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We calculate the optical transition coefficient of two electrons confined in a square-well quantum dot under
a magnetic field. We determined that there are many different types of absorption, some induced when inter-
acting electrons are under a magnetic field. As the magnetic field becomes strong, a spin-singlet–spin-triplet
transition of the ground state occurs, resulting in a drastic change in optical transition spectra. In a strong
magnetic field, an optical transition with double the cyclotron frequency is induced by electron-electron
interaction and the confining potential.

A square-well quantum dot, in which electrons are con-
fined by a heterostructure of compound semiconductors,1 is a
simple but typical zero-dimensional nanostructure, as is a
quantum dot with parabolic confinement.2–4This square-well
quantum dot has many-body effects of electrons on optical
transitions,5 which are never observed in parabolically con-
fined systems.6,7 This is because spatial coordinates of elec-
trons in a square-well quantum dot cannot be divided into
center-of-mass coordinates and relative coordinates, in con-
trast with electrons in a parabolically confined quantum dot.
In a very small square-well quantum dot, electron correlation
of a few electrons is weak, so the optical transition spectra
are similar to those of a single electron. Let us denoteG1 as
the least energy absorption, andG4 as the second-least en-
ergy absorption. When a square-well quantum dot containing
two electrons becomes larger than 30 nm, electron-electron
interaction affects optical transitions—the intensity ofG1 be-
comes weaker, and two kinds of absorption,G2 and G3 ,
appear betweenG1 andG4 . When the size of this quantum
dot is much larger than 50 nm,G2 becomes very strong com-
pared toG3 andG4 . This increase is due to the strong cor-
relation of electrons, which if the quantum dot is as large as
1 mmm, can result in a Wigner lattice.

If two electrons are confined in a square-well quantum dot
with a sideL, the density of the electron is 2/L2. WhenL is
about 20 nm, this electron density is comparable to the den-
sity of electrons in a double heterostructure used for a typical
quantized Hall sample, i.e., about 531015 ~m22).8 When a
magnetic field is applied to this quantum dot, magnetic
length l B5A\/eB is expected to be 26 nm whenB51 T.
Thus we can expect correlated electrons affected by an inter-
play between the magnetic length and the size of quantum
dots. In this paper, the effects of a magnetic field on the
optical transition of interacting electrons in a square-well
quantum dot are investigated based on numerical diagonal-
izations of a Hamiltonian using the effective-mass approxi-
mation.

We consider a quantum dot in which electrons are con-
fined by a heterostructure of compound semiconductors. As
this quantum dot is assumed to be a well with finite depth,
we introduce a Hamiltonian for two electrons in a two-
dimensional space with an effective-mass approximation:
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We assume that an electron in a semiconductor material can
be described by effective massm50.067m0 for GaAs, where
m0 is the free-electron mass. The shape of a quantum dot is
determined by the one-body potentialV(x,y), where a side
of the square quantum dot is denoted byL. The heterostruc-
ture is assumed to be Al0.45Ga0.55As/GaAs, soV0 is taken to
be 0.36 eV ande r is 10.9 for GaAs. The last term in the
Hamiltonian is the Zeeman energy where the effective Lande´
factorg* is taken to be20.44, andmB is the Bohr magne-
ton. We take a vector potential
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in order to introduce a magnetic fieldB, wherea is intro-
duced for a gauge transformation.a5 1

2 provides a circular
gauge.

Whenun& is thenth eigenstate of the HamiltonianH, and
En is its eigenenergy, an optical transition matrix element
from the pth stateup& to the qth stateuq& can be derived
from
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within the dipole approximation, whereAex(0) is the vector
potential of external radiation fields. The absorption coeffi-
cient
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is proportional to the intensity of absorption fromup& to
uq&, thus the optical transition is allowed as a two-electron
phenomenon ifGp,qÞ0. To sum up, we determineun&, then
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calculateG.5 By these dipole matrix elements, we calculate
the quantityQ(E) proportional to the absorption of photon
with energyE defined as
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where\/h is a characteristic relaxation time.9 In our calcu-
lations h is taken to be 0.2 meV, resulting in
\/h;3310212 s. This relaxation time is smaller than that
expected in quantum dots,10,11so absorption spectra in actual
quantum dots may be more sharp than the absorption spectra
shown here.rp is the Boltzmann factore

2bEp/Z of thermal
distribution. We assume that a very low temperature
b2150.1 meV enables us to ignore the optical transition
between excited states with the same spin. Therefore, the
partition functionZ is calculated by considering the least-
energy state among spin-singlet states and the least-energy
state among spin-triplet states.

Let us briefly discuss our method of calculatingun&. Be-
fore we construct Hamiltonian matrix elements with the
eigenfunctions of a harmonic oscillator, we define the scale
parameterj as (xj ,yj )5(jXj ,jYj ) so as to makeXj and
Yj dimensionless variables. We use functionscn(X)cm(Y)
as the basis of a single electron:
cn(X)5AnHn(X)exp(2X2/2), where theHn(X)’s are Her-
mite polynomials and theAn’s are the normalization con-
stants. Matrix elements of the single-electron term in the
Hamiltonian can be easily obtained using the error function
erf(z)5*0

zdtexp(2t2). The size of the quantum dotL ap-
pears in the matrix elements of the potential term, so we
introduce the ratioz5L/j, which will be treated as a varia-
tional parameter. Matrix elements of the Coulomb interaction
term, i.e., ^ i 1 ,i 2 ; i 3 ,i 4ue2/(4pe re0r )u j 1 , j 2 , j 3 , j 4&, can be
obtained analytically.

Though each matrix element depends onz, exact energy
eigenvalues of the Hamiltonian must be independent ofz
because ofz is not a physical variable. However, if we nu-
merically diagonalize a Hamiltonian matrix made of a finite
set of base functions, the obtained eigenvalues will depend
on z. Therefore, we treatz as a variational parameter in our
numerical calculations in order to minimize the ground-state
energy. We used six bases for each direction and particle.12

Another check on the sufficiency of the number of base func-
tions can be made by a gauge transformation described by
a. When a perturbation expansion on the order of the cou-
pling constant of electron-electron interaction or a 1/N ex-
pansion on the order of the number of components of mate-
rial fields is used for analysis, the gauge invariance of each
order is guaranteed by the Ward-Takahashi identity.13 How-
ever, as in our case, a Hamiltonian matrix constructed by a
finite set of base functions is usually not invariant under the
gauge transformation, though we know that the exact solu-
tion must be invariant under any gauge transformation. Thus,
if our solutions of low-lying states are not affected by gauge
transformation, these solutions seem to be accurate. We have
checked our numerical results using a gauge transformation
described bya. The results were calculated usinga50.5,
and these results are invariant undera50.560.2.

The least-energy absorption of two electrons, denoted by
G1 , is due to a transition from the ground state to an excited

state containing the single-electron first excited states. One
of these first excited states has odd parity in thex direction,
and the other has odd parity in they direction. When a mag-
netic field is applied to the quantum dot, the circular property
of the magnetic field causes an energy difference between
these two states, resulting in a split of the absorption energy
of G1 . Let us denote these optical transitions byG12 and
G11 .14 When noninteracting electrons are under a strong
magnetic field, the absorption energy ofG12 goes to 0, and
that ofG11 goes to\vc , wherevc5eB/m is the cyclotron
frequency. Figure 1 shows the intensity of absorptions when
L is taken to be 40 nm. The absorption induced by electron-
electron interaction, as denoted byG2 , is also divided into
two kinds by an applied magnetic field. The kind with lower
absorption energy, which is the third-least energy absorption
under the magnetic field seen in Fig. 1, is enhanced by the
magnetic field, and becomes comparable toG1s when
B;6 T. On the other hand, the other kind originating from
G2 becomes weaker as the magnetic field becomes strong, so
this kind cannot be seen in Fig. 1. Therefore, an applied
magnetic field encourages some kinds of absorption induced
by electron-electron interaction, and discourages other kinds.
This can be understood by considering the angular momen-
tum of these states.

As the quantum dot becomes larger in a weak magnetic
field, electron-electron interaction causes a transition of the
ground state from the spin-singlet state to the spin-triplet
state. In Fig. 2, the energy spectra of two interacting elec-
trons in a square-well quantum dot are shown as a function
of the magnetic field whenL is 60 nm. Note thatg* is taken
to be 0 in Fig. 2. WhenB is smaller than about 3 T, the
ground state is spin singlet, denoted by the broken line. On
the other hand, the ground state becomes a triplet state when
B is larger than about 3 T. This single-triplet transition has
the same origin as in a quantum dot with parabolic
confinement.15,16 Let us turn to the optical transition coeffi-
cient. In Fig. 3, the intensity of the absorption is shown when
L is 60 nm. WhenB50, G1 has an absorption energy of
about 6 meV.G2 , which is induced by electron-electron in-
teraction, is also seen atE;15 meV. When the strength of
the magnetic field is less than about 2 T,G1 behaves simi-
larly to G1 in Fig. 1. In the region ofB;2 T, a drastic
change in absorption spectra is brought about by a change of

FIG. 1. Intensity of absorption as a function of magnetic field
B and absorption energyE when a side of the quantum dotL is 40
nm. The effective Lande´ factorg* is 20.44.
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the magnetic-field strength, because of the spin-singlet–spin-
triplet transition of the ground state discussed above. The
least and the next-least energy absorptions in this region be-
have similarly to absorptions between singlet states observed
when the applied magnetic field is weak; however, the en-
ergy split induced by the magnetic field is smaller than that
of singlet states. This is because triplet states are apt to have
a higher angular momentum because of Pauli’s principle,
even without a magnetic field. Let us turn to optical transi-
tions with higher energy, which have remarkable properties.
With absorption energies of about 10 meV or more, very
strong optical transitions are seen, as in Fig. 3. These optical
transitions are due to electron-electron interaction, because
they do not appear when there is no electron-electron inter-
action. Triplet states are influenced more than singlet states,
because the strong repulsion between electrons causes a dras-
tic change in orbital wave functions having a higher angular
momentum.

When a quantum dot becomes larger, spin-singlet–spin-
triplet oscillations can be observed even in a small range of
magnetic fields. In Fig. 4, energy spectra of interacting elec-
trons are shown whenL580 nm andg*50, where spin-
singlet–spin-triplet transitions are seen atB;1.7 T,B;4.1
T, andB;5.6 T. In Fig. 5, the intensity of the absorption is
shown whenL is 80 nm. In this quantum dot, the energy
difference between the least-energy state among singlet

states and that among triplet states is so small that a mixture
of optical transitions of singlet and triplet states is seen at a
considerable temperature, i.e.,;1 K. In a strong magnetic
field much greater than 1 T, higher-energy absorption is very
complex, and consists of many different types of optical tran-
sitions. An optical transition with a cyclotron frequency—its
absorption energy is approximately 1.7 B~meV!—is com-
posed of several types. Note that the absorption lines in Fig.
5 exhibit an anticrossing behavior as the magnetic field
changes. This behavior is also caused by electron-electron
interaction, as is seen in a Coulomb-coupled pair of para-
bolic quantum dots17 and in a square-well quantum dot under
an external electric field.18

It is remarkable that optical transitions at double the cy-
clotron frequency are very strong in a strong magnetic field.
These transitions, which also exhibit anticrossing behavior,
are induced when interacting electrons are confined in a
square-well quantum dot under a magnetic field. When elec-
trons are under a strong magnetic field, each electron has an
effective size determined by the magnetic length. Therefore,
an electron confined by the magnetic field behaves as an
atom with an excitation energy of\vc . When the atom is in
its ground state, the bare electron is in the first Landau level.
If the atom is excited to the first excited state, the bare elec-
tron is in the second Landau level. In a free space, these
atoms can move and interact with each other by the Coulomb

FIG. 2. Energy spectra of two electrons in a quantum dot with
L560 nm andg*50 as functions ofB. The spin-singlet–spin-
triplet transition is seen atB;3 T. Broken lines denote spin-singlet
states, and solid lines denote spin-triplet states.

FIG. 3. Intensity of absorption as a function of magnetic field
B and absorption energyE when two interacting electrons are con-
fined in a square-well quantum dot withL560 nm. The effective
Landéfactorg* is 20.44.

FIG. 4. Energy spectra of two electrons in a quantum dot with
L580 nm andg*50 as functions ofB. Broken lines denote spin-
singlet states and solid lies denote spin-triplet states. Multiple
singlet-triplet transitions are seen whenB is changed from 0 to 6 T.

FIG. 5. Intensity of absorption as a function of magnetic field
B and absorption energyE whenL580 nm. The effective Lande´
factorg* is 20.44.
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interaction of bare electrons because each Landau level has a
large degree of degeneracy. When two atoms are confined in
a square-well quantum dot, interaction between atoms can
affect optical transition spectra of each atom. Optical transi-
tions at double the cyclotron frequency may be due to this
kind of effect.

We have calculated the absorption coefficient of two elec-
trons confined in a square-well quantum dot under a mag-
netic field. There are several types of absorption induced by
the Coulomb interaction in a magnetic field. In a stronger
magnetic field, the spin-singlet–spin-triplet transition of the
ground state has a considerable effect on absorption spectra.

This effect occurs in a weaker magnetic field if electrons are
confined in a larger quantum dot. Absorption at double the
cyclotron frequency is due to interaction between two atoms
which consist of an electron in a magnetic field. Therefore,
we can expect a structure of interacting electrons confined by
a heterostructure of compound semiconductors under a mag-
netic field in far-infrared absorption spectroscopy that is well
worth studying.

The author is grateful to H. Noguchi and K. Nomoto for
fruitful discussions. Numerical calculations were performed
using a CRAY J916.
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