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Gap shift and bistability in two-dimensional nonlinear optical superlattices
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We numerically investigate electromagnetic wave propagation in a two-dimensional optical superlattice with
Kerr-type nonlinearity. We show that, with proper modulation depths of the refractive index, a stop gap in the
spectrum is possible for a wave propagating at the Bragg angle of the structure. The location of the stop gap
depends critically on the incident wave power. We demonstrate that this gap-shift effect can induce an
intensity-dependent transmission. This property has important applications in optical bistable switching.

The dispersion relation provides the key to understandingeciprocal lattice vector. For a 2D OSL, it is possible for the
electromagnetiqe.m) wave propagation through periodic incoming wave vectok to satisfy simultaneously two exact
dielectric gtructuré.The golghon_to the d|sperS|c_)n relation equalities forﬁa= _ﬁx and ﬁ0=ﬁ _ We define this situa-
ma¥ c?lntaw;tlstotp gag_shwnhln which thf Slépezjlatth?hpecorrlneﬁon to be the Bragg case of a 2D OSL,
perfectly reflecting. The gaps separate bands within whic L _
propagating wave solutions are allowed. In the search for 2kgsindg=H, 2KgCoSIp=H,, )
photonic band-gagPBG) materials’ two-dimensional2D) ~ where 6g is the Bragg angle an#g=nywg/c the Bragg
periodic structures have received theorefical and Wwave number withwg being the Bragg frequency. As it will
experimentdi® attention because superlattices of this typede shown, ina 2D OSL, whether or not a frequency stop gap
are relatively easy to fabricate. In this paper, we propose for a wave propagating in the vicinity pf the Bragg angle
2D PBG structure, of which its refractive index is continu- 9ccurs depends on the modulation ratidn contrast to the
ously modulated in two directions. We show that with the Properties of two-wave Bragg diffraction in one-dimensional

inclusion of nonlinearity of the medium the incident wave Iin?artrp])er;odic media. imation. the Bloch n th
power leads to a shift in the location of the stop gap. This erir:) dicest?ﬂgi\&véviaar‘]pggogg?:gr:qon(;seg intgc waves In the
nonlinear mechanism can be used to construct a differerl P
class of bistable optical devices. > 2
) . . : E(r)=2 E expiK,-r), 3

We consider a lossless 2D optical superlattioSL) with (r) ; oSXPiK 1) ©
a simple Kerr-type nonlinearity shown in Fig(al. We as- hereE._ is th i fth ial ith
sume that the linear refractive index of a 2D nonlinear OSL" < ¢ -7 'S the amplitude of the partial mode with wave

is weakly, sinusoidally modulated in theandy directions. vectorK,, ando denotew, h, —o, and—h, which are the
Thus thgrefractive in)(;ex of a 2D nonlinear C);SL is given bynedes of the reciprocal lattid&ig. 1(b)]. A useful represen-
tation of the dispersion effect caused by multiwave interac-

nN=np+n,cogH,x) +n,cogHyy) +n,|E[?/4m, (1)  tion is to introduce a new set of axe§. (&), which are

wheren, is the average effective inder, andn, are the defined throught,= (K, —kg)/ks, én=(Kn—kg)/kg. Then

index modulation depths and are taken to be rather weal?,:]rggh:]on’.va;dqu.r#fa‘gﬁgﬁnj ?\gxnnl]lirsul)eg](f t(())ntehseur?gr?l'lr?eg]re
H, andH, are the reciprocal lattice vectons,, is the non- ! uttiwave di ' y ' '

linear coefficient of the medium, arklis the electric field of matrix equation forE,,
the optical wave. In what follows we will call the ratio

m=n,/n, the modulation ratio of a 2D nonlinear OSL. The @ L @
2D periodic structures described by Ef)) can be fabricated Lo z5—Xq 1)1
by using a holographic recording techniquAnother such Ij

structure would be a doubly periodic planar waveguide T ’ l -
where Eq(1) describes the distribution of an effective mode | {1 i 1T
index!° The existence of solitary waves in the 2D nonlinear l : bt

demonstrated by John and A#mek by using a variational 1(‘}’,
method!!

As is known, the phenomenon of dynamical diffraction of e
an e.m. wavein a.spatlgllyﬁperlodlc_ medlumﬁocgurs when the FIG. 1. (a) Schematic of a two-dimensional optical superlattice
wave vectors of |nc0m|ng(% anﬁd d|ﬁ£actedk+ HJ, Waves  and(b) exact Bragg conditions in a two-dimensional optical super-
fulfill the Bragg condition|k+H |~|k|, whereH, is the lattice.

periodic medium with strong modulation depths has been '
)/\I(?))

(k>
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MS5—-E)+AMy M +AM, AM, My+AM¥ E,
Mc+AME  4(6—&)+AMy M, +AM? AME,, =
AME, My+AM,  4(8+&)+AMg M +AM E_ =0 (4)
My+AM, AMy.y M,+AM, 4(5+ &) +AMg| | E-n

where M,=2n,/n, and My=2n,/n, are the linear index by using the formalism proposed above for any arbitrary
modulation strengths and=(w— wg)/wg is a frequency angular deviation, we shall treat only the simple case of
dephasing parameter of the operating frequendyom the  Bragg incidence.

Bragg frequencywg and is assumed to be small. The field- In the limit of low power, the field-dependent terms are
dependent index modulation strengths in E4) are ex- negligible. In this case, setting the determinant of coeffi-

pressed as cients to zero, we obtained the dispersion equation,
4 2 —
AM,=M ,(E.E} +E_E*,), §TB&GTC=0, )
where

AM,=M (E_ Ef +E_E¥),

y o~h h~o - m 2 o (1_m2)

B=| F+—s—,
AM, =M E_LE},
M\ 4 1 52
AM,_y=M E.E*,, C= (7y E(l—m2)2+64—?(m2+1) .

It is readily obtained that Eq5) yields real values fog, for
AMy=M,> |E, |2, all § whenm>1. For a 2D OSL withm<1, however, the
o regime wherg 5| <(1—m)M,/4 corresponds to af,’s hav-
ing an imaginary part and thus to evanescent Bloch waves.
whereM,=n,/ny ando takeso, h, —o, and—h. To ob-  Qutside the regimeg, has real-value solutions indicating
tain Eq. (4), the approximations 4K3/k?~2(5—-&,),  propagating Bloch waves. So a frequency stop gap centered
1-K2/K?~2(6— &), 1-K2 /k?*=2(5+&,), and  at the Bragg frequency appearsnif<1. Under the Bragg
1—K2,h/k2~2(6ﬂL &) were used, which follow from the in- incidence, the width of the stop gap is given by
equalitiesn, < ng, ny < ng, and 6 < 1. The relation Aw=(1-m)M,wg/4. For convenience, we adopt two vari-
between ¢, and &, is, in the geometry of Fig. 1, ablesQ)=2(w— wg)/Aw andL=kgl/coshs in the following
&o=&n— 1 Sin26g, where 7 is the angular deviation from discussion, wherkis the thickness of the 2D nonlinear OSL.
the Bragg angle. Though a 2D nonlinear OSL can be studieds an example, we choose a 2D nonlinear OSL with struc-
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FIG. 2. Linear transmission coefficients of
four diffracted waves of the 2D nonlinear OSL as
a function of the frequency detuning parameter
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four diffracted waves of the 2D nonlinear OSL as
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nonlinear PBG materiaf$. Second, with increasing input
wave energy the width of the stop gap also expands. In this
The incoming wave intensity; is normalized tol; . with ~ example, the intensity for bistability is found to be
Mgli =104 M,l;=5%X10"°, a value that is comparable to a nonlinear
In Fig. 2, we plot the linear transmission coefficients asdistributed feedback structdfewhere for operating fre-
functions of the frequency detuning parameferof the in-  quency within the gap bistability is mediated by the excita-
cident wave. Clearly, total reflecticine., a stop gapoccurs ~ tion of gap solitons?~*" For an input intensity of
wheneverl Q| <1. M,l;=7.8x107°, the coefficients exhibit clear bivalued
Figure 3 shows the nonlinear transmission coefficients ofieatures at the low-frequency side near the stop gap.
the low-frequency side of the stop gap of our interest. It is The relations between the relative outputs and the input
seen that due to the nonlinearity of the medium two quantiare shown in Fig. 4 for two beams of different frequencies.
tative changes in the stop gap occur. First, the position of th8oth frequencies are tuned in the passband below the stop
stop gap shifts to the low-frequency side as the input powegap(linear casgso that the nonlinear effect can shift the gap
increases. This effect may be used to design an intensitfowards the operating frequency as the intensity is increased.
driven optical limiter as suggested by Scaletzal. for 1D  The critical detuning for which the bistability just starts to

ture parametersl ,=10 4, L=3.5x10% M,=4.5x10°,
and M,=4.5x10"*, thus with a modulation ration=0.1.
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of the 2D nonlinear OSL for two different fre-
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occur is—1.55. For beams with frequency detuning largererating in the band below the gap. With optimizing structure
than 1.55 below the gap, it will initially be transmitted. As parameters, we can also achieve a high contrast at the
the beam intensity increases, its effect is to widen and shif§witching on and switching off for the beah(f%.
the gap towards the operating frequency; it will do so to such  The results we presented here for the castgf>0 are
extent that the operating frequency will find itself inside the 515 sustained for a 2D OSL with a negative nonlinear coef-
gap. Diffracted beams(” and (" then shut off. With de- ficient. In this case we select the operating frequency in the
creasing input, the relative outputs do not retrace their Origi'passband but above the gap because the nonlinear effect now
nal paths and ogtput—versus—input functions exhibit typicalg g shift the stop gap to the high-frequency side of the gap.
bistable hysteresis. _ o In summary, we have shown that for a 2D OSL with
_Itis important to note that the bistable switching behav-y o 01 index ‘modulation depths, a stop gap in the linear
lors sho_wn in Fig. 4 are dlffe_rent _from that of fche index- spectra is possible for light propagating in the vicinity of the
modglatllon blstabllgybmgéhanrllsm r']n Ia 2D .”OT‘"”ifar OsL Bragg angle. The inclusion of nonlinearity in the superlattice
previously proposed by uSin that the latter is, |,n efiect, a alters substantially the position and width of the stop gap.
switching between different transmitting stat@s’s), rather ; o ) )
For a light beam with its frequency in the band, an appropri-

than between a nontransmitting stdidTS) and a TS be- . ) "
cause the modulation ratio of the 2D nonlinear OSL dis-ate change of the input power can switch the exiting beams

cussed there is larger than unity, thus with no stop gap agetween TS's and NTS's. These properties may have appli-

specified above. The bistability revealed here, however, igations in designing actual 2D nonlinear OSL bistable de-
based on the occurrence of the stop gap and the nonline¥[*®*:

effect on it. Therefore the optical response exhibits bistable This work was supported by a grant for the Key Research
switching between TS’s and NTS'tat least for exiting Project in Climbing Program from the National Science and
beamsl{ and|{?) for a light beam with its frequency op- Technology Commission of China.

IH. Kogelnik and C. V. Shank, J. Appl. Phy43, 2327(1972. E. Hammous, Appl. Phys. Let64, 687 (1994.

2E. Yablonovitch, Phys. Rev. Letg8, 2059 (1987. For a recent 8S. Y. Lin and G. Arjavalingam, Opt. Leti.8, 1666(1993.
review of photonic band structures, see special issue on photoni®B. Xu and N. B. Ming, Phys. Rev. Letf1, 3959 (1993.
band structures, edited by C. M. Bowden, J. P. Dowling, and H°R. Zengerle, J. Mod. Op84, 1589(1987).

O. Everitt[J. Opt. Soc. Am. BLO (2) (1993)]. 113, John and N. Akzbek, Phys. Rev. LetZ1, 1168(1993.

3M. Phihal, A. Shambrook, A. A. Maradudin, and P. Sheng, Opt.*?M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer,
Commun.80, 199 (1991). Phys. Rev. Lett73, 1368(1994.

4S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S.*®H. G. Winful, J. H. Maburger, and E. Garmire, Appl. Phys. Lett.
Schultz, Phys. Rev. Let67, 2017(1991)). 35, 379(1979.

SR. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joanno-**W. Chen and D. L. Mills, Phys. Rev. Let8, 160 (1987.
poulos, Appl. Phys. Lett61, 495(1992. 15D, L. Mills and S. E. Trullinger, Phys. Rev. B6, 947 (1987.

6W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brom- 16C. M. de Sterke and J. E. Sipe, Phys. Re\8&\ 5149(1989.
mer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. G8tt. 171 . M. Kahn, K. Huang, and D. L. Mills, Phys. Rev. 89, 12 449
2023(1992. (1989.

7P, L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennau, and B. ®B. Xu and N. B. Ming, Phys. Rev. Let¥1, 1003(1993.



