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Electronic-transport properties of parallel double-ring systems
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We have studied a mesoscopic double-ring system connected in parallel and coupled to two electron reser-
voirs. The system is composed of one-dimensional ordered chains, and the two rings are threaded by magnetic
fluxes®, and ®,, respectively. In the framework of the tight-binding model, the analytical and numerical
calculations show that the transmission coefficidntis periodic in fluxes®,; and ®, with a period
2d,,Py=hcle. For the system there are resonant stales 1) and antiresonant state§=€0), the distribu-
tion of which displays a very remarkable symmetry.

Quantum transport in the mesoscopic systems has beewme have found interesting symmetries of resonant ()
extensively studied both experimentally and theoretically inand antiresonant(full reflection, T=0) states in the
the last decad&:*? In these mesoscopic systems electronT —®;—®, phase diagram. The whole diagram has a very
transport is governed by quantum mechanics rather thafgmarkable symmetric pattern. o
classical mechanics. At very low temperatures, the scatteringulm the following, we first give an explicit formula to cal-

. O ate the transmission coefficieftof the open double-ring
of phonons(dephasing scatterifgs significantly suppressed, gstem connected in parallel and threaded by magnetic fluxes

and the phase-coherence length of the electrons becom S X :
. ) , and ®,. As shown in Fig. 1, the studied mesoscopic
large compared to the system dimensions. The mesoscopéi

system can thus be modeled as a phase-coherent elastic s stem can be reduced to a single “ring” with scatterers in
y P per and lower arms separately, without magnetic flux

tering. Furthermore, if one considers the electron as a freg, o4 ding the ring. For an open single ring without magnetic

particle, the idealized sample becomes an electron wavgy,y as shown in Fig. 2, if we assume that it and the leads are

guide. , _ composed of one-dimensional ordered chains with site en-
For the mesoscopic systems, the theoretical study to da@rgye and transfer integral, andq being the electron wave

has largely concentrated on the isolated ring and open ringgsumber in the wire, we have an unitary scattering matrix in
connected via leads to electron reservoirs, both of which arghe tight-binding model for a junctiofthree-terminal split-

threaded by a magnetic flu®. For the isolated ring, the ter) located at siteN:"°
persistent currents are the main subjéés? As for open
ring systems the main interest is to study the relationship (a

- - N’ L’
between the transmission coefficiehtand flux®. In open ) @
ring systems, the electron reservoirs act as a source of energy N
dissipation or irreversibility, and all scattering processes in e I_

the leads and rings are assumed to be elastic. In this line, up
to date the theoretical work has mostly been devoted to the
study of open single ring or multiring systems in series, and
in the framework of waveguide theoly:*6 To the best of

T
our knowledge, there is no work devoted to studying the (b) :
multiring system in parallel, especially in the framework of N@L__‘
the tight-binding model. In this Brief Report, we concentrate M, I—— My
on examining the electronic-transport properties of open
double-ring systems connected in parallel, which are

T2

threaded by magnetic fluxek,; and®, as shown in Fig. 1.

In the framework of the tight-binding model, but not in the

waveguide approximation, we have calculated the transmis- FG. 1. (a) A parallel double-ring system threaded by magnetic
sion coefficientT and found thafT is periodic in flux®  fluxes®, and®,, respectively, and connected to two electron res-
threaded by the loop with a period®, ®,=hc/e being the  ervoirs via ideal leads(b) Schematic representation for reducing
elementary flux quantum, but neb, as in the case of the double-ring system shown {g) to a single ring with two scat-
double-ring systems connected in series. At the same timeegrers in the arms.
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FIG. 2. The relationship of the amplitudes of traveling waves for

an open single ring is shown schematically.

on WKy YKy
Sy= \/K_N ay by ' (1)
\/K_N by ay

where
ay=e 2'9N[2{Jsing/D — 1],
by=e 29N 2iJsing/D,
cy=e29N[2iJ sing/D —1],
JVKy=2iJsing/D, D=E-—g+3J€9,
Q=arcco$—(E—¢)/27].
Referring to Fig. 2, by the definition of scattering matrix,

we have the following equation which relat8g to the am-
plitudes of traveling waves:

By Ay
Cul=s| P @
C2 D2

From the above equation, we can obtain

D> Cy

C2 :S% Dl +A1VN!
Ky Cy

Blz CN_b_N A1+UN Dl f
where

0 1 1 _aN

SN:b_N ay bi—a3|

VN_b_N bN_aN '
VKn

UN:b_N(labN_aN)-

For the mirror image fork on the right-hand side of the
ring, situated at sité, the scattering matrix can be obtained

by making the following exchanges:-L—N, B;—A,,
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Ai"Bl, Céﬂcl, C:,L*)CZ, Di*)Dz, and DéHDl In
this way, the left-hand side of the ring is described by the
analogous equation

D7 Ci
c, | =S| by | +BiV-L.
: Kol C2
A1= C_L_b__L Bl+U_|_ Dé . (3)
A] can be expressed by, andB; as
K 0 1 0 1
’ ’ -L -1
A;=B; CiL_b_—L—FUiL 1 o/mPl1 o]l7 VoL
0 1
_AlU*L 1 0 T]_PVN, (4)
where
01 01 -1
P=IS\—|1 0|21 o|m

From Eq.(4), we obtain the transmission amplitude of the
double-ring system as

t:_UL(

In the above equations;, and, are the transfer matri-
ces of upper and lower scatterers, respectively. As we have
mentioned in the present studied system the scatterers repre-
sent the upper and lower rings threaded by magnetic fluxes
&, and®d,, respectively. By definitionr; and r, satisfy the

following relations™®
C, D; C
D.)" ¢y ™py,)

D1
cyl ™
t2—r?
—r, 1) i=1 and 2.
For a single ring threaded by fluk, and connected via leads

to electron reservoirs, the reflection and transmission ampli-
tudes can be given as follow8:

0 1

10 T1PVy.

©)

(6)
1
t

T =

, 2K _
ri=e2'qu(C—d—[bco&;si+a—e"”(b2—az)(b—a)] ,
i
0
ti=2K[(cospi/2)/di][(b—a)’—e "], 8
where
¢i:2Wq)i/(bo,
d,=2b%cosp;—e 'Y~ (b%>—a?)%e' ¥+ 2a?,
p=2q(L-N)=0gS
andS is the circumference length of the ring.
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What we are mostly interested in is the periodicity of the
transmission coefficient. In the following, we denote the
parameters of upper and lower rings by indexes 1 and 2
respectively. We now prove thaf is periodic in fluxes
D, (D), if we fix ®,(P4) unchanged, with a periodd?,,
dy=hc/e. Because the calculation is very tedious and

straightforward, here we present only some key results. The

formula to calculate the transmission amplitudis formula
(5). From Eq.(4), we can obtain that

(b*=a?)tjt,~ My, My—atyt,

btyt,
P= atit,+ My, tit,—My,

F

where
F=(tit,—Mp)[(b*—a?)tit,— My,]
+(at;t,— My (atit,+ Moy),
M= —re 29 —a(ti—r])—arr,
+e295(b?—a?)(ti—rDrs,
Mp,=e 29 —ar,+ar,+rr,e?(b?—a?),
Moi=r1re” 2 +ary(ti—rf) —ary(t5—r))
+e29(b?—a)(ti-r)(t3—r3),
Moo= —re 29 +arr,+a(t3—r3)
+r,e%9(b?—a?)(t5—r3).
In this way, we have
t=— (bty/F) (e"%9"my+m,), 9)
where
My =M+ M= (3a+ D)tyt,] (15— t5)
+rif(1-ajtit,— My — My,
My=—r1[My+Mp—titx(3a+1)]
+[(1-a)tyt,— My — My

From the above results, we can see that the transmiss
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FIG. 3. Transmission coefficierft vs magnetic fluxesb, and
®,, for the parallel double-ring system shown in Fig. 1. The param-
eters of the system are as follows: the electron endtgyl.O,
e=0, andJ=-1.0, the lengthdfN'—N=L—-L'=2, and the cir-
cumference of the upper and lower rings isT4is periodic in flux
D, (D) for fixed D,(P4) with period 2b,. Here only a quarter of
whole period is showiisee Fig. 4.

T=|t|?2~|Acosp,+ B cog ¢,/2)|?, (10

where ¢,=27d,/d,, and A and B are the functions of
other parameters including aps=cos(2rd,/dy), which is

periodic in flux ®, with a period®, the elementary flux
quantum. From expressiofl0), evidently, T is a period
function with period 2b,.

Figure 3 shows our numerical results which confirm the
above analysis, where we have plotted the transmission co-
efficientT versus fluxesb; and®d, for electrons with energy
E=1.0, and we have set=0 andJ= — 1. From the picture
we can see that for a fixed,(®P,), T is periodic in flux
®,(d,) with a periodic 2b,. For the sake of clear visual-
ization we plotted only a quarter of the whole periodic pic-
ture, i.e., ab,; and®, range from 0 tod,, but not 2b,.
From Fig. 3 we also can see that thieis symmetric for
fluxes®, and®,. Because if we denote the flux coordinates
of pointi by (D(l') andfb(z'), then for two points symmetric to
the (00,19 line we have®{V=0® and ®{M=d? (see
Fig. 4), which gives rise taf®¥=T(?) since the upper and
idower arms are symmetric for the studied system. The nu-

coefficientT=|t|? has a very heavy and complicated expres-merical calculation shows that the antiresonant stéigs
sion. Because what we are mostly interested in is the relareflection, T=0 with accuracy 10'%) appears exactly in the

tionship amongr and the fluxesb; and®,, so we draw out
the factors containing fluxe®, and &, from the formula

|ineS @1/(D0+q)2/¢0:1, (I)]_/(I)O_¢2/(I)021, q)]_/@()
+®,/Py=3, and®,/Py—P,/Py=1, and that the reso-

and set the rest of the parameters in other factors by a fun@ant statesT{=1) form a sinuous curve; the data show that
tion form. We have noticed that the total transmission ampli-t is very closed to a sinusoid. These results are schematically

tudet is a polynomial expression of the amplitudgs t,,
r,, andr, corresponding to the upper and lower rings. B
formulas (7) and (8), the explicit relations betweeny, r;,
and ¢; should be as follows:

ri:Ai‘f‘BiCO&ﬁi, ti:CiCOSQbi/Z)/(Di'i‘EiCOS¢i),

whereA,;, B;, C;, D;, andE, are the function factors con-
taining other parameters except fluxes. If we fix the flux
&, of the upper ring to show how the would vary follow-
ing the change of fluxb,, we have

shown in Fig. 4, where we can see a symmetric ceOtéor

ya 2P, period spectrum, which locates at the point
D, /Dy=D,/Dy=1. The four lines, which intersect in point
O and are denoted by dashed lines, are symmetric axés of
Furthermore, we have noticed that the full reflection lines
(T=0) are also symmetric axes. This means that two points
locating symmetrically at two sides of the full reflection line
have the samd. We prove this interesting conclusion as
follows. Assume that two points are symmetric to each other
by full reflection line®, /®y+ P, /Py=1, and that the cor-
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FIG. 4. The symmetrization and periodicity of the transmission
coefficientT shown in Fig. 3 are presented schematically. The pic-
ture shows four whole periods. The thick lines are antiresonant
states withT=0, the thin curves are resonant states. All of the
dashed lines and thick lines are symmetric axes, which determine

variant periodicities off. FIG. 5. Transmission coefficient vs fluxes®, and ®, for

double-ring systems in series for comparison with Fig. 3. The pa-
. (1) (1) @) o(2). iy rameters of the system are same as those of Fig. 3. Evidently, the
responding parameters(l)aibl ,q>(22) and (I)l(l),<1>2 ' |t(2|)s is periodic in fluxesb, and®,, with period®,.

easy to prove thatd}”/®y+ P Dy=D5" Do+ D3/

®,=1. This is because in the formula to calcul@tethe flux

parameters appear only in the cosine functions, and we haRecause of the symmetry of antiresonant (6,10. In the
picture there exist other periodicities; for example, in the

cog 27D D) = cog 2m(1— M/ dg)] direction from(0,1) to (3,2), T also experiences a period, in
which @, increases byb, and®, by 3®,. In some sense,

_ (1
=cod2m®17/ Do), the picture has a periodic-lattice-like periodicity. Here we
Cogzwq)f)/(po):cogzﬂ(l_qﬂzl)/q)o)] would like to emphasize that these results B+ 1.0 are
typical; for other energies our calculation shows quite the
=cog2md /D). same structure. Finally, as a comparison, in Fig. 5 we plot the

T versus® picture for double-ring systems in series and the
The above results show that these two states have the sarggme electron energy= 1.0 is chosen. We can see tffats
T, because the upper and lower arms are symmetric for thgeriodic in fluxes®, and®, with period®,, different from
studied system, as we have mentioned for @@,1) line ¢ present systems, where in any case even thedfiufor
symmetry. Figure 4 displays a remarkable symmetric patterq)l) is set zero, the period df in flux ®, (or ®,) is always
where we have drawn a picture with four whole periods. mZCDO.
Fig. 4 the thick lines are antiresonant lingall reflection)
with T=0, and the thin curves are resonant lines with This work was supported by the National Science Foun-

T=1. All of the dashed and thick lines are symmetric lines.dation of China, Science Foundation of Guangdong Prov-
In the horizontal and vertical direction$, has a 2b, peri- ince, and DAG Grant of Hong Kong University of Science
odicity, but from (00) to (11), T also experiences a period and Technology, Grant No. 94/95 SC14.
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