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Determination of deformation-potential constants from quantum-limit cyclotron-resonance
linewidths for Ge with anisotropic scattering
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Utilizing state-independent projection operators, we obtain a Lorentzian form of cyclotron-transition absorp-
tion spectra in the quantum limit. The linewidth formula is applied to determine the dilation and uniaxial
deformation-potential constantE(, =) for anisotropic materials. By fitting the theoretical values to the
experimental data, we obtaf,=18.0=0.6 eV and= = —12.2+0.68 eV for Ge.

For the conduction bands of Ge and Si, the constant emon in the statd +q,s), fiwgs the phonon energyy the
ergy surfaces are ellipsoidal, so that shear strains, as well @honon wave vectoss the index of phonon mode, and,
dilation strains, can produce the deformation potentialsthe coupling coefficient for the electron-phonon interaction.
From the symmetry property of Ge or Si, the deformation |n anisotropic solids such as Ge and Si, the sound speed
potentials can be described as just two independenj . of acoustic phonon is different for different direction of
potentials; which are the dilation potentiaEq and the propagation. However, the difference is not so ldfgand
uniaxial shear potentiaE , . thus we assume that the sound speed is independent of the
Some research groups for cyclotron resonancéCR)  direction of propagation. Then we can define the coupling
described the theoretical expression of cyclotron-resonancgpefficient in Eq.(1) for longitudinal mode as
linewidth (CRLW) in terms of Herring-Vogt's equatidrand
determined the deformation potentials of Ge and Si by fitting
the formula to their experimental data. However, this method

is applicable for a limited case, since Herring-Vogt's equa-
tion is formulated in the classical limik(T=#%w), whereT  and for the sum of two branches of transverse mode as

VoL =i(hal2pmw ) YA Eq+ Ec0S 6) 3

is the temperature and the frequency of the eletromagnetic _
wave. On the other hand, most of CR thedtiéshave the Vo r=i(hal2pmu )2 sinf cody, (4
difficulty that the formulas are not applicable to the aniso-

tropic scattering in the quantum limik(T<# «). Therefore, pere 8, is the inner angle between the major ellipsoidal
in this paper, we shall introduce a formula for the quantum-axis and q, p,, is the mass density of the bulk,

limit CRLW, using a projection operator technique. 0L = (CL(T)/pm)l/z is the average of the sound spesg, for

At low temperatures, the transport phenomena of elecéach mode, CL:(3011+ 2cq,+4c,y)/5 and CTI(Cll

trons in pure Ge is determined by the anisotropic scattering L
of acoustic phonons. When a static magnetic fi@e&-B2) is ~C1pt3C44)/5 are the elastic stiffness constafitandL (T)

: . . . - denotes the longitudindtransversgmode of the phonon.
applied along the major axis of an ellipsoid, the Hamiltonian )
0? ?hle syster% i give{q beI 'pSo! ron! Most of the CR theori€s!! adopted state-dependent pro-

jection operators to obtain the CRLW functions from the
Kubo formula. However, their functions failed to produce the
Ho= > gNa’kzaaLaa“Lz ﬁwq,sb;,sbq,s two deformation potentials. In order to obtain the CRLW of
“ @3 Ge or Si, they made an approximation of isotropic electron-
_ . . phonon scattgrin@.lo'l“'lsTo overcome this problem, we in-
+ 2 ;L Vostalexpliq-r)|u)aza,(bgstbly o), troduce(state-independenprojection operators given by
@ (X3
1 : . Shilat PXE?J , P/El—P, (5)
wherea,, (a,) is the creation(annihilatior) operator for an ([I",37D
electron in the Landau stater)=|N, .k, k,.), N, the
Landau level indexk, the electron wave vector, and where( ) denotes the grand canonical ensemble average and

‘N, k,, the Landau energy given by J*=J,*iJ, are the circular current operators of electrons.
We shall use these projection operators of Ej.and then
N, K, =(Ng+12hwc+ h2Kk2 J2m + & (2 obtain the formula for the CRLW by the same procedure as
) that of Ref. 11.
Here w (=eB/m,) is the CR frequency of electronsy, When a circularly polarized microwave with frequency

(my) the longitudinal(transverspeffective mass of the elec- , and the electric-field amplitudg, is incident upon the
tron, and” _ the bottom of the conduction band. In E4),  system along the axis, the absorption power density is
b“;qu (b q,s) is the creationannihilatior) operator for pho-  given by
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Aw,0,T) n(w,T)=g,w(mmZkgT/87h*)12
( E2 ) Xexf — (£~ {)IkgT]/sinh(#iw/2kgT),
2hw 11
([I7 9" DRI (w,0¢,T)] where ¢ is the chemical potential for an electron and the

weight parameteg, shall be discussed later. Note that the
averaged relaxation rate is equal to the half CRLW, since the
(6) spectrum of the absorption power intensity &ar has a form

of Lorentzian shape. In E@10), the energy-dependent relax-
ation rate is given by

o= we—IM[I(@, 00, D2+ {REI (@00 T 12

Here,Il(w,w.,T) is the averaged line-shape function given

by
JT.k,)= () A7) (H) ) (5) 12
(w,w,T) Y(w 2) Y Y Y: Y: (12
where the subscript X(T)” and the superscript %(—),”
SN DAy 1k, )= F(En, k)T o0, 0¢,T) respectively, represent the longitudin&iansversemode of

= — — , honon and the phonon absorpti ission process. Each
S o(NeF DI (Zy 1 1x, )~ F(Zn s )] bart of £q (12) 1 given by Emission p
(7)

- - oB=h S
wherel ,(w,w.,T) is the energy-dependent line-shape func-,(*) = | 221 Jaz 24 o2
tion, which is the same as that given by E8.19 in Ref. 11 N (47771173%) N;J,l a, da(aL "+ q2)
and f(&’Na,kza) the Fermi-Dirac distribution. In Eq(6),
ImI(w,w:,T)] and Réll(w,w.,T)] are related to the %
peak shift and linewidth of the CR absorption, respectively.
Note that averaging over the electron distribution appears
separately in the numerator and in the denominator in Eq. a2
(7). Therefore, the averaged line-shape function may be more X KO, NiRgL*/2mwc)
manageable than the other formufast

We shall make some approximations under the condition (13)
of the quantum limit. First, the peak shift of and
Im[II(w,w.,T)] is ignored in comparison witl.. Second, s
the Fermi-Dirac distribution is approximated by the (+)_|__9v=u
Maxwell-Boltzmann distribution or ignored in comparison YT 4ahvlpm N ¥
with the phonon distribution function. Third, we take into T
account only the transitions from the lowest Landau x quqg
level (N,=0) to excited states, since most of electrons XfajdqzﬁK(O, N;ﬁqu/thwc)
reside on the Ilowest Landau level. Fourth, we a3 q.°+a;

replace REI(w,w0:,T)] by Rdll(w,»,T)], since
+N(ﬁ5T\/m)}, (14

R IIl(w,w,T)] is very slowly varying function ofv; near %
where the limits &) of the integrations in Eqg13) and

the resonance region. In this case, the absorption power den-
sity of Eq. (6) can be rewritten as
Ew.T)? (14) are determined from the energy-mom%ntum conserva-
(80 tion for each processK(0, N;t)=(t—N)t exp(—t)/N,
N(%wqs) Bose-Einstein distribution for phonon with an en-
where the maximum absorption power intensity is ergy of fwgs, D=Eg/E,, and q_ ={[(1-N)io
—h2(aZ = 2k,0,) 12 % (ho )2 =z}
In Egs. (12), (13), and(14), g, is inserted, since one of
peaks in a CR absorption spectrum is constructed by the
electrons in the valleys with the same inner angle between

2\ 2
q

D+ —=7—
gL "+0q;

0
1

+N(hJL\/qu+q§)}

0
1

Aw,0¢,T)=P @, T)

(0= wo)’+E(w,T)?’

Fmad 0.T) = (€Eo)N( 0, T)/M&(,T) (9)

and the averaged relaxation rate is defined as

_ the major axes of the valleys and the direction of the mag-
,T)=RdIl(w,0,T o I .
o, T)=Rd (w0, T)] netic fieldB. The number of CR peaks is different according
J‘oo po to the direction ofB. In the case of a peak produced by the
=——-——| dkexp —f°k:/2mkgT) electrons in the valley with the major axis parallelBo the
v2mmkgT /- cyclotron frequency iso.=eB/m; andg,=1 for Ge. For a
X y(@,T,K,), (10) peak related to the major axis perpendicular B)

w.=eB/(mm)*¥2 andg,=1 for Ge. For Si, the values of
which has a form of the Boltzmann average of the energyg, are different for the different directions &.
dependent relaxation ratg o, T,k;), defined as the real part We shall determine the values &f, andE 4 from fitting
of the energy-dependent line-shape function. In ®.the  the derived half CRLW of Eq(10) to suitable experimental
electron concentration(w,T) is given by data. One of the candidates may be the anisotropy ratio about
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FIG. 2. Theoretical curves of the anisotropy ratio of the half
CRLW's in pure Ge, as functions & at w=446 GHz.

keT /oo

anisotropy ratio decreases as the temperature increases for
FIG. 1. Integralsl, and J, as functions of temperatures at the range of 0.55- 4.2 K with 446 GHz angular frequency,
w=446 GHz for pure Ge. that is, in the quantum limit. Therefore, we get
D=-0.68+0.03 from fitting the curves of Fig. 2 to the
the half CRLW. For a peak related to the major axis parallelexperimental data of Murase, Enjouji, and Otstka.

to B, the half CRLW from Eq(10) can be written as To get the value of the uniaxial deformation constant
=, we shall use a recent experimental datelated to the
§”=Eﬁ(I1D2+I2D+I3), (15  temperature dependence of CRLW for pure Ge in the quan-

tum limit. When we put =220 um and take the direction of
wherel, are the intergals for the coefficients Bf. For a  the applied magnetic field to be parallel to #tl1) direc-
peak related to the major axis perpendicularBlom; and  tijon, we obtain=, = 18.0+0.6 eV from fitting the theoreti-
my are replaced byrgm;)*? andm, and sirf, and co$, in  cal values calculated by using the given valueDotto the
Egs.(3) and(4) by cog), and sirg,, respectively, since the experimental data. From these results, we obtain
coordinate system is rotated perpendicular to the formerg ,=—12.2+0.68 eV for Ge. The present result for the de-

Then we get the half CRLW as formation potentials is similar to other results, as shown in
> 5 Table I. In the quantum limit, the temperature dependence of
&= 231D+ 3D+ J3), (16) half CRLW agrees well with the experimental data, as shown

: - in Fig. 3, where the value of the half CRLW of the longitu-
whereJ,, also are the intergals for the coefficientsldbf The  ginal'mode relative to the transverse one is about 0.15-0.30
anisotropy ratio of the half CRLW's is defined as in the range of the quantum limit. At extremely low tempera-

tures, the CRLW is independent of temperature as Meyer
¢, J;D?+J,D+J; 1y Ppredictect®
?” ~ 14D?+1,D+15° @7 In summary, using the state-independent projection opera-
tors of Eq.(5), we presented the CRLW formula that is avail-
which is the function oD for a temperature and a resonanceable to determine the two deformation potentials in the quan-
frequency. tum limit. This formula was applied to Ge. For Ge, we
Among the physical parameters for Ge, the elastic stiff-obtainedD = —0.68+=0.03 from fitting the calculated anisot-
ness constantd are given by c;;=1.29x10"" N/m?,  ropy ratio of Eq.(17) to the experimental dataand
C1,=0.48<10" N/m?, and c,=0.67x10" N/m?. The =,=18.0£0.6 eV from fitting the temperature dependence
other values are given in Ref. 15. Then the values,adnd  of the half CRLW obtained by using the given valuelto
J,, for @=446 GHz are given in Fig. 1. Using these curves,the other experimental datFrom these two values, we got
the anisotropy ratio of Eq17) is plotted as functions db, Eq=—12.2+0.68 eV. These results are similar to some
for some temperatures as shown in Fig. 2. The experimentalther result as shown in Table I. In Fig. 3, the temperature
data of Ito, Kawamura, and FuRashow that the anisotropy dependence of CRLW in quantum limit is in better agree-
ratio is almost constant for the range of :64.2 K and a ment with the experimental data than other restifs!41°
wavelength of 6 mm, that is, in the classical limit. On the Also, we see that the contribution of transverse phonons to
other hand, Murase, Enjouiji, and Otstkargued that the the CRLW is much larger than the longitudinal one in the



53 BRIEF REPORTS 6899
TABLE I. Deformation-potential constants from various experi- 1012 — — T
mental and theoretical methods for Ge. - I ! OOOE
r o~ 7
Eu (eV) D(: Ed/Eu) Ed (E\/) Ref. - Pure Ge o
18.0+0.6 ~0.68:0.03  —12.2-0.68 Presentwork -~ | B/<111>
20 -0.67 -135 28 ) A =220 pm P
18.7+0.2 ~0.561 ~105+0.5 32 e P
19.3+0.2 —0.636-0.011  —12.3+05 42 = - d 3
17.3 17° Q - .
19.2£0.4 18" E i }
16.0+1.6 19° < " v s ]
16.2+ 0.4 20° ~ ol / _
TR - =
18.0+0.5 21¢ <_EI E / E
15.4~19.5 22 T B / o Experiment 7
17.0-0.2 239 i 7 Total ]
L // ------ Transverse
&Cyclotron-resonance linewidth in the classical limit. L — — Longitudinal
bpiezoresistance. 10° Lol ! Ll
“Acoustoelectric effect. 0.1 1.0
dinfluence of uniaxial stress on indirect absorption edge. kT /ho

®Free-carrier piezobirefregence.
fOptical determination for donor impurities.
9Electronic effect in elastic constaysg.

FIG. 3. Temperature dependence of the half CRLW in pure Ge
at A=220 um and with the magnetic field along t{&11) direc-

tion. The dotted line and the broken line, respectively, show the half
guantum limit and the CRLW is independent of temperatureCRLW's, due to the transverse and the longitudinal mode of
in the extremely low temperature region, as Meyerphonons. The solid line shows the total half CRLW. The open
predictedz.4 Unfortunately, the deformation potentials of Si circles show the experimental data of Kobori, Ohyama, and Otsuka.
could not be determined, due to the lack of experimental

information. If suitable experiments are availab®, and This work was supported by the Korea Ministry of Edu-

5 4 can be obtained for Si by the same technique.
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