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We propose an exactly soluble model for a ring with finite width. Exact energy spectra and wave functions
are obtained analytically for a ring in the presence of both a uniform perpendicular magnetic field and a thin
magnetic flux through the ring center. We use the model to study the Aharonov-Bohm~AB! effect in an ideal
annular ring that is weakly coupled to both the emitter and the collector. It is found that, for such a weakly
coupled ring in a uniform magnetic field, not only do the electron states indifferent subbands of the ring
produce different AB frequencies, the clockwise and anticlockwise moving states in thesamesubband also
lead to two different AB frequencies. Therefore, when many subbands in the ring are populated, the large
number of different AB frequencies generally result in an aperiodic AB oscillation. More striking is that, even
when onlyonesubband is populated, the two AB frequencies corresponding to the states moving in opposite
directions also cause beating in the AB oscillations. We have obtained explicit expressions for all these AB
frequencies. Our results produce a clear explanation for the recent experimental observation of Liu and co-
workers.

Recently, the electronic properties of low-dimensional
structures with a ring geometry have been extensively stud-
ied including Aharonov-Bohm~AB! effects,1–9 persistent
currents,12–20 and quantum chaos.13 The original picture of
both the AB effect and the persistent current in a ring geom-
etry is very simple: Considering a one-dimensional~1D! ring
pierced by an AB magnetic flux~i.e., an infinitely thin flux
tube! confined to its center, the magnetic flux has a purely
gauge effect. As a consequence of gauge invariance, the elec-
tron eigenenergies of the ring are periodic in the magnetic
flux with periodf05h/e. If the ring is connected to an emit-
ter and a collector, this will lead to a periodic oscillation in
the conductance, the so-called AB oscillations. In the case of
an isolated ring in thermal equilibrium, there will be aper-
sistentcharge current that also oscillates with the magnetic
flux.11

Experimental studies on the AB effect and persistent cur-
rents in ringlike devices have continuously revealed interest-
ing phenomena that cannot be explained by a simple theory.
For example, in the early experimental study of the AB effect
in small metal rings1 it was found that the amplitudes of the
AB oscillation in conductance were usually dominated by
random fluctuations of the order ofe2/h. This led to the
discovery of the universal conductance fluctuations.10 In the
case of persistent currents, the unpredicted large amplitude
of the measured current in metal rings14 has led to important
questions that still attract considerable interest.

One of the most important factors that cause complica-
tions in real experiments is the finite width of the rings. In a
ring with a finite width,not only are multiple channel effects
important, the penetration of the uniform magnetic field,
which is used in all practical experiments, into the conduct-
ing region of a ring also plays an important role.Significant
theoretical efforts have been devoted to the study of the
finite-width effect on AB oscillations6–8 and persistent
currents.16–20 However, because of the difficulty in dealing
with the 2D annular geometry, in most theoretical work rings
with a finite width are approximated by more manageable

models, such as 2D or 3Dstraight wires with periodic
boundary conditions17,18 or a 2D cylinder.20

Theoretical studies on the electron states in a real annular
geometry have been mainly based on semiclassical ap-
proaches. A qualitative analysis of the electronic states was
performed by Halperin21 to clarify the physical picture of the
quantum Hall effect, and by Jain7 in the study of the AB
effect in the quantum Hall regime. The semiclassical ap-
proach has also been used by Beenakker, Houten, and
Staring8 to calculate the magnetic-field dependence of the
energy levels, and by Groshev, Kostadinov, and Dobrianov19

to calculate the persistent current. Recently, full quantum-
mechanical calculations based on numerically solving the
Schrödinger equation for a 2D ring in a uniform magnetic
field have also been used in the study of persistent currents.16

However, in a semiconductor ring used in actual
experiments,3,15 the number of electrons is typically 103 or
bigger~the number is much larger in a metallic ring1,14!. The
knowledge of the energies and wave functions of all the elec-
trons as well as their magnetic-field dependence is essential
for a complete description of the AB effects or persistent
currents in a ring. Therefore it requires extensive computa-
tional power to solve the Schro¨dinger equation numerically
for a 2D ring. This strongly limits the flexibility of the nu-
merical approach.

In this paper, we propose a simple model potential that
describes an isolated ring with finite width. The model is
very flexible; both the radius and the width of the ring can be
adjusted independently by suitably choosing the two model
parameters. In particular limits it can also describe a quan-
tum dot, an antidot, a 1D ring, and a straight 2D wire. Exact
energy spectra and wave functions are obtained analytically
in this model with a uniform magnetic field applied perpen-
dicular to the ring and a magnetic flux confined to its center.
Our model, therefore, provides a convenient theoretical tool
for studying electron states and their magnetic-field depen-
dence in an ideal 2D ring, and allows a direct comparison
between the electronic states in a 2D ring and those in other
geometries, such as a dot, an antidot, a 1D ring, and a
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straight 2D wire. The exact solutions of the model can be
used to examine the accuracy of the results obtained from
numerical calculations or other approximations. It also pro-
vides a firm starting point for the investigation of more com-
plicated situations, such as disorder effects and electron-
electron interaction.

As an illustration and application of our model, we have
studied the effects of finite width on the AB oscillations in an
ideal 2D ring to model the recent experimental results of Liu
et al.3 on the correlation between AB effects and the one-
dimensional subband population in GaAs/AlxGa12xAs rings.
The geometry of the ring used in Ref. 3 is schematically
shown in Fig. 1~a!. Liu and co-workers3 found that, when
four spin-degenerate subbands in the ring are populated, the
AB interference patterns are dominated by random features.
When only one subband is occupied in the ring, well-defined
periodic AB oscillation together with an amplitude beating
effect occurs. They suggested that this random feature is due
to both the penetration of magnetic field into the conducting
region of the ring and disorder scattering, but the exact rea-
sons for the change of the AB patterns from a random state
to an ordered one and the origin of amplitude beating in the
case of one occupied subband were not identified.

In our model the 2D ring is defined in theX-Y plane by a
radial potential of the form

V~r !5a1r
221a2r

22V0 , ~1!

whereV052Aa1a2. The potential has a minimumV(r 0)50
at r 05(a1/a2)

1/4, so r 0 defines the averaging radius of the
ring. For r nearr 0 , the potential of the ring has the simple
parabolic formV(r )> 1

2mv 0
2(r2r 0)

2, wherev05A8a2 /m
andm is the electron effective mass in the semiconductor. A
useful definition of the effective width of the ring at a given
Fermi energyEF is thenDr5A8EF /mv0

2.
Both the radius and the width of the ring can be adjusted

independently by suitably choosinga1 and a2 . The model
can also be used to describe several different physical sys-
tems:a one-dimensional ringfor r 05constant andv0→`, a
straight 2D wirefor v05constant andr 0→`, a single quan-
tum dotfor a150 ~see also Ref. 23! andan isolated antidot
for a250.

In the presence of a uniform magnetic fieldB perpendicu-
lar to theX-Y plane, the Hamiltonian of an electron is
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where the vector potential is chosen asA5 1
2Brŵ and we

ignore the spin of the electron.
It can be easily shown that the eigenvalues and eigen

wave functions of the Hamiltonian are
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and1F1 is the confluent hypergeometric function. The quan-
tum numbersn andm characterize the radial motion and the
angular momentum, respectively. In relation to a circular
wire, n can be viewed as the subband index, andm the
quantum number describing the longitudinal motion in the
wire.

From the above solutions, we can see that the electron
states in the 2D ring have the following properties.

~a! The subband dispersions of a 2D ring are strongly
nonparaboliceven ifB50, which is in strong contrast to the
case of a 1D ring or a 2D straight wire.24 Such nonparabo-
licity is essentially due to the existence of the centrifugal
potential in a 2D ring, which makes different states in the
same subband having different radial wave functions, and
therefore the subband dispersions depend on the actual radial
confinement potential.

~b! At B50, the minima of all subbands are atm50 and
the subband dispersions are symmetric aboutm50. When
BÞ0, the subband dispersions are no longer symmetric
about the subband minima and the bottoms of all the sub-
bands are shifted to a nonzero quantum number
m05eBr0

2/2\, which is exactly the number of quantum flux
circles by a ring with a radiusr 0 .

~c! The radiusr n,m and the widthdn,m of a ring state
~n,m! can be expressed as22

r n,m5~2M !1/2l and dn,m52~2n11!1/2l, ~6!

respectively. AtB50, them50 states have the smallest ra-
dius, which is equal to the average ring radiusr 0 , and there-
fore all the other states are centered in the outer side half of
the conducting region of the 2D ring.One can also verify22

that the radius of a state at the bottom of a subband (m5m0)
is always equal to the average radius of the ring, i.e.,rm0

FIG. 1. ~a! Schematic illustration of the single ring device used
in Ref. 3; ~b! the weakly coupled ring model used in our calcula-
tions.
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[r0. Because all states withumu,m0u have radii smaller
than r 0 , increasing the magnetic field will push more and
more states into the inner side of the ring.

~d! If, in addition to the uniform magnetic field, there is
also an AB fluxF5 l f0 penetrating through the center of
the 2D ring, the energy spectra and wave functions can then
be obtained by a gauge transformation of the results given in
Eqs.~3!–~5!, resulting in a change ofm to m2l .22

We now consider a 2D ring that is coupled to two leads,
as shown in Fig. 1. The conductance of the system is given
by the Landauer-Bu¨ttiker formula,6

G~B!5
2e2

h (
n

Tn~B,EF!, ~7!

where Tn(B,EF! is the magnetic-field-dependent transmis-
sion coefficient of thenth channel in the leads at the Fermi
energyEF . The factor of 2 comes from the spin degeneracy.
If we assume that the two leads are weakly coupled to the
ring, as shown in Fig. 1~b!, the electron in one lead can reach
the other one only by tunneling through the quasibound cir-
cular states in the ring. In such a case, the conductance can
be approximately expressed in the form of25

G~B!5
2e2

h (
n,m

Gn,m
e Gn,m

c

@EF2En,m~B!#21~Gn,m
e 1Gn,m

c 1Gn,m
i !2/4

3
Gn,m
e 1Gn,m

c 1Gn,m
i

Gn,m
e 1Gn,m

c . ~8!

En,m(B) is the energy of the (n,m!th quasibound ring states.
Furthermore, we can approximate the energies of these
quasibound states with those of the isolated ring given in Eq.
~3!. G n,m

e (G n,m
c ! andG n,m

i are the broadening of the~n,m!th
ring state caused by leaking into the emitter~collector! and
inelastic scattering, respectively. The elastic broadening is
determined by the overlap between the bound ring state and
the extended states in the leads, which can be evaluated us-
ing the wave functions given in Eq.~4!. Since we are here
interested in the weak-field~vc!v0! AB effect, the electron
states in the ring are dominated by the confinement potential
of the ring. For simplicity, we ignore the magnetic-field de-
pendence and the quantum-number dependence of the elastic
broadening.

To mimic the GaAs/AlxGa12xAs ring used in the experi-
ment of Ref. 3, we seta159.10223106 meV nm2 and
a252.22231025 meV nm22, which gives a ring radius
r 05800 nm and a ring widthDr5300 nm atEF52 meV.
The electron effective mass is taken to bem50.067me . By
changing the Fermi energyEF we can adjust the subband
population. In the calculation, we takeG n,m

i 5G i50.004
meV corresponding to the thermal broadening at the experi-
mental temperature3 T'40 mK. The elastic broadening is
taken to beG n,m

e 5G n,m
c 5Gel/250.005 meV.

Figure 2 shows the calculated resistance~R5G21! as a
function of magnetic field. Curves~a! and ~b) in Fig. 2 are
calculated with one~EF50.5 meV! and four~EF52.0 meV!
populated spin degenerate subbands, respectively. The beat-
ing and the increasing apparent random nature of the oscil-
lation amplitude seen in experiment3 are clearly reproduced.
Since the AB oscillation directly reflects the oscillation of the
density of states of the 2D ring at the Fermi energy, the result

shown in Fig. 2 can be understood by looking at the
magnetic-field dependence of the eigenenergies of the 2D
ring shown in Fig. 3. It can be seen that, with increasing
magnetic-field strength, the energy of a ring state~n,m! is
shifted upward or downward depending on the direction of
the electron motion. The sweeping of the electronic states in
each subband through the Fermi energy with varying the
magnetic field strength will leads to two sets of oscillations

FIG. 2. Magnetoresistances for two different subband popula-
tions in a 2D ring.~a! EF50.5 meV,~b! EF52.0 meV. See text for
details.

FIG. 3. The energy levels in a 2D ring as a function of
magnetic-field strength.
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in the magnetoresistance, corresponding to the clockwise and
anticlockwise moving states, respectively.

Figure 3 shows clearly that different oscillations have dif-
ferent frequencies. Hence in the case when four spin degen-
erate subbands are populated, the superposition of the eight
sets of oscillations of different periods results in an apparent
aperiodic oscillation as shown in curve~b! of Fig. 2. Even
when only one spin degenerate subband is occupied, the
beating of the two sets of oscillations corresponding to the
states moving in the opposite directions leads to a modula-
tion of the AB oscillation amplitudes as shown in curve~a!
of Fig. 2. It is interesting to point out that the beating effect
shown in curve~a! is beyond the description of the well-
developed theory for AB effects in 1D rings,6,7 reflecting the
importance of the geometry.

In our model, each AB frequency can be exactly ex-
pressed as22

f n,m5
]m

]B U EF 5
pr n,m

2

f0
F12

~2n11!vc

mv2Mvc
G , ~9!

wherer n,m is the radius of the (n,m!th state, which is pass-
ing through the Fermi energy. Equation~9! shows that the
AB frequency of a given set of oscillation depends on not
only the radii of the ring states but also the magnetic-field
strength and the ring parameters. Such a complexity has not
been noted previously. Only in the weak magnetic-field limit
~vc!v0! and away from the subband depopulation regions
does Eq.~9! reduce to the familiar formf n,m5pr n,m

2 /f0 .
Since the ring parameters used in our calculation are very

similar to those of the device used in the experiment,3 we can
compare our calculated magnetosresistance in Fig. 2 with the
experimental results shown in Fig. 2 of Ref. 3 directly. It can
be seen that our calculated magnetoresistances have repro-
duced the main features of the experimental results, such as
the correlation between the AB patterns and subband popu-
lations. Both the fundamental AB frequency and the period

of beating shown in Fig. 2 are in excellent agreement with
the experimental results. In addition to the AB oscillations,
both curves~a! and~b! of Fig. 2 show strong mean negative
magnetoresistance. This is also observed in the experiment.3

The negative resistance in our calculation is due to the in-
creasing of density of states at the Fermi energy with increas-
ing magnetic field, as shown in Fig. 3. In view of the sim-
plicity of our model, the agreement between theory and
experiment is remarkable, and strongly suggests that the
main features of the experimental results can be understood
within our model, which assumes an ideal 2D ring weakly
coupled to the emitter and the collector. There is a broad
peak atB'0.07 T in the smooth background of curve~a! in
Fig. 2 of Ref. 3, which does not appear in our results. The
exact reason for this peak is not clear. It may be due to the
magnetic-field dependence of the coupling between the ring
states and the two reservoirs, which is ignored in our calcu-
lation. As the magnetic field increases, the couplings be-
tween the two kinds of ring states~i.e., clockwise and coun-
terclockwise! and the states in the reservoirs will change in
the opposite directions. This could lead to structures in the
mean magnetoresistance.

To reproduce all the details of the experimental results,
such as the mean magnetoresistance and the oscillation am-
plitudes, a more sophisticated theory is needed, in which the
detailed elastic scattering process at the connections between
the ring and the two leads, and the inelastic scattering pro-
cess in the ring, should be taken into account. However, what
we have presented here has not only identified the main
physics involved but also illustrated the importance of an
analytic model that can be applied to many systems. Further
details and applications of the model will be published
elsewhere.22
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