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We numerically investigate electromagnetic wave propagation in a two-dimensional optical superlattice with
Kerr-type nonlinearity. We show that, with proper modulation depths of the refractive index, a stop gap in the
spectrum is possible for a wave propagating at the Bragg angle of the structure. The location of the stop gap
depends critically on the incident wave power. We demonstrate that this gap-shift effect can induce an
intensity-dependent transmission. This property has important applications in optical bistable switching.

The dispersion relation provides the key to understanding
electromagnetic~e.m.! wave propagation through periodic
dielectric structure.1 The solution to the dispersion relation
may contain stop gaps within which the superlattice becomes
perfectly reflecting. The gaps separate bands within which
propagating wave solutions are allowed. In the search for
photonic band-gap~PBG! materials,2 two-dimensional~2D!
periodic structures have received theoretical3–5 and
experimental4–8 attention because superlattices of this type
are relatively easy to fabricate. In this paper, we propose a
2D PBG structure, of which its refractive index is continu-
ously modulated in two directions. We show that with the
inclusion of nonlinearity of the medium the incident wave
power leads to a shift in the location of the stop gap. This
nonlinear mechanism can be used to construct a different
class of bistable optical devices.

We consider a lossless 2D optical superlattice~OSL! with
a simple Kerr-type nonlinearity shown in Fig. 1~a!. We as-
sume that the linear refractive index of a 2D nonlinear OSL
is weakly, sinusoidally modulated in thex̂ and ŷ directions.
Thus the refractive index of a 2D nonlinear OSL is given by

n5n01nxcos~Hxx!1nycos~Hyy!1nauEu2/4p, ~1!

wheren0 is the average effective index,nx and ny are the
index modulation depths and are taken to be rather weak,
Hx andHy are the reciprocal lattice vectors,na is the non-
linear coefficient of the medium, andE is the electric field of
the optical wave. In what follows we will call the ratio
m5nx /ny the modulation ratio of a 2D nonlinear OSL. The
2D periodic structures described by Eq.~1! can be fabricated
by using a holographic recording technique.9 Another such
structure would be a doubly periodic planar waveguide
where Eq.~1! describes the distribution of an effective mode
index.10 The existence of solitary waves in the 2D nonlinear
periodic medium with strong modulation depths has been
demonstrated by John and Ako¨zbek by using a variational
method.11

As is known, the phenomenon of dynamical diffraction of
an e.m. wave in a spatially periodic medium occurs when the
wave vectors of incomingkW and diffractedkW1HW s waves
fulfill the Bragg conditionukW1HW su'ukW u, whereHW s is the

reciprocal lattice vector. For a 2D OSL, it is possible for the
incoming wave vectorkW to satisfy simultaneously two exact
equalities forHW s52HW x andHW s5HW y . We define this situa-
tion to be the Bragg case of a 2D OSL,

2kBsinuB5Hx , 2kBcosuB5Hy , ~2!

where uB is the Bragg angle andkB5n0vB /c the Bragg
wave number withvB being the Bragg frequency. As it will
be shown, in a 2D OSL, whether or not a frequency stop gap
for a wave propagating in the vicinity of the Bragg angle
occurs depends on the modulation ratiom in contrast to the
properties of two-wave Bragg diffraction in one-dimensional
linear periodic media.1

In the four-wave approximation, the Bloch waves in the
periodic structure can be decomposed into

E~rW !5(
s
Esexp~ iKW s•rW !, ~3!

whereEs is the amplitude of the partial mode with wave
vectorKW s ands denoteso, h, 2o, and2h, which are the
nodes of the reciprocal lattice@Fig. 1~b!#. A useful represen-
tation of the dispersion effect caused by multiwave interac-
tion is to introduce a new set of axes (jo ,jh), which are
defined throughjo5(Ko2kB)/kB , jh5(Kh2kB)/kB . Then
straightforward manipulations similar to the ones used in the
linear multiwave diffraction dynamics lead to the nonlinear
matrix equation forEs ,

FIG. 1. ~a! Schematic of a two-dimensional optical superlattice
and~b! exact Bragg conditions in a two-dimensional optical super-
lattice.

PHYSICAL REVIEW B 15 MARCH 1996-IVOLUME 53, NUMBER 11

530163-1829/96/53~11!/6984~4!/$10.00 6984 © 1996 The American Physical Society



U4~d2jo!1DM0 Mx1DMx DMx2y My1DMy*

Mx1DMx* 4~d2jh!1DM0 My1DMy* DMx1y*

DMx2y* My1DMy 4~d1jo!1DM0 Mx1DMx*

My1DMy DMx1y Mx1DMx 4~d1jh!1DM0

UU Eo

Eh

E2o

E2h

U50, ~4!

whereMx52nx /n0 andMy52ny /n0 are the linear index
modulation strengths andd5(v2vB)/vB is a frequency
dephasing parameter of the operating frequencyv from the
Bragg frequencyvB and is assumed to be small. The field-
dependent index modulation strengths in Eq.~4! are ex-
pressed as

DMx5Ma~EoEh*1E2hE2o* !,

DMy5Ma~E2oEh*1E2hEo* !,

DMx1y5MaE2hEh* ,

DMx2y5MaEoE2o* ,

DM05Ma(
s

uEsu2,

whereMa5na /n0 ands takeso, h, 2o, and2h. To ob-
tain Eq. ~4!, the approximations 12Ko

2/k2'2(d2jo),
12Kh

2/k2'2(d2jh), 12K2o
2 /k2'2(d1jo), and

12K2h
2 /k2'2(d1jh) were used, which follow from the in-

equalitiesnx ! n0 , ny ! n0 , and d ! 1. The relation
between jo and jh is, in the geometry of Fig. 1,
jo5jh2h sin2uB , whereh is the angular deviation from
the Bragg angle. Though a 2D nonlinear OSL can be studied

by using the formalism proposed above for any arbitrary
angular deviation, we shall treat only the simple case of
Bragg incidence.

In the limit of low power, the field-dependent terms are
negligible. In this case, setting the determinant of coeffi-
cients to zero, we obtained the dispersion equation,

jo
41Bjo

21C50, ~5!

where

B5 SMy

2 D 2F2d21
~12m2!

2 G ,
C5 SMy

2 D 4F 116~12m2!21d42
d2

2
~m211!G .

It is readily obtained that Eq.~5! yields real values forjo for
all d whenm.1. For a 2D OSL withm,1, however, the
regime whereudu,(12m)My/4 corresponds to alljo’s hav-
ing an imaginary part and thus to evanescent Bloch waves.
Outside the regime,jo has real-value solutions indicating
propagating Bloch waves. So a frequency stop gap centered
at the Bragg frequency appears ifm,1. Under the Bragg
incidence, the width of the stop gap is given by
Dv5(12m)MyvB/4. For convenience, we adopt two vari-
ablesV52(v2vB)/Dv andL5kBl /cosuB in the following
discussion, wherel is the thickness of the 2D nonlinear OSL.
As an example, we choose a 2D nonlinear OSL with struc-

FIG. 2. Linear transmission coefficients of
four diffracted waves of the 2D nonlinear OSL as
a function of the frequency detuning parameter
V.
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ture parametersMa51024, L53.53104, Mx54.531025,
andMy54.531024, thus with a modulation ratiom50.1.
The incoming wave intensityI i is normalized toI i ,c with
MaI i ,c51024.

In Fig. 2, we plot the linear transmission coefficients as
functions of the frequency detuning parameterV of the in-
cident wave. Clearly, total reflection~i.e., a stop gap! occurs
wheneveruVu,1.

Figure 3 shows the nonlinear transmission coefficients on
the low-frequency side of the stop gap of our interest. It is
seen that due to the nonlinearity of the medium two quanti-
tative changes in the stop gap occur. First, the position of the
stop gap shifts to the low-frequency side as the input power
increases. This effect may be used to design an intensity-
driven optical limiter as suggested by Scaloraet al. for 1D

nonlinear PBG materials.12 Second, with increasing input
wave energy the width of the stop gap also expands. In this
example, the intensity for bistability is found to be
MaI i5531025, a value that is comparable to a nonlinear
distributed feedback structure13 where for operating fre-
quency within the gap bistability is mediated by the excita-
tion of gap solitons.14–17 For an input intensity of
MaI i57.831025, the coefficients exhibit clear bivalued
features at the low-frequency side near the stop gap.

The relations between the relative outputs and the input
are shown in Fig. 4 for two beams of different frequencies.
Both frequencies are tuned in the passband below the stop
gap~linear case! so that the nonlinear effect can shift the gap
towards the operating frequency as the intensity is increased.
The critical detuning for which the bistability just starts to

FIG. 3. Nonlinear transmission coefficients of
four diffracted waves of the 2D nonlinear OSL as
a function of the frequency detuning parameter
V with different input intensities.

FIG. 4. Relative outputs as a function of input
of the 2D nonlinear OSL for two different fre-
quency detunings.
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occur is21.55. For beams with frequency detuning larger
than 1.55 below the gap, it will initially be transmitted. As
the beam intensity increases, its effect is to widen and shift
the gap towards the operating frequency; it will do so to such
extent that the operating frequency will find itself inside the
gap. Diffracted beamsI o

(d) and I h
(d) then shut off. With de-

creasing input, the relative outputs do not retrace their origi-
nal paths and output-versus-input functions exhibit typical
bistable hysteresis.

It is important to note that the bistable switching behav-
iors shown in Fig. 4 are different from that of the index-
modulation bistability mechanism in a 2D nonlinear OSL
previously proposed by us18 in that the latter is, in effect, a
switching between different transmitting states~TS’s!, rather
than between a nontransmitting state~NTS! and a TS be-
cause the modulation ratio of the 2D nonlinear OSL dis-
cussed there is larger than unity, thus with no stop gap as
specified above. The bistability revealed here, however, is
based on the occurrence of the stop gap and the nonlinear
effect on it. Therefore the optical response exhibits bistable
switching between TS’s and NTS’s~at least for exiting
beamsI o

(d) and I h
(d)) for a light beam with its frequency op-

erating in the band below the gap. With optimizing structure
parameters, we can also achieve a high contrast at the
switching on and switching off for the beamI2h

(d) .
The results we presented here for the case ofMa.0 are

also sustained for a 2D OSL with a negative nonlinear coef-
ficient. In this case we select the operating frequency in the
passband but above the gap because the nonlinear effect now
is to shift the stop gap to the high-frequency side of the gap.

In summary, we have shown that for a 2D OSL with
proper index modulation depths, a stop gap in the linear
spectra is possible for light propagating in the vicinity of the
Bragg angle. The inclusion of nonlinearity in the superlattice
alters substantially the position and width of the stop gap.
For a light beam with its frequency in the band, an appropri-
ate change of the input power can switch the exiting beams
between TS’s and NTS’s. These properties may have appli-
cations in designing actual 2D nonlinear OSL bistable de-
vices.
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