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A Kohn-Sham~KS! scheme for solids treating exchange exactly is introduced. The scheme emerges from a
recently introduced exact formal KS procedure@A. Görling and M. Levy, Phys. Rev. A50, 196 ~1994!#. The
exact density-functional exchange potential is obtained in terms of its Fourier components. The method can
easily be implemented on the basis of existing Hartree-Fock schemes for solids employing plane waves as
basis sets.

I. INTRODUCTION

The Kohn-Sham~KS! procedure of density-functional
theory~DFT! ~Refs. 1–4! is the most widely used method for
the theoretical description of the electronic structure of sol-
ids. In this method the exchange and correlation interactions
are treated via density functionals which are not known ex-
actly. The necessary employment of approximate exchange
and correlation density functionals introduces errors which
inevitably limit the accuracy and reliability of results ob-
tained with KS procedures. In this work a KS scheme is
suggested which allows one to treat exchange interactions
exactly, and therefore requires approximations only for the
treatment of the electron correlation. The suggested scheme
emerges from a recently introduced exact formal KS proce-
dure which is based on perturbation theory.5,6 The first-order
terms of this procedure give access to the exact DFT ex-
change energy and potential, and thus to a KS scheme treat-
ing exchange exactly. Here this scheme is formulated within
a basis set representation resting on plane waves. This allows
its application in the calculation of electronic structures of
solids. The implementation of the scheme on the basis of
existing plane-wave Hartree-Fock~HF! computer codes, as it
is described here, is possible without much programming
effort, and its computational demands are similar to those of
HF calculations for solids.

Note that the exchange energy in HF theory and in DFT
are defined differently. Therefore the method introduced here
and the HF method are different, although both, each in its
own way, are exact exchange methods. However, the proce-
dure, in contrast to the HF scheme leads to a local exchange
potential. As a result the introduced exact exchange proce-
dure should not suffer from undesirable features present in
the HF method, like artificially increased band gaps.7,8

II. BASIC FORMALISM

The KS formalism of DFT is based on the calculation of
the KS determinantFKS@r#, a model system of noninteract-
ing electrons with the same ground-state electron density as
the real, physical interacting electron system.

The KS determinantFKS@r# is a Slater determinant con-
structed from theN energetically lowest KS orbitalsf i .

1–4

HereN is the electron number of the considered system. The
symbol f i includes the spin degree of freedom of the KS

orbitals, i.e., thef i shall be two-dimensional spinors. Other-
wise the form of the KS orbitalsf i is not specified any
further at this point. This means that thef i may be Block
orbitals with periodic boundary conditions which are appro-
priate for the treatment of crystalline systems as well as KS
orbitals vanishing exponentially at infinity as those con-
nected with finite systems. Of course, in order to be describ-
able by properly normalizable wave functions, the consid-
ered systems have to be finite. Therefore crystalline solids, as
usual, are modeled here by systems with periodic boundary
conditions which consist of a large but finite number of unit
cells. The KS orbitals are eigenfunctions of the one-particle
KS equations1–4

@~ 1
2 !“21vs~@r#;r !#f i5e if i . ~1!

The effective or KS potentialvs(@r#;r ) is the sum of the
external potentialv(r ), the Coulomb potentialu(@r#;r ), the
exchange potentialvx(@r#;r ), and the correlation potential
vc(@r#;r ):

vs~@r#;r5v~r !1u~@r#;r !1vx~@r#;r !1vc~@r#;r !. ~2!

The potentialsu(@r#;r ), vx(@r#;r ), and vc(@r#;r ) are the
functional derivatives of the density functionals for the clas-
sical Coulomb energyU@r#, the exchange energyEx@r#,
and the correlation energyEc@r#, respectively.1–4

The ground-state energy of the real physical system is
given as functional of its ground-state densityr~r !,1–4

E5Ts@r#1U@r#1Ex@r#1Ec@r#1E dr v~r !r~r !.

~3!

The noninteracting kinetic energyTs@r# in Eq. ~3! is de-
termined by the KS system according to

Ts@r#5(
i

occ E dr f i* ~@r#;r !~2 1
2“

2!f i~@r#;r !. ~4!

The DFT exchange energyEx@r# is defined by the KS orbit-
alsf i as
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3
f i* ~@r#;r 8!f j* ~@r#;r !f j~@r#;r 8!f i~@r#;r !

ur2r 8u
.

~5!

The fact that the KS orbitals are functionals of the ground-
state densityr~r ! ~Refs. 1–4! is expressed in Eqs.~4! and~5!
by explicitly writing f i(@r#;r ). The correlation energy
Ec@r# consists of all contributions to the total energy which
are not contained in Ts@r#,U@r#,Ex@r#, and
* dr v(r )r(r ). Whereas the latter energies can be calculated
exactly from the KS orbitalsf i , the correlation energy
Ec@r# has to be evaluated through an approximate density
functional. Approximate density functionals also have to be
employed for the exchange potentialvx(@r#;r ) and the cor-
relation potentialvc(@r#;r ), which are required for the con-
struction of the KS potentialvs(@r#;r ) of the KS equations
~1! for the KS orbitalsf i @see Eq.~2!#. Note that knowledge
of the exchange energyEx@r# in terms of KS orbitals as
provided by Eq.~5! does not mean that the form of its func-
tional derivative with respect to the density, the exchange
potential vx(@r#;r ), is also known. The reason is that the
form of the functional dependence of the orbitals on the den-
sity, like the form of the functionalEx@r#, is unknown.

In actual applications of the KS formalism, the exchange
energyEx@r# @Eq. ~5!# is usually also calculated via approxi-
mate exchange-density functionals despite the fact that it can

be determined from the KS orbitals by using Eq.~5! without
making further approximations. The reason is that the evalu-
ation of the right side of Eq.~5! is computationally more
demanding than all other steps of a KS scheme, and that so
far approximate exchange functionals have to be employed
in any case to provide the exchange potential. In this work,
however, a procedure is discussed which allows one to gen-
erate the exchange potential without resorting to approximate
functionals. The computational effort required by this proce-
dure is about the same as the one necessary to handle the
expression on the right-hand side of Eq.~5!. Therefore, if
one accepts this computational effort, which is of the same
order of magnitude as the one required by HF procedures,
one can treat the complete exchange interactions, as defined
in DFT, exactly.

The exchange potentialvx(@r#;r ) is defined as the func-
tional derivative of the exchange energyEx@r# with respect
to the densityr~r !,

vx~@r#;r !5
dEx

dr~r !
5(

i

occ E dr 8E dr 9F dEx

df i~r 9!

df i~r 9!

dvs~r 8!

1
dEx

df i* ~r 9!

df i* ~r 9!

dvs~r 8! Gdvs~r 8!

dr~r !
. ~6!

The functional derivativesdE/df i anddE/df i* occurring in
Eq. ~6! can be calculated directly from Eq.~5!, whereas
df i /dvs(r ) anddf i* /dvs(r ) are given by standard perturba-
tion theory. As a result,5,6 the exchange potentialvx(@r#;r ) is
obtained as

vx~r !5E dr 8F(
i

occ

(
s

unocc

^f i@r#uv̂x
NL@r#ufs@r#&

fs* ~@r#;r 8!f i~@r#;r 8!

e i2es
1c.c.Gdvs~r 8!

dr~r !
. ~7!

The operatorv̂x
NL is a nonlocal exchange operator of the form

of the HF exchange operator, though, constructed from KS
orbitals. The functional derivativedvs(r 8)/dr(r ) occurring
in Eqs. ~6! and ~7! determines changesdvs(r ) of the effec-
tive potentialvs(r ) to given changesdr~r ! of the ground-
state density r~r !. At this point the Hohenberg-Kohn
theorem1–4 is invoked. It establishes a one-to-one mapping
between ground-state densitiesr(r ) and effective potentials
vs(r ) of a noninteracting KS system if additions of constants
to the potential are disregarded. This allows one to consider
the KS potentialvs(r ) as a functional of the densityr~r !.

The well-known static linear-response operatorX̂ for the
noninteracting KS system relates changesdr of the density
with changesdvs of the effective potential. In ordinary space
this can be expressed as

dr~r !5E dr 8X~r ,r 8!dvs~r 8!, ~8!

with

X~r ,r 8!5(
i

occ

(
s

unoccf i* ~r !fs~r !fs* ~r 8!f i~r 8!

e i2es
1c.c. ~9!

The functional derivativedr(r )/dvs(r 8)5X(r ,r 8) in
some sense is the inverse of the functional derivative
dvs(r )/dr(r 8) of Eqs. ~6! and ~7!. However, the problem
arises that the linear-response operatorX̂ has no proper in-
verse. The reason is that constant functions are eigenfunc-
tions of X̂ with zero eigenvalues because the addition of a
constant to a potentialvs(r ) leaves the orbitals and therefore
the density constant. Furthermore, independently of the
changedvs(r ), the changesdn(r ) have to integrate to zero
because the electron number is not affected by modifications
of the effective potentialvs(r ). However, if constant func-
tions are excluded from the space of the changesdr and
dvs then the one-to-one mapping between potentialsvs and
densities r established by the Hohenberg-Kohn theorem
guarantees that the operatorX̂ is invertible on this restricted
space. At this point, implicitly, the assumption of noninter-
acting v representability is made, i.e., it is assumed that to
each density occurring here there exists an effective potential
vs(r ) which leads through the corresponding KS equation
~1! to orbitals yielding that density. Note that this assumption
underlies the KS formalism itself, and is not a specific re-
quirement of the method developed here.
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The representation of the inverseX̂21 of X̂ in ordinary
space is not known. There is no simple way to exclude con-
stant functions from ordinary space. However, if densities
r(r ) and potentialsvs(r ), as well as their changes, are rep-
resented within a finite basis set, then the uniquely defined
linear combination of basis functions corresponding to a con-
stant function can easily be excluded from the basis set.5

Within the resulting reduced basis set the representation of
the inverse operatorX̂21 and therefore that of the functional
derivativedvs(r )/dr(r 8) is given by the inverseX21 of the
matrixX representing the operatorX̂ in the reduced basis set.
Now all quantities appearing in Eq.~7! for the exchange
potentialvx(@r#;r ) are accessible. This means that the exact
exchange potentialvx(r ) in the form of its basis set repre-
sentation is also accessible, and can be employed in a KS
procedure.

The exchange potential as obtained by the procedure dis-
cussed above is defined only up to an additive constant. This,
however, is not a shortfall of the procedure but reflects the
fact that the exchange potential in DFT for integer electron
numbers is defined only to within an additive constant be-
cause functional derivatives with respect to the density are
defined only to within an additive constants if the electron
number is fixed.

Acting with the operator* dr 9X(r ,r 9) on both sides of
Eq. ~7! turns this equation into the basic relation for the
exchange potentialvx(r ) within the optimized potential
method~OPM!.9,10 The other way around the OPM relation
for vx(r ) is converted into Eq. ~7! by applying
* dr 9X21(r ,r 9) on it. Both the OPM and the method dis-
cussed here are procedures to perform KS schemes treating
exchange exactly. If correlation is neglected, both methods
result in an exact exchange-only KS procedure. However, the
OPM has the disadvantage that its basic equation is an inte-
gral equation which has to be solved numerically, That limits
the applicability of the OPM to atomic systems. In order to
treat solids with the OPM, one has to introduce additional
approximations like the ones suggested by Krieger, Li, and
Iafrate11 resulting in an approximate scheme which was re-
cently applied to solids by Bylander and Kleinman.12 ~An
alternative approach to solve the OPM equations exactly by a
transformation of the basic equation, as is discussed in Ref.
11~b!, also leads to quite demanding integrodifferential equa-
tions.! The method discussed here, in contrast to the OPM, as
a basis set method is not limited in its applicability to a
certain type of systems. The introduction of the steps neces-
sary for an implementation of this method which allows the
treatment of solids is the main purpose of this work~see Sec.
III !.

The step from Eq.~7! to the OPM relation for the ex-
change potential, and vice versa, is not trivial, because for its
justification the Hohenberg-Kohn theorem has to be invoked
and this requires the exclusion of constant functions from the
space of the changes of potentials and densities. Further-
more, the derivation of Eq.~7! as given in Refs. 5 and 6 and
as discussed here is based solely on the fundamental prin-
ciples of DFT and does not use stationarity properties of the
total energy with respect to an effective potential, as the
usual derivation9,10 of the OPM relation forvx(r ) does. Also

note that Eq.~7! represents the first-order step in a more
general formalism leading to an exact KS scheme which is
described in Refs. 5 and 6.

III. KS SCHEME FOR SOLIDS TREATING EXCHANGE
EXACTLY

The exposition given so far was not restricted to specific
systems. Now this work concentrates on periodic systems,
i.e., crystalline solids. Furthermore, the systems considered
shall exhibit inversional symmetry. The latter is by no means
a necessary condition for the computational scheme intro-
duced here; however, it simplifies the notation. Besides den-
sities and potentials also the KS orbitals shall be developed
into a basis set. The canonical KS orbitals for periodic sys-
tems are Bloch orbitalsfn,k(r ) characterized by a band in-
dex n and a vectork lying in the first Brillouin zone. The
basis sets$xk,G% for the KS orbitals shall consist ofMx

plane waves,

xk,G~r !5
1

AV
ei ~k1G!–r, ~10!

with V being the unit-cell volume andG being a reciprocal-
lattice vector.@In the orbital basis set the inversional symme-
try is not exploited here. The volumeV can alternatively be
identified with the crystal volume. Then integrations in ordi-
nary space have to be performed over the whole crystal in-
stead of over one unit cell, and the averaging over the Bril-
louin zone in Eqs.~19! and ~22! has to be replaced by a
summation.#

The basis set$gQ% used to represent densities and poten-
tials shall containMg real symmetric linear combinations of
plane waves,

gQ~r !5
1

A2V
@eiQ–r1e2 iQ–r#, ~11!

with Q being a reciprocal-lattice vector which may not be
equal to the zero vector in order to exclude constant func-
tions from $gQ%. Densities and potentials exhibit the full
translational symmetry of the system, and therefore only ba-
sis functions with this symmetry need to be included in
$gQ%, i.e., {gQ% contains only basis functions with ak vector
being the zero vector. The exchange potentialvx(r ), for ex-
ample, shall be expanded according to

vx~r !5(
Q

aQgQ~r !. ~12!

The fact thatgQ(r )5g2Q(r ) is taken into account by requir-
ing that one component ofQ, e.g.,Qx , shall be positive.

The maximal sizeMg of the basis set {gQ} is determined
by the requirement that it shall be complete with respect to
given orbital basis sets$xk,G%. The sizeMx of the latter
usually is determined by the condition that the magnitudes
uGu of the reciprocal-lattice vectorsG defining the basis func-
tions xk,g are smaller than a chosen thresholdGmax. The
corresponding maximal thresholdQmax for the reciprocal-
lattice vectorsQ of the basis functionsgQ(r ) has to be set
equal to twice the value ofGmax, i.e.,Qmax52Gmax, in or-
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der to obtain a basis set$gQ% which is complete with respect
to the basis sets$xk,G%. In practice, it might be sufficient to
use a thresholdQmax which is much smaller than 2Gmax.

13

Indeed this may be necessary to obtain a numerically stable
procedure.13 For systems with higher symmetry, e.g., cubic
symmetry, the fact that the density and all potentials are to-
tally symmetric allows one to include only totally symmetric
basis functionsgQ(r ) in the basis set$gQ%. This can drasti-
cally reduce the size of$gQ%.

The choice of plane waves as basis functions for all in-
volved basis sets and the determination of the sizeMg of the
basis set$gQ% as a function of the sizeMx of the basis sets
$xk,G% leads to basis sets for the KS orbitals, and for the
densities and potentials which are perfectly balanced. This
means that the expansion of the exchange potential into
plane waves does not introduce additional basis set errors
because the basis set$gQ% is complete, or forQmax,2Gmax
de factocomplete, with respect to the basis set$xk,G%. In
other words, the only inaccuracy in the Fourier components
of the DFT exchange potential as obtained by the scheme
suggested here should be due to the inevitable incomplete-
ness of the basis set {xk,G} for the KS orbitals. Furthermore,
for the balanced basis sets used here, one does not expect to
encounter any problems originating from the fact that the
Hohenberg-Kohn theorem can be violated if one employs
unbalanced basis sets~see Ref. 14 for a discussion of this
point!.

The expansion of the KS orbitalfn,k(r ) in the basis func-
tionsxk,g turns the KS equations~1! into matrix equations

Hk
KScn,k5en,kcn,k , ~13!

with vectorscn,k representing the orbitalsfn,k(r ) in the basis
sets $xk,G% and with theen,k being the corresponding KS
eigenvalues. The Hamiltonian matrixHk

KScan be decom-
posed into contributionsH

T,k
,Hv ,HC ,Hx , andHc belong-

ing to the operator of the kinetic energy and the operators of
the external, the Coulomb, the exchange, and the correlation
potentials, respectively,

Hk
KS5HT,k1Hv1HC1Hx1Hc . ~14!

With the exception ofHx all contributions to the Hamiltonian
matrixHk

KS are treated here as usual in KS plane-wave meth-
ods for solids~or as in HF plane-wave methods!, and there-
fore need not be discussed any further~see, for example,
Refs. 7 and 15 for further information!. The matrix elements
^xk,Guv̂xuxk,G8& of the exchange contributionHx to HKS,
which are independent of the vectork, are here not evaluated
by employing an approximate exchange functional as in
standard KS procedures, but in another way by exploiting
Eq. ~7!.

With respect to the basis set$gQ%, the exchange potential
vx(r ) is represented by the vectora, collecting the expansion
coefficientsaQ of Eq. ~12!. The k-independent exchange
contributionHx to the Hamiltonian matrixHk

KS is then ob-
tained by

Hx5(
Q

aQH
Q, ~15!

with the matrix elementsHGG8
Q

5^xk,GugQuxk,G8& of the ma-
tricesHQ being given by

HGG8
Q

5~2V!21/2d~Q1G2G8!1~2V!21/2d~Q2G1G8!.
~16!

In order to determine the vectora which characterizes the
exchange contributionHx to the Hamiltonian matrixHk

KS,
one has to calculate the matrix representationsX andX21 of
the static linear-response operatorX̂ and its effective inverse
X̂21, respectively, for changes of the KS potential and the
KS density which exhibit the translational symmetry of the
system.16 In order to do this, one constructs auxiliary (Mx

2Nk)3Nk matricesAQ,k , with Nk being the number of oc-
cupied KS bands for the vectork. The matrix elements of
AQ,k are given by the matrix elements^fs,kugQuf i ,k& of ba-
sis functionsgQ(r ) between unoccupied and occupied KS
orbitalsfs,k andf i ,k , respectively. The matricesAQ,k can be
obtained through simple similarity transformations of the
corresponding matricesHQ by matricesCk which shall con-
sist of columns given by the vectorscn,k representing the KS
orbitalsfn,k(r ) in the basis set$xk,G%:

ÃQ,k5Ck
†HQCk. ~17!

The parts of theMx3Mx matricesÃQ,k given by the last
(Mx2Nk) elements of the firstNk rows constitute the ma-
tricesAQ,k. Of course, in practice only those latter matrix
elements ofÃQ,k which contribute toAQ,k have to be calcu-
lated. Also, note that the specific form of the matricesHQ
@Eq. ~16!# simplifies the similarity transformation~17!.

Next, a second set of auxiliary matrices, the matrices
BQ,k, are determined from the matricesAQ,k by simply di-
viding each matrix element^fs,kugQuf i ,k& of AQ,k by differ-
ences of the corresponding KS eigenvaluese i ,k2es,k. The
matricesAQ,k andBQ,k are then used to calculate the matrix
elementsXk,QQ8 of contributionsXk to the static linear-
response matrixX according to

Xk,QQ85Tr@AQ,k
† BQ8,k#1c.c. ~18!

In Eq. ~18!, Tr stands for the taking of the trace of a matrix.
Averaging over the vectorsk of the first Brillouin zone re-
sults in the matrix representationX of the static linear-
response operatorX̂,

X5
1

N(
k
Xk , ~19!

HereN shall be the number of vectorsk in the first Brillouin
zone. Of course, in practice Eq.~19! would be performed
through a specialk-point integration.17 The inverseX21 of
the matrixX represents the operatorX̂21 in the basis set
$gQ%.

Next the term in the square brackets on the right-hand
side of Eq.~6! has to be calculated. The matrixHx,k

HF shall be
the matrix representing, in a basis set of plane waves, a non-
local exchange operator for orbitals characterized by the vec-
tor k. The nonlocal exchange operator has the form of the
Hartree-Fock exchange operator, but is generated by KS or-
bitals in the scheme presented here. The technique of calcu-
lating the matricesHx,k

HF , including the treatment of the oc-
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curring integrable singularities, is known from Hartree-Fock
methods, and needs no further discussion here~see, for ex-
ample, Ref. 7!.

Transformations of the matricesHx,k
HF into the basis of the

KS orbitals lead to matricesR̃k,

R̃k5Ck
†Hx,k

HFCk ~20!

Auxiliary matricesRk are obtained as the parts of theMx

3Mx matricesR̃k given by the (Mx2Nk) last elements of
the firstNk rows. @The steps from the matricesHx,k

HF to the
matricesRk, Eq. ~20!, are the same as those from the matri-
cesHQ to the matricesAQ,k, Eq. ~17!.# Next the elements
ak,Q of vectorsak are determined according to

ak,Q5@Rk
†BQ,k#1c.c. ~21!

Finally, averaging of the vectorsak in k space leads to the
term in the square brackets on the right-hand side of Eq.~7!,
and multiplication byX21 results in the vectora character-
izing through Eq.~15! the matrix representationHx of the
KS exchange potential:

Hx5X21F 1N(
k
akG , ~22!

Note thatHx does not depend onk, i.e., the Hamiltonian
matricesHk

KS, independently ofk, all contain the same ex-
change contribution. The reason is that the exchange poten-
tial in the KS formalism is a local, multiplicative potential, in
contrast to the one of the HF procedure.

The above-suggested KS scheme, which treats exchange
exactly, now can easily be implemented on the basis of
existing7 plane-wave HF computer codes for solids. An itera-
tion cycle of the resulting scheme consists of the following
steps:

~i! Construct the HF Hamiltonian operator from the or-
bitals of the previous cycle.

~ii ! Determine the static linear response operator and its
effective inverse@Eqs.~17!–~19!#.

~iii ! Calculate the KS exchange operator and use it to re-
place the HF exchange operator of the Hamiltonian
operator of step~i! @Eqs.~20!–~22!#.

~iv! Solve the one-particle equations in order to generate
new orbitals.

Steps~ii ! and ~iii ! have to be added to a standard plane-
wave HF scheme consisting of steps~i! and ~iv! in order to
convert the HF scheme into a KS procedure treating ex-
change exactly. Of course, the orbitals generated by the sug-
gested scheme are KS orbitals. Therefore, the Hamiltonian
operator constructed in step~i! and modified in step~iii ! is
not really a HF Hamiltonian operator, but a Hamiltonian op-
erator which depends on the KS orbitals in the same way as
the HF Hamiltonian operator depends on HF orbitals.

The computationally most expensive task that has to be
performed in the additional steps~ii ! and ~iii ! is the part of
the construction of the linear-response operatorX described
by Eqs. ~17! and ~18!. The necessary computation time to
carry out Eqs.~17! and ~18! scales with the number of spe-
cial k points times the number of occupied bands times the

third power of the number of plane waves. For this estimate
it is used that the number of basis functions in the basis sets
$xk,G% and$gQ% are proportional. The computationally most
expensive step in a standard plane-wave HF scheme for sol-
ids is the generation of the HF exchange operator. It requires
one more summation~integration! in k space than the gen-
eration of the linear-response operatorX. Furthermore, the
problem of singularities is only present in the construction of
the HF exchange operator. Also, the generation ofX consists
mostly of standard linear algebra operations which can be
performed highly efficiently on modern computers. There-
fore the exact exchange KS scheme for solids introduced
here seems to be feasible.

IV. CONCLUDING REMARKS

If the KS scheme introduced here is carried out by modi-
fying an existing HF computer code, as described in Sec. III,
then it treats exchange exactly but neglects correlation. How-
ever, correlation, of course, can be taken into account as
usual in KS schemes by approximate correlation functionals.

The construction of the exact DFT exchange potential as
described here is not only of interest for applications of the
KS formalism, but is also very helpful for further formal and
methodical developments in DFT. So far exchange potentials
from approximate density functionals could be compared
with the exact exchange potentials only for atoms within the
framework of the optimized potential method.18 Now this is
also possible for solids. To have the exact exchange potential
at hand is also helpful for further investigations of the ques-
tion of the magnitude of the difference between the exact KS
band gap and the physical band gap of semiconductors. In
the KS scheme introduced here the error in the KS band gap
arises solely from the approximate treatment of the electron
correlation but not from the way exchange is taken into ac-
count. Because the introduced KS scheme allows us to per-
form an exact exchange-only procedure, it is also possible to
check the accuracy of an approximate exchange-only
schemes11 based on the optimized potential method which
recently has been implemented for solids.12

If the KS exchange energy is replaced by a screened ex-
change energy,19,20 then the procedure developed here can be
used to generate the exact screened exchange potential. In
other words, the generalization of the scheme of this work to
treat screened exchange interactions is straightforward.

The effective inverse of the static linear-response operator
described here can also be used to obtain the exact KS band
structure to a given electron density by the method described
in Refs. 14 and 21. This method is tantamount to determining
the KS band structure by a constrained search directly from a
given density. This is of practical as well as formal
interest.14,21
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