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Instead of using the Fro¨hlich Hamiltonian, we have presented in this paper the dispersion-theory approach
based on the zero-point energy to discuss the polaron in a quasi-one-dimensional structure. The polaron energy
is calculated. The effect of a degenerate electron gas on the phonon frequencies is also presented.

I. INTRODUCTION

In recent years, there has been considerable research ac-
tivity concerning the properties of quantum wires. The inter-
est is motivated by the expectation of extensive use of these
structures in device fabrication.1 The present day technology
allows the construction of quantum wires, using heterojunc-
tions formed by polar semiconductors, such as
GaxAl 12xAs-GaAs. The motion of electrons in these struc-
tures is unrestricted in one direction and confined within an
average radius in the range of 10–200 nm, in the remaining
two directions. As in three-dimensional~3D! polar crystals, in
quantum wires, which are quasi-one-dimensional structures,
the coupling between the electron and the lattice vibrations
of the system leads to the formation of a composite particle
called the polaron. Introduced by Fro¨hlich2 and others in
1950, the polaron in a polar crystal consists of a charged
electron surrounded by a phonon cloud. The study of the
polaron in 3D crystals is carried out at least for the past 40
years. The polaron in quasi-one-dimensional situations was
initially examined by Holstein.3 With the advances in semi-
conductor technology, quasi-one-dimensional structures are
now easily available and there is renewed interest in these
structures. The partial electron confinement in quantum wires
gives rise to significant changes in the polaron properties4

from those encountered in 3D crystals. While the traditional
study of the polaron is based on the use of the Fro¨hlich
Hamiltonian, the object of the present paper is to introduce a
different approach based on the dispersion theory to study
the quasi-one-dimensional polaron. Using this approach, we
are able to examine some aspects of the polaron properties,
which are not, as yet, well investigated.

The Fröhlich Hamiltonian has been the basis of almost all
of the studies of the polaron in 3D and more recently of the
polaron in restricted spaces including the quantum wires. For
the case of the weak coupling between the electron and the
phonons, the perturbative approach based on the use of the
Fröhlich Hamiltonian provides the most widely used method
for calculating the polaron energy. Within the weak-
interaction regime, there is, however, an alternate approach5

based on the dispersion theory for the study of the polaron
that does not depend on the use of the Fro¨hlich Hamiltonian.
In this approach, we obtain the difference in the zero-point
energy of the electromagnetic modes of the crystal when the
electron is interacting with the lattice vibrations and when it
is not. The difference between the two energies provides the
polaron energy of the electron, due to its coupling with the
lattice phonons. The change in the zero-point energy is ex-
pressed in terms of shifts in the electromagnetic frequencies,
which are associated with the lattice vibrations and the

single-particle excitations of the electron. We have used this
approach for calculating the polaron energy in a quasi-one-
dimensional quantum wire. In addition, we are able to obtain
the shift in the frequency of the polar optical vibrations of
the lattice, due to its interaction with the electron. Although
the shift in the frequency of a lattice mode interacting with a
single electron can be very small, it becomes significant
when the lattice mode is in interaction with a large number
of electron. We have evaluated the effect of the number den-
sity of electrons~per unit length of the wire! on the lattice
frequencies of the modes propagating in the direction of the
wire.

In quasi-one-dimensional polar crystals, it is known that
the electron interacts with surface, confined and unconfined
modes of the lattice. Although all of the three modes are
needed in the study of the polaron properties, it is found that
reasonably accurate results arise6 if the three modes of vibra-
tions are replaced by the bulk 3D polar lattice modes. This is
partly true since a quantum wire is usually embedded in a
crystal. Thus, in this assumption, the electron-phonon inter-
action is assumed to be the same as in 3D. The replacement
of the confined modes by 3D modes is shown to be a rea-
sonable assumption,6 if the electron confinement is achieved
by the electrostatic field effect. In a structural confinement,
the assumption is, however, valid if the confining radius is
greater than 100 nm. In this paper, we assume that the elec-
tron interacts with only the 3D modes of the lattice. We also
assume for mathematical convenience that the unperturbed
polar mode frequencies of the lattice are undispersed and that
the unperturbed electron energies along the wire are ex-
pressed in terms of a free-electron model with a constant
effective mass.

The plan of the paper is as follows. In Sec. II, we describe
the elements of the dispersion theory using the zero-point
approach. In Sec. III, the results of the theory are applied to
the electron in quasi-one-dimensional quantum wire. The po-
laron energy is also derived in this section. The shifts in the
polar optical modes of the lattice, in the presence of a degen-
erate electron gas, are obtained in Sec. IV. The concluding
remarks are given in Sec. V.

II. DISPERSION THEORY

In a polarizable medium, the electric potential at any point
r is determined by the potential at other points in the me-
dium. The electric potentialw(r ,v) oscillating at frequency
v at any pointr in the polar crystal is related to the electric
potentialw(r 8,v) at r 8, by the relation
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w~r ,v!5E F~r ,r 8,v!w~r 8,v!d3r 8, ~1!

whereF(r ,r 8,v) is the kernel that depends on the dielectric
properties of the crystal. If the crystal is replaced by free
space, thenF(r ,r 8,v) is ad functiond(r2r 8). The Fourier
transform of Eq.~1! is given by

w~q,v!5(
q8

F~q,q8,v!w~q8,v!. ~2!

The secular determinantD(v), giving the frequencies of the
electromagnetic fields, follows from Eq.~2! as

D~v!5uI2F~q,q8,v!u50, ~3!

whereI is the unit matrix. For the case of an electron inter-
acting with the medium in a quasi-one-dimensional structure,
we will obtain the expression forF(q,q8,v). The expression
F0(q,q8,v), which differs fromF(q,q8,v), can be derived
for the situation in which the interaction of the electron as-
sociated with the infinite frequency response of the medium
is only included; in this case, the frequencies of the medium
are given by a secular determinantD0(v) as

D0~v!5uI2F0~q,q8,v!u50. ~4!

The shift in the frequencies, due to the interaction of the
electron with the lattice vibrations is obtained, in principle,
by solving the secular determinant for electromagnetic fre-
quencies, using Eqs.~3! and~4! and obtaining the difference.
Although the zero-point energy of the medium can be ob-
tained from the frequencies shifts, a more direct method for
expressing the zero-point energyE is available, following
the work of Mahanty and Ninham.7 It is given by

E52 ~\/4p i ! R lnuI2F~q,q8,v!udv, ~5!

where the counter encloses the positive real axis. By staying
restricted to the first order coupling between the electrons
and the lattice, Eq.~5! can be approximated by expanding
the ln term to give

E5 ~\/4p i ! R trF~q,q8,v!dv. ~6!

The zero-point energy, when the electron reacts to the infinite
frequency response of the medium, is given by

E05~\/4p i !R tr@F0~q,q8,v!#dv. ~7!

The change in the zero-point energy, due to the electron in-
teraction with the lattice vibrations, is then expressed by

DE5 ~\/4p i !R trG~q,q8,v!dv, ~8!

where

G~q,q8,v!5F~q,q8,v!2F0~q,q8,v!, ~9!

andDE is the interaction energy. In addition to giving the
zero-point energy, Eqs.~3! and~4! can be used to obtain the
change in the frequency of an individual phonon mode of the
medium. This will be discussed in Sec. IV. Results given by
Eqs.~1!–~9!, valid, in general, to all polar crystals, are now
applied in the following section, to the case of an electron in
a quantum wire.

III. POLARON IN A QUANTUM WIRE

We describe the parameters defining the quantum wire as
follows. The length of the wire is taken to be in thex direc-
tion and the potential energy of the electron in this direction
is assumed constant. The electron potential energy in they-
z directions is assumed to be that of two identical harmonic
oscillators. The quantized energies of the electron in they-
z directions are separated by\V. We assume that the energy
separations are sufficiently large, so that the electrons occupy
the ground state of the two-dimensional harmonic oscillator.
The calculations are valid at zero temperature.

The electron wave function in the direction of the wire is
a plane wave denoted by (1/L)1/2 exp (ikx), where the one-
dimensional wave vectork is in thex direction and the wave
functions in they-z directions are given by the 2D harmonic-
oscillator-wave functions. Since we assume that the electrons
occupy only the lowest harmonic-oscillator state, we denote
the free electron and oscillator states in terms of a composite
notation u0,k&. If the electronic states are perturbed by a
potentialw(r 8,v), then the perturbed electron wave func-
tions can be obtained easily if we neglect the excited states
of the oscillator in the second-order perturbation theory. Us-
ing the perturbed wave function, we obtain the expectation
value at the potential (2e)/@«(v)ur2r 8u# at pointr , due to
the electron of charge (2e) at r 8. In calculating the expec-
tation value of the potential, we have taken into account the
polarization effect of the medium by using the frequency-
dependent dielectric constant«(v). Denoting the expecta-
tion value of the electric potential atr by w(r ,v), we get

w~r ,v!5(
k8

F ^k,0u@2e/«~v!ur2r 8u#u0,k8&^k8,0uew~r 8,v!u0,k&
\vk8,k1\v

1
^k,0uew~r 8,v!u0,k8&^k8,0u@2e/«~v!ur2r 8u#u0,k&

\vk8,k2\v G ,
~10!

where

\vk8,k5 \2k82/2m2 \2k2/2m . ~11!

We take the Fourier transform of the Eq.~10! in 3D after utilizing the identities

1

ur 82r 8u
5

1

2p2E exp@ iq•~r2r 8!#

~q!2
d3q5

4p

V (
exp@ iq•~r2r 8!#

~q!2
~12!

53 6909BRIEF REPORTS



and

w~r 8,v!5(
q8

w~q8,v!exp~ iq8•r 8!, ~13!

to write

w~q,v!5
24pe2

«~v!V(
q8

F 1

~\vk1qx ,k
1\v!~q!2

1
1

~\vk2qx ,k
2\v!~q!2G

3exp$2@~qy
21qz

21qy8
21qz8

2!/2b2#%

3dqx,qx8w~q8,v!, ~14!

whereV is the periodic volume. In Eq.~14!, we have substi-
tuted for the matrix elements in Eq.~10! between plane-wave
states and between harmonic oscillators, performed the sum
over k8, and used the definition

b252mV/\ . ~15!

It is important to note that in Eqs.~12!–~14! and in the fol-
lowing, q[(qx ,qy ,qz) is a 3D vector, while bothk andk8
are in 1D. We now multiply the Eq. ~14! by
exp@2(qy

21qz
2)/2b2# and sum the resultant expression on

both sides of the equation overqy andqz . Writing

(
qy ,qz

w~qx ,qy ,qz ,v!exp@2~qy
21qz

2!/2b2#5f~qx ,v!, ~16!

we get

f~qx,v!52
4pe2

V«~v! (qy,qz F 1

\vk1qx,k
1\v

1
1

\vk2qx ,k
2\vG

3Fexp$2~qy
21qz

2!/b2%

qx
21qy

21qz
2 Gf~qx ,v!. ~17!

Performing the sum overqy andqz allows us to express the
secular determinant as

D~v!5U12
e2

L«~v! F 1

\vk1qx, k
1\v

1
1

\vk2qx, k
2\vG

3exp~qx
2/b2!EiS 2

qx
2

b2DU, ~18!

where forx.0, we have used the exponential-integral func-
tion defined as

Ei~2x!52E
x

` exp~2t !

t
dt. ~19!

The formal expression for the frequency-dependent dielectric
constant«(v) for a polar crystal is expressed by

«~v!5«~`!1 @«~0!2«~`!#/@12~v/vT!2# , ~20!

wherevT , the transverse lattice mode frequency, is related
to the optical-phonon mode frequency by the relation

vT
2/v0

2 5 «~`!/«~0! . ~21!

The expressionD0(v) for the electron interacting with the
infinite response part of the medium, is obtained by replacing
in Eq. ~18! «(v) by «(`), so that

D0~v!5U12
e2

L«~`! F 1

\vk1qx ,k
1\v

1
1

\vk2qx ,k
2\vGexp~qx2/b2!EiS 2

qx
2

b2DU. ~22!

For an electron in an unperturbed plane-wave statek, using
Eqs.~18! and ~22! in ~3!–~9! allows us to express the inter-
action energy as

DE5
\

4p i(qx R dv
e2

L S 1

«~`!
2

1

«~0!
D v0

2

v22v0
2

3exp~qx
2/b2!EiS 2

qx
2

b2D F 1

\2qx
2

2m
1

\2kqx
m

1\v

1
1

\2qx
2

2m
2

\2kqx
m

2\vG . ~23!

After performing the contour integral in Eq.~23!, we get

DE5
a\v0r 0

p E
0

` dqx
r 0
2qx

212r 0
2kqx11

3 1
2 exp~qx

2/b2!Ei~2 qx
2/b2!, ~24!

where we make use of the following definitions:r 0 , the po-
laron radius is given by

r 0
25~\/2mv0!, ~25!

and the Fro¨hlich coupling constanta by

a5S 12D S 1

«~`!
2

1

«~0! D S e
2

r 0
D S 1

\v0
D . ~26!

Expression~24! for the change in the polaron energy is ex-
actly the same as obtained by Hai, Peeters, Devreese, and
Wendler,8 but with the important difference that they use the
Fröhlich Hamiltonian, while the present treatment is based
on the dispersion theory. The exact equivalence between the
two results confirms the validity of the alternate approach
presented in this paper.

For the electron in statek50, the shift in the ground-state
energyDE0 follows from Eq.~24!

DE05
a\v0

p E
0

` dqx
r 0
2qx

211 S 12Dexp~qx2/b2!Ei~2qx
2/b2!. ~27!

IV. CALCULATION OF PHONON FREQUENCY SHIFTS

In this section, we calculate the effect of a degenerate
electron gas on the phonon vibrational frequencies. When we
consider the effect of the electron-phonon interaction, the
frequencies of the electromagnetic radiation are given by the
secular determinant.

D~v!5u12G~q,q8,v!u. ~28!
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The result follows from Eqs.~8! and~9!. Using Eqs.~3!, ~4!,
~18!, ~22!, in ~28! allows us to write

G~qx ,qx ,v!5
e2

L S 1

«~`!
2

1

«~0! D v0
2

v22v0
2

3exp~qx
2/b2!Ei~2 qx

2/b2!

3F 1

~\2qx
2/2m!1~\2qxk/m!1\v

1
1

~\2qx
2/2m!2~\2qxk/m!2\vG . ~29!

Equation~29! is valid for a single electron in statek and we
generalize the result to the case when a large number of
electrons are present. To do that, we multiply the first and
second term in the square bracket of Eq.~29! by the statisti-
cal factorsf (k)@12 f (k1qx)# and f (k)@12 f (k2qx)#. The
first of these factors stands for the probability of finding an
electron in statek and of finding the electron statek1qx
empty. Similarly, the second factor stands for the probability
of finding the electron in statek and of finding the state
k2qx empty. Assuming zero temperature, thef (k) is unity
for all k8s within 2kF,k<kF and zero otherwise. Perform-
ing the sum overk and substituting the result in~28! gives
the secular determinants in the presence of a degenerate elec-
tron gas. It is important to note that the determinant is diag-
onal. Equating any diagonal term to zero produces an equa-
tion for the frequency of a mode (qx). For the unperturbed
frequencyv5v0 associated with the phonon frequencies,
the frequencies affected by the electron-phonon interaction
are given by

v25v0
21

e2

p F 1

«~`!
2

1

«~0!Gv0
2expS qx2b2DEiS 2

qx
2

b2D m

\2qx

3 lnFU~qx2r 0222qxkFr 0
2!221

~qx
2r 0

212qxkFr 0
2!221UG . ~30!

Rewriting Eq. ~30! in terms of a frequency shift
Dv5v2v0 , we get

~Dv0/v0!5F11
a

p
exp~qx

2r 0
2v0 /V!Ei~2qx

2r 0
2v0 /V!

3S 1

qxr 0
D lnU~qx2r 0222qxkFr 0

2!221

~qx
2r 0

212qxkFr 0
2!221UG

1/2

21.~31!

For small values ofqx , expression~31! can be approximated
to give

~Dv0 /v0!5@2aNr0~r 0qx!
2exp~qx

2r 0
2v0 /V!

3Ei~2qx
2r 0

2v0 /V!#. ~32!

In Eq. ~31!, we have seen the relationkF5(Np/2), which
connects the Fermi wave vectorkF with the number density
N of electrons per unit range of the wire.

V. CONCLUDING REMARKS

The main object of this paper is to propose the dispersion
theory method as an alternative to a more traditional ap-
proach, using the Fro¨hlich Hamiltonian for determining the
polaron energy in a quasi-one-dimensional system. It is
shown that the two approaches lead to identical results for
the polaron energy. In the dispersion theory approach, the
polaron energy is expressed in terms of frequency shifts in
the electromagnetic modes of the medium. The method al-
lows us to obtain the shift in the phonon mode frequencies in
the presence of a degenerate electron gas. For small values of
qx , the frequency shift is linearly proportional tot he number
of electrons per unit length of the wire, as seen from Eq.
~32!.

For the numerical estimate of the frequency shift, we use
the approximate relation~32!. For GaAs-GaxAl 12xAs quan-
tum wire, various parameters occurring in Eq.~32! are
readily available in literature.8,9 The coupling constant
a50.07 and the polaron radiusr 053.987 nm. The number
of electrons per unit range of the wire vary over a broad
range8,9 (106–109 per meter!. To maximize the frequency
shift, we selectN5(1.5)3108/m, so thatNr050.6. The en-
ergy levels of the quantum well are kept sufficiently sepa-
rated, so that only the lowest-energy level is occupied by the
electrons. For the electron concentration used in the numeri-
cal evaluation, this condition is easily satisfied8 if we set
(V/v0)510.0. Asqxr 0 approaches zero, the frequency shift
also goes to zero. Inserting the value ofqxr 050.5 into Eq.
~32! gives (Dv0 /v0)50.14, and forqxr 050.2, the fraction
(Dv0 /v0)50.034. The calculated frequency shifts in units
of the unperturbed frequency are not negligible. In view of
the fact that the electron number can be varied over a wide
range, it will be interesting to measure the dependence of the
frequency shift on the electron density.
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