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Exact treatment of exchange in Kohn-Sham band-structure schemes
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A Kohn-Sham(KS) scheme for solids treating exchange exactly is introduced. The scheme emerges from a
recently introduced exact formal KS procedlife Gorling and M. Levy, Phys. Rev. A0, 196 (1994]. The
exact density-functional exchange potential is obtained in terms of its Fourier components. The method can
easily be implemented on the basis of existing Hartree-Fock schemes for solids employing plane waves as
basis sets.

[. INTRODUCTION orbitals, i.e., thep; shall be two-dimensional spinors. Other-
wise the form of the KS orbitalgp; is not specified any

The Kohn-Sham(KS) procedure of density-functional further at this point. This means that tike may be Block
theory(DFT) (Refs. 1-4 is the most widely used method for orbitals with periodic boundary conditions which are appro-
the theoretical description of the electronic structure of solpriate for the treatment of crystalline systems as well as KS
ids. In this method the exchange and correlation interactionerbitals vanishing exponentially at infinity as those con-
are treated via density functionals which are not known exnected with finite systems. Of course, in order to be describ-
actly. The necessary employment of approximate exchangable by properly normalizable wave functions, the consid-
and correlation density functionals introduces errors whichered systems have to be finite. Therefore crystalline solids, as
inevitably limit the accuracy and reliability of results ob- usual, are modeled here by systems with periodic boundary
tained with KS procedures. In this work a KS scheme isconditions which consist of a large but finite number of unit
suggested which allows one to treat exchange interactionsells. The KS orbitals are eigenfunctions of the one-patrticle
exactly, and therefore requires approximations only for theKS equations™
treatment of the electron correlation. The suggested scheme
emerges from a recently introduced exact formal KS proce- o2 i _
dure which is based on perturbation thed®yThe first-order [ VZHudlplin]di=€idi. @
terms of this procedure give access to the exact DFT ex- ) ) _
change energy and potential, and thus to a KS scheme tregkhe effective or KS potentiab([p];r) is the sum of the
ing exchange exactly. Here this scheme is formulated withifgXternal potentiad (r), the Coulomb potential([p];r), the
a basis set representation resting on plane waves. This allogchange potentiat([p];r), and the correlation potential
its application in the calculation of electronic structures ofvc([p];r):
solids. The implementation of the scheme on the basis of
existing plane-wave Hartree-Fo@dF) computer codes, as it vo([plir=v(r)+u([pl;n) +v[pl;n) +vplir). (2
is described here, is possible without much programming
effort, and its computational demands are similar to those ofhe potentialsu([ pl:r), v, ([p]:r), andv([p]l:r) are the
HF calculations for solids. functional derivatives of the density functionals for the clas-

Note that the exchange energy in HF theory and in DFTgica1 Coulomb energyJ[p], the exchange energt,[p],
are defined differently. Therefore the method introduced herg,q the correlation enerds,[p], respectively*

and the HF method are different, although both, each inits The ground-state energy of the real physical system is
own way, are exact exchange methods. However, the Prociven as functional of its ground-state density),*

dure, in contrast to the HF scheme leads to a local exchange

potential. As a result the introduced exact exchange proce-

dure should not suffer from undesirable features presentin  g_t T Ul]+E +E +J dr o(o(r

the HF method, like artificially increased band géps. sdpl+Ulpl+Edp]TEdp] v (D).

()
1. BASIC FORMALISM . . S . .
The noninteracting kinetic energly p] in Eq. (3) is de-
The KS formalism of DFT is based on the calculation oftermined by the KS system according to
the KS determinan®XS[ p], a model system of noninteract-

ing electrons with the same ground-state electron density as occ
the real, physical interacting electron system. Tdpl=> f dr ¢*([pl;n) (= 3V ei([plir). (@)
The KS determinan®®S[ p] is a Slater determinant con- i

structed from theN energetically lowest KS orbitalg; .1
HereN is the electron number of the considered system. Th@he DFT exchange enerds,[ p] is defined by the KS orbit-
symbol ¢; includes the spin degree of freedom of the KSals ¢; as
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1 oce oce be determined from the KS orbitals by using E5). without
Exp]=5 > > f dr f dr’ making further approximations. The reason is that the evalu-
b ation of the right side of Eq(5) is computationally more
* cery gk N NS . demanding than all other steps of a KS scheme, and that so
xd)‘ (plr)é; ([p]’r)dfl([p]’r )d),([p],r). far approximate exchange functionals have to be employed
Ir=r’| in any case to provide the exchange potential. In this work,

(5) however, a procedure is discussed which allows one to gen-

. . erate the exchange potential without resorting to approximate
The fact that the KS orbitals are functionals of the ground-nctionals. The computational effort required by this proce-
state density(r) (Refs. 1-4 is expressed in Eq#4) and(5)  gyre s about the same as the one necessary to handle the
by explicitly writing ¢;([p];r). The correlation energy expression on the right-hand side of H§). Therefore, if
Ecl p] consists of all contributions to the total energy which gne accepts this computational effort, which is of the same
are  not contained in TJp],U[p].Edp], and order of magnitude as the one required by HF procedures,
J dr v(r)p(r). Whereas the latter energies can be calculategyne can treat the complete exchange interactions, as defined
exactly from the KS orbitalsp;, the correlation energy i, DFT, exactly.
Ec[p] has to be evaluated through an approximate density The exchange potential,([p];r) is defined as the func-

functional. Approximate density functionals also have to bejjonal derivative of the exchange enerBy p] with respect
employed for the exchange potentig([ p];r) and the cor- g the densityp(r),

relation potentiab ([ p];r), which are required for the con-
struction of the KS potential ([ p];r) of the KS equations _ SE, o , OB Si(r”)
(1) for the KS orbitalse; [see Eq(2)]. Note that knowledge  vx(Lplir)= 5 =2 f dr f dr S5H(r") So(r
. . p(r) i i(r") dvg(r’)
of the exchange energl,[p] in terms of KS orbitals as
provided by Eq(5) does not mean that the form of its func- OBy 87 (r")|Svg(r')
tional derivative with respect to the density, the exchange T 7 .
. > wit : ST (r") dus(r') | op(r)
potentialv,([p];r), is also known. The reason is that the
form of the functional dependence of the orbitals on the denThe functional derivativesE/ 5¢; and SE/ 8¢ occurring in
sity, like the form of the functionak,| p], is unknown. Eqg. (6) can be calculated directly from Ed5), whereas
In actual applications of the KS formalism, the exchanged¢;/ Svs(r) andd¢; / Sv(r) are given by standard perturba-
energyE,| p] [Eq. (5)] is usually also calculated via approxi- tion theory. As a resuft® the exchange potential ([ p];r) is
mate exchange-density functionals despite the fact that it caobtained as

(6)

Ux(r):f dr’{ o ([plir") di([p]ir )+ Sug(r’) o

2 2 (Gilplloy Tolled el e —e. C S

The operatof;iz'L is a nonlocal exchange operator of the form  The functional derivative Sp(r)/dvg(r')=X(r,r') in

of the HF exchange operator, though, constructed from KSome sense is the inverse of the functional derivative
orbitals. The functional derivativév(r’)/Sp(r) occurring  Svg(r)/Sp(r') of Egs. (6) and (7). However, the problem

in Egs.(6) and(7) determines changesv(r) of the effec-  arises that the linear-response operatohas no proper in-
tive potentialug(r) to given changesip(r) of the ground-  verse. The reason is that constant functions are eigenfunc-
state density p(r). At this point the Hohenberg-Kohn ions of X with zero eigenvalues because the addition of a

_4 . . . .
theorem™* is invoked. It establishes a one-to-one Mapping.osant to a potential,(r) leaves the orbitals and therefore
between ground-state densitie§r) and effective potentials the density constant. Furthermore, independently of the

v¢(r) of a noninteracting KS system if additions of ConStantSchange(Svs(r), the changesn(r) have to integrate to zero

to the potential are disregarded. This allows one to ConS'de[gecause the electron number is not affected by modifications

the KS potentiab(r) as a functional of the densipy(r). of the effective potentiab¢(r). However, if constant func-

T_he WeII_—known static linear-response operaxofor th_e tions are excluded from the space of the changesand
noninteracting KS system relates changgesof the density sv, then the one-to-one mapping between potentialand

with changesv of the effective potential. In ordinary space densities p established by the Hohenberg-Kohn theorem

this can be expressed as guarantees that the operabbris invertible on this restricted

space. At this point, implicitly, the assumption of noninter-

5p(r)=J dr' X(r,r")évg(r"), (8) actingv representability is made, i.e., it is assumed that to
each density occurring here there exists an effective potential

with vs(r) which leads through the corresponding KS equation
0CC UNOCE % o , (1) to orbitals yielding that density. Note that this assumption

Xrr=S 3 D (1) ps(r) g (r') i(r )+c.c. (9) underlies the KS formalism itself, and is not a specific re-

T s €~ € quirement of the method developed here.




7026 ANDREAS GCRLING 53

The representation of the inverse ! of X in ordinary  note that Eq.(7) represents the first-order step in a more
space is not known. There is no simple way to exclude congeneral formalism leading to an exact KS scheme which is
stant functions from ordinary space. However, if densitiesdescribed in Refs. 5 and 6.

p(r) and potentiale 4(r), as well as their changes, are rep-

resented within a finite basis set, then the uniquely defined

linear combination of basis functions corresponding to a con- !ll. KS SCHEME FOR SOLIDS TREATING EXCHANGE

stant function can easily be excluded from the basis set. EXACTLY

Within the resulting reduced basis set the representation of 1,4 exposition given so far was not restricted to specific
the inverse operatox ! and therefore that of the functional systems. Now this work concentrates on periodic systems,
derivative v (r)/ 8p(r') is given by the invers&~* of the  je., crystalline solids. Furthermore, the systems considered
matrix X representing the operat¥rin the reduced basis set. shall exhibit inversional symmetry. The latter is by no means
Now all quantities appearing in Eq7) for the exchange a necessary condition for the computational scheme intro-
potentialv,([ p];r) are accessible. This means that the exactluced here; however, it simplifies the notation. Besides den-
exchange potential,(r) in the form of its basis set repre- Ssities and potentials also the KS orbitals shall be developed
sentation is also accessible, and can be employed in a Ki§to a basis set. The canonical KS orbitals for periodic sys-
procedure. tems are Bloch orbitalg, ((r) characterized by a band in-

The exchange potential as obtained by the procedure di§lex n and a vectork lying in the first Brillouin zone. The
cussed above is defined only up to an additive constant. Thi$asis sets{x.c} for the KS orbitals shall consist d¥,
however, is not a shortfall of the procedure but reflects thélane waves,
fact that the exchange potential in DFT for integer electron 1
numbers is defined only to within an additive constant be- Xko(r)=——=gkrerr (10)
cause functional derivatives with respect to the density are ' Vo
defined only to within an additive constants if the electronyiin being the unit-cell volume an@ being a reciprocal-

number is fixed. lattice vector[In the orbital basis set the inversional symme-
Acting with the operatorf dr”X(r,r") on both sides of try is not exploited here. The voluni@ can alternatively be

Eqg. (7) turns this equation into the basic relation for the jdentified with the crystal volume. Then integrations in ordi-

exchange potentiab,(r) within the optimized potential nary space have to be performed over the whole crystal in-

method(OPM).>* The other way around the OPM relation stead of over one unit cell, and the averaging over the Bril-

for wv,(r) is converted into Eg.(7) by applying louin zone in Egs(19) and (22) has to be replaced by a

J dr”X~(r,r") on it. Both the OPM and the method dis- summation]

cussed here are procedures to perform KS schemes treating The basis sefgo} used to represent densities and poten-

exchange exactly. If correlation is neglected, both methodéals shall contairM real symmetric linear combinations of

result in an exact exchange-only KS procedure. However, thelane waves,

OPM has the disadvantage that its basic equation is an inte-

gral equation which has to be solved numerically, That limits golr) = ——[eQT+ e, (11)

the applicability of the OPM to atomic systems. In order to \/E

treat solids with the OPM, one has to introduce additiona

approximations like the ones suggested by Krieger, Li, an(&/

lafrate™ resulting in an approximate scheme which was re<ions from {gq}. Densities and potentials exhibit the full

cently applied to solids by Bylander and K!emm]én(.An translational symmetry of the system, and therefore only ba-

alternative approach to solve the OPM equations exactly by gis functions with this symmetry need to be included in

transformation of the basic equation, as is discussed in Re{gQ}, i.e., {go} contains only basis functions withkavector

11(b), also leads to quite demanding integrodifferential equapeing the zero vector. The exchange potentigl), for ex-
tions) The method discussed here, in contrast to the OPM, aample, shall be expanded according to

a basis set method is not limited in its applicability to a
certain type of systems. The introduction of the steps neces-

ith Q being a reciprocal-lattice vector which may not be
qual to the zero vector in order to exclude constant func-

sary for an implementation of this method which allows the vx(r)= %: aq9o(r). (12
treatment of solids is the main purpose of this w(s&e Sec.
). The fact thagq(r) =g_o(r) is taken into account by requir-

The step from Eq(7) to the OPM relation for the ex- ing that one component @, e.g.,Q,, shall be positive.
change potential, and vice versa, is not trivial, because for its The maximal sizéM, of the basis setdg} is determined
justification the Hohenberg-Kohn theorem has to be invokedy the requirement that it shall be complete with respect to
and this requires the exclusion of constant functions from thgiven orbital basis set§yy c}. The sizeM , of the latter
space of the changes of potentials and densities. Furtheusually is determined by the condition that the magnitudes
more, the derivation of Eq7) as given in Refs. 5 and 6 and |G| of the reciprocal-lattice vectol@ defining the basis func-
as discussed here is based solely on the fundamental pritions y 4 are smaller than a chosen thresh@d,... The
ciples of DFT and does not use stationarity properties of theorresponding maximal threshol@,,,x for the reciprocal-
total energy with respect to an effective potential, as thdattice vectorsQ of the basis functiongg(r) has to be set
usual derivatioh'® of the OPM relation fow,(r) does. Also  equal to twice the value 0B may, i-€., Qmax=2Gmax, iN Or-
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der to obtain a basis séf} which is complete with respect with the matrix eIementHSG, =(Xk.cl9alxk c') Of the ma-
to the basis setbyy g}. In practice, it might be sufficient to tricesH? being given by
use a threshol@®@ .« which is much smaller than@,,,.*3
Indeed this may be necessary to obtain a numerically stablédSg, =(2Q) Y25(Q+G—G')+(20) Y25(Q—-G+G').
proceduré? For systems with higher symmetry, e.g., cubic (16)
symmetry, the fact that the density and all potentials are to- _ i )
tally symmetric allows one to include only totally symmetric ' order to determine the vectarwhich gharactenzeKsSthe
basis functiong(r) in the basis sefgo}. This can drasti- exchange contributiofi, to the Hamiltonian matr|><|7—|l ,
cally reduce the size dfgo}- one has to calculate the matrix representatXm@sdX ™~ of
The choice of plane waves as basis functions for all inthe static linear-response operatornd its effective inverse
volved basis sets and the determination of the Bzeof the X~1, respectively, for changes of the KS potential and the
basis se{gqo} as a function of the siz# , of the basis sets KS density which exhibit the translational symmetry of the
{x«c} leads to basis sets for the KS ‘orbitals, and for thesystem:® In order to do this, one constructs auxiliaryl (
densities and potentials which are perfectly balanced. This-Ny) XN, matricesAq y, with Ny being the number of oc-
means that the expansion of the exchange potential intoupied KS bands for the vectdr. The matrix elements of
plane waves does not introduce additional basis set errosq are given by the matrix elementgs | do| i ) of ba-
because the basis s} is complete, or foIQx<2Gnax  SiS functionsgqe(r) between unoccupied and occupied KS
de factocomplete, with respect to the basis §gk c}. In  orbitals¢s andé; i, respectively. The matricesg  can be
other words, the only inaccuracy in the Fourier component®btained through simple similarity transformations of the
of the DFT exchange potential as obtained by the schemeorresponding matriceld, by matricesCy which shall con-
suggested here should be due to the inevitable incompletsist of columns given by the vectocs  representing the KS
ness of the basis sejf g} for the KS orbitals. Furthermore, orbitals ¢,, (r) in the basis sefxy c}:
for the balanced basis sets used here, one does not expect to -
encounter any problems originating from the fact that the Aqk=CEHqCy. (17
Hohenberg-Kohn theorem can be violated if one employ
unbalanced basis setsee Ref. 14 for a discussion of this
point).
The expansion of the KS orbital, (r) in the basis func-
tions xy g turns the KS equationél) into matrix equations

SThe parts of theM XM, matricesAq given by the last
(M, —N,) elements of the firsN, rows constitute the ma-
trices A . Of course, in practice only those latter matrix
elements ofAg , which contribute toAg  have to be calcu-
lated. Also, note that the specific form of the matri¢¢g
[Eq. (16)] simplifies the similarity transformatio(L7).

Next, a second set of auxiliary matrices, the matrices
Box are determined from the matricég, by simply di-
viding each matrix elemeips |gq| ¢i k) Of Ag by differ-
ences of the corresponding KS eigenvalugg— €. The

Hi>Ch k= €n kCn i » (13

with vectorsc,  representing the orbitals,, ((r) in the basis
sets{xx e} and with thee,, being the corresponding KS

; e 2 KS
eigenvalues. The Hamiltonian matridi~can be decom matricesAq  andBg  are then used to calculate the matrix

!oosed into Cont”bUt'OnHT,g’H_v'HC'HX’ andH, belong- elementsXy oo’ of contributions X, to the static linear-
ing to the operator of the kinetic energy and the operators ofesponse matriX according to

the external, the Coulomb, the exchange, and the correlation
potentials, respectively, Xk.00'= Tr[AglkBQ/,k] +c.c. (18

In Eqg. (18), Tr stands for the taking of the trace of a matrix.
Averaging over the vectork of the first Brillouin zone re-
sults in the matrix representatioX of the static linear-

presponse operatot,

HIS=Hp +H, +Ho+H+He. (14)

With the exception of, all contributions to the Hamiltonian
matrix HKS are treated here as usual in KS plane-wave met
ods for solids(or as in HF plane-wave methgdsnd there- 1
fore need not be discussed any furtlieee, for example, X==> Xk, (19
Refs. 7 and 15 for further informationThe matrix elements N*%
{(Xx.cloxlxkcr) of the exchange contributiohi, to HS,  ereN shall be the number of vectoksin the first Brillouin
which are independent of the vectarare here not evaluated zone. Of course, in practice EGL9) would be performed
by employing an approximate exchange functional as inprough a speciak-point integratiort’ The inverseX ! of
stan(dz)ird KS procedures, but in another way by explomnqhe matrix X represents the operat&’l in the basis set
Eq. (7). {
W't.h respect to the basis s}, the e_xchange poten_tlal Next the term in the square brackets on the right-hand
vX(r).'S.‘ represented by the vectﬂ,rcpllectlng the expansion - gjye of Eq.(6) has to be calculated. The mat#K'}, shall be
coeﬁ{(tz)lentsaQ of iq' (12)'.|Th'73 k-mdepenlslsept Exchagge the matrix representing, in a basis set of plane'waves, a non-
contributionHy to the Hamiltonian matrix,™ is then ob- 501 exchange operator for orbitals characterized by the vec-

tained by tor k. The nonlocal exchange operator has the form of the
Hartree-Fock exchange operator, but is generated by KS or-
H ZE a~HQ (15) bitals in the scheme presented here. The technique of calcu-
e T lating the matriceH ', including the treatment of the oc-
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curring integrable singularities, is known from Hartree-Fockthird power of the number of plane waves. For this estimate
methods, and needs no further discussion lisee, for ex- it is used that the number of basis functions in the basis sets

ample, Ref. 7. {xxc} and{gq} are proportional. The computationally most
Transformations of the matricé#'; into the basis of the ~expensive step in a standard plane-wave HF scheme for sol-
KS orbitals lead to matriceék, ' ids is the generation of the HF exchange operator. It requires
one more summatiofintegration) in k space than the gen-
F}k:cEHQﬁck (20)  eration of the linear-response operaXr Furthermore, the

- ] ) problem of singularities is only present in the construction of
Auxiliary matricesRy are obtained as the parts of t,  the HF exchange operator. Also, the generatioX @bnsists
XM, matricesR, given by the M, —N,) last elements of mostly of standard linear algebra operations which can be
the firstN, rows. [The steps from the matricel'é;i to the  performed highly efficiently on modern computers. There-
matricesR,, Eg. (20), are the same as those from the matri-fore the exact exchange KS scheme for solids introduced
cesHq to the matricesAq, EQg. (17).] Next the elements here seems to be feasible.
ay g of vectorsa, are determined according to

ak'Q:[R;BQ'k]'FC.C. (21)

Finally, averaging of the vectorg, in k space leads to the IV. CONCLUDING REMARKS

term in the square brackets on the right-hand side of(Byg. If the KS scheme introduced here is carried out by modi-
and multiplication byX™" results in the vectoa character-  fying an existing HF computer code, as described in Sec. Il
izing through Eq.(15) the matrix representatiohl, of the  then it treats exchange exactly but neglects correlation. How-

KS exchange potential: ever, correlation, of course, can be taken into account as
usual in KS schemes by approximate correlation functionals.

H.o=X-1 EE ak} 22) The construction of the exact DFT exchange potential as

X N“EK ' described here is not only of interest for applications of the

) o KS formalism, but is also very helpful for further formal and

Note thatH, does not depend ok, i.e., the Hamiltonian methodical developments in DFT. So far exchange potentials
matricesH(>, independently ok, all contain the same ex- from approximate density functionals could be compared
change contribution. The reason is that the exchange potewith the exact exchange potentials only for atoms within the
tial in the KS formalism is a local, multiplicative potential, in framework of the optimized potential meth&tiNow this is
contrast to the one of the HF procedure. also possible for solids. To have the exact exchange potential

The above-suggested KS scheme, which treats exchangg hand is also helpful for further investigations of the ques-
exactly, now can easily be implemented on the basis ofion of the magnitude of the difference between the exact KS
existing plane-wave HF computer codes for solids. An itera-pand gap and the physical band gap of semiconductors. In
tion cycle of the resulting scheme consists of the followingthe KS scheme introduced here the error in the KS band gap
steps: arises solely from the approximate treatment of the electron

Q) Construct the HF Hamiltonian operator from the or- correlation but not frpm the way exchange is taken into ac-
bitals of the previous cycle count. Because the introduced KS scheme allows us to per-

(i)  Determine the static linear response operator and itgOrm an exact exchange-only procedur_e, itis also possible to
effective inversdEgs. (17)—(19)] check the accuracy of an approximate exchange-only

(iii) Calculate the KS exchange operator and use it to reschemejsl based on the optimized potential method which

- "recently has been implemented for solftds.
g:j‘:;tgﬁeorgezﬁ?é‘gge(z%')ae(r;g)’]r of the Hamiltonian ¢ y,o K5 exchange energy is replaced by a screened ex-

_ _ \ed)] change energ¥’?°then the procedure developed here can be
(iv)  Solve the one-particle equations in order to generat@seq to generate the exact screened exchange potential. In

new orbitals. other words, the generalization of the scheme of this work to

. treat screened exchange interactions is straightforward.

Steps(ii) and(iii) have to be added to a standard plane-  Thg effective inverse of the static linear-response operator
wave HF scheme consisting of stefpsand (iv) in order to  gescribed here can also be used to obtain the exact KS band
convert the HF scheme into a KS procedure treating exgircture to a given electron density by the method described

change exactly. Of course, the orbitals generated by the sug; Refs. 14 and 21. This method is tantamount to determining

gested scheme are KS orbitals. Therefore, the Hamiltoniaghe ks hand structure by a constrained search directly from a
operator constructed in st€p and modified in stefgiii) is iven density. This is of practical as well as formal
not really a HF Hamiltonian operator, but a Hamiltonian op-jnterestt42!

erator which depends on the KS orbitals in the same way as
the HF Hamiltonian operator depends on HF orbitals.

The computationally most expensive task that has to be
performed in the additional steggs) and (iii) is the part of
the construction of the linear-response operatatescribed
by Egs.(17) and (18). The necessary computation time to | thank M. Levy for inspiring discussions. | am thankful
carry out Eqs(17) and (18) scales with the number of spe- for the support of a Habilitationsstipendium of the Deutsche
cial k points times the number of occupied bands times thd-orschungsgemeinschaft.
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