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Dispersion theory of the polaron in a quasi-one-dimensional structure
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Instead of using the Fhtich Hamiltonian, we have presented in this paper the dispersion-theory approach
based on the zero-point energy to discuss the polaron in a quasi-one-dimensional structure. The polaron energy
is calculated. The effect of a degenerate electron gas on the phonon frequencies is also presented.

I. INTRODUCTION single-particle excitations of the electron. We have used this
approach for calculating the polaron energy in a quasi-one-
In recent years, there has been considerable research atimensional quantum wire. In addition, we are able to obtain
tivity concerning the properties of quantum wires. The inter-the shift in the frequency of the polar optical vibrations of
est is motivated by the expectation of extensive use of thesde lattice, due to its interaction with the electron. Although
structures in device fabricatidriThe present day technology the shift in the frequency of a lattice mode interacting with a
allows the construction of quantum wires, using heterojuncsingle electron can be very small, it becomes significant
tions formed by polar semiconductors, such aswhen the lattice mode is in interaction with a large number
Ga,Al ;_,As-GaAs. The motion of electrons in these struc-of electron. We have evaluated the effect of the number den-
tures is unrestricted in one direction and confined within arsity of electrons(per unit length of the wireon the lattice
average radius in the range of 10-200 nm, in the remainingrequencies of the modes propagating in the direction of the
two directions. As in three-dimensiof@D) polar crystals, in  wire.
guantum wires, which are quasi-one-dimensional structures, |n quasi-one-dimensional polar crystals, it is known that
the coupling between the electron and the lattice vibrationghe electron interacts with surface, confined and unconfined
of the system leads to the formation of azcomposite particlenodes of the lattice. Although all of the three modes are
called the polaron. Introduced by Fieh® and others in  peeded in the study of the polaron properties, it is found that
1950, the polaron in a polar crystal consists of a chargede,sonably accurate results afiehe three modes of vibra-

elelctron.susrlr:;)undetdl by a ph_ogon tclotuld. 'I:[hfe stt#dy OfttLj ions are replaced by the bulk 3D polar lattice modes. This is
pofaron In crystals Is carried out at least for the pas artly true since a quantum wire is usually embedded in a

years. The polaron in quasi-one-dimensional situations wa rystal. Thus, in this assumption, the electron-phonon inter-

initially examined by Holsteirf.With the advances in semi- ction is assumed to be the same as in 3D. The replacement
conductor technology, quasi-one-dimensional structures ard ! . ) P
f the confined modes by 3D modes is shown to be a rea-

now easily available and there is renewed interest in thes8 bl idhif the el f : hieved
structures. The partial electron confinement in quantum wireSOnaple assumptiohif the electron confinement Is achieve

gives rise to significant changes in the polaron propértiesby the electr_osta}tic field effect. I_n a structura_l ponfine_ment,
from those encountered in 3D crystals. While the traditionafhe assumption is, however, valid if the confining radius is
study of the polaron is based on the use of théhich ~ greater than 100 nm. In this paper, we assume that the elec-
Hamiltonian, the object of the present paper is to introduce &on interacts with only the 3D modes of the lattice. We also
different approach based on the dispersion theory to stud§ssume for mathematical convenience that the unperturbed
the quasi-one-dimensional polaron. Using this approach, weolar mode frequencies of the Iat'gice are undisper;ed and that
are able to examine some aspects of the polaron propertieéle unperturbed electron energies along the wire are ex-
which are not, as yet, well investigated. pressed in terms of a free-electron model with a constant
The Frdhlich Hamiltonian has been the basis of almost alleffective mass.
of the studies of the polaron in 3D and more recently of the The plan of the paper is as follows. In Sec. Il, we describe
polaron in restricted spaces including the quantum wires. Foihe elements of the dispersion theory using the zero-point
the case of the weak coupling between the electron and thePproach. In Sec. lll, the results of the theory are applied to
phonons, the perturbative approach based on the use of tiee electron in quasi-one-dimensional quantum wire. The po-
Frohlich Hamiltonian provides the most widely used methodlaron energy is also derived in this section. The shifts in the
for calculating the polaron energy. Within the weak- polar optical modes of the lattice, in the presence of a degen-
interaction regime, there is, however, an alternate approact¢rate electron gas, are obtained in Sec. IV. The concluding
based on the dispersion theory for the study of the polarofigmarks are given in Sec. V.
that does not depend on the use of thehiohh Hamiltonian.
In this approach, we obtain the difference in the zero-point
energy of the electromagnetic modes of the crystal when the Il. DISPERSION THEORY
electron is interacting with the lattice vibrations and when it . ) ) . ]
is not. The difference between the two energies provides the In @ polarizable medium, the electric potential at any point
polaron energy of the electron, due to its coupling with the is determined by the potential at other points in the me-
lattice phonons. The change in the zero-point energy is exdium. The electric potentiap(r,w) oscillating at frequency
pressed in terms of shifts in the electromagnetic frequenciesy at any pointr in the polar crystal is related to the electric
which are associated with the lattice vibrations and thepotentialo(r’,w) atr’, by the relation
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5 The change in the zero-point energy, due to the electron in-
go(r,w)zf F(r,r',)e(r’,w)d>r’, (1) teraction with the lattice vibrations, is then expressed by

whereF(r,r’,w) is the kernel that depends on the dielectric
properties of the crystal. If the crystal is replaced by free _ ; % /
space, theffr(r,r’, ) is a é function 5(r —r'). The Fourier AE= (4/4mi) P trG(q,q",w)dw, (8)

transform of Eq.(1) is given by where

e(00)=2 F(q.0"0)e(q o). @ G(9.9".)=F(q.q",0) ~Fo(q.q' o), (9)
q

The secular determinabt(w), giving the frequencies of the and AE is the interaction energy. In addition to giving the
electromagnetic fields, follows from E¢R) as zero-point energy, Eq$3) and(4) can be used to obtain the
) change in the frequency of an individual phonon mode of the

D(w)=[1-F(q,q',®)|=0, (3 medium. This will be discussed in Sec. IV. Results given by
wherel is the unit matrix. For the case of an electron inter-Egs.(1)—(9), valid, in general, to all polar crystals, are now
acting with the medium in a quasi-one-dimensional structureapplied in the following section, to the case of an electron in
we will obtain the expression fd%(q,q’,w). The expression @ quantum wire.
Fo(g,9’,w), which differs fromF(q,q’,w), can be derived
for the situation in which the interaction of the electron as-
sociated with the infinite frequency response of the medium
is only included; in this case, the frequencies of the medium We describe the parameters defining the quantum wire as

Ill. POLARON IN A QUANTUM WIRE

are given by a secular determinddg(w) as follows. The length of the wire is taken to be in tkelirec-
) tion and the potential energy of the electron in this direction
Do(w)=[1-Fo(a,q",®)|=0. (4)  is assumed constant. The electron potential energy irythe

The shift in the frequencies, due to the interaction of thez directions is assumed to be that of two identical harmonic

electron with the lattice vibrations is obtained, in principle,osc'"ators' The guantized energies of the electron inythe

by solving the secular determinant for electromagnetic freZ directions are separated Bf). We assume that the energy

aencies, sing E09) and(9) an oblaining th diference, SEPYAL01S 2 sufenty ige s hatthe eloctons secuny
Although the zero-point energy of the medium can be ob- hegcalculations are valid at zero temperature :
tained from the frequencies shifts, a more direct method fop_ p :

expressing the zero-point energy is available, following The electron wave functlolgzm the direction of the wire is
the work of Mahanty and Ninharhit is given by a.plane. wave denoted by_ (‘1) exp ka).’ where the one-
dimensional wave vectds is in thex direction and the wave

functions in they-z directions are given by the 2D harmonic-

E=— (il4mi) jg In[l —=F(9,q',0)|dw, (5)  oscillator-wave functions. Since we assume that the electrons

occupy only the lowest harmonic-oscillator state, we denote

where the counter encloses the positive real axis. By stayinghe free electron and oscillator states in terms of a composite
restricted to the first order coupling between the electrongiotation |[0k). If the electronic states are perturbed by a
and the lattice, Eq(5) can be approximated by expanding potential ¢(r’,w), then the perturbed electron wave func-

the In term to give tions can be obtained easily if we neglect the excited states
of the oscillator in the second-order perturbation theory. Us-
E= (hldmi) 3& trF(q,q’,w)dw. (6) ing the perturbed wave function, we obtain the expectation

value at the potential{e)/[e(w)|r—r'|] at pointr, due to

The zero-point energy, when the electron reacts to the infinitéhe electron of charge<e) atr’. In calculating the expec-
frequency response of the medium, is gi\/en by tation value of the potentlal, we have taken into account the

polarization effect of the medium by using the frequency-
_ . , dependent dielectric constaa{w). Denoting the expecta-
EO_(hMW')ﬁ; tFo(a.9", ) ]dw. () tion value of the electric potential atby ¢(r,»), we get

(k,0[—ele(w)|[r—r'[]|Ok )K", 0lee(r’,w)|0k) N (k,0lee(r’,w)|0k’ )}k, 0[ —€le(w)|r—r"|]|0K)

o(r,0)=2, [

K’ ﬁwkr’k-i—ﬁw ﬁwkr’k—ﬁw
(10
where
hwg = h2k'212m — £2k?/2m. (11
We take the Fourier transform of the Ed.0) in 3D after utilizing the identities
1 1 fexdiq(r—=r")] ., 4w exdig-(r—r')]
e T @ VR T @ 2
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and The expressioy(w) for the electron interacting with the
infinite response part of the medium, is obtained by replacing
o(r',w)=2, o(q,w)expiq -r'), (13  in Eq.(18) &(w) by &(), so that
q!
to write Do(w)=|1 e? 1
w)= -
Care? 1 0 Le() | hwysq, xtHho
QD(qlw): 2 q2
e(w)V T | (fogrq kHhow)(d) 2y p2y il X
q +ay + ﬁwk—qx,k—ﬁw exp(Qy/B°)Ei 2| (22
1
+ o —h0)(q)2 For an electron in an unperturbed plane-wave dtatesing
k=ay K Egs.(18) and(22) in (3)—~(9) allows us to express the inter-
xexp[—[(q§+q§+q§2+q;2)/2[)’z]} action energy as
2 2
X 8q,q@(Q',0), (14) _h 3g e( 1 1) w
Oy = i _
AE 477'|qzX do L \e(») £(0) wz—wg
whereV is the periodic volume. In Eq14), we have substi- qz 1
tuted for the matrix elements in EGLO) between plane-wave ><exp(q)2</,32)Ei< — —’;) - >
states and between harmonic oscillators, performed the sum B | hfay n 7ikay v
overk’, and used the definition 2m @
1
B?=2mQ/# . (15 + P h7kg (23
X X
It is important to note that in Eq$12)—(14) and in the fol- om  m e

lowing, g=(qy,d,.q,) is a 3D vector, while bottk andk’

are in 1D. We now multiply the Eq.(14) by  After performing the contour integral in ER3), we get
exy{ — (g7 +a2)/26%] and sum the resultant expression on

both sides of the equation ovey andg,. Writing AE= “ﬁwOrOJ'w ddy

7 Jo rigi+2rika,+1
qu @ (0, 0y 0, 0)exd — (a5 +02)/28%]= ¢(dy, w), (16) x 1 exp(q% B2)Ei(— g2/ 8?), (24)
y Yz
we get where we make use of the following definitionrg;, the po-
2 laron radius is given by
_ Ame 1 1
PO ) = Ve(w)d a, ﬁwk+qka+hw+hwk,quk—ﬁw r3=(h/2mwy), (25
exp[—(q§+qf)/,32} | - and the Fralich coupling constant by
q§+q§+q§ 4G 1)/ 1 1 \(e?\[ 1
=12\ 5 )t/ \Fag) @O
Performing the sum oveg, andq, allows us to express the & & 0 0
secular determinant as Expression(24) for the change in the polaron energy is ex-
actly the same as obtained by Hai, Peeters, Devreese, and
e? 1 1 Wendler® but with the important difference that they use the
D(w)=|1- Lo(w) | o F o +ﬁwk_quk_hw Frohlich Hamiltonian, while the present treatment is based

on the dispersion theory. The exact equivalence between the
[ O two results confirms the validity of the alternate approach
21 n2 _ o .
X expa/B )E'( B2 presented in this paper.
For the electron in state=0, the shift in the ground-state
where forx>0, we have used the exponential-integral func-energyAE, follows from Eq.(24)
tion defined as

ahwg [ dgy
= exp(—t) AEo= f 72
Ei(—x)=—J ——dt. (19 m Jo roOx+1

X

2
: (18)

%)exp(qi//BZ)Ei(—qi/Bz). 27)

The formal expression for the fre_quency—dependent dielectric IV. CALCULATION OF PHONON FREQUENCY SHIFTS
constants (w) for a polar crystal is expressed by

In this section, we calculate the effect of a degenerate

e(w)=ge(®)+ [e(0)—&()]/[1-(w/wr)?], (200  electron gas on the phonon vibrational frequencies. When we

onsider the effect of the electron-phonon interaction, the

requencies of the electromagnetic radiation are given by the

secular determinant.

wherewt, the transverse lattice mode frequency, is relate
to the optical-phonon mode frequency by the relation

w3l 0= e(*)&(0). (21) D(w)=|1-G(q,q’,0)|. (28)
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The result follows from Eq98) and(9). Using Eqs(3), (4), (Awg/wg)=[2aNr(r o0y 2exp(g2r2wo /)
(18), (22), in (28) allows us to write ' -
o : ez( 1 1 ) wg XEi(—gsrowo/Q)]. (32
ax.dx, @)= 7~ - 2 2
Lle(=) &(0)] o*~wp In Eq. (31), we have seen the relatidg=(N/2), which
X exp( 62/ B2)Ei(— 62/ 8?) connects the Fermi wave vectig with the number density
N of electrons per unit range of the wire.
1
X
(A2qZ/2m) + (7 %auk/m) + i w V. CONCLUDING REMARKS
1

The main object of this paper is to propose the dispersion
theory method as an alternative to a more traditional ap-
proach, using the Fhdich Hamiltonian for determining the
Equation(29) is valid for a single electron in stateand we  polaron energy in a quasi-one-dimensional system. It is
generalize the result to the case when a large number ghown that the two approaches lead to identical results for
electrons are present. To do that, we multiply the first andhe polaron energy. In the dispersion theory approach, the
second term in the square bracket of E2P) by the statisti-  polaron energy is expressed in terms of frequency shifts in
cal factorsf(k)[1—-f(k+q,)] andf(k)[1—f(k—q,)]. The the electromagnetic modes of the medium. The method al-
first of these factors stands for the probability of finding anlows us to obtain the shift in the phonon mode frequencies in
electron in statek and of finding the electron state+q,  the presence of a degenerate electron gas. For small values of
empty. Similarly, the second factor stands for the probabilityqy, the frequency shift is linearly proportional tot he number
of finding the electron in statk and of finding the state of electrons per unit length of the wire, as seen from Eg.
k—q, empty. Assuming zero temperature, thg) is unity (32 . _ .
for all k’s within —ke<k=ke and zero otherwise. Perform-  For the numerical estimate of the frequency shift, we use
ing the sum ovek and substituting the result if28) gives  the approximate relatio82). For GaAs-GgAl 1 ,As quan-
the secular determinants in the presence of a degenerate eld¢ Wiré, various parameters occurring in EQ2) are
tron gas. It is important to note that the determinant is diagf€@dily available in I|teratu_r%. The coupling constant
onal. Equating any diagonal term to zero produces an equat=0-07 and the polaron radiug=3.987 nm. The number
tion for the frequency of a modeyg). For the unperturbed Of €lectrons per unit range of the wire vary over a broad
frequency w= w, associated with the phonon frequencies,rar_‘gé’ (10°-10° per meter. To maximize the frequency
the frequencies affected by the electron-phonon interactiofihift, we selecN=(1.5)x 16°/m, so thatNr,=0.6. The en-

. (29

+
(1293/2m) — (h2quk/m) — e

are given by ergy levels of the quantum well are kept sufficiently sepa-

2 2 2 rated, so that only the lowest-energy level is occupied by the

s 2, © 1 1 ) O\ [ 0Oy m ; . ;

w?=wi+ — — wiexpg 53 |Eil — =5 | 75— electrons. For the electron concentration used in the numeri-
m|e(°) &(0) B B°) hax cal evaluation, this condition is easily satisfléfl we set

XIn

(30) also goes to zero. Inserting the valuemqf ,=0.5 into Eq.

(32) gives Awg/wy)=0.14, and fom,r,=0.2, the fraction
(Awg/wg)=0.034. The calculated frequency shifts in units
of the unperturbed frequency are not negligible. In view of
the fact that the electron number can be varied over a wide
range, it will be interesting to measure the dependence of the

} (Q/wgp)=10.0. Asqy,r, approaches zero, the frequency shift

(0T 5= 20ker5)°— 1|
(QZT 5+ 20,ker §)%— 1|

Rewriting Eqg. (30) in terms of a frequency shift
Aw=w—wy, We get

o
(Awolwo)=| 1+— exp(g2rawg/Q)Ei(—g2riwe/Q) frequency shift on the electron density.
o2 )n‘(OIirg—quka%)z—l 1/2_1 (31) ACKNOWLEDGMENT
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