thatr 8 is nearr , so that the only impor-
tant r 8 dependence is in the rapidly varying phase factor. A
direct evaluation of ther and r 8 integrations over the form
factor in the\→0 limit gives vanishing results. In fact, the
stationary phase conditions would implypa5pb and pa8
5pb8 , which in classical mechanics can only hold for self-
symmetric orbits,a5b. In principle, one could try to evalu-
ate higher order corrections to the nonstationary phase inte-
grals which arise, in the\→0 limit. However, in practice~cf.
Ref. 5! \ is not extremely small, and the number of possible
orbitsa in a chaotic system can be exponentially large. In the
mixing regime (t.tE! many of these orbits have such small
momentum differencespa82paT

8 so as to make the phase
practically stationarythroughoutthe integration region. The
spatial integration region is limited by the size of the system
~in practice it may be smaller because the pathsa andb may
cease to exist due to caustics or shadowing!. Thus, the con-
tribution of orbits with momentum differences smaller than
\/ l' is just proportional to the size of the integration region,
l' . Rather than following the exact distribution of possible
values ofl' for different orbits, in the following we describe
this result effectively by ad function over the momentum
difference. Note that this represents a nonstandard applica-
tion of the SCA, because it is assumed that many orbits can
fit into the width of thed function, which is proportional to
\. We return to this point in the discussion of Sec. VI A.

The weak localization correction to the form factor, Eq.
~28!, is again in the form described by Eq.~18!, which al-
lows us to reexpress it in terms of the classical distribution of
orbits. Furthermore, Eq.~15! may be used to develop the
actions around the pointr 85r :

S̃a~r ,r 8;E!.S̃a~r ,r ;E!1~r 82r !pa8 ,

S̃b~r ,r 8;E!5S̃a~r 8,r ;E!

.S̃a~r ,r ;E!2~r 82r !pa ~29!

~inclusion of higher-order terms in this expansion turns out
to be unnecessary!, giving

^DKI~E,t;r ,r 8!&.2
e2

m2

1

hNE dpEdpE8 f E~r ,p8,t;r ,p!p8p8

3ei ~r82r !~p1p8!/\. ~30!

In order to perform the integrations using the stationary
phase approximation, it is necessary to treat the preexponen-
tial factor in the integrand as slowly varying. To this end, we
replacefE~r 8,p8,t; r ,p! with f E(r 8,p8,t;r ,p), where the over-
line denotes averaging of the initial and final positions and
momenta over small ranges. As long as the range of averag-
ing is much smaller than a Fermi wavelength in position, and
much smaller than a typical value of\/ l' in momentum,
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there is no way that this replacement can affect the result of
the integrals in Eq.~30! and Eq.~9!. After the replacement,
the preexponential factor is in fact smoothly varying, if the
time t is indeed significantly longer than the Ehrenfest time
tE @it is not necessary to explicitly remove the contributions
of self-symmetric orbits fromf E(r ,p8,t;r ,p)—such orbits
are exponentially rare in the mixing regime#.

The next step uses the stationary phase approximation,
*dxdp f(x,p)eixp/\.h f(0,0) for small \ and a smooth
f (x,p), in order to perform the integrals over the angular
variables ofp8 and the transverse components ofr 8. The
stationary phase conditions identifyp8 with 2p, and the
components ofr 8 perpendicular top with those ofr . The
longitudinal component ofp8 is not integrated over because
of the limitation to the Fermi surface, which gives rise to a
factor of 1/vF . The integration over the longitudinal compo-
nent of r 8, parallel top, cannot be done in the stationary
phase approximation. However, as occurs also in the case of
the spectral form factor,19 this integration is trivial—the in-
tegrand is constant—and the result is just equal to the effec-
tive length of the integration region, which we denote by
l~r ,p!. This integration region is not limited by a small\, and
may extend over relatively long distances along the direction
of the classical path: it represents constructive interference
between a continuous family of classical orbits, labeled by
the longitudinal component ofr 8. As a result, one has

^DsJ&52
e2

m2

1

hvolE0
`

dtE drdpEppf E~r ,2p,t;r ,p!
l ~r ,p!

vF
,

~31!

which is a general semiclassical expression for the weak lo-
calization correction to the conductivity@the precise meaning
of l~r ,p! will be discussed further below#. Note that the inte-
grations overr and r 8 always lead to an identification ofpa
with pb , and ofpa8 with pb8 ~cf. Ref. 22!. In the present case
of the weak localization contribution, we also have an iden-
tification of p with 2p8 ~see Fig. 1!, leading to the negative
sign of the complete expression.

For diffusive behavior with isotropic scattering, the mean-
ing of l~r ,p! is identified with the free path~see Fig. 1!—
whenr 8 deviates fromr further than the next or the previous
scattering event, the momentum factors in Eq.~16! become
essentially random@as opposed to the approximation used in
Eq. ~28!#, leading on the average to a vanishing contribution.
In N53 dimensions, and for timest.t, one may describe
the distribution of classical orbits by

f E~r 8,p8,t;r ,p!5W~r ,r 8;t !
vF

4pp2
, ~32!

whereW~r ,r 8;t)dr 8 is the probability for a diffusing particle
which started atr to be withindr 8 of r 8 at time t ~in N52
dimensions 2pp replaces 4pp2 in the last factor!. The fac-
torization of the distribution into separate spatial and mo-
mentum space dependencies, withf E independent of the mo-
mentum direction, implies that the factors ofpp may be
replaced byd j ,kp F

2/N. The averaging over the integration
segmentl~r ,p! gives 2vFt—the factor of 2 is due tol~r ,p!
being defined as the sum of the free paths in the backward
and the forward directions@another way to justify this factor
is to recall that a classical path with a long integration seg-

ment l~r ,p! for the integration over the longitudinal compo-
nent ofr 8, will also have the same integration region for that
component ofr , which means that in the averagingl~r ,p! is
weighted by its own length#. The resulting correction to the
conductivity is again a diagonal tensor:

^Ds jk&52e2d j ,k

2sD

h E
t

tf
dtE dr

vol
W~r ,r ;t !, ~33!

whereD5v F
2t/N is the diffusion constant, and ans52 spin

degeneracy factor has been explicitly restored. This result
coincides with Eq.~3.8! of Chakravarty and Schmid,2 and
thus their quantum-mechanical derivation of the numerical
prefactor in this equation~their Appendix D, which assumes
a white-noise disorder potential! may be replaced by a semi-
classical one.

The time integration appearing here is limited from above
by the dephasing timetf , which is due to interactions of the
electron with other particles not included in the single-
particle Hamiltonian~the assumption of a continuous spec-
trum implies that the times involved are shorter than\/D!. It
is also limited from below, by the mean free timet. The
probability densityW satisfies the diffusion equation:

]W~r ,r 8;t !

]t
2D¹ r8

2 W~r ,r 8;t !5d~ t !d~r2r 8!. ~34!

For short times,W~r ,r 8;t!5~4pDt)2N/2exp~2ur2r 8u2/4Dt!.
For times of the order of the diffusion time through the
sampletD5L2/D, it is necessary to expandW in the eigen-
functions Fn of the diffusion operator, W~r ,r 8;t!
5(nFn~r !F n* ~r 8!exp~2t/Tn!. In this representation the in-
tegrals overW~r ,r ;t! in Eq. ~33! become trivial, and for
tf→`,

^Ds&52
e2

h

2sD

vol (n Tn . ~35!

For example, for a quasi-one-dimensional wire extending
from x50 tox5L ~with finite cross-sectional area, i.e., many
transverse modes! the longest lasting eigenmodes are
Fn(x)}sin~pnx/L) ~where n51,2,...! with decay times of
T n

215p2n2D/L2. The boundary conditions are essential in
determining this—they are closed in the transverse directions
but open in the direction along the wire. This reflects the fact
that trajectories hitting the latter boundaries will continue
through the hypothesized ideal leads into the reservoirs, and
will not return to any pointr 8 in the sample~*Wdt is essen-
tially the ‘‘diffuson’’ of the diagrammatic technique, which
was mentioned earlier!. Defining the dimensionless conduc-
tance per spin directiong, and using the fact that
(n(pn)

2251/6, gives~for the j5k51 component!

s115sS e2h L2

vol D g, ^Dg&52
1

3
, ~36!

which is a well-known result for the diffusive wire geometry.
In order to apply the semiclassical expression, Eq.~31!, to

a more general system, one must specify the meaning of the
free path factorl~r ,p!, or in other words one must perform
the integration over the longitudinal component ofr 8 with
care. Note that in a two-dimensional system the longitudinal
direction may be defined as the locus of points for which the
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action differenceSa~r ,r 8;E)2Sb~r ,r 8;E! vanishes—there is
then no reason to stop the integration at the next scattering
event~which in itself may be ill-defined for a smoothly vary-
ing potential!. Following the discussion of the preceding sec-
tion for the classical conductance of such systems, the value
of the integral is identified as the potential difference
DV~r ,p!, which is defined as the difference between the po-
tential at the point eventually reached by an electron at~r ,p!
and the point from which it emerged. Strictly speaking,
DV~r ,p! is equal to either6V or 0, because both the original
and the eventual points are in one of the reservoirs. However,
the quantities in Eq.~31! are averaged, and so we are led to
define l (r ,p)5DV(r ,p)pF /@E(r )•p# @the averaging in
DV(r ,p) is over the same range as inf E#. The integration
over the longitudinal component ofr 8 is thus effectively lim-
ited by the ‘‘Ehrenfest length’’vFtE .

With this definition, the application of Eq.~31! @cf. also
Eq. ~10!# to the chaotic cavity of Fig. 2 involvesDV(r ,p)
56DVi , due to the fact that the escape time from the cavity
is assumed to be much longer thantE . With the specific
choice of the electric field within the leads as before,
uE~r !u5DVi /a, this gives

^DGC&52
e2

h (
i5L,R

DVi
2

V2a2E0
`

dtE
i
drdpEvFcos

2~u!

3 f E~r ,2p,t;r ,p!l ~r ,p!, ~37!

where the factors ofa cancel due to the longitudinal compo-
nent of thedr integration, and the relationl~r ,p!ucos~u!u5a.
The time integral of the distribution functionfE is found by
requiring that the total number of electrons escaping from the
cavity, which can be written as an integral over any cross
section in the leads( i5R,L* idr'8 dp'8 * tE

` dt fE(r 8,p8,t;r ,p), is
equal to unity@the escape velocityvFucos~u!u is used as be-
fore to transform from* idpE ••• to * idp' •••#. The time inte-
gral * f Edt is independent of the detailed initial and final
positions and momenta due to ergodicity in the cavity, and is
thus equal toh12N/(gL1gR! ~as long asr and r 8 are in the
leads,p is in the inward direction, andp8 is in the outward
direction!. The remaining integral gives justhN21gi , so that

^DGC&52
e2

h F S gR
gR1gL

D 2 gL
gR1gL

1S gL
gR1gL

D 2 gR
gR1gL

G
52

e2

h

gLgR
~gR1gL!2

. ~38!

In the case of equal leads,gL5gR , one obtains^DgC&
52 1

4 @with G5g(e2/h)], in agreement with RMT results.6

Applications to additional systems will be considered in Sec.
V.

IV. UNIVERSAL CONDUCTANCE FLUCTUATIONS

We now turn to the off-diagonal termsbÞa,aT, which
do not contribute tosI on the average, and calculate the typi-
cal magnitude or variance of the fluctuations. A close inspec-
tion of the perturbative derivation~Refs. 3, 27, and refer-
ences therein! shows that there are in fact three different
types of contributions. A sketch of these three types of dia-

grams and the corresponding classical paths is given in Fig.
3, and the semiclassical analysis will be detailed in this sec-
tion.

The contribution of allbÞa,aT paths to the conductivity
of Eqs.~9! and ~16! is denoted here byDsJND. At first sight
it would seem that each term, defined by a specific choice of
a andb, has an uncorrelated phase (Sa2Sb)/\, and thus its
absolute magnitude squared gives an independent contribu-
tion to ^uDsIu2&Var . This is indeed true for terms with
Ta ,Tb*tE , and forms the first type of contribution@Fig.
3~a! and Sec. IV A#.

If one of Ta ,Tb is negative@note that according to Eq.
~16! their sum must be positive#, then the integrations overr
andr 8 in Eq. ~9! effectively ‘‘join’’ the pathsa andb into a
single periodic orbit of durationuTau1uTbu ~the path with
negative duration2uTu may be considered as starting atr 8
and ending atr after a timeuTu). Since a single periodic orbit
can be bisected into two segments in many different ways,
all contributing with the same phase, this type of contribu-
tion can show significant interference between differenta, b
pairs. It is useful to first add up all the contributions for each
periodic orbit, which will be labeledg, and then consider the
contribution to the variance from each such term. This is
done below, and forms the second type of contribution@Fig.
3~b! and Sec. IV B#. As a result of the momentum factors,
and the fact that the integral of the momentum along a peri-
odic orbit must vanish, these terms do not contribute in the
simple cases considered here.

The third type of contribution arises whenTa or Tb is
positive, but smaller than the Ehrenfest time. For definite-
ness, take 0,Tb,tE ; in this case the patha forms a peri-
odic orbit, which returns to its starting coordinate and mo-
mentum after a timeTa2Tb and then continues along the
same direction asb for a timeTb . Thus, the action along this
last segment cancels in the expression (Sa2Sb)/\, and just
as in the second case described above, this contribution is

FIG. 3. Sketch of the three different types of interference con-
tributions to the conductivity, together with some of the correspond-
ing perturbative diagrams. The classical pathsa andb start atr and
end atr8. ~a! a different fromb, ~b! a andb lie on a periodic orbit
g, and one of them is of negative duration,~c! a andb lie ong, and
b is short~in this casea traverses the whole ofg and then repeats
the segmentb a second time!. The sketch assumes diffusive motion
with tE;t.
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close to a periodic orbit. These periodic orbit contributions
form the third and last type of contribution to^uDsJ u2&Var @see
Fig. 3~c! and Sec. IV C#.

In the following subsections, the semiclassical expres-
sions for each of these three types of contributions are de-
rived. For simplicity, we consider only the case for which the
temperature and the frequency approach zero, and for which
time-reversal symmetry holds.

A. Contribution with Ta ,Tb*tE

The different contributions tôDs j 1k1
ND Ds j 2k2

ND* & will be de-
noted byF1,F2, andF3 , with the j 1k1 , j 2 ,k2 indices sup-
pressed in most of the equations~the complex conjugate of
the real quantityDs j 2k2

ND is taken for convenience in notation;

it amounts only to exchanging thea andb indices!. Accord-
ing to Eqs.~9! and~16!, the expression foruDsJNDu2 involves
an integration over four different spatial coordinates. The
first type of contribution,F1 ~or at least that part of it that
will not vanish after averaging! comes from regions where
both r coordinates and bothr 8 coordinates are close to each
other, and both copies ofa and ofb coincide. Due to time-
reversal symmetry, there is also a similar contribution from
the case in which these coordinates are interchanged. As will
become evident, these two cases contribute terms with indi-
cesd j 1 , j 2

dk1 ,k2 andd j 1 ,k2
dk1 , j 2, respectively, which are oth-

erwise identical. The first of these, denoted byF1a, gives

F1a5S e2m2

1

volD
2E

0

`

dt1E
0

`

dt2E dr1dr18 E dr2dr28

3h2 (
a,bP$r1 ,r

1
8 im%

uÃau2uÃbu2pa8pbpa8pbdS t12 Ta1Tb

2 D
3dS t22 Ta1Tb

2 DeiDS/\. ~39!

The summation here includes only orbits with positive times
Ta andTb , which scatter at least once, and are not related to
each other by symmetry~other contributions are included in
the other terms!. The notationr151

2~r11r2!, r25r12r2, etc.,
is used, and only the contribution for whicha15a2 and
b15b2 is retained. The deviation of the orbits from
$r1 ,r18 ,m% leads to corrections to the actions, which to first
order are given by

DS.2r2~pa2pb!1r28 ~pa82pb8 !. ~40!

Consider first the integrations over the time variables.
Necessarilyt15t2 , and this time variable will be noted by
t1 . It will be convenient to add a fictitious integration over
*dt2d[ t22(Ta2Tb)]. The d functions over time may then
be rewritten in the form d(ta2Ta)d(tb2Tb), where
ta5t11t2/2 andtb5t12t2/2. After this is done, it is pos-
sible to transform the sums overa,bP$r 1r18 ;m% into phase
-space integrations using again Eq.~18!. This gives

F1a5S e2m2

1

volD
2E

tE

`

dtaE
tE

`

dtbE dr1dr18 E dr2dr28
1

h2NE dpaEdpaE8 E dpbEdpbE8

3 f E~r18 ,pa8 ,ta ;r1 ,pa! f E~r18 ,pb8 ,tb ;r1pb!pa8pbpa8pbe
iDS/\, ~41!

where the quantities relating to the possiblea orbits are denoted by a subscripta, and those of theb orbits byb. It is assumed
here that the relevant contributions come from orbits longer than the Ehrenfest time, so thatta and tb are bigger thantE . This
allows us to replace the two factors offE by their smooth averagesf E, and to neglect the contributions ofa5b to these
averaged distributions. The next step is to use the phase factor in order to perform the integration over the relative coordinates
and momenta, giving

F1a.S e2m2

1

hvolD
2E

0

`

dtaE
0

`

dtbE drdpEE dr 8dpE8 f E~r 8,p8,ta ;r ,p! f E~r 8,p8,tb ;r ,p!
l ~r ,p!l ~r 8,p8!

vF
2 p8pp8p, ~42!

where again the integration over the longitudinal directions gives factors of the ‘‘free path’’l~r ,p!, just as in the evaluation of
the weak localization term.

For diffusive behavior, Eq.~32! can again be used, and the momentum direction integrations performed. The free paths
l~r0,p0! are replaced as before by factors of 2vFt, giving

F1a5s2S 2e2h L2

volD
2

d j 1,j 2
dk1,k2E0

`Ddta
L2 E

0

`Ddtb
L2 E drdr 8W~r ,r 8,ta!W~r ,r 8,tb! ~43!

~again the spin degeneracy factors52 has been restored!. Using the decomposition ofW~r ,r 8;t! in terms of orthonormal
eigenfunctions, the spatial integrals give simply(nexp(2ta/Tn)exp~2tb/Tn!. Together with the termF1b, this yields

F15s2S 2e2h L2

volD
2

~d j 1 , j 2
dk1 ,k21d j 1 ,k2

dk1 , j 2!(n S TnDL2 D 2. ~44!

This expression can be seen to coincide with the first part of Eq.~46! of Altshuler and Shklovskii.27 For the example of the
quasi-1D wire, with TnD/L

251/p2n2, this contribution to the conductance fluctuations gives^uDgu2&Var5~8/p4!( n51
` n245

8
90, in terms of the dimensionless conductanceg.
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A further application of Eq.~42! is to the chaotic cavity of Fig. 2. This gives~including the factor of 2 due to time-reversal
symmetry, but ignoring spin!

^~DGC!2& Var52S e2h D 2 (
i , j5L,R

DVi
2DVj

2

V4a4 E
tE

`

dtaE
tE

`

dtbE
i
drdpEE

j
dr 8dpE8

3 f E~r 8,p8,ta ;r ,p! f E~r 8p8,tb ;r ,p!l ~r ,p!l ~r 8,p8!cos2~u!cos2~u8!vF
2

52S e2h D 2 (
i , j5L,R

gi
2gj

2

~gR1gL!4
gigj

~gR1gL!2
52S e2h D 2 gL

2gR
2

~gR1gL!4
. ~45!

Here we have used our previous result for the time inte-
gral of f E, and all the factors ofa have canceled as before.
The notation ī denotes the lead opposite to the leadi. This is
just twice the square of the weak localization result, and in
the case of symmetric leadsgR5gL reduces to the well-
known result̂ (DgC)

2&Var5
2
16 ~see Ref. 6!. Notice that in this

case all of the conductance fluctuations originate from the
first type of contribution, Fig. 3~a! because there are no pe-
riodic orbits which traverse the region in which the classical
electric field does not vanish.

B. Contributions with TaTb<0

Consider next the contributions which are concentrated
around periodic orbits. For definiteness, assume thatTb is

negative. The descriptionÃb* e
2 iS̃b/\ of the pathbP$r ,r 8;E%

may then be replaced by the identical termÃb8e
iS̃b8/\, asso-

ciated with the pathb8P$r 8,r ;E% where b corresponds to
retracingb8 backward in time~Tb852Tb.0). One may
rewrite Eq.~16! as

KI~E,t;r ,r 8!.
e2

m2h (
aP$r ,r8;E%
b8P$r8,r ;E%

ÃaÃb8pa8pb8
8 ei ~S̃a1S̃b8!/\

3dS t2 Ta2Tb8
2 D , ~46!

which is completely equivalent, but more convenient if the
time Ta andTb8 are positive. When the spatial integrations
over the form factor are performed, it is seen that indeed the
stationary phase points occur whenpb85pa8 and pb8

8 5pa .
This means that the pathb8 must continue the patha, and
vice versa—together they form a periodic orbit.

The periodic orbits of energyEmay be enumerated by the
discrete indexgP$r5r 8,p5p8;E%. Each periodic orbit is in
fact a continuous family of periodic classical trajectories,
which differ from each other by the choice of the initial
position along the orbit. The contributions of all the different
pairs of pathsa andb which fall along the periodic orbitg
must now be found. Note that if the integral over all positive
times t is taken as indicated in Eq.~9!, the lastd function
may be replaced by a restriction toTa.Tb8 . The next step is
to undo the Fourier transforms which led to the energy rep-
resentation in terms ofÃa and Ãb8 , and to return to a rep-
resentation in terms ofAa andAb8 :

E
0

`

dtE drdr 8KI~E,t;r ,r 8!

;
e2

m2

1

hE drdr 8E
0

`

dt1E
0

t1
dt2e

iEt1 /\eiEt2 /\

3 (
aP$r ,r8;t1%
b8P$r8,r ;t2%

AaAb8pa8pb8
8 ei ~Sa1Sb8!/\. ~47!

The relation; ~instead of.! is used to indicate that only the
contribution withTb,0 is included here. The contribution
of a periodic orbitg may now be calculated. The spatial
integrations here resemble the convolution formula for the
propagator at timet11t2 in terms of the propagators at times
t1 and t2 , of which the trace is then taken. Thus, apart from
the integration over the time differencet12t2 and the ap-
pearance of the momentum factors, the stationary phase in-
tegrations can be performed just as is normally done for the
periodic orbits involved in the Gutzwiller trace formula.8,9,20

This gives

E
0

`

dtE drdr 8KI~E,t;r ,r 8!

;
e2

m2 (
gP$r5r8,p5p8;E%

Ag
peiS̃g /\

3E
0

Tg
dt0E

0

Tg/2

dt2pg~ t01t1!pg~ t0!, ~48!

wherepg~t! denotes the momentum along the periodic orbit
g, at a point parametrized by a time variablet, and
t11t25Tg . The periodic orbit amplitude,

uAg
pu5

1

h
udet@Mg2I #u21/2, ~49!

where Mg is the monodromy matrix describing the sta-
bility of the orbit g, is the same as the Gutzwiller amplitude
apart from a time factor. As in the case of the nonperiodic
orbits of the propagator, the squares of these amplitudes may
be written as integrals over the distribution of classical
orbits,19
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uAg
pu2d~ t2Tg!5

1

h2Tg
E

g
drdpEf E~r ,p,t;r ,p!, ~50!

where the integration is restricted to the region in phase
space surrounding the periodic orbitg ~the time variable too
is restricted—the right-hand side contains additional contri-
butions at timest5mTg with any integerm!.

Equation~48! implies in fact that these periodic orbit con-
tributions vanish in all the cases considered in the present
work. One may extend the time integral of Eq.~9! to nega-
tive times, because one is interested only in the contribution
which is symmetric with respect to reversal of the magnetic
field.23 Another way to make this point is to recall that the
time-reversed orbit gT will also contribute, with
pgT(t)52pg~2t!. Thus both time arguments appearing in
the momentapg~t! can be taken to vary over the whole peri-
odic orbit. However, the factors of*0

Tgdtpg(t) must vanish
for a periodic orbit, in order for it to return to the starting
point. Such a cancellation has also been observed on the
diagrammatic level,28 where the conditionTa ,Tb8.0 corre-
sponds to the condition that a pair of propagators has either
both propagators advanced or both retarded. This kind of
contribution will not vanish only if the frequencyv is non-
zero, or if the integral*gE•dr along the periodic orbit is
nonzero~this can happen if the electric field is driven by a
time-dependent flux, andg surrounds the flux!. These excep-
tions will not be discussed further here.

C. Contributions with Ta or Tb&tE

We now turn to the last type of contribution, which in-
volves cases when eitheruTau or uTbu is smaller than the
Ehrenfest timetE , so that the stationary phase conditions
force the two orbits to overlap over this period. In this case
too the integrations over the end pointsr and r 8 lead to the
appearance of periodic orbits. In fact, most of the analysis of
the preceding subsection still holds, but withTb8,0: the
particle is performing periodic motion along a path of period
Tg5Ta2Tb ~assuming for the moment thatTb,tE!, and
after revolving around for a timeTa it retraces its path for a
short periodTb , and reaches its starting point. The corre-
sponding contribution is

E
0

`

dtE drdr 8KI~E,t;r ,r 8!

;
e2

m2 (
gP$r5r8,p5p8;E%

Ag
peiS̃g /\

3E
0

Tg
dt0E

2tE

0

dt2pg~ t02t2!pg~ t0!. ~51!

Note that the only difference between this and Eq.~48! is in
the limits of thet2 integration. The absolute square of each
such term is an independent contribution to the variance of
the conductance, which thus includes a sum over all periodic
orbitsg.

Assuming that the relevant periodic orbits are longer than
the Ehrenfest time,Tg.tE , we identify thedt2 integration in
Eq. ~51! as an integration over the momentum correlator
along the orbitg. A periodic-orbit-dependent diffusion con-

stant DIg may be defined, such that the time integrations in
Eq. ~51! give simplym2TgDIg . In order to express the results
in terms of the phase-space distribution functionfE , this dif-
fusion coefficient is relabeled as DI~r ,p!, which is identical to
DJ g for all points ~r ,p! on the periodic orbitg. Using this
notation and the expression for the amplitudes, Eq.~50!,
gives

F354S e2

hvolD
2E

0

`

dt tE drdpEf E~r ,p,t;r ,p!DI~r ,p!DI~r ,p!.

~52!

A factor of 2 arises due to the contributions withTa,tE
rather thanTb,tE @these give the complex conjugate of Eq.
~51!#, and a further factor of 2 allows for time-reversal sym-
metry, i.e., contributions of pairs of orbits withS̃g5S̃gT.

In the case of diffusive motion~with s52!, and assuming
t@t;tE , the diffusion constants DIg can be approximated by
their averageDd j ,k , giving

F35S e2Dvol D
2

d j 1 ,k1
d j 2 ,k2

udosc~m!u2, ~53!

where~see Ref. 19!

udosc~m!u25s2
4

h2Et

tf
dt tE drW~r ,r ;t !. ~54!

In these expressions one sees most explicitly the observation
made by Altshuler and Shklovskii27 that the corresponding
contribution to the UCF is associated with the fluctuations in
the density of states~dosc!. The integrations may be done
explicitly, giving again a simple sum over extinction times of
the modes:

F354s2S e2h L2

volD
2

d j 1 ,k1
d j 2 ,k2(n S TnDL2 D 2. ~55!

This is identical with Eq.~44! apart from the spatial indices,
again in agreement with Eq.~46! of Altshuler and
Shklovskii. It enhances the fluctuations of the conductance
by 50%, which thus totals for our example of the quasi-1D
wire ^(Dg)2&Var5

12
905

2
15, once again a well-known result.

For the calculation of the conductance of chaotic cavities,
Eq. ~10!, one must take into account the fact that the electric-
field factors are position dependent, and may vary over the
region covered by a periodic orbitg. The periodic-orbit-
dependent diffusion constants should be taken to reflect this:

Dg5
1

m2Tg
E
0

Tg
dt0E

2tE

0

dt2@pg~ t02t2!•E„rg~ t02t2!…#

3@pg~ t0!•E„rg~ t0!…#. ~56!

The limit 2tE of the dt2 integration is to be understood in
the same manner as the integration over the longitudinal
components of ther 8 integrations above—it is useful to de-
fine a free timet(r ,p)5D1V(r ,p)m/@E(r )•p#, in analogy
with the free pathl~r ,p! defined above. The potential differ-
enceD1V~r ,p! is the difference between the reservoir even-
tually reached by electrons starting at~r ,p! and the potential
at r ~the integration is only over the forward direction, not
the backward one29!. Again, although the propagation times
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to the reservoirs may be long, the averaging effectively limits
the length of the path contributing tot~r ,p! by the Ehrenfest
length. Strictly speaking, the averaging inD1V(r ,p) should
be taken over the region in phase space corresponding to a
minimal-uncertainty wave packet defined by the ‘‘width’’ of
the periodic orbitg, i.e., by the Monodromy matrixMg .
Thus, the fact that the classical path for electrons starting
precisely on a periodic orbit never reaches the reservoirs is
irrelevant. Our assumption that the Ehrenfest time is much
smaller than the typical propagation times in the system
~such asTg for the relevant orbits! means thatD1V(r ,p)
becomes a smooth function already with a significantly
smaller averaging region, and therefore the precise form of
the averaging is unimportant.

With this definition, Eq.~56! becomes

Dg5
1

m2Tg
E
0

Tg
dt0@pg~ t0!•E„rg~ t0!…#

2t~r ,p!. ~57!

Notice that despite the averaging involved in definingt~r ,p!,
the resultingD~r ,p! function can in principle have large fluc-
tuations, so that it becomes important to use the actual fluc-
tuating f E~r ,p,t;r ,p! in Eq. ~52!, rather than the smooth av-
eraged one. A possible way to avoid this is to use a weighted
average forD~r ,p!, i.e., define an averaging such that

D2(r ,p,t)5 f E(r ,p,t;r ,p)D
2(r ,p)/ f E(r ,p,t;r ,p).

As already mentioned, the periodic orbits do not contrib-
ute to conductance fluctuations in the case of the chaotic
cavity in Fig. 2 because the electric field vanishes in the
region in which periodic motion can occur, so thatD~r ,p!50.
A simple example of a class of chaotic systems for which the
periodic orbits of Eq.~52! do contribute will be considered in
the next section. Note that the relationship between the con-
tribution of periodic orbits to conductance fluctuations and
their contribution to the fluctuations in the density of states is
essentially modified by the presence of the electric-field fac-
tors, and no longer follows Eq.~53!.

V. APPLICATIONS TO SPECIFIC SYSTEMS

In the preceding sections, the semiclassical formulas for
weak localization and universal conductance fluctuations
were applied to two simple systems, the diffusive wire and
the ergodic chaotic cavity. In the case that the leads are of a
constant width, both of the quantum interference effects are
stronger for the diffusive system than for the chaotic scat-
terer ~21

3 vs 21
4 for weak localization,

2
15 vs

2
16 for the vari-

ance of the conductance!. Furthermore introducing asymme-
try in the chaotic cavity by takinggLÞgR decreasesthe
interference. In the present section systems which are inter-
mediate between these two cases are discussed: in the first
subsection a system of two cavities connected in series is
considered, allowing for any combination of widths of the
different leads; in the second subsection a string ofk chaotic
cavities in series is considered, with all leads equal in width.
In the course of the treatment of these systems, results which
are valid more generally, for networks of ergodic cavities
connected by ideal leads, will be given.

Before embarking on the detailed treatment of these spe-
cial systems, several possible extensions will be mentioned.
Consider first the effects of symmetry breaking by weak

magnetic fields or by spin-flip or spin-orbit scattering. This
requires knowledge of the area distribution associated with
the paths contributing tof E(r 8p8,t;r ,p), or the distribution
of 232 spin scattering matrices along them, and has been
considered in Ref. 2 for weak localization. Because of the
close parallelism between the present approach and the dia-
grammatic theory, it is not surprising that the results for dif-
fusive systems are reproduced. Specifically, in the case of
complete symmetry breaking the weak localization correc-
tion either vanishes, if time reversal invariance is broken, or
is multiplied by a factor of2 1

2 for the case of symplectic
symmetry~strong spin-orbit scattering!. The variance of the
conductance is reduced by a factor of 2 or 4, respectively.
These results hold whether the system is diffusive, ergodic,
or simply chaotic.

Temperature and frequency dependences may likewise
be treated, and again the diagrammatic results will be re-
produced for the diffusive case. Observation of Eq.~16!
shows that the frequency couples to the sum of the periods
of the two interfering orbitsTa1Tb , whereas temperature
~averaging ofE over a range aroundm! limits the contri-
butions from orbits with large period differencesuTa2Tbu.
This gives different behaviors for the four types of interfer-
ence effects considered~weak localization, and the three dif-
ferent contributions to conductance fluctuations!. The tem-
perature and magnetic-field dependences of UCF, for ergodic
cavities without time-reversal symmetry, were very recently
studied by Efetov7 using the nonlinears model. As noted
there, the results are in agreement with previous semiclassi-
cal analyses,10–12 except for the amplitude of the effect
which has been reproduced semiclassically only in the
present work. The most striking result of this reference is
that temperature smearing, as opposed to dephasing, does not
change the typical area which enters into the magnetic-field
dependence, although it does change the form of that depen-
dence somewhat. This is of direct relevance to the experi-
mental work,30 as it may allow the measurement of the
dephasing rate from the magnetic-field dependence, by infer-
ring this typical area. It may be intuitively explained by not-
ing that as the finite temperature limits only the difference
betweenTa andTb, the areas they encircle may be arbitrary,
and the area difference will be of the same order as the
typical area which enters in the zero-temperature case.
Dephasing, on the other hand, limits the sum ofTa andTb,
leaving only the contributions with typically smaller areas
and area differences.

A. Two ergodic cavities in series

The system considered here consists of two ergodic
cavities connected in series through a lead withgM conduct-
ing modes, withgL and gR denoting the number of modes
in the right and left leads as before. In this case ergodicity
is not achieved, and there are two different regions of ini-
tial conditions which must be considered in order to eval-
uate f E(r 8,p8,t;r ,p). For electrons originating in the left
cavity, the probability of leaving the system through the
left lead is the sum of a geometric series:

PL,L5@gL/~gL1gM !#$12@gM/~gL1gM !#gM/~gR1gM !%21

5gL~gR1gM !/~gMgR1gRgL1gLgM ! ,
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whereas the probability of leaving the system through the
right lead is

PL,R5@gM/~gL1gM !#gR/gR1gM$12@gM/~gL

1gM !#gM/~gR1gM#%21

5gMgR/~gMgR1gRgL1gLgM ! .

The probabilities for an electron in the right cavity~or
situated in one of the leads but headed towards the right
cavity! are given by similar expressions forPR,L andPR,R .
The classical electrostatic potential in the left cavity is there-
fore [gL(gR1gM)VL1gMgRVR]/(gmgR1gRgL1gLgM) ,
and that in the right cavity [gR(gL1gM)VR1gMgLVL]/
(gMgR1gRgL1gLgM) . The potential drops in the left,
middle, and right leads are

DVL5V
gMgR

gMgR1gRgL1gLgM
,

DVM5V
gRgL

gMgR1gRgL1gLgM
, ~58!

DVR5V
gLgM

gMgR1gRgL1gLgM
.

The classical conductance for this system may be written as

G2C5
e2

h (
i5L,M ,R

gi S DVi

V D 25e2

h

gLgMgR
gMgR1gRgL1gLgM

. ~59!

This is the result of adding classically in series the resis-
tancesh/(e2gi! of the three leads@cf. Eq.~27! for the case of
a single cavity#.

The weak localization correction for this system is given
as a sum of four terms, corresponding to different~r ,p! inte-
gration regions in Eq.~31!: electrons in the left lead moving
towards the left cavity, in the middle lead moving towards
either the left or the right cavity, and in the right lead moving
into the right cavity. It is convenient to generalize the
probabilitiesPi , j mentioned above, so as to allow indices
which describe electrons in the middle lead, moving either to
the right i5M→ , or to the left i5M← :Pi , j
5*dt* jdr'8dp'8 f E(r 8,p8,t;r ,p!, where ~r ,p! can be any
phase-space point in the ‘‘directed lead’’i, and the time in-
tegration excludes very short times for which no chaotic
scattering has occurred. The sixteen ‘‘probabilities’’Pi , j can
be obtained from the four probabilitiesPi , j with i , j5L,R by
noting thati5M← is equivalent toi5L, i5M→ is equiva-
lent to i5R, and similar equivalences can be obtained for the
final condition,j, up to factors ofgM/gL andgM/gR , respec-
tively ~the directions of the arrows fori5L,R is obvious and
omitted in the notation!. In analogy with Eq.~38!, one ob-
tains

^DG2C&52
e2

h (
i5L,M← ,M→ ,R

S DVi

V D 2Pi ,i T

52
e2

h

gLgMgR~gL1gM !~gM1gR!~gR1gL!

~gLgM1gMgR1gRgL!3
, ~60!

where the indexiT denotes motion time reversed to that de-
noted byi. In the case of leads of equal widthgL5gM5gR ,
this gives^Dg2C&52 8

27, which is intermediate between the
2 1

3 result for diffusive systems, and the21
4 result for com-

pletely random scattering.
The F1 andF3 types of contributions to the fluctuations

of the conductance may also be evaluated in a quite straight-
forward manner. The first gives, as in Eq.~45!,

^~DG2C!2&Var
1 52S e2h D 2 (

i , j5L,M← ,M→ ,R

DVi
2DVj

2

V4

gi
gj
Pi , j
2

52S e2h D 2gL2gM2 gR2~gL1gM !~gR1gM !

3
~gL1gM !~gR1gM !~gL

21gR
2 !12gLgRgM

2

~gMgR1gRgL1gLgM !6
.

~61!

Again, in the casegL5gM5gR we find ^(Dg2C)
2&15 80

729,
which is intermediate between the216 and

4
45 results of chaotic

and diffusive systems, respectively.
In order to find the contribution of periodic orbits from

Eq. ~52!, consider a periodic orbit which traverses the middle
leadng times, which must be even. The integral of Eq.~57!
gives Dg5(ng/Tg)(DVM

2 /2! @the one-half comes from
t~r ,p!, which is on the averagea/2ucos~u!uvF for r in the
electric-field region#. Equation~52! then gives

^~DG2C!2&Var
3 54S e2h D 2 (

i5M← ,M→

DVi
4

V4 E
0

`

dt

3E
i
dr'dp' f E~r ,p,t;r ,p!

n~r ,p,t !

4
, ~62!

where the integration over the whole length of the periodic
orbits, * 0

`dt*drdpEfE~r ,p,t;r ,p!„n~r ,p,t!2/4t…, has been re-
placed by an equivalent integral over the cross section of the
lead, * 0

`dt( i* idr'dp'fE~r ,p,t;r ,p!@n~r ,p,t!/4#. The notation
n~r ,p,t! identifies the value ofng corresponding to the differ-
ent periodic orbits, as was done withD~r ,p! above.31

Due to the appearance of then~r ,p,t! factors, this result
cannot be written directly in terms of the ‘‘probabilities’’
Pi , j , and requires instead the following modification: the
geometric sum inPM←,M→

and PM→,M→
is weighted by a

factor of m/2 for themth term in the sum (ng52m), and
thus gives 1

2z/(12z)2, where z5gM
2 /(gL1gM)(gM1gR).

Taking into account the contributions from bothM← and
M→ , one has

^~DG2C!2&Var
3 54S e2h D 2S gLgR

gLgM1gMgR1gRgL
D 4 z

~12z!2
,

~63!

which for gL5gM5gR ~with z51
4! gives ^(Dg2C)

2&35 16
729.

This too is intermediate between the zero result for the single
chaotic cavity, and the245 result of the diffusive wire.

Adding the results of Eqs.~61! and~63! gives for the total
conductance fluctuations
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^~DG2C!2&Var52S e2h D 2gL2gM2 gR2~gL1gM !~gR1gM !~gL1gR!

3
~gL1gM !~gR1gM !~gL1gR!22gLgRgM

~gMgR1gRgL1gLgM !6
.

~64!

For the case of equal leads this gives^(Dg2C)
2&Var5~23!

5,
which is again intermediate between216 and

2
15 results.

The quantum interference effects obtained in Eq.~60! and
~64! can be considered in the two limiting cases of a very
wide or very narrow middle lead. In the casegM@gL ,gR ,
the middle lead connects the two cavities very efficiently, so
that a particle in one of them will explore the phase space of
both cavities ergodically before having a chance to leave
through one of the external leads. Thus, the results of a
single cavity, Eqs.~38! and ~45!, are obtained in this limit.
This can be understood already from the electric-field distri-
bution, Eq.~58!, which vanishes in the middle lead in this
case. In the opposite limitgM!gL ,gR the middle lead acts as
a weak link~the use of semiclassics assumesgi@1, so it is
still much larger than a quantum point contact!, and the
quantum interference effects are suppressed, giving
^DG2C&.2(e2/h)gM(g L

211gR
21) and ^(DG2C)

2&Var
.2~e2/h)2gM

2 (g L
211gR

21)2. As the expressions of Eqs.~60!
and ~64! are symmetric with respect to any permutation of
the indicesL,M ,R it does not matter whether the middle
lead or any one of the other leads is taken as very wide or
very narrow. However, the ratio of the periodic orbit contri-
bution, Eq.~61!, to that of interference between pairs of dif-
ferent paths, Eq.~63!, is not invariant under such permuta-
tions. In fact, this ratio is maximal whengM!gL5gR , and
in that case it is equal to 1, which islarger than the ratio of
1/2 familiar from diffusive systems~it is 0 for a single cav-
ity!. The quantum interference effects turn out to be largest
when the three leads are of equal width, which is the case to
be studied and generalized in the next subsection.

B. Chains of ergodic cavities

It is clear that by adding more and more ergodic cavities
in series, the situation of the diffusive one-dimensional wire
may be approached. Consider the case ofk cavities con-
nected by leads of equal width,gi5const. Even though the
leads may be identical to each other, the chaotic cavities are
taken to be different in order to avoid a periodic situation in
which Bloch states would emerge~i.e., we assume the ab-

sence of translation symmetry!. In this case the electric-field
configuration is trivial, withDVi /V51/(k11) in all leads. In
order to make use of the semiclassical formulas of the type
appearing in Eqs.~60!, ~61!, and~63!, one needs to study and
generalize the classical probabilitiesPi , j .

It is convenient to define a classical dynamic probability
pl ,m(t), equal to the probability that an electron will be
found in themth cavity, given that it was initially in thelth
cavity and that it has since traversed through a leadt times
~l ,m51,...,k and t50,1,...!. Notice that the ‘‘time’’ variable
t is discretized, with no reference to the actual time the elec-
tron may spend in the leads and in the cavities on its way.
Quite generally,Pi , j5(gj /gm)( t50

` pl ,m(t), where l is the
cavity that the ‘‘directed lead’’i is flowing into, m is the
cavity out of which j is flowing, andgm is the sum of the
conductances of the two leads connected to the cavitym. The
simple electric-field configuration mentioned above is di-
rectly related to these ‘‘probabilities.’’

A dynamic difference equation, similar to the diffusion
equation, may be written forpl ,m(t):

pl ,m~ t11!5 1
2 @pl ,m21~ t !1pl ,m11~ t !#, ~65!

with the initial condition pl ,m(0)5d l ,m and the boundary
conditions pl ,0(t)5pl ,k11(t)50. The classical evolution
can be decomposed intoi51,...,k eigenvaluesa i and eigen-
functionsb i ,l , such thatpl ,m(t)5( i51

k b i ,la i
tb i ,m . For the

simple system considered here explicit expressions are
available: a i5cos[(i /k11)p], and b i ,l5A2/k11sin@(il /k
11)p#. Just as has happened for the diffusive case, the eigen-
functions turn out to be unimportant, and only the eigenval-
ues21,a i,1 will play a role.

Generalizing the results of Eqs.~60!, ~61!, and ~63! to
the present case, and rewriting them in terms of the dy-
namical probabilities, gives for the weak localization correc-
tion

^DGkC&52
e2

h

1

~k11!2(l ,t pl ,l~ t !

52
e2

h

1

~k11!2(i
1

12a i
52

e2

h

1

3 S 12
1

~k11!2D ,
~66!

where the explicit values ofa i were used in the last equality.
The result for the conductance fluctuations is

^~DGkC!2&52S e2h D 2 1

~k11!4 (
l ,m,t,t8

pl ,m~ t !pl ,m~ t8!1S e2h D 2 1

~k11!4(l ,t tpl ,l~ t !

5S e2h D 1

~k11!4 S 2(i 1

~12a i !
2 1(

i

a i

~12a i !
2D

5S e2h D 1

~k11!4
2

45
$@~k11!221#@2~k11!217#1@~k11!221#@~k11!224#%

5S e2h D 2 215S 12
1

~k11!4D , ~67!
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where the two different contributions are kept separate until
the last equality. Notice that the factor of125gj /gm in the
relationship betweenPi , j and pl ,m exactly compensates the
fact that the number of terms in thei,j summations is twice
as large as that in thel,m summations~there are twice as
many directed leads as cavities!.

Naturally, these results reproduce those described above
for k51 andk52 cavities~k50 describes an ideal wire!, and
approach the diffusive results fork→`. A similar crossover
behavior has been calculated for a different kind of system
which interpolates between the same ergodic and diffusive
limits, using supersymmetry techniques.32 In that case too
the idea was to connectk ideally chaotic cavities in series,
but the connections were made directly in the Hamiltonian,
by introducing matrix elements which mix between the
quantum states of adjacent cavities~each cavity was ascribed
a GOE Hamiltonian!. The results were as here rational func-
tion of k which reproduce thek51 and thek→` limits, but
their form was much more complicated than Eqs.~66! and
~67!. Even the asymptotic behavior for largek is not similar,
and in fact the crossover for UCF described in Ref. 32 is
slightly nonmonotonous. It would be very interesting to com-
pare our results also with a continuous crossover between an
ideal lead~k50 here! and a diffusive wire, obtained when a
disordered region of sizeL and mean free pathl is introduced
in the lead~with the continuous parameterL/ l !. In principle
such an analysis can be carried out using the semiclassical
methods developed here, but would depend on the details of
the disordered wire@ f E and E~r ! depend on whether the
scattering is isotropic or small-angle scattering#.

VI. DISCUSSION

The main results of the present work are the semiclassical
expressions for the mean and variance of the quantum inter-
ference corrections to the conductance, i.e., weak localiza-
tion and universal conductance fluctuations. For classically
chaotic systems, these quantities are expressed as integrals
over the distribution of classical orbits,f E(r 8,p8,t;r ,p), in-
volving also additional quantities which can be derived from
this distribution: the self-consistent electric fieldE~r !, and
the effective free pathsl~r ,p!, and diffusion constantsD~r ,p!.
Knowledge of this distribution of classical orbits is readily
available in the applications considered here~see Sec. V!,
due to the assumption of adiffusivesystem or a system con-
sisting of severalergodic cavities connected through ideal
leads. The important task of demonstrating the use of these
expressions on a generic system lies beyond the scope of the
present work. However, it is stressed that finding this classi-
cal distribution numerically for a given potential should be
relatively easy, because only a statistical knowledge of the
classical orbits is necessary, and there is no need to form a
full database consisting of exponentially many orbits.

It was originally thought1 that SCA could help to bridge
the gap between the down-to-earth experimentalists and the
abstract mathematical analysis of the theorists. Unfortu-
nately, the recent developments in the theory have consider-
ably widened this gap, with the introduction of diffusion
equations inn-dimensional transmission-eigenvalue spaces,
and supersymmetric techniques. It is hoped that the present
method will contribute to reversing this trend,33 although it is

acknowledged that the semiclassical approach has its own
limitations ~in particular, the case of a few, or partially open,
channels is outside its scope!. The following two subsections
give a detailed discussion of the novel features of the present
work, and in that context an attempt is made to bridge a
different gap—that between the theory of disordered systems
and the theory of quantum chaos. Possibilities for cross fer-
tilization between these two fields, in both directions, are
pointed out.

A. Modified semiclassical approximation
for the mixing regime

It should be emphasized that the semiclassical analysis
was applied here in an unorthodox manner. A strict stationary
phase argument would require the initial momenta~and final
momenta! of the two classical pathsa andb appearing in the
semiclassical expression for the conductivity, Eq.~16!, to be
strictly equal to each other. As these two paths start at the
same position, they would have to be either identical to each
other ~the classical contribution to the conductivity!, or to
differ by completing a different number of revolutions
around a strictly periodic orbit16 @as inF3 of Eq. ~52!#. Thus
no weak localization corrections, and no contributions of the
first kind [F1 of Eq. ~39!# to universal conductance fluctua-
tions, would be obtained. However, the value of\ is never
infinitesimally small, and thus the stationary phase argument
is never completely strict. In fact, in chaotic systems inter-
esting contributions to physical quantities often arise from
the mixing regime, i.e., from orbits with propagation times
between the Ehrenfest timetE and the typical escape time
tesc. This regime disappears in the extreme\→0 limit, and it
is thus not surprising that its detailed treatment deviates from
the standard SCA.

Consider for example the classical orbit of Fig. 1, and its
behavior whenr 8 is not strictly equal tor . Labeling the
impurities by digits, we refer to the interference term be-
tween the path a5r -1-2-3-4-2-1-r 8 and the path
b5r -1-2-4-3-2-1-r 8, in which the order of scattering has
been reversed. ClearlyS̃a andS̃b are guaranteed to be equal
only if r5r 8. It is also clear@from Eq. ~15!# that whenr 8
deviates fromr , the difference of actions will be proportional
to the difference in the final momenta of these two paths,
which for the case depicted in the figure is about 1% ofpF .
This momentum difference,pa82pb8 , is always perpendicular
to pa8 and never vanishes, so there is no strictly stationary
phase contribution to the integration over the perpendicular
component ofr 8. Furthermore, the magnitude of this mo-
mentum difference is roughly independent of the perpendicu-
lar component ofr 8, as it is determined by the first part of
these paths, which is identical fora and b ~in the present
example the first two scatterers are identical!. However, the
range of this integration, which we denote byl' , is finite—
roughly 10% of the size of the system,L, in the example—
and thus the action difference will never grow beyond
l'~pa82pb8! ~both these factors depend also on the parallel
component ofr 8, but their product is roughly constant!. Now
the question of whether this pair of orbits contributes or not
depends on the value of\: if it is much smaller than 1023pFL
there will be a fluctuating~never stationary! phase factor, and
the contribution will be unimportant, while if\ is much
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larger than 1023pFL the phase will be negligible throughout
the whole integration range, and there will be a finite contri-
bution.

Quantitatively, such contributions may be described by a
factor ofhN21d'(pa82pb8 ), where thed function is over the
perpendicular components of the momentum, and has a finite
width ;h/l' and height; l'

N21. In the analysis of Secs. III
and IV the averaged distribution functionf E was introduced
already at an earlier stage and the integration overr 8 andp8
was done in one step, so that thisd' function never appeared
explicitly. For long times there are exponentially many
classical orbits fromr to r 8, which initial and final momenta
within h/ l' of p andp8, respectively, and thus the averaging

in f E(r 8,p8,t;r ,p) gives a smooth distribution. The fact that

f E is smooth makes it invariant to the details of the averaging
procedure. Thus there is no need to keep track of the actual
distribution of sizes ofl' ~at least as long as the main con-
tributions come from long orbits!.

The crossover between ‘‘short’’ and ‘‘long’’ times for this
purpose occurs at an Ehrenfest timetE , which depends on\
and the typical Lyapunov exponents. A pair of paths starting
very near to each other in phase space will have their mo-
mentum difference multiplied by a factor of orderl /R after
each collision with an obstacle, wherel is the free path andR
is the radius of curvature of the obstacle. Thus, if the initial
momentum difference ish/ l' and the momentum difference
at tE is required to be of orderpF , the resulting estimate for
the Ehrenfest time is

tE;t
ln~pFl' /h!

ln~ l /R!
~68!

~suitably averaged value oft, l, andl' should be used here!.
Often this estimate can be taken to implytE;t, especially in
diffusive systems for which it is customary to take the limit
of small scatterersR! l ~recall that diffusive motion is not a
valid description for timest;t anyway!. However, in the
semiclassical limit\ will become so small that we will have
tE@t, and in principle this should be taken into account. For
instance, the magnetic-field dependence is determined by the
distribution of areas enclosed by diffusive paths of lengtht,
which should be replaced byt22tE since the paths are so
close to each other that they enclose a negligible area for a
time tE near their beginning and end~this argument does not
apply to the contribution of periodic orbits!. Since the domi-
nant contributions come from long times, such corrections
are unimportant for diffusive systems, except for exceedingly
small values of\. They are also unimportant in the chaotic
systems studied here, because of the assumption of ergodic-
ity which was used for the individual cavities~we have es-
sentially assumed that bothtE and the time taken to traverse
each cavity are much smaller than the escape time from the
cavity, which typifies the length of the shortest relevant or-
bits!. It would be very interesting to study systems for which
tE is not negligible compared to the typical propagation
times.

The physics associated with the Ehrenfest time can be
clarified by considering a different geometry. It is often
claimed in the context of disordered systems, on the basis of
a perturbative analysis, that any disordered system can be

described by a single parameter—the diffusion constant—on
all length scales larger than some physical cutoff such as the
transport mean free path or the grain size for a granular ma-
terial. However, an additional length scale related to the
Ehrenfest time occurs naturally in the semiclassical analysis.
Furthermore, this length scale depends not only on the mi-
croscopic characteristics of the potential, but also on\, and
diverges for\→0. As an example, consider a thick slab of
transparent disordered material. If it is illuminated by awell-
collimatedbeam of light, a speckle pattern may be observed
in the transmitted light. Based on the perturbative analysis,
one may expect that the condition on the thickness of the
slab is given by the transport mean free path, but in fact it is
clear that the relevant length is related to the Ehrenfest time
~provided that the microscopic features of the disordered
sample are ‘‘soft,’’ i.e., they must be larger than a wavelength
and must not act as beam splitters!. For slabs of thickness
intermediate between these two lengths, the beam will re-
main well collimated and no speckle pattern will be ob-
served, even though the direction of propagation of the trans-
mitted ~or reflected! light will be random.

It is somewhat surprising that the importance of the
averaging inf E(r 8,p8,t;r ,p), or equivalently the width of
the d'(pa82pb8 ! functions, was not emphasized earlier. This
may be due in part to the fact that much of the attention
was devoted to physical quantities which involve periodic
classical orbits, such as the density of states.8,9 In fact, this
kind of averaging does not arise naturally in the analysis
of the contribution of periodic orbits to the conductance ei-
ther ~see Sec. IV C above!, and even if it were to occur, it
would have no dramatic effect on integrals involving
fE~r ,p,t;r ,p!. In contrast, in the case of weak localization the
averaging is around the pointf E(r,2p,t;r ,p), and it intro-
duces qualitatively new types of orbits~i.e., non-self-
retracing orbits! into the calculation for long times. Like-
wise, the averaging forf E(r 8,p8,ta ;r ,p) f E(r 8,p8,tb ;r ,p)
has an important effect as it allows distinct classical orbits to
overlap@see Fig. 3~a!#.

B. Corrections to the conductance
from leading-order propagators

It is remarkable that the use of the Kubo formula, with a
self-consistent choice of the electric field, has enabled here
the calculation of corrections to the classical conductance
which are of higher order in\, without having to evaluate
such high-order corrections to the propagators themselves.
As explained already in Sec. II, the choice of the electric
fields can be shown to be unimportant on the basis of unitar-
ity, and it is somewhat surprising that the semiclassical re-
sults forsI~r ,r 8! do not obey unitarity, order by order in\.
However, it turns out that the leading-order results for
sI~r ,r 8! may give subleading contributions to the derivatives
¹r•sI~r ,r 8!. In order to clarify these issues, we briefly recon-
sider the example of a cavity with ideally ‘‘random’’ scatter-
ing, which can be described by the circular orthogonal en-
semble ~COE! of RMT.6 As described in the following
paragraphs, this system can be observed to display all of the
above surprising aspects~i.e., a nonunitary leading-order ap-
proximation which still reproduces the quantum corrections
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to the conductivity correctly, if the Kubo formula is used
rather than the Landauer formula!, without invoking any
semiclassical considerations.

Take then3n scattering matrix,Si,j , which is associated
with such a ‘‘random’’ cavity, connected to leads with a total
of gL1gR5n conducting channels. The dimensionless con-
ductance is given in terms of this scattering matrix by the
Landauer formulagC5( i51

gL ( j5gL11
n uSi , j u2. TakingSi,j to be

a random member of the COE, one may calculate various
averages of its matrix elements for anyn. For example, the
fact that ^uSi , j u

2&5(11d i , j )/(n11) implies that
^gC&5gLgR/(n11). Expansion in 1/n gives
^gC&.gLgR(n

212n22), in agreement with the semiclassi-
cal results for an ergodic cavity, Eqs.~27! and~38!. Evalua-
tion of the variance of the conductance is slightly more com-
plicated, although straightforward:6

^~gC!2&Var5gLgR^~ uSi , j u2!2&Var

1gLgR~n22!^~ uSi , j u2!~ uSi ,ku2!&Var

1gLgR~gLgR2n11!^~ uSi , j u2!~ uSk,l u2!&Var

5gLgRS 2

n~n13!
2

1

~n11!2D
1gLgR~n22!S 1

n~n13!
2

1

~n11!2D
1gLgR~gLgR2n11!S n12

n~n11!~n13!

2
1

~n11!2D
.2gL

2gR
2/n4. ~69!

Here the indicesi , j ,k,l which appear in the different type of
covariance term are all taken to be different from each other.
The result is again in agreement with the semiclassical result
of Eq. ~45! for an ergodic cavity. Note that it is obtained due
to a cancellation of the first two contributions with each
other, and that knowledge of moments ofSi , j to the second
subleading order in 1/n turns out to be necessary. Obviously,
if the leading-order expressions for the moments ofSi , j were
used in the Landauer formula, only the classical conductance
could have been calculated correctly.

Consider now the freedom of using the known property of
unitarity of the scattering matrices,( j uSi , j u

251 for each row
or column. This allows us to replace the contribution of each
row of the scattering matrix to the Landauer formula,
( j5gL11
n uSi , j u2 by the combination (12a)(12( j51

gL uSi , j u2)
1a( j5gL11

n uSi , j u2, with any value of a. As the self-

consistent classical electric field for an ergodic cavity is
concentrated in the leads~cf. Sec. II!, it is possible to
follow a line of derivation equivalent to that used above for
the SCA simply by choosing an appropriate value ofa, spe-
cifically a5gL/n. Repeating this replacement for each row
and each column gives the ‘‘Kubo formula’’ for the conduc-
tance,

gC5
gLgR
n

2 (
i , j51

n

EiEj uSi , j u2, ~70!

with the ‘‘classical electric field’’ factors

Ei5 HgR /n if 1< i<gL
2gL /n if gL11< i<n ~71!

~the relative minus sign is due to the field being directed into
the cavity in one lead, and out of it in the other!. Observe
that the classical conductance of the cavity is given here by a
‘‘short-range part,’’ which does not require knowledge of the
‘‘long-range’’ scattering matrix at all. It is stressed that Eq.
~70! follows directly from the Landauer formula and the uni-
tarity of Si , j . In the present context it is considered to be
more basic. Evaluation of the mean quantum correction to
the conductance can now be performed using only the
leading-order result for the corresponding moment of the
matrix elements,̂ uSi , j u

2&.(11d i , j )/n, despite the fact that
in this approximation the scattering matrix is not unitary.
Most terms cancel with each other because( i51

n Ei50, and
the remaining2( i51

n E i
2/n gives the WL result. The results

for UCF may likewise be obtained using only the leading-
order expression for the moments,^(uSi , j u

2)(uSk,l u
2)&Var

.(d i ,kd j ,l1d i ,ld j ,k)/n
2. The analogy with the semiclassical

calculation is thus complete.
It is expected that explicitly using the self-consistent elec-

tric field could be very helpful in other calculation schemes
too. For example, it should enable the calculations of Ref. 7
to be done by expanding only to the second order in the
diffuson-Cooperon expansion, and not to the sixth order as
was found necessary there@this is based on counting the
number of ladders in the different diagrams for the ‘‘long-
range part’’ of UCF~Ref. 14!#.

In this system one can explicitly study the next-order cor-
rections to the moments ofSi , j and observe how their con-
tributions could in principle be as large as the WL and UCF
terms being calculated, but vanish due to cancellations be-
tween the different terms. This cancellation can be demon-
strated without actually calculating the higher-order correc-
tions, by arguing that( iEi50 and using the fact that the
COE is insensitive to the actual values of thei and j indices.
As noted in the closing paragraph of Sec. II, a similar can-
cellation can be demonstrated in diffusive systems, using the
diagrammatic technique. More generally, one may argue on
the basis of universality that additional contributions from
higher-order terms should not be expected, at least in the
case of systems involving ideally ergodic cavities~Sec. V!.
In order to verify this expectation, it would be very interest-
ing to study explicitly the contribution of higher-order cor-
rections which are known for semiclassical propagators,34

especially those which are known to involve\1/2 or \1/3 cor-
rections, i.e., the effects of diffraction and caustics.

In the field of disordered systems, higher-order correc-
tions in\ are usually analyzed in terms of two distinct small
parameters.35 The first gives the accuracy of the description
of individual scattering events, and may be written aslF/ l ,
wherelF is the Fermi wavelength andl is a microscopic
length such as the mean free path~for a semiclassical analy-
sis, an obvious microscopic length is the radius of curvature
of the obstacles depicted in Fig. 1!. It is often argued that
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inaccuracy with respect to this parameter can be tolerated,
because the actual potential in a real system is unknown
anyway, and instead the mobility or the effective scattering
cross section are measured directly. The second small param-
eter is essentially\/Dtesc;1/g, whereD is the mean single-
particle level spacing,tesc is the length of time a typical elec-
tron spends in the sample before leaving through the leads,
andg is the dimensionless conductance of the sample. This
parameter describes the extent of lack of unitarity in the
semiclassical approach as discussed above. Recently, it has
been suggested that unitarity could be built into the semiclas-
sical approximation from the outset.36 It would be very in-
teresting to analyze this approach from the point of view of
two distinct small parameters. Such an analysis could imply

that the SCA becomes, when unitarity is enforced, analogous
to the nonlinears model—the latter describes a disordered
system with a white-noise potential to all orders in 1/g, but
only to leading order inlF/ l .
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