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The Kubo formula for the conductance of a mesoscopic system is analyzed semiclassically, yielding simple
expressions for both weak localization and universal conductance fluctuations. In contrast to earlier work that
dealt with times shorter thaB(In% 1), here longer times are taken to give the dominant contributions. For such
long times, many distinct classical orbits may obey essentially the same initial and final conditions on positions
and momenta, and the interference between pairs of such orbits is analyzed. Application to a dhain of
classically ergodic scatterers connected in series gh/%{st— (k+1)~?] for the weak localization correction
to the zero-temperature dimensionless conductanceﬁ;@m&(k+ 1)~4] for the variance of its fluctuations.
These results interpolate between the well-known ones of random scattering matrice4 fand those of the
one-dimensional diffusive wire fdr— .

[. INTRODUCTION dynamics, and do not give general semiclassical expressions.
Many of the recent analyses have used the Landauer for-
Semiclassical ideas have been central to the understantdiula or scattering approach, rather than the bulk approach of
ing of transport effects in mesoscopic systems, specificallghe Kubo formula. The proof of the equivalence of these two
weak localization(WL) and universal conductance fluctua- formulas relies on the unitarity of the quantum-mechanical
tions (UCF), from the outset=2 However, they are usually evolution (current conservation However, semiclassical
used for handwaving arguments, with the actual calculatiorvolution in classically chaotic systems is only approxi-
being done by resummation of perturbation theorymately unitary, and therefore application of the SCA to the
expressiorfs (Feynman diagrams|In recent years, fabrica- Kubo or Landauer formulas may lead to different results.
tion of ballistic mesoscopic systems has become feasiblélhe experience gained from the diagrammatic calculatfons
and it has been demonstrated that the chaotic or integrablhows that higher-order corrections to the propagafics
nature of the classical dynamics in such systems is reflectegrams with Hikami boxe'S) are necessary for an evaluation
in the quantum interference corrections to their transporof the conductance from the Landauer formula, but not when
properties. The perturbative approach with respect to thethe Kubo formula is used. For this reason, we use the latter
impurity potential is inapplicable to such systems, and in-in the present work.
deed calculations using other theoretical tools such as ran- A semiclassical analysis has already been developed for
dom matrix theor§ (RMT) and the nonlineas- model have  the Kubo formula in classically chaotic systems by
recently appeared. The recent progress in applications of theilkinson!® with recent applications to transport in antidot
semiclassical approximatioSCA) to classically chaotic arrays®’ It was assumed thefthat the relevant propagation
system&° gives rise to a hope that quantitative results for thetimes are shorter than the Ehrenfest tirhe;r O(In% %), so
mesoscopic transport effects could be obtained from it. Thishat a coherent state or wave packet maintains its correspon-
hope is realized below, but it turns out to be necessary taence to a point in the classical phase space throughout its
apply the SCA in a somewhat unorthodox manner. evolution. However, it has since become known that semi-
The reason for the difficulty in the semiclassical descrip-classical expressions are applicable also to later tithas.
tion of WL and UCF is obvious: both effects involve quan- such later times the region in classical phase space which
tum interference corrections to the classical conductancegvolves from an initially minimal-uncertainty wave packet is
which are smaller in powers d@f. Various authors have dealt stretched and folded by the chaotic dynamics into a very
with this difficulty in different ways. Some have followed the long and curved shape, which may intersect the region de-
diagrammatic derivation quite closely, and used it for cali-fined by some final wave packet several times. The Ehrenfest
bration of the magnitude of the effecOthers have limited time thus marks the onset of interference between different
their attention to effects such as coherent backscatteringlassical orbits which correspond to these different intersec-
where the quantum interference corrections appear in théons (called the mixing regime and not the breakdown of

leading order, and are as large as the classical rés8lill  the SCA. In the present work the focus is on times much
others have concentrated on the magnetic field dependentenger than the Ehrenfest time, and compact expressions for
of UCF, and used RMT to calibrate the magnitdd@>All  the contribution of these interference terms to the conduc-

of these studies assume either diffusive or ergodic classicaance are developed. Interestingly, some of the témusud-
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D‘W S motion of a “billiard ball” which is scattered by some ob-
stacles(see Fig. 1L In order to apply the SCA, it is assumed

that all the classical dimensions, such as the mean free path

or the radius of curvature of the obstacles, are much larger

@ s than the Fermi wavelengtti.e., # is smal). The classical
4 dynamics is assumed to be completely chaotic, with all orbits
@\\ \\\ D hyperbolically unstablésystems with integrable or interme-

- N diate dynamics require separate consideratidhe number
~ \\\Q of dimensions or degrees of freedol, must thus be larger
/@ than 1. The exponentially large number of orbits in such

@ systems justifies our statistical approach. Possible complica-
tions associated with caustics, etc., are ignored in the present
work, and only the generic contributions are considered. In

addition we assume that the spectrum is essentially continu-

FIG. 1. Sketch of a path which together with its time reverseOUs, I.€., that the single-particle Ieve! spaciagis much
contributes to weak localization. The initial and final points may beSmaller than the other energy scales in the system, such as
varied along the segmehtThe sourcéS and drain(D) regions are ~ those determined by the broadening of the leVethie to the
connected through ideal leads to particle reservoirs. external leads, the temperatufgor the frequencyw (even
when those tend to zexoThis also implies that there is no
exponential Anderson localization in the system even in two

r quasi-one-dimensions, i.e., the system is smaller than the
ocalization length, becauge<E,, whereE, is the Thouless
energy E.="%/tp with ty the time for an electron to traverse
the system

The various contributions to the conductivity and its fluc-
uations will be expressed as integrals over the distribution

ing the periodic orbit contributions studied by Wilkingon
retain the same form whether the orbits under consideratio
are short or long on the scale f, whereas other terms are
peculiar to times longer thaty and cannot be found by
studying the strict semiclassical limit—0.

The semiclassical expressions derived below exhibit thre
rather novel features: first, it will be assumed that the action ! i S . .
of the classical orbits involved are large, and that they thu unptlon of classu?a! .orb|ts. |n'the system. Given a Hamil-
contribute with essentially random phases and a statistic Pnlan,H(r,p), an initial point in phase spacé,p), and a

description in appropriate; second, interference effects bégropagation timg, classical dynamics generates a final point

tween continuous families of classical paths appear explic\-NhICh we denote byr,,py). The unaveraged distribution of

itly; third, the distribution of classical paths is described asCIaSS'CaI orbits is defined aséfunction around this point:
having a continuous density in phase space, even when the r ot — Syt r_

initial position and momentum are given, i.e., it will be nec- Fr, Pt p) =o' =r) (p" = py). @)
essary to introduce a small amount of averaging over thét is convenient to use a distribution functignlimited to the
initial (and fina) conditions. Such a description is relevant energy hypersurface, by factoring out the energy conserva-
not only for the average over an ensemble of similar mesgtion condition:

scopic systems which differ in their microscopic detditse

disorder ensemble but also for a single system at times fe(r’.p" . t;r,p)S[H(r",p") —H(r,p)]=1f(r",p".t;r,p). (2)

angefr than ti‘? Efllrenfest time. FoLle);‘ample, in the EXPre€Spyhereas these distribution functions describe the chaotic
sion for weak localization, orbits w I:‘:t start at ,Somehg'venclassical dynamics in intricate detail, they can be averaged
positionr and momentunp, and end after some timeatthe ;61 smal| ranges in initial and final conditions to give a

same pos_it_iom but at momentum-p will be n_eeded. Rathe_r smooth distribution which describes the evolution in a statis-
than retaining only self-retracing paths, which would be im-j;-o| sense. This averaging will be denoted by an overline:
plied by strict classical mechanics, the results involve th

density of orbits in phase space around the pdint-p)
note that a self-retracing path is not related to a distinct pat
EJy time reversal, and isgtFr)lus irrelevant for interference pbe:[hfa distributionfe becomes independent of the specific de-
tween pairs of time-reversed pathsin incorporating these t@ils of the averaging procedure. For example, in an ergodic
features we are following the approach of our previoussystemfg becomes independent of initial and final condi-
work,'® which pertains to density-of-states correlations intions at long times. Apart from the distribution functiég,
mesoscopic systems; however, the need to account for comdditional properties of the classical paths occasionally ap-
tributions which do no strictly obey the initial and final clas- pear in the expression®.g., the distribution of areas en-
sical conditions did not arise there. closed by the classical paths is relevant for the case of weak
As in other applications of the semiclassical method, in-magnetic fields
teractions are ignorethpart from a possibly self-consistent ~ Whereas from the phase-space averaging is denoted by
potentia), and the electron fluid is considered as a degenerthe overline, angular brackets will be used in order to denote
ate thermal distribution of noninteracting particles moving inaveraging over the semiclassical phases, which are assumed
a mesoscopic sample. We have in mind a situation where th® be uncorrelated except for possible symmetries. For ex-
electrons’ motion is mostly free, but occasionally they hit anample, (€'S</*)=0 and (e'S«=%9/"y= 5, ;+ 8,7 5, where
impurity or the boundary of the system and are scatteredS, andS; are the actions of classical orbitsand g, anda’
This correspondén the language of quantum chdpso the  denotes the orbit time reversed 4o This assumes time re-

?E(r’,p’,t;r,p), with the range of averaging determined by
ﬁ. For timest significantly longer than the Ehrenfest tirge
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versal is the only symmetry in the system, and that the num- ez 4 i

ber of orbits is exponentiaTIIy large so that the possibility of oik(@) =12 HRef dﬁldfzm
self-symmetric orbitspe=«a ', may be ignored. This second

averaging should be understood either as an averaging over fep(€1) — fep(€2) ,

the specific positions of the obstaclglse disorder ensemble X ho j drdr
average or, for a single system, as an averaging over a

range of possible values of the Fermi enegggor a range of x(é i(r’|5(|:|— 6 )|r>)

values of Planck’s constari). The average quantum correc- i g ]’ 2

tion to the conductance will be denoted b&G), and its

variance by((AG)?)y,. The fact that these qualities can be ><<

written semiclassically as integrals over the distribution

function f¢, without reference to individual classical orbits

and the plethora of their actions and amplitudes, is very useyhere we have usef,= [dr|r)(%/i)aldr (r|, and ignored

ful in applications to classically chaotic systefg? spin (a spin index summation should be understood with
The outline of the paper is as follows. In Sec. Il the gen-each spatial integration; we avoid the extra indices below by

eral SCA expression for the Kubo conductance is derivedassuming spin degeneracy

and shown to reduce to the classical conductance when all For the purpose of a semiclassical analysis, it is conve-

interference effects are ignored. The appropriate choice dfient to define quantities which are bilinear in the quantum-

the electric-field distribution is discussed. Weak localizationmechanical propagators, and to transform them into a form

is analyzed in Sec. Ill, and universal conductance fluctuadepending on one energy and one time variable, rather than

tions in Sec. IV. In these sections the general expressions fV0 energy variables? We are thus led to define the follow-

terms off(r',p’,t;r,p) will be applied to diffusive and er- N9 “form factor™

godic systems, for which simple expressions fgr are

readily available. We concentrate on calculating the magni- - , et L ~

tude of the interference effects at zero temperature and mag-  K(E.Gr.r )Ef dee Trj(r')8(E+ 3 e—H)
netic field, in order not to repeat the considerations given in R R

the previous semiclassical analysés®-*?Extensions of the Xj(r)8(E— % e—H)], (5)
analysis, e.qg., to finite temperatures, and applications to more

complicgted systems whic_h consist of s_everal cavi_ties CC’W\/herejA(r) is the current density operatdfor a given spin
nected in series through ideal leads, will be considered iy e tion. Some of the basic properties of this form factor
Sec. V, followed by a discussion in Sec. VI. A short descrip-gre () it is real; (b) it is symmetric under the interchange of
tion of this work has been published separafély. all indices and the sign of the time variable,
Kik(E,t;r,r")=Ky;(E,—t;r',r); and (c) if an external mag-
netic field is the only source of time-reversal symmetry
Il. THE KUBO FORMULA breaking, then reversing the sign of this fi¢tdgether with
. . the sign of the spin indicgshas the same effect on Ks
According to linear-response theory, the real part 01Ereversing the sign of. As we will discuss only weak mag-

tlgsfcg)nductivity tensor is given Hgee, e.g., Appendix A of n:ztzic fields and use the SCA, we can rewrite the form factor
: a

oo
i dry

<f|5(|:|—61)|f'>), (4)

e 1 e? -
. - . . . Iy — —iet
Ti(w) om2 voIRe% (m[p;j[n) Kik(E,t;r,r’) mzj dee

f ~f fid .-
(| i m)i {ﬁfg;_gf& 3 XL— (T 18+ 5e—H)|r>}
ho

X| -
i ary

S(E-%e—H)r')|. (6
where &, and|m) are the single-particle eigenenergies and {rla ze-HIr >} ©

eigenstates, respectivelg, is the momentum operator, and

fep(=1Kexd B(é—u)]+1} is the Fermi-Dirac distribution,

with u the chemical potential and the inverse temperature

(e andm are the electron charge and mass, respectively,

the frequency, and vol is the volume of the system; we are

assuming a simple effective-mass description of the elec- drdr’ -

trons, but the derivation applies with minor modifications to 5’(w)=f dEdt ReF(E,t)J —K(Et;r,r"), (7)
) : . . vol

systems with a nonspherical Fermi surfackhis can be re-

written in terms of the single-particle propagatfe.g.,

AH— €)= | m) 8(&— €)(m]] as where

The conductivity is given in terms of this form factor as
follows:
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de . " require that the components Eir) and of o(r,r’) perpen-
F(E,t)= f Ze'et dicular to an insulating boundary vanishn fact, one may
take different electric-field distributions for the tvigr) fac-
i fep(E— 4 €)—fep(E+ L €) tors in Eq.(lO)—in.the. scat_terjng approach of the Lan_dauer
xﬁ 0 7 formula the electric field is in effect concentrated in the
w— € w

source lead for one factor, and in the drain for the other
(8)  (another example is the case of multilead devices, for which
o ) the conductanc®; is a matrix, and the boundary conditions
Causality is reflected by the fact that replaciagby —w  or the two electric-field factors may be differgns already
is tantamount to taking the complex conjugateFdE,t).  mentioned, the semiclassical expressions derived below for
In orderlto elumdatel the structure 6¥(E,t), note that 2 -1y 4o not necessarily obey current conservation, be-
[fro(E—2€)—fep(E+2€))/ € plays a role similar ©05(E  c5yse higher-order corrections Anare not included. Thus,
— ) (itis a box function of widthe and height 1¢, smeared o SCA expressions for the conductance do depend on the
by the temperature which will be assumed small; as wg,ge of the actual electric-field distribution in the sample, as
will be interested in long times only small values ok are  jiscussed below.
relevani. In fﬁCt' it is straightforward to show that — The next step is to write down the semiclassical expres-
deF(E,t):e 6(t)— (i/w) 8(t), where Q(t) is the SteP  sion for K(E,t;r,r") of Eq. (6). As a starting point we use the
function, and the last term cancels with the diamagnetiq,an vieck formula:
term. The detailed form of(E,t) becomes considerably
simpler if only the time symmetric combination of its real R
part is neededsReF(E,t) + F(E,—t)]. Due to the proper- (t'|exp(—iH)|r)= >  A,e'S" (12)
ties of K mentioned above, indeed only this combination aefrr'it}
appears if one is interested in a symmetric integral over K . . . . .
such as the longitudinal conductance, or if the magnetic fielc‘f’herea is a discrete |nde>.( which runs over aII_ the classical
vanishes(in the cases to be considered below both of thesé)a.ths ,that start aF the pomtanld end after a t_|me at the
conditions are satisfiedThe integration ovee then becomes pointr . The amplitude and action of the classical pathre
trivial due to ad&e—hw) factor, and in the limit of small given by

frequencies we may write 12

: . S,= fr (pdr—Hdb), (12

® drdr’ o r

0'(w—>0)=f dtf dE(—f’FD(E))fWK(E,t;r,r’).
0 9) wherep,, is the initial momentum of the patta andv, is the

integer Maslov index(this and other factors of may be

In the zero-temperature limit to be considered below, thegnored for the purposes of the present wokfter Fourier

integration ovelE may be omitted, and its value is identified transforming from timet to energyE, we have(see, e.g.,

with the Fermi energyu. Notice that the part oF(E,t) Ref. 9

which is asymmetric in and responsible for the Hall effect

has been simplified in this analysis, whiaesumeshat o is ) N ~ S

a Fermi surface propery. (r'|8(E—H)|r)= E A.e>e T, (13

In the case of restricted geometries or nondiffusive sys- ac{rr’E

tems, the conductance rather than the VOIUme'averaged COlWhere the indexy counts classical paths of enerﬁyand the

ductivity is the appropriate qgantity to study. One defines thenodified amplitude and action are given by

space-dependent conductivigir,r’) exactly as in Eqs(7)

and (9), except that the integrations overandr’ and the o 1 dp

division by the volume are not performed. The current is A, =i’ de(Ha—f‘

given by j(r’)=[dro(r,r')E(r), where E(r) is the electric r

field. This dissipative conductance of a sample of gener

geometry with two leads, at zero frequency, can be written a:

the dissipated powefdr 'E(r')-j(r"), divided by the voltage

V squared:

1/2 1/2

1dT,
h dE

, ~sa=fr pdr. (14)

r

he derivativedp /or' appearing in this amplitude is taken at
a constant duration of the orltit=T,, [it is also possible to
reexpress this amplitude in terms of & 1) X (N+1) ma-
trix of derivatives taken at constant energy but this will
1 not be helpful hereN denotes the number of dimensigns
G= Wf drdr E(r")o(r,r")E(r). (100  Again, the Maslov index’,, may be ignored, since only the
magnitude ofA , will be needed below. It is necessary to note

Current conservation is expressed Bs&(r,r’)=V, -o(r, the derivatives of the action:

r')=0, in the absence of a magnetic fig]l¥ -V, -of(r, - - -

r')=0 still holds even if a magnetic field is presgrhis can JS, S, 9S,
be shown by integration by parts in E4.0) (see e.g., Ref. gE ‘e g = Par 7 TPa
14) to imply that the electric fiel&(r) need not be calculated

self-consistently, and instead one can use any electric-fielddhere T, is the duration of the classical path p, is the
distribution which gives the voltagé when integrated along initial momentum mentioned above, apg is the final mo-
any path connecting the two leafthe boundary conditions mentum.

(15
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Substituting Eq(13) in the expression for the form factor, appeared in the amplitudes have been replaced by inte-
Eq. (6), and using the fact that only contributions from small grations overd functions? in such a way that allows
values ofe will be important(becausd is integrated over a for the introduction of the classical distribution function
large ranggto develop the action around the mean endtgy f<(r’,p’.t; r,p) in the last line(integration over the energy

gives surface is denoted bfydpg---=fdpSs[H(r,p)—E]--*).
) Applying this trick to the diagonal approximation of the
KB tr 1)~ e de e-ietlh form factor, Eq.(17), gives the classical contribution to the
(Btirr)=r—3| dee conductivity of Eq.(9):
2 A A* ’ i(s +2eT ~§3+; Tp)lh <l e 1 ocd drdp=dr’d f
X o 26 a” 26 ﬁ — i ! ’ ! ’ .
g aP\pPaPsE i hNVO|J0 tj rdpedr’dpgpp’ fe(r’,p’,t;r,p)
o2 o (19
=-h > , A A5pLpge' e P (at zero frequency and temperatur€his may be rewritten
a,pefr.r’;E} as
XOo|lt————|. 16 oy € “ ,
2 (16 oC'=vao dt(pp’), (20

The ¢ function over time should be understood to have a Y _ , .
width determined by the higher-order correctiong.itnsert- gg?erg(ir?_l(i(l:ilg Yr?(lz)llfj zrlgp‘;[]’g sl_:r(1r :spu)gnﬁattige aﬂﬁrlﬂ;ylazft
ing this result in Eqs(9) and(10) will give the semiclassical implicitly 9 P . L
- o factor is a momentum correlator:
approximation for the conductivity and the conductance.
Before discussing quantum corrections to the conductiv-

ity, we observe how the classical results can be regained fdrdpEdr’dp,’E---fE(r’,p’,t;r,p)

from this expression. To this end, all interference terms in ()= (21)
Eqg. (16) are ignored, and only the “diagonal” part of the f drdpe

double sumga=2, is retained:

o2 [it is the classical counterpart of the Fermi-surface correlator
RD(E,t;r,r’): —h > |Aa|2p;pa5(t—Ta)- 17) (p(O)_p(t)) defined in Ref. 2 Eq_uation(Z)_ is the classical_
ae{r,r';E} contribution to the Kubo conductivity. Notice that the density

of states contains a factor bf Y, so that the quantum cor-

In order to proceed, t_he_ amphtudes_ of E(qf'4) should be rections to the conductance, of the orderebfh, are small
substituted here. As similar expressions will be used below,

: i ¢orrections to ithigher power ofi). In the present work, the
we note here the general form of a sum of this type: . . oo . . .
semiclassical limit is considered with the Fermi momentum

and the mobility(or other characterization of the scattering

h 2 |Aa|25(t—Ta)(- o potentia) taken as classical parameters, so that the density of
ae{r,r’;E} electrons and the conductance become trividlyependent.
For diffusive motion, given some initial value of the mo-
— E |A 128(E,—E)(-++) mentump, the average op’ at a timet shortly thereafter is
welrry “ “ equal top multiplied by exg—t/7), wherer is the momen-
tum relaxation(or transport mean free time. Integrating over
_ drodpo _ the directions of the initial momentum, the classical conduc-
= n— 6[H(ro,po) —E] o ) o D
h tivity is found to be diagonalg;ji = 6; ko, and
X5(r0_r)5(rt_r,)('")(ro,po) e? ® p'2:
oP(w)= —Re dt coswt)exp(—tlr)vﬁ, (22)
0

1
= " (r' ot ) 1
hNJ dpedpefe(r’,p".tir,P) (- )irp (18) where the frequency dependence has been restprede-

notes the Fermi momentynSince the density of electroms

Again, the phase-space poift,p,) is that which evolves is equal tov(p2/2m)2/N, this evaluates to

from the initial point(ry,py) by following the classical dy-

namics for a timet. In the first equality the factor n

|(1h)dT,/dE| in |A,|? was used to turn from a fixed energy o°(w)=—Re——,
. X . . m l-itw

representation to fixed time. In the second equality the sum

over @ was rewritten as an integral over the initial coordinatewhich is just the Drude conductivity.

and momentum, using the factdA |>=|det(1hap Jor’)| The simple description of the momentum correlations

(the integration over the initial position is trivial, and in fact used above is inadequate for the calculation of the space-

superfluous at this stageThe result is an integral over the dependent conductivity. In fact, it is known from diagram-

phase-space energy hypersurface, where the properties of thetic theory that when all interference terms are ignored, it

individual paths which were denoted by the dots are nownay be written(for w=0) as**

identified by the initial coordinate and momentum of each b 5 - )

path. Notice that all the determinants of derivatives which op(r,r)=a"(0)[ 8 xo(r—r")=V;Vid(r,r)]. (24

(23
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proportional to the potential difference between the initial
point r and the reservoir which an electron with the given
initial conditions will eventually reach. If the electron passes
through an ergodic cavity on its way, and if the electrostatic
potential is chosen self-consistently, then it is no longer nec-
essary to integrate along the remainder of the path—the po-
tential in that cavity is already the averaged potential of the
reservoirs, weighted by the probability that the electron
would leave through the corresponding lead. The long-range
part of the electron paths, i.e., following the electron all the
FIG. 2. Schematic sketch of conductance through a ballistic cavway to the reservoirs, thus becomes unimportanthe dif-
ity, which is considered to be completely chaotic and ergodic. The€fusive case any elastic scattering event which randomizes the
electric field is taken to be concentrated in regions of sizethe  electron’s direction of propagation plays the role of an er-
left and right leadgthe results are independent &t godic cavity, in that is ends the short-range part of the propa-
gation.
Here g(r _r’) is a smeared function of range equa| to the According to this diSCUSSion, the prECise form of the elec-
mean free path which represents the Short_range part of thetric field in the leads does not matter. For SpecifiCity, we take
conductivity (analogous to the Chambers formyland is  the classical electric fielé(r) to be constant over regions of
due to paths which have not scattered at all. The scaled “difSize @ in each lead. Combining Eq10) with Eq. (19), the
fuson” d(r,r’) represents the long-range contributions ofclassical conductance may be written as
paths which have scattered at least once, and obeys the equa-

2

tion —V?2d(r,r’)=8(r—r") with vanishing boundary condi- a_ € 1 Jw J .

tions at the conducting leads and vanishing normal derivative G =2 hy2 0 dt ] drdpedrdpelp-E(r)]

at insulating boundaries. This ensures tl&t(r,r’) con- ) , L

serves current. X[p"-E(r")]fe(r’,p’,t;r,p). (25

It is possible to render the long-range part unimportant b
using the classical electric-field distribution in EGO) (for
the standard rectangular geometry this is just a consta
field). Indeed, if the conditior’WV-E=0 is valid, then is fol-
lows from the boundary conditions o and d(r,r’) that d_S 2 Vi
Jdrdr’V;V,d(r,r )E(r)E(r’) vanishes by integration by " hi£EL via?
parts. In this case one may use a simple approximation to the
space-dependent conductivity, keeping only the short-rang&herev is the Fermi velocityAV; denotes the voltage drop
part [the first term in Eq.(24)], without compromising the over the corresponding leadjs the angle betweemand the
accuracy of the classical conductar@g. It is emphasized direction of the leads(r,p) is the time that an electron start-
here that this choice of the electric field represents the actuditd at (r,p) spends in the region of the electric field, and
electric field in the sample, if it is interpreted as the gradient/idr denotes integration over the electric-field region in the
of the electrochemical potential, rather than the externallyeadi. The integration over the directions jidpe, together
applied perturbation which can be arbitrary. In other wordsWith a factor ofvg|cog6)|, may be replaced by an integration
if charge neutrality is assuméthe chemical potential cannot Over the traverse momentuflp, and a summation over the
vary, and the self-consistent electric field is just that whichtwo possible directions along the lead. When summed over
will not cause any charge perturbatiorthen the long-range these two directions, the free timér,p) givesa/vg/|cod6)|
part of the conductivity cannot contribute, because it repreThe integration over the position along the lead gives a fur-
sents the currents due to the gradient of the induced chargger factor ofa, which thus cancels out as it should. The
perturbations. remaining integral gives the number of transverse channels

This idea can be generalized to nondiffusive systemsin the leadg;=h~™"Yf,dr dp, , which is proportional to
such as a chaotic cavff/(see Fig. 2 We will assume that the width of the leadin two dimensionsg;=2W, p{/h, in
the classical dynamics in such a cavity is not only ballistic,three dimensiond\; is an area andy;=7W;p£/h®). The
but also ergodic, so that the probability for an electron affinal result is(ignoring spin
any pointr inside the cavity to leave througtor to have
come from the left (right) lead is proportional to its C,_ez g |\?
width W, (Wg). The self-consistent electrostatic potential is C™ h grt 0L 9r
thus a constant within the cavity, and is equal to
(W V_ +WgrVR)/ (W, +Wg), whereV, and Vg denote the This result corresponds to adding the resistances of the two
potentials in the corresponding reservoirs. All of the potentiaideal leads classically in series. Obviously, in order to reach
drop occurs in the lead®r at the boundaries between the this result with any other choice of the electric-field factors,
leads and the cavity or the reservidote that the velocity one would have to evaluate also the contributions of the
correlator of Eq(20) is multiplied by the electric field in Eq. long-range parts ofz (for example, the transmission which
(10) and integrated over time, in such a way that the contri-enters the Landauer formula is due to paths that start in one
bution of a certain pathdetermined by its initial conditions lead, scatter inside the cavity, and then leave through the
(r,p)] to the conductivity has a simple interpretation; it is other leagl.

¥he contribution of the short-range part to the conductance
I%pus becomefthe integration ovefg(r',p’,t) is trivial]

e? AV? drd
'JhN—PlET(r,p)uécosz(a), (26)

2 _ e’ groL

"~ hogrto’

gr
grt+0L

(27)
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The issue of an appropriate choice of the electric field The expression for the weak localization correction to the
becomes much more important for the quantum correctionform factor thus reads
to the conductivity, to be considered below. The reason is o2
t_hat it ISEUII(? har(_j to _flnd a current conserving approxima- {AR(E,t;r,r’)): —h 2 |A,|28(t=T,)p.,
tion for of(r,r’) which includes these quantum corrections, M= Be{ri’:E}
even in the diffusive case which is treated well by perturba- p=a"#a
tion theory(see Ref. 18 When the self-consistent electric- el (Ba S 28
field configuration is used, current conservation and the long- X(=Pg)e™™ ’ (28)
range part of the conductivity become less important. Foiwhere it is assumed that is nearr, so that the only impor-
example, if quantum interference gives an enhanced proliantr’ dependence is in the rapidly varying phase factor. A
ability to find an electron at somé,p) at some timet, it  direct evaluation of the andr’ integrations over the form
becomes unnecessary to follow the propagation of that eledactor in thes2—0 limit gives vanishing results. In fact, the
tron to possibly correlated momeng at later times®  stationary phase conditions would imply,=p, and p,,
Loosely speaking, the missing electrons represented by thep,, which in classical mechanics can only hold for self-
non-strictly-vanishing values oF-j(r) may be thought of as symmetric orbitsa=g. In principle, one could try to evalu-
being reinjected into the system with a random direction, sate higher order corrections to the nonstationary phase inte-
that the self-consistent potentialrahutomatically takes care grals which arise, in thé—0 limit. However, in practicécf.
of their contribution. Unfortunately, the validity of this ap- Ref. 5 # is not extremely small, and the number of possible
proach can only be strictly proven if one can write down anorbits « in a chaotic system can be exponentially large. In the
expression for the higher-order correctionsd@,r’), and  mixing regime ¢(>tg) many of these orbits have such small
show that they do not contribute when integrated with themomentum differencep’,— p;T so as to make the phase
electric-field factors. While this is readily done in the dia- practically stationargthroughoutthe integration region. The
grammatic analysis, it is not easily generalized to other, nonspatial integration region is limited by the size of the system
diffusive systems. In the following sections we proceed byin practice it may be smaller because the paiteid 8 may
analogy with the diffusive case, and calculate the quanturgease to exist due to caustics or shadowifigpus, the con-
corrections to the conductivity of a general classically chatripytion of orbits with momentum differences smaller than
otic system, using the self-consistent electric-field configuraz /| s just proportional to the size of the integration region,
tion and the leading order quantum correctionstar’). We | "Rather than following the exact distribution of possible
return to this issue in the final section and show that thisa|ues ofl | for different orbits, in the following we describe
approach is indeed justifiable, at least for an ideally ergodighis result effectively by as function over the momentum
cavity. difference. Note that this represents a nonstandard applica-
tion of the SCA, because it is assumed that many orbits can
fit into the width of thes function, which is proportional to
ll. WEAK LOCALIZATION fi. We return to this point in the discussion of Sec. VI A.
The weak localization correction to the form factor, Eq.
8), is again in the form described by E(L.8), which al-
OwWS us to reexpress it in terms of the classical distribution of

In this section the SCA is used to calculate the average o >
the quantum correction to the conductivity, i.e., the weal
. . . ’26 _
localization correcuoﬁ._ _We concentrate on the long-range orbits. Furthermore, Eq15) may be used to develop the
part of the conductivity, i.e., on timeg larger than : S
.__actions around the poimt =r:
te~ 7—the short-range part does not have a weak localiza-

tion correction. As advertised, the actions of the classical S, (rr";E)=S,(r,r:E)+(r' —r)pL,
orbits in Eq.(16) for the form factor KE,t;r,r’) will be “ “ «
assumed random and uncorrelated, except if the two orbits 3 (r r"E)=§ (r',r:E)
. /AL o oy
are related by a symmetry. After averaging, only two types of .
contributions remain: the classical contributigi+«a, and =S,(r,r;E)—(r'—r)p, (29

that of interference between time-reversed orBitsa " (it is
assumed that time-reversal symmetry is the only symmetr
in the systeh For any orbit ae{r,r’;E}, we have
o' e{r' r:E}, with « and ' sharing the same values of ac- - Q2 1

tion, amplitude, and duration, butp,r=—p, and (AK(E,t;r,r'))y=— — h_Nf dpedpgfe(r,p’,t;r,p)p’'p’
p.r=—p,. The possibility of having a strict equalig=a"

arises only in the case that=r, giving rise to a factor of 2 el =N p+p")h (30)
enhancement of (€,t;r,r) relative to its classical value. As

the coordinates andr’ are integrated over, it is necessary to In order to perform the integrations using the stationary
find how this enhancement is reduced whénleviates from phase approximation, it is necessary to treat the preexponen-
r. Therefore, we include in the weak localization term alltial factor in the integrand as slowly varying. To this end, we
pairs of orbits for which8=a", in the sense thg8 anda  replacefc(r’,p’.t; r,p) with fe(r’,p’,t;r,p), where the over-
smoothly deform into a pair of time-reversed orbits whién line denotes averaging of the initial and final positions and
approaches. Orbits which are self-symmetric are excluded, momenta over small ranges. As long as the range of averag-
because their contribution is already accounted for in théng is much smaller than a Fermi wavelength in position, and
classical term. much smaller than a typical value &f/l, in momentum,

?nclusion of higher-order terms in this expansion turns out
0 be unnecessarygiving
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there is no way that this replacement can affect the result ainentl(r,p) for the integration over the longitudinal compo-
the integrals in Eq(30) and Eq.(9). After the replacement, nent ofr’, will also have the same integration region for that
the preexponential factor is in fact smoothly varying, if the component of, which means that in the averagihg,p) is
time t is indeed significantly longer than the Ehrenfest timeweighted by its own lengih The resulting correction to the
te [it is not necessary to explicitly remove the contributionsconductivity is again a diagonal tensor:
of self-symmetric orbits fromfg(r,p’,t;r,p)—such orbits
are exponentially rare in the mixing regifne (A 2 23_fo¢ f ﬂ .
. . . O'jk>— (S5 5j,k dt W(r,r;t), (33)

The next step uses the stationary phase approximation, h J: vol
fdxdpf(x,p)e™P"=hf(0,0) for small # and a smooth
f(x,p), in order to perform the integrals over the angular
variables ofp’ and the transverse components réf The
stationary phase conditions identify with —p, and the
components of ' perpendicular tgp with those ofr. The
longitudinal component g’ is not integrated over because
of the limitation to the Fermi surface, which gives rise to a
factor of 1. The integration over the longitudinal compo-
nent of r’, parallel top, cannot be done in the stationary

phase approximation. However, as occurs also in the case ctron with other particles not included in the sinale-
the spectral form factd this integration is trivial—the in- P 9

tegrand is constant—and the result is just equal to the effe _artigle Hamiltonian(the asgumption of a continuous spec-
tive length of the integration region, which we denote by.rurn 'mp.“e.s that the times involved are shorter t'kiﬁaiﬁ). It
[(r,p). This integration region is not limited by a sméalland IS also_l_lmlted f_rom bel_ovy, by the_ mean free tl_me. The
may extend over relatively long distances along the directior‘ljr()bab'“ty density¥ satisfies the diffusion equation:

of the classical path: it represents constructive interference AW(r,r';t)
between a continuous family of classical orbits, labeled by p

the longitudinal component af . As a result, one has
For short times,W(rr’;t)=(4wDt) N2exp(—|r —r'[%4Dt).

€ 1 (= ~1(r,p) For times of the order of the diffusion time throu
5= — — “pt ’ gh the
(Ao)=—10 hvolfo dtj drdpeppfe(r, =p.tirp) = == samplet,=L2%/D, it is necessary to expand/ in the eigen-
(31)  functions @, of the diffusion operator, W(r,r';t)

C . : . =3, D, (D} (r")exp—t/T,). In this representation the in-
which is a general semiclassical expression for the weak Io,[-e rals overW(r.rt) in Eq. (33 become trivial, and for
calization correction to the conductivifthe precise meaning 9 n a- '
of I(r,p) will be discussed further belowNote that the inte- T %
grations over andr’ always lead to an identification qf, e? 2sD
with pg, and ofp,, with pj (cf. Ref. 22. In the present case (Ao)y=———2, T,. (35

of the weak localization contribution, we also have an iden- hvol %
tification of p with —p’ (see Fig. }, leading to the negative For example, for a quasi-one-dimensional wire extending
sign of the complete expression. from x=0 tox= L (with finite cross-sectional area, i.e., many
For diffusive behavior with isotropic scattering, the mean-transverse modgsthe longest lasting eigenmodes are
ing of I(r,p) is identified with the free patiisee Fig. }— & (x)xsin(wnx/L) (wheren=1,2,..) with decay times of
whenr' deviates fronr further than the next or the previous T, =x?n?D/L?. The boundary conditions are essential in
scattering event, the momentum factors in Ef) become  determining this—they are closed in the transverse directions
essentially randorfas opposed to the approximation used input open in the direction along the wire. This reflects the fact
Eq. (28)], leading on the average to a vanishing contributionthat trajectories hitting the latter boundaries will continue
In N=3 dimensions, and for times>7, one may describe through the hypothesized ideal leads into the reservoirs, and
the distribution of classical orbits by will not return to any point’ in the samplegfWdtis essen-
tially the “diffuson” of the diagrammatic technique, which
UF (32 Was mentioned earligrDefining the dimensionless conduc-
4mp*’ tance per spin directiong, and using the fact that
=, (mn)~2=1/6, gives(for the j=k=1 component

whereD =y 27/N is the diffusion constant, and @2 spin
degeneracy factor has been explicitly restored. This result
coincides with Eq.(3.8) of Chakravarty and Schmfdand
thus their quantum-mechanical derivation of the numerical
prefactor in this equatiottheir Appendix D, which assumes
a white-noise disorder potentiahay be replaced by a semi-
classical one.

The time integration appearing here is limited from above
Bf/ the dephasing time,, which is due to interactions of the
ele

—DVZW(r,r';t)y=8(t)8(r—r'). (34

fe(rp  tr.p) =W(r,r';t)

whereW(r,r’;t)dr’ is the probability for a diffusing particle
which started at to be withindr’ of r' at timet (in N=2 2|2 1

dimensions 2rp replaces 4p? in the last factor. The fac- o= s(— — ) g, (Ag)=-3, (36)
torization of the distribution into separate spatial and mo- h vol 3

mentum space dependencies, wWithindependent of the mo- which is a well-known result for the diffusive wire geometry.
mentum direction, implies that the factors pp may be In order to apply the semiclassical expression, Bd), to
replaced byﬁjyka/N. The averaging over the integration a more general system, one must specify the meaning of the
segment(r,p) gives 2 7—the factor of 2 is due td(r,p) free path factoi(r,p), or in other words one must perform
being defined as the sum of the free paths in the backwarthe integration over the longitudinal componentréfwith

and the forward directiong@nother way to justify this factor care. Note that in a two-dimensional system the longitudinal
is to recall that a classical path with a long integration segdirection may be defined as the locus of points for which the
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action differenceSa(r,r’;E)—Sﬁ(r,r’;E) vanishes—there is o

then no reason to stop the integration at the next scattering Y
event(which in itself may be ill-defined for a smoothly vary- @ r

ing potential. Following the discussion of the preceding sec- 8

tion for the classical conductance of such systems, the value

of the integral is identified as the potential difference

AV(r,p), which is defined as the difference between the po- a
tential at the point eventually reached by an electrofr ab (b) r
and the point from which it emerged. Strictly speaking,

AV(r,p) is equal to eithert V or 0, because both the original f

and the eventual points are in one of the reservoirs. However,

the quantities in Eq(31) are averaged, and so we are led to

define I(r,p)=AV(r,p)pe/[E(r)-p] [the averaging in © r
AV(r,p) is over the same range as fg]. The integration

over the longitudinal component of is thus effectively lim-

ited by the “Ehrenfest length® ctg .

With this definition, the application of EC(31)M’ FIG. 3. Sketch of the three different types of interference con-
Eq. (10)] to the chaotic cavity of Fig. 2 involveAV(r,p) tributions to the conductivity, together with some of the correspond-
=*AV;, due to the fact that the escape time from the cavitying perturbative diagrams. The classical pattend 3 start atr and
is assumed to be much longer thgn With the specific end atr’. (a) « different fromg, (b) @ and 3 lie on a periodic orbit
choice of the electric field within the leads as before,y, and one of them is of negative durati¢o) « and 3 lie on v, and
|E(r)|=AV;/a, this gives B is short(in this casex traverses the whole of and then repeats

the segmeng a second time The sketch assumes diffusive motion
e’ AVZ (= with te~ 7.
(AG)=—— D —5s dtfdrdpEu,:co§(0)
hiZTrVaJo ~ Ji

grams and the corresponding classical paths is given in Fig.
Xfe(r,—p,t;r,p)I(r,p), (37) 3, and the semiclassical analysis will be detailed in this sec-
tion.
where the factors o& cancel due to the longitudinal compo-  The contribution of all3+ «, " paths to the conductivity
nent of thedr integration, and the relatiokir ,p)|cog6)|=a.  of Egs.(9) and(16) is denoted here by . At first sight
The time integral of the distribution functidig is found by it would seem that each term, defined by a specific choice of
requiring that the total number of electrons escaping from they and 8, has an uncorrelated phas®, ¢ Sp)/#, and thus its
cavity, which can be written as an integral over any crossabsolute magnitude squared gives an independent contribu-
section in the lead, g fidr [ dp] [ dtfe(r’,p",t;r,p),is  tion to (|AG|),. This is indeed true for terms with
equal to unity[the escape velocity|cog6)| is used as be- T.,Tg=tg, and forms the first type of contributiofFig.
fore to transform frony;dpg - to f;dp, ---]. The time inte-  3(&) and Sec. IV A. _ _
gral [fcdt is independent of the detailed initial and final _ |f one of T, T is negative[note that according to Eq.
positions and momenta due to ergodicity in the cavity, and i$16) tf‘?'r sum must be positiVethen the integrations over
thus equal tch! N/(g, +gg) (as long ag andr’ are in the ~andr’ in Eq. (9) effectively ‘join” the pathsa and 8 into a
leads,p is in the inward direction, ang’ is in the outward ~Single periodic orbit of durationT,|+|T| (the path with

direction. The remaining integral gives jubf g, , so that ~Negative duration-|T| may be considered as startingrat
and ending at after a time| T|). Since a single periodic orbit

e gr |2 o, oL Or can be bisected into two segments in many different ways,
(AGe)=— m n ) T T T all contributing with the same phase, this type of contribu-
9rTOu/ GrTOL 1QrTOL/ GrTOL tion can show significant interference between differgnsg
e  g.0r pairs. It is useful to first add up all the contributions for each
T Oeta)?’ (38  periodic orbit, which will be labeled, and then consider the
contribution to the variance from each such term. This is
In the case of equal leadgy =gg, one obtains(Agc;)  done below, and forms the second type of contributieig.
= — 1 [with G=g(e?/h)], in agreement with RMT results. 3(b) and Sec. IV B. As a result of the momentum factors,

Applications to additional systems will be considered in Secand the fact that the integral of the momentum along a peri-
V. odic orbit must vanish, these terms do not contribute in the

simple cases considered here.
The third type of contribution arises when, or T, is
positive, but smaller than the Ehrenfest time. For definite-
We now turn to the off-diagonal term8+ a,a’, which  ness, take & Tz<tg; in this case the path forms a peri-
do not contribute tar on the average, and calculate the typi- odic orbit, which returns to its starting coordinate and mo-
cal magnitude or variance of the fluctuations. A close inspecmentum after a timef ,— T, and then continues along the
tion of the perturbative derivatiofRefs. 3, 27, and refer- same direction ag for a timeT . Thus, the action along this
ences thereinshows that there are in fact three different last segment cancels in the expressi8p+ Sg)/%, and just
types of contributions. A sketch of these three types of diaas in the second case described above, this contribution is

2 2

IV. UNIVERSAL CONDUCTANCE FLUCTUATIONS
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form the third and last type of contribution ¢0A 77|, [see

close to a periodic orbit. These periodic orbit contributions e2 1\2 (= %
Fla:(ﬁm f dtlJ’ dtzf dr+dr:rf dr,drl,
Fig. 3(c) and Sec. IV (. 0 0

In the following subsections, the semiclassical expres- - . T, +Tg
sions for each of these three types of contributions are de- ~ xh? 3 |Aa|2|AB|2p;po;pB5(tl_ 5
rived. For simplicity, we consider only the case for which the aBelr, ' iu}
temperature and the frequency approach zero, and for which
time-reversal symmetry holds. % 8| t,— TaJZFTB QlAS/t (39
A. Contribution with T,,T g=te The summation here includes only orbits with positive times

The different contributions t6A o2 Ao NP* will be de- 1« @ndT g, Which scatter at least once, and are not related to
ed elrer; contrl 3u 'Ohs 6 Ti1ki = Tigky > W_' e de each other by symmetr§other contributions are included in

noted byF~,F*, andF*, with the j;k;,j,,k; indices sup-  the other termis The notatior , =1(r,+r,), r_=r,—r,, etc.,

pressed in most of the equatioftse complex conjugate of s ysed, and only the contribution for whicl,=a, and

the real quantit;Acer;(’2 is taken for convenience in notation; B,=g, is retained. The deviation of the orbits from

it amounts only to exchanging theand g indiceg. Accord-  {r.r's ,u} leads to corrections to the actions, which to first
ing to Eqs.(9) and(16), the expression fdiA\°|? involves ~ order are given by

an integration over four different spatial coordinates. The . _ Pt

first type of contributionF* (or at least that part of it that AS==T-(Pa=Pp) T (P~ Pp)- (40

will not vanish after averagingcomes from regions where  Consider first the integrations over the time variables.
bothr coordinates and both' coordinates are close to each Necessarilyt;=t,, and this time variable will be noted by

other, and both copies af and of 5 coincide. Due to time- ¢ |t will be convenient to add a fictitious integration over

reversal symmetry, there is also a similar contribution fromq¢_ 8[t_—(T,—Tp)]. The & functions over time may then
the case in which these coordinates are interchanged. As Wie rewritten in the form 8(t,—T,) 8(ty—Ts), where

become evident, these two cases contribute terms with indi =t, +t_/2 andt,=t, —t_/2. After this is done, it is pos-
cesd;, i, 0, k, and &j k. 6k, j,» respectively, which are oth- sjple to transform the sums ovetBe{r .r’. ;u} into phase
erwise identical. The first of these, denotedl?, gives -space integrations using again Ef8). This gives

ez 1 2 (o *® , , 1 ’ ’
mvai] [ dte ot [ ar.ar [ arart [ apaedpie [ dpuccpic

X fe(rl ,pastair+ Pa)fe(rl ,pp . toiT + Po)PAPLPAPEE S, (41
where the quantities relating to the possihlerbits are denoted by a subscrigtand those of thg orbits byb. It is assumed
here that the relevant contributions come from orbits longer than the Ehrenfest time, goathat;, are bigger thang . This

allows us to replace the two factors fif by their smooth averagefs, and to neglect the contributions af=g to these
averaged distributions. The next step is to use the phase factor in order to perform the integration over the relative coordinates
and momenta, giving

e 1
m? hvol

Fla:

2 ro o o — — I(rp)l(r'p) |,
. dt, . dty | drdpg | dr'dpgfe(r’,p’,ty;r,p) fe(r’,p’,ty:r,p) — 7z P'PP'p, (42
F

la__

where again the integration over the longitudinal directions gives factors of the “free lafh}, just as in the evaluation of
the weak localization term.

For diffusive behavior, Eq(32) can again be used, and the momentum direction integrations performed. The free paths
I(ry,pg) are replaced as before by factors afe2, giving

2e? L%)? =Ddt, (=Ddt, , , ,
- 5J1:125k1'k2f0 ?J' —f drdr"W(r,r’,t))W(r,r',ty) (43

la_ o2 =
F=s1 4 Vol o L2

(again the spin degeneracy fac®r2 has been restorgdUsing the decomposition aM(r,r’;t) in terms of orthonormal
eigenfunctions, the spatial integrals give simplyexp(—t,/T,)exp(—t,/T,). Together with the tern¥'®, this yields

262 L2 2
1_2l28 =
F S( h vol) (5

s T,D\?
. 5k1'k2+ 5j1'k25k11j2) = TT . (44)

i1:d2

This expression can be seen to coincide with the first part of48).of Altshuler and Shklovski#’ For the example of the
quasi-D wire, with T,D/L?=1/7?n?, this contribution to the conductance fluctuations giflesg|?)y,=(8/7)= i n~ 4=
&, in terms of the dimensionless conductamgce



53 SEMICLASSICAL ANALYSIS OF MESOSCOPIC CONDUCTANCE 7045

A further application of Eq(42) is to the chaotic cavity of Fig. 2. This givémcluding the factor of 2 due to time-reversal

symmetry, but ignoring spjn
e?\2 AVZAV2
— f dt J dtbjdrdpEfdr dpg
h/ i< L R te te i

Xfe(r',p,ta:r,p) fe(r'p’,ty:;r.p)I(r,p)I(r’,p")coS(H)coS (6’ )vE

<(AGC)2> var= 2

9 ez)z gi'zgjg 0i9; ez)z e (45)
h/ SR (grt 90" (Gr+00)? (grtou)*’
|
Here we have used our previous result for the time inte-

gral of fg, and all the factors o& have canceled as before. J dtf drdr'K(E,t;r,r")
The notationi denotes the lead opposite to the léadhis is
just twice the square of the weak localization result, and in e 1 0 ty Ete [h Bt B
the case of symmetric leadyz=g, reduces to the well- Jdrdr f dtlJ dte™ 2
known result{ (Agc)?) .= % (see Ref. & Notice that in this
case all of the conductance fluctuations originate from the 10’ @i(Sy+Spih
first type of contribution, Fig. &) because there are no pe- X 2 AAprPaPg€ T 2, (47)
riodic orbits which traverse the region in which the classical “f{r'f';‘l}
electric field does not vanish. prelrinita)

The relation~ (instead of=) is used to indicate that only the
contribution withT;<<0 is included here. The contribution
Consider next the contributions which are concentratesf a periodic orbity may now be calculated. The spatial
around periodic orbits. For definiteness, assume Thats  integrations here resemble the convolution formula for the
negative. The descriptioﬂze—isﬂm of the pathBe{r,r’;E}  Propagator attime, +t, in terms of the propagators at times
. . ~ sn t; andt,, of which the trace is then taken. Thus, apart from
may then be replaced by the identical teAp,eSﬁ , asso-

. . L the integration over the time differendg—t, and the ap-
C|ated_ W'tr} the path3 _e{r_,r,E} where g corresponds to pearance of the momentum factors, the stationary phase in-
retracing 8’ backward in time(Tz =—Tg>0). One may

) tegrations can be performed just as is normally done for the
rewrite Eq.(16) as periodic orbits involved in the Gutzwiller trace formit&2°

B. Contributions with T,T <0

This gives
2

PiN e ~ o~ L~ o~
K(E,tir,r)=—h > AaAB,p;p;,e“Sﬁsﬁ’)’ﬁ

ae{r,r’;E o P

B’e{{rr’r,r;E}} fo dtf drdr’'K(E,t;r,r")

T _T !
__x # 2 3
X6t 5 ) , (46) “e—z 5 Ageisv/ﬁ

ye{r=r',p=p";E}
which is completely equivalent, but more convenient if the T, T2
time T, and T4 are positive. When the spatial integrations xf dtof dtyp,(to+ty)p,(to), (48
over the form factor are performed, it is seen that indeed the 0
stationary phase points occur whep,=p,, and pé,zpa.
This means that the paf’ must continue the path, and  wherep,(t) denotes the momentum along the periodic orbit
vice versa—together they form a periodic orbit. y, at a point parametrized by a time variabte and

The periodic orbits of energ§ may be enumerated by the t;+t,=T,. The periodic orbit amplitude,

discrete indexye{r=r',p=p’;E}. Each periodic orbit is in
fact a continuous family of periodic classical trajectories, 1
which differ from each other by the choice of the initial |A§|=—|de[My—I]|*1’2, (49)
position along the orbit. The contributions of all the different h
pairs of pathsy and 8 which fall along the periodic orbiy
must now be found. Note that if the integral over all positivewhere M, is the monodromy matrix describing the sta-
timest is taken as indicated in Eq9), the lastd function  bility of the orbit v, is the same as the Gutzwiller amplitude
may be replaced by a restrictionT9>T,/ . The next stepis apart from a time factor. As in the case of the nonperiodic
to undo the Fourier transforms which led to the energy reporbits of the propagator, the squares of these amplitudes may
resentation in terms 04\ andAB,, and to return to a rep- be wrltten as integrals over the distribution of classical
resentation in terms ok, andAg; : orbits®
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) 1 stant?)Y may be defined, such that the time integrations in
|API26(t—T,)= WJ drdpefe(r.p,tir,p), (500 Eq.(51) give simplym®T_D, . In order to express the results
vy in terms of the phase-space distribution functipnthis dif-
where the integration is restricted to the region in phasdysion coefficient is relabeled as(iDp), which is identical to

space surrounding the periodic orbifthe time variable too D, for all points (r,p) on the periodic orbity. Using this
is restricted—the right-hand side contains additional contriotation and the expression for the amplitudes, ),

butions at timeg=mT, with any integem). gives

Equation(48) implies in fact that these periodic orbit con- 212 rn
tributions vanish in all the cases considered in the preser]t3:4(_) J dt tJ drdpgfe(r,p,t;r,p)D(r,p)D(r,p).
work. One may extend the time integral of H§) to nega- hvol/ Jo

tive times, because one is interested only in the contribution (52
which is symmetric with respect to reversal of the magneticy tactor of 2 arises due to the contributions with,< tg

f!eld.23 Another way to rTnake_ this point is to recall that the \5iher tharT ,<te [these give the complex conjugate of Eg.
time-reversed orbit ¥ will also contribute, with 59y and a further factor of 2 allows for time-reversal sym-
p,7(t)=—p,(~1). Thus both time arguments appearing in yetry i e contributions of pairs of orbits wiéyzé T,

the momentap,(t) can be taken to vary over the whole peri- —|,'the case of diffusive motiofwith s=2), and as;uming
odic orbit. However, the factors ofy"dtp,(t) must vanish s r~t., the diffusion constants Pcan be approximated by
for a periodic orbit, in order for it to return to the starting their averageD §; \, giving

point. Such a cancellation has also been observed on the
diagrammatic levet® where the conditior,,, T >0 corre-
sponds to the condition that a pair of propagators has either
both propagators advanced or both retarded. This kind of
contribution will not vanish only if the frequenay is non-  Where(see Ref. 19

zero, or if the integralf ,[E-dr along the periodic orbit is 4 (r

nonzero(this can happen if the electric field is driven by a |dosc(:“)|2:sz_2f ’dt tf drw(r,r;t). (54)
time-dependent flux, angl surrounds the flux These excep- h=J;

tions will not be discussed further here.

2 2

FS: 5j1xk15j2,k2|d05(,(1u')|21 (53)

vol

In these expressions one sees most explicitly the observation
o . made by Altshuler and Shklovskfithat the corresponding
C. Contributions with T, or Tg=tg contribution to the UCF is associated with the fluctuations in

We now turn to the last type of contribution, which in- the density of stategd,s). The integrations may be done
volves cases when eithéT,| or |T,| is smaller than the explicitly, giving again a simple sum over extinction times of
Ehrenfest timetz, so that the stationary phase conditionsthe modes:
force the two orbits to overlap over this period. In this case 62 122 TD\2
too the integrations over the end poimtandr’ lead to the |:3:452(_ _) S 1O > (_”2_) _ (55)
appearance of periodic orbits. In fact, most of the analysis of h vol/ itz feqe | L
the preceding subsection still holds, but with,<0: the
particle is performing periodic motion along a path of period
T,=T,—Tgz (assuming for the moment that;<tg), and
after revolving around for a tim&, it retraces its path for a
short periodT,, and reaches its starting point. The corre-
sponding contribution is

This is identical with Eq(44) apart from the spatial indices,
again in agreement with Eq(46) of Altshuler and
Shklovskii. It enhances the fluctuations of the conductance
by 50%, which thus totals for our example of the quasi-1D
wire ((Ag)?)a==2=2, once again a well-known result.

For the calculation of the conductance of chaotic cavities,
Eq. (10), one must take into account the fact that the electric-

J’wdtJ drdr’R(E,t;r,r') field factors are position dependent, and may vary over the
0 region covered by a periodic orbig. The periodic-orbit-

o2 3 dependent diffusion constants should be taken to reflect this:

~— pPAaiS, /h
Dy:W dty B dty[p(to—tp)-E(r(to—12))]
JTYdt JO dt,p.(te—to)po(to) (51) e N
X 0 2P (T~ t2)P,(to).
0 e 7 X[py(to) - E(ry(to))]. (56)

Note that the only difference between this and &®) is in  The limit —tg of the dt, integration is to be understood in
the limits of thet, integration. The absolute square of eachthe same manner as the integration over the longitudinal
such term is an independent contribution to the variance ofomponents of the’ integrations above—it is useful to de-
the conductance, which thus includes a sum over all periodifine a free timer(r,p)=A . V(r,p)m/[E(r)-p], in analogy
orbits . with the free patH(r,p) defined above. The potential differ-
Assuming that the relevant periodic orbits are longer tharenceA , V(r,p) is the difference between the reservoir even-
the Ehrenfest timeT ,>tg, we identify thedt, integrationin  tually reached by electrons starting(ajp) and the potential
Eqg. (51) as an integration over the momentum correlatorat r (the integration is only over the forward direction, not
along the orbity. A periodic-orbit-dependent diffusion con- the backward orfd). Again, although the propagation times
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to the reservoirs may be long, the averaging effectively limitsmagnetic fields or by spin-flip or spin-orbit scattering. This
the length of the path contributing tdr,p) by the Ehrenfest requires knowledge of the area distribution associated with
length. Strictly speaking, the averaging4dn V(r,p) should the paths contributing téz(r'p’,t;r,p), or the distribution
be taken over the region in phase space corresponding toGd 2X2 spin scattering matrices along them, and has been
minimal-uncertainty wave packet defined by the “width” of considered in Ref. 2 for weak localization. Because of the
the periodic orbity, i.e., by the Monodromy matriM ,,. close parallelism between the present approach and the dia-
Thus, the fact that the classical path for electrons startingrammatic theory, it is not surprising that the results for dif-
precisely on a periodic orbit never reaches the reservoirs itisive systems are reproduced. Specifically, in the case of
irrelevant. Our assumption that the Ehrenfest time is muclgomplete symmetry breaking the weak localization correc-
smaller than the typical propagation times in the systention either vanishes, if time reversal invariance is broken, or
(such asT, for the relevant orbitsmeans thath, V(r,p) S multiplied by a factor of—3 for the case of symplectic
becomes a smooth function already with a significantlySymmetry(strong spin-orbit scatteringThe variance of the
smaller averaging region, and therefore the precise form gfonductance is reduced by a factor of 2 or 4, respectively.
the averaging is unimportant. These results hold whether the system is diffusive, ergodic,
With this definition, Eq.(56) becomes or simply chaotic. .
Temperature and frequency dependences may likewise
1 (T, be treated, and again the diagrammatic results will be re-
DV:WJ dto[p,(to)- E(r,(to))1?7(r.p). (570  produced for the diffusive case. Observation of E46)
770 shows that the frequency couples to the sum of the periods
Notice that despite the averaging involved in definiigp), ~ of the two interfering orbitsT ,+ T4, whereas temperature
the resultingD(r,p) function can in principle have large fluc- (averaging ofE over a range aroung) limits the contri-
tuations, so that it becomes important to use the actual fludsutions from orbits with large period differencgg,—Tg|.
tuating f(r,p,t;r,p) in Eq. (52), rather than the smooth av- This gives different behaviors for the four types of interfer-
eraged one. A possible way to avoid this is to use a weighteé@nce effects considerédeak localization, and the three dif-
average forD(r,p), i.e., define an averaging such that ferent contributions to conductance fluctuatijorishe tem-
D2(r.p.t)=fe(r,p.t:1.p) D2(r.p)/Te(r.p.tiT. ). perature a_nd magnetic—field dependences of UCF, for ergodic
As already mentioned, the periodic orbits do not contrib-CaV't.Ies without tlz/me-_reversal symmetry, were very recently
ute to conductance fluctuations in the case of the chaoti tudied by Efeto using the nonllnea_rr mOdel' As not_ed .
cavity in Fig. 2 because the electric field vanishes in the ere, the I’eéSOLiEEZS are in agreement W'th previous semiclassi-
region in which periodic motion can occur, so tit,p)=0. Cal. analyses,™ except for the a’T‘p"t“‘?'e of the effect
A simple example of a class of chaotic systems for which theWhICh has been reproduced semiclassically only in the

periodic orbits of Eq(52) do contribute will be considered in phrets;anr:] W?”:' rThemmorsi:] stgklng resu(ljt tOfdthlsh reifsrer(ljce 'Sn t
the next section. Note that the relationship between the cor}-a emperature smearing, as opposed to dephasing, does no

tribution of periodic orbits to conductance fluctuations andchange the typical area which enters into the magnetic-field

their contribution to the fluctuations in the density of states isgependence, e;]lthoaj%h |t_do?s dghangelthe form of thhat depe.n—
essentially modified by the presence of the electric-field fac- ence Somig"g at. This is of direct relevance to the experi-
tors, and no longer follows Eq53). mental work;™ as it may aIIow' thg measurement of Fhe
dephasing rate from the magnetic-field dependence, by infer-
ring this typical area. It may be intuitively explained by not-

V. APPLICATIONS TO SPECIFIC SYSTEMS ing that as the finite temperature limits only the difference

In the preceding sections, the semiclassical formulas fopetweenr® andTB, the areas they encircle may be arbitrary,
weak localization and universal conductance fluctuation@d the area difference will be of the same order as the
were applied to two simple systems, the diffusive wire andypPical area which enters in the zero-temperature case.
the ergodic chaotic cavity. In the case that the leads are of RePhasing, on the other hand, limits the sunfTéfand T,
constant width, both of the quantum interference effects aréaving only the contributions with typically smaller areas
stronger for the diffusive system than for the chaotic scat@nd area differences.
terer (—3 vs —1 for weak localizationz vs % for the vari-
ance of the conductanceé~urthermore introducing asymme- A. Two ergodic cavities in series

try in the chaotic cavity by taking, #gr decreaseshe The system considered here consists of two ergodic
interference. In the present section systems which are integ,yities connected in series through a lead wjghconduct-
mediate between these two cases are discussed: in the fi;ﬁb modes, withg, and gg denoting the number of modes

subsection a system of two cavities connected in series ig e right and left leads as before. In this case ergodicity

considered, allowing for any combination of widths of the g ot achieved, and there are two different regions of ini-

gg{/?trizgtiLeggzialsni;hc?oii(i:ggrdeiu\?v?ticglcl)?ez dsgg‘qgu‘:??r?t\;vcidthtial conditions which must be considered in order to eval-

In the course of the treatment of these systems, results whic Z:/?t;E(tL e’p p’rtc;tr)’arz))iiitgoéfeliaeg\tzggsthoglg;;g:énn? ;rr:rét(;hle&e

are valid more generally, for networks of ergodic cavitiesle]ct Ieé\d is the sum of a geometric series:

connected by ideal leads, will be given. '
Before embarking on the detailed treatment of these SPep, | =[g,/(gL+9m) L=/ (9L +9n) 19/ (Grt+ gu)} 2

cial systems, several possible extensions will be mentioned. ™

Consider first the effects of symmetry breaking by weak =0 (grT9Im)/ (AMIRTIRIL T T.OM) »
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whereas the probability of leaving the system through thevhere the index" denotes motion time reversed to that de-

right lead is noted byi. In the case of leads of equal width=g=0g,
this gives(Ag,c)= — %, which is intermediate between the
PLr=[9m/(9L+9m)]19r/9r+Im{1—[gm/ (gL — £ result for diffusive systems, and the; result for com-
_1 pletely random scattering.
+9w)]om/(gr+9m]} The F! and F? types of contributions to the fluctuations
= 9wIR/ (ImTr+ 9RIL+ OLOM) - of the conductance may also be evaluated in a quite straight-

forward manner. The first gives, as in E¢5),
The probabilities for an electron in the right cavitpr
situated in one of the leads but headed towards the right 2\ 2 AV2AV2 g
. L .. . 21 € | J gi 2
cavity) are given by similar expressions f&; | andPgr.  ((AGyc) )a=2 m > —a— = Pi;
The classical electrostatic potential in the left cavity is there-
fore  [9.(9r+9IM)VL T IMIRVRI/(ImOrT IRIL T ILIM) (ez
2

2
and that in the right cavity d(g.+9w) Vet amaLVLl/ = F) 97gMIR(IL T+ Im) (IR T Om)
(OmMOUrTORALT0.9ym) - The potential drops in the left,

7
ij=LM_M_,R V' g

middle, and right leads are 90+ 9m)(9r9w) (97 + 9R) + 29 9rgly
(ImOr+ORIL+TLGM)°

AV, =V ImIr

t OMORTORILTOLOM (61)

- Again, in the casey =gy=gg We find ((Agyc)*)'=7%,
AVy=V , (58) which is intermediate between tgand 7 results of chaotic
IMIRTIRIL T GLOMm and diffusive systems, respectively.
In order to find the contribution of periodic orbits from

AV V 9.9m Eq. (52), consider a periodic orbit which traverses the middle

R MO+ ORIL+OLOM leadn,, times, which must be even. The integral of E§7)

. . _ gives D7=(ny/T7)(AVf,,/2) [the one-half comes from
The classical conductance for this System may be written a$(r,p), which is on the average/2|coi0)|vlz for r in the

electric-field regiof Equation(52) then gives
e? AV;
GZC:FPLE 9\

z_ez 9.9m9r

"~ h gwOr+ORILTOLOM

(59

g2\ 2 AV (o

» _ o _ <<AGZC>Z>3W=4(F) > Wf dt
This is the result of adding classically in series the resis- i=M_.M_ 0
tancesh/(e?g;) of the three leadkcf. Eq. (27) for the case of
a single cavity. X fdhdpifE(f,p,t;f,P)

The weak localization correction for this system is given i
as a sum of four terms, corresponding to differ@np) inte-
gration regions in E(](?)l) electrons in the left lead moving where the integration over the whole Iength of the periodic
towards the left cavity, in the middle lead moving towardsorbits, [ gdtfdrdpefe(r,p.t;r,p)(n(r,p,H%4t), has been re-
either the left or the right cavity, and in the right lead moving Placed by an equivalent integral over the cross section of the
into the right cavity. It is convenient to generalize thelead, [ odt;[idr dp, fe(r,p,t;r,p)[n(r,p,)/4]. The notation
probabilities P; ; mentioned above, so as to allow indices N(r,p,t) identifies the value ofi, corresponding to the differ-
which describe electrons in the middle lead, moving either t®nt periodic orbits, as was done wil(r p) above?*
the right i=M_, or to the left i=M_:P;; Due to the appearance of timér,p,t) factors, this result
= [dtf;dr{dp|fe(r'p’tir,p), where (r,p) can be any cannot be written directly in terms of the “probabilities”
phase-space point in the “directed leaid”and the time in- Pjj, and requires instead the following modification: the
tegration excludes very short times for which no chaoticgeometric sum Py, andPy y is weighted by a
scattering has occurred. The sixteen “probabiliti€}’; can  factor of m/2 for the mth term in the sum1f,=2m), and
be obtained from the four probabilitié ; withi,j=L,Rby  thus gives3z/(1—2)?, where z=g%/(g.+9um)(Iu+9Rr)-
noting thati=M _ is equivalentta=L, i=M_, is equiva-  Taking into account the contributions from boW_ and
lent toi =R, and similar equivalences can be obtained for theM _, , one has
final condition,j, up to factors ofyy,/g, andgy/gg, respec-
tively (the directions of the arrows for=L,R is obvious and

n(rapat)
4 )

(62

4

e?\? 9L9r z
omitted in the notation In analogy with Eq.(38), one ob- AG,c)?)3 :4(—) ,
tains " o 439 ((AGzc) h) {gigm+9ugrtdrg/ (1-2)°
(63

2 1 2 - . -
AG, V= — o D AVi P 1 which for g, =gy=gg (With z=3) gives ((Ag,c)?)3=2.
< 2C> i, . .S N .

hi-LMTM_ R\ V ' This too is intermediate between the zero result for the single

5 . n 4 chaotic cavity, and the result of the diffusive wire.
& 9.9mIr(9L + ) (9m gR)(%R g0 (60) Adding the results of Eq$61) and(63) gives for the total
h (9.9m+9mIr*+ORIL) ' conductance fluctuations
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e?\ 2 sence of translation symmejnyin this case the electric-field
((AGx0)*)var= 2( F) 9rOmOA(9L T Om)(9rTOm) (9L TTR)  configuration is trivial, withAV,/V=1/(k+ 1) in all leads. In
order to make use of the semiclassical formulas of the type
(9Lt 9m) (GrTOm)(9L+0OR) — 20, 0ROM appearing in Eq460), (61), and(63), one needs to study and
(OmInt OrL+9Lgm)° : generalize the classical probabilities; .
It is convenient to define a classical dynamic probability
(64 p, (1), equal to the probability that an electron will be

For the case of equal leads this givVER\goc)?)var=(2)°, found in themth cavity, given that it was initially in théth
which is again intermediate betweénand Z results. cavity and that it has since traversed through a letiches

The quantum interference effects obtained in @@ and ~ (I,m=1,...k andt=0,1,..). Notice that the “time” variable
(64) can be considered in the two limiting cases of a veryt is discretized, with no reference to the actual time the elec-
wide or very narrow middle lead. In the cagg>g, .gg, ron may spend in the leads and in the cavities on its way.
the middle lead connects the two cavities very efficiently, sduite generally,P; ; =(g;/gm) = (~oPim(t), wherel is the
that a particle in one of them will explore the phase space ofavity that the “directed leadt is flowing into, m is the
both cavities ergodically before having a chance to leavéavity out of whichj is flowing, andg, is the sum of the
through one of the external leads. Thus, the results of §onductances of the two leads connected to the cavifjhe
single cavity, Eqs(38) and (45), are obtained in this limit. simple electric-field conflgurat_ip_n mentioned above is di-
This can be understood already from the electric-field distrifectly related to these “probabilities.” o
bution, Eq.(58), which vanishes in the middle lead in this A dynamic difference equation, similar to the diffusion
case. In the opposite limity,<g, ,gg the middle lead acts as €duation, may be written fqo; (t):

a weak link(the use of semiclassics assunggs 1, so it is

still much larger than a quantum point conjacand the P m(t+1)= 3 [P m-1(t) +Ppm+2(t)], (65)
qgquantum interference effects are suppressed, giving

(AG C>z—(ezlh)gM(g£1+g§1) and <(AGZC)2>Var with the initial conditionp, ,(0)=4, ,, and the boundary
=2(e?/h)?g% (g 1 +gr1)> As the expressions of Eqg0)  conditions p; o(t)=p; x+1(t)=0. The classical evolution
and (64) are symmetric with respect to any permutation ofcan be decomposed inte-1,...k eigenvaluesy; and eigen-

the indicesL,M,R it does not matter whether the middle functions8;,, such thatp, (t)==1",8; a!B; n. For the
lead or any one of the other leads is taken as very wide osimple system considered here explicit expressions are
very narrow. However, the ratio of the periodic orbit contri- available: a;=cos[(/k+1)=w], and B; ;=+2/k+ 1sir{(il/k
bution, Eq.(61), to that of interference between pairs of dif- +1)7]. Just as has happened for the diffusive case, the eigen-
ferent paths, Eq(63), is not invariant under such permuta- functions turn out to be unimportant, and only the eigenval-
tions. In fact, this ratio is maximal whegy, <9, =gr, and ues—1<a;<1 will play a role.

in that case it is equal to 1, which larger than the ratio of Generalizing the results of Eq#60), (61), and (63) to

1/2 familiar from diffusive system§t is O for a single cav- the present case, and rewriting them in terms of the dy-
ity). The quantum interference effects turn out to be largeshamical probabilities, gives for the weak localization correc-
when the three leads are of equal width, which is the case ttion

be studied and generalized in the next subsection.

2

e
B. Chains of ergodic cavities (AGye)=~ h (k+ 1)22‘t pri(t)
It is clear that by adding more and more ergodic cavities 2 2
. X o AR . . : e 1 1 e 1 1
in series, the situation of the diffusive one-dimensional wire =— 22 =— _< 1- ———],
may be approached. Consider the casek afavities con- h (k+1)*F 1-a; h3 (k+1)
nected by leads of equal widtl,=const. Even though the (66)

leads may be identical to each other, the chaotic cavities are
taken to be different in order to avoid a periodic situation inwhere the explicit values at; were used in the last equality.
which Bloch states would emerdgee., we assume the ab- The result for the conductance fluctuations is

((AGko)?) 2(6—2 L > PLa(DPLm(t)+ ¢ 2;2 tpy (1)
kC h (k+ 1)4|’thYt, I,m I,m h (k+ 1)4 K 11

e? 1 1 i

:(F KD 22 a2t (1—ai)2)
2

(&) 1 —{[(k+1)2—1][2(k+1)2+ 7]+ [(k+1)2—1][(k+1)%>— 4]}
h/(k+1)* 45

B e?\22 1

_<F) |1 kD) ©7
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where the two different contributions are kept separate untiacknowledged that the semiclassical approach has its own

the last equality. Notice that the factor éf:gj/gm in the  limitations (in particular, the case of a few, or partially open,

relationship betwee®; ; and p; ,, exactly compensates the channels is outside its scop&he following two subsections

fact that the number of terms in thg summations is twice give a detailed discussion of the novel features of the present

as large as that in them summations(there are twice as work, and in that context an attempt is made to bridge a

many directed leads as cavitjes different gap—that between the theory of disordered systems
Naturally, these results reproduce those described abownd the theory of quantum chaos. Possibilities for cross fer-

for k=1 andk=2 cavities(k=0 describes an ideal wireand tilization between these two fields, in both directions, are

approach the diffusive results fér—cc. A similar crossover pointed out.

behavior has been calculated for a different kind of system

which interpolates between the same ergodic and diffusive

limits, using supersymmetry techniqu¥sin that case too A. Modified semiclassical approximation

the idea was to connegtideally chaotic cavities in series, for the mixing regime

but the connections were made directly in the Hamiltonian,

by introducing matrix elements which mix between the

guantum states of adjacent cavitiesich cavity was ascribed

a GOE Hamiltoniah The results were as here rational func-

tion of k which reproduce th&=1 and thek—cx limits, but

It should be emphasized that the semiclassical analysis
was applied here in an unorthodox manner. A strict stationary
phase argument would require the initial mome(atad final
momenta of the two classical pathe and B appearing in the
. . semiclassical expression for the conductivity, Etf), to be
their form was much more complicated than E(6) and  gyi-iv equal to each other. As these two paths start at the

(67). Even the asymptotic behavior for largeés not similar, <, 1" osition. they would have to be either identical t
. ; ; . , 0 each
and in fact the crossover for UCF described in Ref. 32 is P y

. . . other (the classical contribution to the conductivityor to
slightly nonmonotonous. Itwould_ be very interesting to com- g, by completing a different number of revolutions
pare our results also with a continuous crossover between allound a strictly periodic ort# [as inF2 of Eq. (52)]. Thus
gj.ealcliead((jk=0. heri a.r;g a ((jjlffuswefwue, o“lraital_ned (;Nheg @ no weak localization corrections, and no contributions of the
disordered region of sizeand mean free pains introduce first kind [F* of Eq. (39)] to universal conductance fluctua-
in the lead(with .the continuous paramet{arfl). In prlnc!ple . tions, would be obtained. However, the valuefofs never
suctf;] %n aélnalylss caaﬂ be ck:)artrled ?(;Jtdusmgdthe sr:arn(';ﬂ""s.l‘c"C@?initesimally small, and thus the stationary phase argument
methods developed here, but would depend on the detalls f o\ or completely strict. In fact, in chaotic systems inter-

the disordered wird fg and E(r) depend on whether the esiing contributions to physical quantities often arise from

scattering is isotropic or small-angle scattefing the mixing regime, i.e., from orbits with propagation times
between the Ehrenfest tintg and the typical escape time
V1. DISCUSSION tese- This regime disappears in the extrefme0 limit, and it

is thus not surprising that its detailed treatment deviates from
The main results of the present work are the semiclassicahe standard SCA.

expressions for the mean and variance of the quantum inter- Consider for example the classical orbit of Fig. 1, and its
ference corrections to the conductance, i.e., weak localizebehavior whenr’ is not strictly equal tor. Labeling the
tion and universal conductance fluctuations. For classicallympurities by digits, we refer to the interference term be-
chaotic systems, these quantities are expressed as integralg@en the path a=r-1-2-3-4-2-1¢’ and the path
over the distribution of classical orbitég(r',p’,t;r,p), in-  B=r-1-2-4-3-2-1¢’, in_ which_the order of scattering has
volving also additional quantities which can be derived frombeen reversed. Clearly, andS; are guaranteed to be equal
this distribution: the self-consistent electric fidltr), and only if r=r’. It is also clearffrom Eq. (15)] that whenr’

the effective free pathi¢r,p), and diffusion constants(r,p). deviates front, the difference of actions will be proportional
Knowledge of this distribution of classical orbits is readily to the difference in the final momenta of these two paths,
available in the applications considered h¢see Sec. ¥,  which for the case depicted in the figure is about 1%pof
due to the assumption ofdiffusivesystem or a system con- This momentum difference,—p, is always perpendicular
sisting of severakrgodic cavities connected through ideal to p, and never vanishes, so there is no strictly stationary
leads. The important task of demonstrating the use of thesghase contribution to the integration over the perpendicular
expressions on a generic system lies beyond the scope of tkemponent ofr’. Furthermore, the magnitude of this mo-
present work. However, it is stressed that finding this classimentum difference is roughly independent of the perpendicu-
cal distribution numerically for a given potential should be lar component of’, as it is determined by the first part of
relatively easy, because only a statistical knowledge of théhese paths, which is identical fer and B8 (in the present
classical orbits is necessary, and there is no need to form example the first two scatterers are idenjicelowever, the

full database consisting of exponentially many orbits. range of this integration, which we denote ly, is finite—

It was originally thought that SCA could help to bridge roughly 10% of the size of the systemn, in the example—
the gap between the down-to-earth experimentalists and ttend thus the action difference will never grow beyond
abstract mathematical analysis of the theorists. Unfortut, (p,—py) (both these factors depend also on the parallel
nately, the recent developments in the theory have considecomponent of ’, but their product is roughly constanNow
ably widened this gap, with the introduction of diffusion the question of whether this pair of orbits contributes or not
equations inn-dimensional transmission-eigenvalue spacesgdepends on the value #f if it is much smaller than 10°pgL
and supersymmetric techniques. It is hoped that the presetttere will be a fluctuatingnever stationanyphase factor, and
method will contribute to reversing this treftlalthough itis  the contribution will be unimportant, while ifi is much



53 SEMICLASSICAL ANALYSIS OF MESOSCOPIC CONDUCTANCE 7051

larger than 10%pcL the phase will be negligible throughout described by a single parameter—the diffusion constant—on
the whole integration range, and there will be a finite contri-all length scales larger than some physical cutoff such as the
bution. transport mean free path or the grain size for a granular ma-
Quantitatively, such contributions may be described by aerial. However, an additional length scale related to the
factor of hN715, (p! — Pg), where thes function is over the  Ehrenfest time occurs naturally in the semiclassical analysis.
perpendicular components of the momentum, and has a finiteurthermore, this length scale depends not only on the mi-
width ~h/l, and height~1¥~%. In the analysis of Secs. Ill croscopic characteristics of the potential, but alsaipand
and IV the averaged distribution functidg was introduced diverges fori—0. As an example, consider a thick slab of
already at an earlier stage and the integration ov@ndp’  transparent disordered material. If it is illuminated byell-
was done in one step, so that tiis function never appeared collimatedbeam of light, a speckle pattern may be observed
explicitly. For long times there are exponentially manyin the transmitted light. Based on the perturbative analysis,
classical orbits front to r’, which initial and final momenta one may expect that the condition on the thickness of the
within h/1, of p andp’, respectively, and thus the averaging slab is given by the transport mean free path, but in fact it is
clear that the relevant length is related to the Ehrenfest time
— T _ ~ (provided that the microscopic features of the disordered
fe is smooth makes it invariant to the details of the averagingample are “soft,” i.e., they must be larger than a wavelength
procedure. Thus there is no need to keep track of the actuahg must not act as beam splitterBor slabs of thickness
distribution of sizes of, (at least as long as the main con- jntermediate between these two lengths, the beam will re-
tributions come from long orbijs . ~ main well collimated and no speckle pattern will be ob-
The crossover between “short” and “long” times for this seryed, even though the direction of propagation of the trans-
purpose occurs at an Ehrenfest titpe which depends o# mitted (or reflected light will be random.
and the typical Lyapunov_exponents.Apair_of paths Stgrting It is somewhat surprising that the importance of the
very near to each other in phase space will have their moéveraging Inm or equivalently the width of

mentum difference multiplied by a factor of ordéR after the 5. (b0 —ph) funci hasized lier. Thi
each collision with an obstacle, whdris the free path anR € 8, (Pq pﬁ.) unctions, was not emphasized earlier. 1S
jmay be due in part to the fact that much of the attention

is the radius of curvature of the obstacle. Thus, if the initia . " S o
momentum difference ik/lI, and the momentum difference was quOted. to physical quantities which involve per|od|c
attz is required to be of ordgpe, the resulting estimate for c!assmal orblts,. such as the de_nS|ty of stﬁt%{n fact, this .
the Ehrenfest time is kind of averaging does not arise naturally in the analysis
of the contribution of periodic orbits to the conductance ei-
ther (see Sec. IV C aboyeand even if it were to occur, it
In(pgel  /h) . : . .
te~ T (68) would have no dramatic effect on integrals involving
In(I/R) fe(r p,t;r,p). In contrast, in the case of weak localization the
. averaging is around the poirfig(r,—p,t;r,p), and it intro-
(suitably averaged value of |, andl, should be used hexe duces qualitatively new types of orbit§.e., non-self-

then_thls estimate can b_e ta}kgn to imply~ 7, especially n retracing orbity into the calculation for long times. Like-
diffusive systems for which it is customary to take the limit "

of small scatterer®<| (recall that diffusive motion is not a Vi€, the averaging fofg(r’,p’,ta;r,p) fe(r’,p’,to;r,p)
valid description for timeg~ 7 anyway. However, in the has an important effect as it allows distinct classical orbits to
semiclassical limit: will become so small that we will have ©Verlap[see Fig. &)].
tg> 7, and in principle this should be taken into account. For
instance, the magnetic-field dependence is determined by the
distribution of areas enclosed by diffusive paths of length
which should be replaced by-2tg since the paths are so
close to each other that they enclose a negligible area for a It is remarkable that the use of the Kubo formula, with a
time tg near their beginning and erfthis argument does not self-consistent choice of the electric field, has enabled here
apply to the contribution of periodic orbjtsSince the domi- the calculation of corrections to the classical conductance
nant contributions come from long times, such correctionswvhich are of higher order ik, without having to evaluate
are unimportant for diffusive systems, except for exceedinglysuch high-order corrections to the propagators themselves.
small values ofi. They are also unimportant in the chaotic As explained already in Sec. Il, the choice of the electric
systems studied here, because of the assumption of ergodields can be shown to be unimportant on the basis of unitar-
ity which was used for the individual cavitigsie have es- ity, and it is somewhat surprising that the semiclassical re-
sentially assumed that botp and the time taken to traverse sults fora(r,r’) do not obey unitarity, order by order i
each cavity are much smaller than the escape time from thdowever, it turns out that the leading-order results for
cavity, which typifies the length of the shortest relevant or-o(r,r’) may give subleading contributions to the derivatives
bits). It would be very interesting to study systems for which V,-a(r,r’). In order to clarify these issues, we briefly recon-
te is not negligible compared to the typical propagationsider the example of a cavity with ideally “random” scatter-
times. ing, which can be described by the circular orthogonal en-
The physics associated with the Ehrenfest time can beemble (COE) of RMT.® As described in the following
clarified by considering a different geometry. It is often paragraphs, this system can be observed to display all of the
claimed in the context of disordered systems, on the basis @&hbove surprising aspedise., a nonunitary leading-order ap-
a perturbative analysis, that any disordered system can k@oximation which still reproduces the quantum corrections

in fg(r’,p’,t;r,p) gives a smooth distribution. The fact that

B. Corrections to the conductance
from leading-order propagators
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to the conductivity correctly, if the Kubo formula is used 9.0
rather than the Landauer formylawithout invoking any Oc=
semiclassical considerations.

Take thenXn scattering matrixs;, which is associated
with such a “random” cavity, connected to leads with a total
of g, +gg=n conducting channels. The dimensionless con-
ductance is given in terms of this scattering matrix by the
Landauer formulagc=2?;12}‘19L+1|S,j|2. Taking §; to be
a random member of the COE, one may calculate variougthe relative minus sign is due to the field being directed into
averages of its matrix elements for anyFor example, the the cavity in one lead, and out of it in the otheDbserve
fact that <|Si,j|2>= (1+4;;)/(n+1) implies that thatthe classical conductance of the cavity is given here by a
(gc)=0,9r/(n+1). Expansion in ol gives  “short-range part,” which does not require knowledge of the
{9c)=0,0r(n"1=n"2), in agreement with the semiclassi- “long-range” scattering matrix at all. It is stressed that Eq.
cal results for an ergodic cavity, Eq27) and(38). Evalua-  (70) follows directly from the Landauer formula and the uni-
tion of the variance of the conductance is slightly more com+arity of S; ;. In the present context it is considered to be
plicated, although straightforwafd: more basic. Evaluation of the mean quantum correction to

the conductance can now be performed using only the
leading-order result for the corresponding moment of the

- 2, BElS, (70

n

with the “classical electric field” factors

_Jgr/n if 1sisg,

7l —g./n if g t1s<isn (7D

((90)*Mvar=9LIR( (IS 5D var matrix elements(|S; ;|%)=(1+ &, ;)/n, despite the fact that
_ 2 2 in this approximation the scattering matrix is not unitary.
+99r(N=2)(|S i) (S k) var Most terms cancel with each other becadise ;E;=0, and
+9.9r(9Lgr—N+1){((]S, j|2)(|sk 1) ar the remaining— = ,E?/n gives the WL result. The results

for UCF may likewise be obtained using only the leading-
order expression for the moment$(|S; ;%) (|Sci|*))var
=(6 k9,1t 5iy|5j'k)/n2. The analogy with the semiclassical
calculation is thus complete.

2 1
n(n+3) (n+1)2

=0u9r

n (n—2) 1 It is expected that explicitly using the self-consistent elec-
9.9r n(n+3) (n+1)? tric field could be very helpful in other calculation schemes
too. For example, it should enable the calculations of Ref. 7
+9.9r(9L0r—N+1) n+2 to be done by expanding only to the second order in the
n(n+1)(n+3) diffuson-Cooperon expansion, and not to the sixth order as
was found necessary thefthis is based on counting the
_ 1 ) number of ladders in the different diagrams for the “long-
(n+1)* range part” of UCF(Ref. 14].
2 2, 4 In this system one can explicitly study the next-order cor-
=29{gr/N". 69 rections to the moments @ ; and observe how their con-

tributions could in principle be as large as the WL and UCF
Here the indices, j ,k,I which appear in the different type of terms being calculated, but vanish due to cancellations be-

covariance term are all taken to be different from each othefWeen the different terms. This cancellation can be demon-
The result is again in agreement with the semiclassical resufiifated without actually calculating the higher-order correc-
of Eq. (45) for an ergodic cavity. Note that it is obtained due 1ONS; by arguing thak;E;=0 and using the fact that the
to a cancellation of the first two contributions with each COE i insensitive to the actual values of ifend] indices.
other, and that knowledge of moments®f, to the second AS noted in the closing paragraph of Sec. I, a similar can-
subleading order in b/turns out to be necessary. Obviously, C€llation can be demonstrated in diffusive systems, using the
if the leading-order expressions for the moment§gfwere diagrammatic technique. More generally, one may argue on

used in the Landauer formula, only the classical cbnductanc@e basis of universality that additional contributions from
could have been calculated correctly. higher-order terms should not be expected, at least in the

Consider now the freedom of using the known property ofaS€ Of systems involving ideally ergodic caviti&ec. ).
unitarity of the scattering matriceE,j|S|,j|2= 1 for each row _In order to verify _th_|s expectation, it would _be very interest-
or column. This allows us to replace the contribution of eacHnd t0 study explicitly the contribution of higher-order cor-
row of the scattering matrix to the Landauer formula, (raes(;)t:aocri]glI)\:v[]r:grs]eavrvehiléﬂogg kfr?cr) V\fﬁ":‘(}";ﬁfjg&' Oﬁrggggﬁﬁrs'

n 2 i i 3o 2 -
EJ'=91Ln*1|si'i| b); the.comblnatlon (Fa)(1-3L,[8,9) rections, i.e., the effects of diffraction and caustics.
+aZ_g 14]S|% with any value of e As the self- In the field of disordered systems, higher-order correc-
consistent classical electric field for an ergodic cavity istions in# are usually analyzed in terms of two distinct small
concentrated in the lead&f. Sec. 1), it is possible to parameters® The first gives the accuracy of the description
follow a line of derivation equivalent to that used above forof individual scattering events, and may be written\a$l,
the SCA simply by choosing an appropriate valuexpbpe-  where A is the Fermi wavelength andis a microscopic
cifically a«=g,/n. Repeating this replacement for each rowlength such as the mean free péibr a semiclassical analy-
and each column gives the “Kubo formula” for the conduc- sis, an obvious microscopic length is the radius of curvature
tance, of the obstacles depicted in Fig).1t is often argued that
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inaccuracy with respect to this parameter can be toleratedhat the SCA becomes, when unitarity is enforced, analogous
because the actual potential in a real system is unknowto the nonlinear model—the latter describes a disordered
anyway, and instead the mobility or the effective scatteringsystem with a white-noise potential to all orders ig, ldut
cross section are measured directly. The second small paramnly to leading order i\ g/I.

eter is essentiallyi/At. -~ 1/g, whereA is the mean single-
particle level spacing...is the length of time a typical elec-
tron spends in the sample before leaving through the leads,
andg is the dimensionless conductance of the sample. This The author wishes to thank H. U. Baranger, Y. Imry, R. A.
parameter describes the extent of lack of unitarity in theJalabert, A. Kamenev, U. Smilansky, A. D. Stone, and D.
semiclassical approach as discussed above. Recently, it hbel#imo for helpful discussions. This work was supported by
been suggested that unitarity could be built into the semiclaghe German Israel Foundati¢&IF) Jerusalem, the Fund for
sical approximation from the outs&lt would be very in-  Basic Research administered by the Israel Academy of Sci-
teresting to analyze this approach from the point of view ofences, and the National Science Foundafionder Grants
two distinct small parameters. Such an analysis could impifNo. DMR93-08011 and No. PHY94-071p4
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