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Utilizing state-independent projection operators, we obtain a Lorentzian form of cyclotron-transition absorp-
tion spectra in the quantum limit. The linewidth formula is applied to determine the dilation and uniaxial
deformation-potential constants (Jd , Ju) for anisotropic materials. By fitting the theoretical values to the
experimental data, we obtainJu518.060.6 eV andJd5212.260.68 eV for Ge.

For the conduction bands of Ge and Si, the constant en-
ergy surfaces are ellipsoidal, so that shear strains, as well as
dilation strains, can produce the deformation potentials.
From the symmetry property of Ge or Si, the deformation
potentials can be described as just two independent
potentials,1 which are the dilation potentialJd and the
uniaxial shear potentialJu .

Some research groups2–5 for cyclotron resonance~CR!
described the theoretical expression of cyclotron-resonance
linewidth ~CRLW! in terms of Herring-Vogt’s equation1 and
determined the deformation potentials of Ge and Si by fitting
the formula to their experimental data. However, this method
is applicable for a limited case, since Herring-Vogt’s equa-
tion is formulated in the classical limit (k

B
T>\v), whereT

is the temperature andv the frequency of the eletromagnetic
wave. On the other hand, most of CR theories6–11 have the
difficulty that the formulas are not applicable to the aniso-
tropic scattering in the quantum limit (k

B
T!\v). Therefore,

in this paper, we shall introduce a formula for the quantum-
limit CRLW, using a projection operator technique.

At low temperatures, the transport phenomena of elec-
trons in pure Ge is determined by the anisotropic scattering
of acoustic phonons. When a static magnetic field (B5Bẑ) is
applied along the major axis of an ellipsoid, the Hamiltonian
of the system is given by

H tot5(
a
ENa ,kza

aa
†aa1(

q,s
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whereaa
† (aa) is the creation~annihilation! operator for an

electron in the Landau stateua&[uNa ,kya ,kza&, Na the
Landau level index,ka the electron wave vector, and
ENa ,kza

the Landau energy given by

ENa ,kza
5~Na11/2!\vc1\2kza

2 /2ml1E
C
. ~2!

Here vc([eB/mt) is the CR frequency of electrons,ml
(mt) the longitudinal~transverse! effective mass of the elec-
tron, andE

C
the bottom of the conduction band. In Eq.~1!,

b6q,s
† (b6q,s) is the creation~annihilation! operator for pho-

non in the stateu6q,s&, \vq,s the phonon energy,q the
phonon wave vector,s the index of phonon mode, andVq,s
the coupling coefficient for the electron-phonon interaction.

In anisotropic solids such as Ge and Si, the sound speed
vq,s of acoustic phonon is different for different direction of
propagation. However, the difference is not so large,12 and
thus we assume that the sound speed is independent of the
direction of propagation. Then we can define the coupling
coefficient in Eq.~1! for longitudinal mode as

Vq,L5 i ~\q/2rmv̄L
!1/2~Jd1Jucos

2uq! ~3!

and for the sum of two branches of transverse mode as

Vq,T5 i ~\q/2rmv̄T
!1/2Jusinuqcosuq , ~4!

where uq is the inner angle between the major ellipsoidal
axis and q, rm is the mass density of the bulk,
v̄
L(T)

5(c
L(T)

/rm)
1/2 is the average of the sound speedvq,s for

each mode, c
L
5(3c1112c1214c44)/5 and c

T
5(c11

2c1213c44)/5 are the elastic stiffness constants,
13 andL(T)

denotes the longitudinal~transverse! mode of the phonon.
Most of the CR theories6–11 adopted state-dependent pro-

jection operators to obtain the CRLW functions from the
Kubo formula. However, their functions failed to produce the
two deformation potentials. In order to obtain the CRLW of
Ge or Si, they made an approximation of isotropic electron-
phonon scattering.8,10,14,15To overcome this problem, we in-
troduce~state-independent! projection operators given by

PX[
^@X,J2#&

^@J1,J2#&
J1, P8[12P, ~5!

where^ & denotes the grand canonical ensemble average and
J6[Jx6 iJy are the circular current operators of electrons.
We shall use these projection operators of Eq.~5! and then
obtain the formula for the CRLW by the same procedure as
that of Ref. 11.

When a circularly polarized microwave with frequency
v and the electric-field amplitudeE0 is incident upon the
system along thez axis, the absorption power density is
given by
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Here,P(v,vc ,T) is the averaged line-shape function given
by

P~v,vc ,T!

5
(a~Na11!@ f ~ENa11,kza

!2 f ~ENa ,kza
!#Ga~v,vc ,T!

(a~Na11!@ f ~ENa11,kza
!2 f ~ENa ,kza
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,

~7!

whereGa(v,vc ,T) is the energy-dependent line-shape func-
tion, which is the same as that given by Eq.~3.19! in Ref. 11
and f (ENa ,kza

) the Fermi-Dirac distribution. In Eq.~6!,

Im@P(v,vc ,T)# and Re@P(v,vc ,T)# are related to the
peak shift and linewidth of the CR absorption, respectively.
Note that averaging over the electron distribution appears
separately in the numerator and in the denominator in Eq.
~7!. Therefore, the averaged line-shape function may be more
manageable than the other formulas.6–11

We shall make some approximations under the condition
of the quantum limit. First, the peak shift of
Im@P(v,vc ,T)# is ignored in comparison withvc . Second,
the Fermi-Dirac distribution is approximated by the
Maxwell-Boltzmann distribution or ignored in comparison
with the phonon distribution function. Third, we take into
account only the transitions from the lowest Landau
level (Na50) to excited states, since most of electrons
reside on the lowest Landau level. Fourth, we
replace Re@P(v,vc ,T)# by Re@P(v,v,T)#, since
Re@P(v,vc ,T)# is very slowly varying function ofvc near
the resonance region. In this case, the absorption power den-
sity of Eq. ~6! can be rewritten as

P ~v,vc ,T!.Pmax~v,T!
j~v,T!2

~v2vc!
21j~v,T!2

, ~8!

where the maximum absorption power intensity is

Pmax~v,T!5~eE0!
2n~v,T!/mtj~v,T! ~9!

and the averaged relaxation rate is defined as

j~v,T![Re@P~v,v,T!#

.
\

A2pmlkBT
E

2`

`

dkzexp~2\2kz
2/2mlkBT!

3g~v,T,kz!, ~10!

which has a form of the Boltzmann average of the energy-
dependent relaxation rateg(v,T,kz), defined as the real part
of the energy-dependent line-shape function. In Eq.~9!, the
electron concentrationn(v,T) is given by

n~v,T!5gvv~mlmt
2kBT/8p3\4!1/2

3exp@2~E
C
2z!/kBT#/sinh~\v/2kBT!,

~11!

where z is the chemical potential for an electron and the
weight parametergv shall be discussed later. Note that the
averaged relaxation rate is equal to the half CRLW, since the
spectrum of the absorption power intensity forvc has a form
of Lorentzian shape. In Eq.~10!, the energy-dependent relax-
ation rate is given by

g~v,T,kz!5g
L

~1 !1g
L

~2 !1g
T

~1 !1g
T

~2 ! ~12!

where the subscript ‘‘L(T)’’ and the superscript ‘‘1(2), ’’
respectively, represent the longitudinal~transverse! mode of
phonon and the phonon absorption~emission! process. Each
part of Eq.~12! is given by
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where the limits (ai
6) of the integrations in Eqs.~13! and

~14! are determined from the energy-momentum conserva-
tion for each process,K(0, N;t)5(t2N)t

N
exp(2t)/N!,

N(\vq,s) Bose-Einstein distribution for phonon with an en-
ergy of \vq,s , D[Jd /Ju , and q

L(T)

6 5$@(12N)\v

2\2(qz
262kzqz)/2ml ]

2/(\ v̄
L(T)

)22qz
2%1/2.

In Eqs. ~11!, ~13!, and ~14!, gv is inserted, since one of
peaks in a CR absorption spectrum is constructed by the
electrons in the valleys with the same inner angle between
the major axes of the valleys and the direction of the mag-
netic fieldB. The number of CR peaks is different according
to the direction ofB. In the case of a peak produced by the
electrons in the valley with the major axis parallel toB, the
cyclotron frequency isvc5eB/mt andgv51 for Ge. For a
peak related to the major axis perpendicular toB,
vc5eB/(mtml)

1/2 and gv51 for Ge. For Si, the values of
gv are different for the different directions ofB.

We shall determine the values ofJu andJd from fitting
the derived half CRLW of Eq.~10! to suitable experimental
data. One of the candidates may be the anisotropy ratio about
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the half CRLW. For a peak related to the major axis parallel
to B, the half CRLW from Eq.~10! can be written as

j
i
5Ju

2~ I 1D
21I 2D1I 3!, ~15!

where I n are the intergals for the coefficients ofD. For a
peak related to the major axis perpendicular toB, mt and
ml are replaced by (mtml)

1/2 andmt , and sinuq and cosuq in
Eqs. ~3! and ~4! by cosuq and sinuq , respectively, since the
coordinate system is rotated perpendicular to the former.
Then we get the half CRLW as

j
'

5Ju
2~J1D

21J2D1J3!, ~16!

whereJn also are the intergals for the coefficients ofD. The
anisotropy ratio of the half CRLW’s is defined as

j
'

j
i

5
J1D

21J2D1J3
I 1D

21I 2D1I 3
, ~17!

which is the function ofD for a temperature and a resonance
frequency.

Among the physical parameters for Ge, the elastic stiff-
ness constants16 are given by c1151.2931011 N/m2,
c1250.4831011 N/m2, and c4450.6731011 N/m2. The
other values are given in Ref. 15. Then the values ofI n and
Jn for v5446 GHz are given in Fig. 1. Using these curves,
the anisotropy ratio of Eq.~17! is plotted as functions ofD,
for some temperatures as shown in Fig. 2. The experimental
data of Ito, Kawamura, and Fukai3 show that the anisotropy
ratio is almost constant for the range of 1.6; 4.2 K and a
wavelength of 6 mm, that is, in the classical limit. On the
other hand, Murase, Enjouji, and Otsuka5 argued that the

anisotropy ratio decreases as the temperature increases for
the range of 0.55; 4.2 K with 446 GHz angular frequency,
that is, in the quantum limit. Therefore, we get
D520.6860.03 from fitting the curves of Fig. 2 to the
experimental data of Murase, Enjouji, and Otsuka.5

To get the value of the uniaxial deformation constant
Ju , we shall use a recent experimental data14 related to the
temperature dependence of CRLW for pure Ge in the quan-
tum limit. When we putl5220mm and take the direction of
the applied magnetic field to be parallel to the^111& direc-
tion, we obtainJu 5 18.060.6 eV from fitting the theoreti-
cal values calculated by using the given value ofD to the
experimental data. From these results, we obtain
Jd5212.260.68 eV for Ge. The present result for the de-
formation potentials is similar to other results, as shown in
Table I. In the quantum limit, the temperature dependence of
half CRLW agrees well with the experimental data, as shown
in Fig. 3, where the value of the half CRLW of the longitu-
dinal mode relative to the transverse one is about 0.15–0.30
in the range of the quantum limit. At extremely low tempera-
tures, the CRLW is independent of temperature as Meyer
predicted.24

In summary, using the state-independent projection opera-
tors of Eq.~5!, we presented the CRLW formula that is avail-
able to determine the two deformation potentials in the quan-
tum limit. This formula was applied to Ge. For Ge, we
obtainedD520.6860.03 from fitting the calculated anisot-
ropy ratio of Eq. ~17! to the experimental data5 and
Ju518.060.6 eV from fitting the temperature dependence
of the half CRLW obtained by using the given value ofD to
the other experimental data.14 From these two values, we got
Jd5212.260.68 eV. These results are similar to some
other result as shown in Table I. In Fig. 3, the temperature
dependence of CRLW in quantum limit is in better agree-
ment with the experimental data than other results.8,10,14,15

Also, we see that the contribution of transverse phonons to
the CRLW is much larger than the longitudinal one in the

FIG. 1. IntegralsI n and Jn as functions of temperatures at
v5446 GHz for pure Ge.

FIG. 2. Theoretical curves of the anisotropy ratio of the half
CRLW’s in pure Ge, as functions ofD at v5446 GHz.
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quantum limit and the CRLW is independent of temperature
in the extremely low temperature region, as Meyer
predicted.24 Unfortunately, the deformation potentials of Si
could not be determined, due to the lack of experimental
information. If suitable experiments are available,Ju and
Jd can be obtained for Si by the same technique.
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TABLE I. Deformation-potential constants from various experi-
mental and theoretical methods for Ge.

Ju ~eV! D(5Jd /Ju) Jd ~eV! Ref.

18.060.6 20.6860.03 212.260.68 Present work
20 20.67 213.5 2a

18.760.2 20.561 210.560.5 3a

19.360.2 20.63660.011 212.360.5 4a

17.3 17b

19.260.4 18b

16.061.6 19c

16.260.4 20d

18.060.5 21e

15.4;19.5 22f

17.060.2 23g

aCyclotron-resonance linewidth in the classical limit.
bPiezoresistance.
cAcoustoelectric effect.
dInfluence of uniaxial stress on indirect absorption edge.
eFree-carrier piezobirefregence.
fOptical determination for donor impurities.
gElectronic effect in elastic constantC456.

FIG. 3. Temperature dependence of the half CRLW in pure Ge
at l5220mm and with the magnetic field along the^111& direc-
tion. The dotted line and the broken line, respectively, show the half
CRLW’s, due to the transverse and the longitudinal mode of
phonons. The solid line shows the total half CRLW. The open
circles show the experimental data of Kobori, Ohyama, and Otsuka.
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