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The finite-size corrections in exact diagonalization studies of the one- and two-dimensional Hubbard model
can be reduced systematically by a grand-canonical integration over boundary conditions. We present results
for ground-state properties of the two-dimensional~2D! Hubbard model and an evaluation of the specific heat
for the 1D and 2D Hubbard model. We find the reduction of the finite-size corrections to be substantial,
especially in two dimensions.

I. INTRODUCTION

The exact diagonalization of the Hubbard model~or the
t-J model! on finite clusters has become one of the promi-
nent techniques in the study of correlated electron systems.1

This technique has the advantage of treating the correlations
on finite clusters without any approximation. Since the Hil-
bert space grows exponentially with cluster size one is lim-
ited, for the Hubbard model, to clusters with upNs510 sites.
By finite-size correctionsis meant the difference between the
results obtained for the finite cluster and its~unknown! value
in the thermodynamic limit,Ns5`.

The control of the finite-size corrections poses a great
challenge to the exact diagonalization technique, especially
in the case of two dimensions. In one dimension, it is a
standard procedure to plot the results systematically as a
function of chain length,Ns56,8,10,12, . . . sites. In two
dimensions, on the other hand, where most calculations have
been done up to now with either periodic or antiperiodic
boundary conditions, it is difficult to estimate the finite-size
corrections by direct comparison of clusters of different
sizes, for two reasons:~1! The finite-size corrections are of-
ten nonmonotonic as a function ofNs , due to strongly vary-
ing cluster geometries.~2! The nominal density of particles,
n5Ne /Ns normally does not coincide for clusters of differ-
ent sizes as the allowed number of particlesNe51,2,3, . . . is
an integer. Both of these two difficulties can be circumvented
by a method introduced recently,2 the integration over
boundary conditions~IBC!. The IBC circumvents the first of
the above difficulties by performing a grand-canonical inte-
gration over boundary conditions. It has been shown that this
procedure removes all those finite-size corrections that are
caused by the special geometry of the Fermi sea of the
cluster.3 Thegrand-canonicalapproach then leads to the pos-
sibility of directly comparing the results for differentNs with
the samedensity n, solving also the second of the above
difficulties.

In a previous publication2 the IBC had been introduced
and some results for the Hubbard model on very small clus-
ters had been presented. Here we want to study in detail how
the finite-size corrections can be estimatedsystematically
within the IBC both at zero and at finite temperatures. For
this purpose we will concentrate on the Hubbard model, the
same study could be performed, in principle, for thet-J
model or any other cluster Hamiltonian.

II. INTEGRATION OVER BOUNDARY CONDITIONS

We consider the Hubbard Hamiltonian on a cluster with
Ns sites,

H5 (
^ i , j &,s

~ t i , j ci ,s
† cj ,s1t i , j* cj ,s

† ci ,s!1U(
i
ni ,↑ni ,↓ ~1!

where the symbol̂ i , j & denotes pairs of nearest neighbors
sites and where theci ,s

† and theci ,s are the electron creation/
destruction operators of spins5↑,↓, respectively. The hop-
ping amplitudes,

t i , j[2t exp@ ia i , j #, ~2!

depend, in general, on phasesa i , j , related to the boundary
condition. In the following all energies will be measured in
unities oft. We will now give an account of the IBC for 1D,
the generalization to two dimensions is then straightforward.

In one dimension we can choose thea i , j5a/Ns , where
aP@0,2p@ is the boundary condition. Periodic and antiperi-
odic boundary conditions correspond toa50 and a5p,
respectively. The IBC technique needs the exact diagonaliza-
tion of the cluster for any particle numberNe
50,1,2, . . . ,2Ns and anyaP@0,2p@ . For any givena one
then calculates the free energy,

Fa~m!52TkBlnS (
Ne50

2Ns

ebmNe (
k50

NH21

e2bEk~a,Ne!D , ~3!

where b51/(kBT) is the inverse temperature,m is the
chemical potential,NH is the dimension of the Hilbert space,
and theEk(a,Ne) are the eigenenergies. (NH depends on
both onNs andNe.) The total free energy of the cluster and
the particle densitynP@0,2# are then given by the average

F~m!5E
0

2pda

2p
Fa~m! ~4!

and byn52(1/Ns)@]F(m)/]m#. The free energy obtained
in Eq. ~4! with the IBC technique is constructed in such a
way that the finite size correctionsvanish identicallyin the
limit U50.2 One can understand this result most easily in
momentum space, noting that the Fermi sea, as obtained by
the IBC, has no finite-size corrections forU50. This prop-
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erty of the IBC holds in any dimension and is especially
important in two dimensions. The particle densityn can,
furthermore, be tuned toanyvalue, by choosing an appropi-
ate m, allowing us to directly compare data from clusters
with differentNs . These properties distingish the IBC tech-
nique from other exact diagonalization studies employing a
range of boundary conditions.4

The integration over boundary conditions, appearing in
Eq. ~4!, is replaced in actual calculations by a finite sum over
Na equidistant boundary conditions. Indeed, we will find
here that only a fewNa are needed in order to already obtain
most of the reduction in the finite-size corrections. Ground-
state properties can be calculated, as usual, by the Lanczos
technique. WithE0(a,Ne) being the ground-state energy for
a givena andNe one finds the estimatee0(m) for the grand-
canonical ground-state energy per site to be

e0~m!5
1

NsNa
(
a

inf
Ne

@E0~a,Ne!2mNe#. ~5!

A Legendre transformation then yields the canonical ground-
state energy of the cluster,e0(n,Ns), as a function of density.
In Fig. 1 we have plotted results obtained for the two-
dimensional~2D! Hubbard model withU54t. The results
for Na51, corresponding to periodic boundary conditions
only, differ typically by 10%220% in between clusters with
Ns58 andNs510 sites. Also shown in Fig. 1 are the data
obtained for Na525.5 Here the data differ only by
1%22% in betweenNs58 andNs510, an improvement by
one order of magnitude. For comparision we have plotted
also data obtained, by projection Monte Carlo for a 10310
system with periodic boundary conditions, by Furukawa and
Imada.6

III. SPECIFIC HEAT

Equation~3! for the free energy requires knowledge of all
eigenstates and can therefore be used only for very small
sytems, typically up toNs56 for the Hubbard model. Sev-
eral approximative methods have been developed for the nu-
merical evaluation of thermodynamic properties of systems
with large Hilbert spaces.7,8 Here we use thekernel polyno-
mial approximation~KPA! developed by Silver and Roeder,7

since it has a very good error control. One starts by
scaling the Hamiltonian so that the magnitude of all eigen-
energies is less than unity. The grand-canonical par-
tition function, Za(m)5exp@2bFa(m)#, is then expressed
as an integral over the density of states,
Da(v,Ne)51/NH(k50

NH21d@v2Ek(a,Ne)#,

Za~m!5 (
Ne50

2Ns

NHe
bmNeE

21

1

dvDa~v,Ne!e
2bv. ~6!

The density of states can be expanded in a set of orthogonal
polyomials; here we take Legendre polyomialsPl(v):

Da~v,Ne!5 (
l50

Nmom

al~a,Ne!Pl~v!, ~7!

FIG. 2. The specific heatcV per site, as a function of tempera-
ture, of a six-site chain with periodic boundary condition,n50.8,
and ~a! U52t and ~b! U516t. Plotted are the exact results~solid
line! and the results of the kernel polynomial approximation with
~a! Nmom510,100,1000 and with~b! Nmom5100,1000,10 000.

FIG. 1. The ground-state energye0 per site as a function of
particle densitiyn. Plotted are the results for the 2D Hubbard model
and U54t. The filled circles and squares denote the results for
clusters with periodic boundary conditions only,Na51, for clusters
with Ns58 andNs510 sites, respectively. The long-dashed and the
continuous line are the respective results forNa525. Also shown
~stars! are data obtained, by projection Monte Carlo for a 10310
system, by Furukawa and Imada~Ref. 6!.
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with Nmom→`. Using the orthogonality relations for Leg-
endre polynomials one can express the coefficients
al(a,Ne) in term of the eigenstates of the Hamiltonian,
HuEk(a,Ne)&5Ek(a,Ne)uEk(a,Ne)&, via

al~a,Ne!5
2l11

2NH
(
k50

NH21

^Ek~a,Ne!uPl~H !uEk~a,Ne!&.

~8!

In practice one uses a finiteNmom,`. A finite value of
Nmom leads to the well-known Gibbs oscillations in
Da(v,Ne). The Gibbs oscillations can be smoothed out by
the replacemental→algl(N mom) in ~7!. The optimal func-
tional form of the smoothing functionsgl(Nmom), with
g0(N mom)51 andgNmom11(Nmom)50, has been studied in-

tensively in the literature.7 We usegl(Nmom)5@sin(z)/z#3,
with z5 lp/(N mom11).

The numberNmom of polynomials necessary for an accu-
rate representation of the density of states in~7! increases
with decreasing temperatureT. We have evaluated the spe-
cific heatcV5b2^(H2^H&)2&/Ns per site for a six-site Hub-
bard chain with periodic boundary conditions exactly, via Eq.
~3!, and via the kernel polynomial approximation with vari-
ous Nmom. We have plotted in Fig. 2 the results for~a!

U52 and~b! U516. The KPA becomes asymptotically ex-
act for large temperatures and any values ofNmom. A nu-
merically accurate approximation to the specific heat for
temperatures down toT;0.25t may be obtained with
Nmom;103 andNmom;104, for U52 andU516, respec-
tively. The large value,Nmom;104, needed for bigU ’s, is
the reason that all data presented in Sec. IV will be for
U52.

Formula~8! is clearly not useful for larger clusters. It has
been observed7 that one cansystematicallyapproximate the
trace occuring in the right-hand side of~8! by sampling over
Nr random statesur &,

al~a,Ne!'
2l11

2Nr
(
r51

Nr

^r uPl~H !ur &. ~9!

It is possible to evaluate~9! recursively, by a procedure very
similar to the Lanczos technique.7 The errors introduced by
random averaging vanish like 1/ANr .

7 We have performed
extensive tests of the dependence of the data onNr ; we will
present in Sec. IV only data that are unaffected by finite-Nr
effects.

IV. RESULTS

In Fig. 3 we have plotted the results for the specific heat
per site for various 1D chains of lengthNs54,6,8,10, both
for the case of periodic boundary conditions only,Na51,
and forNa510. Let us first note that the specific-heat curves
for clusters of different sizes must eventually all coincide at
large enough temperatures, due to the grand-canonical for-
mulation. At large enough temperatures the leading terms
contributing to the specific heat of a cluster of a given size
are identical to the leading terms of high-temperature expan-
sions. One can consequently define aT* (Ns ,e) as the tem-
perature above which the finite-size corrections to the spe-
cific heat are smaller than a given accuracye, saye;1%.
As the specific heat forNs5` is generally not known, we
took as a practical estimate forT* (Ns ,e) the criterion that

FIG. 3. The specific heatcV per site as a function of tempera-
ture, for 1D chains withNs54,6,8,10,U52t, n50.8, and ~a!
Na51 and ~b! Na510. For Ns54,6 the data are exact, for
Ns58,10 the KPA has been used withNmom51000 and
Nr5100,10 forNs58,10, respectively.

FIG. 4. The specific heatcV per site as a function of tempera-
ture, for 2D clusters withNs58,10,U52t, n50.8. Plotted are the
data forNa51 ~dotted/dashed line! and Na516 ~dashed-dotted/
solid line!. The KPA has been used withNmom51000 and
Nr510,8 forNa51,16, respectively.
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ucv(T,Ns)2cv(T,Ns22)u,e for all T.T* (Ns ,e). We
found thatT* (Ns ,e) is roughly inversely proportional to
Ns , for the 1D data presented in Fig. 3, and that the integra-
tion over boundary conditions reducesT* (Ns ,e) by factors
of 2–3, as is evident from a comparison of Figs. 3~a! and
3~b!.

The IBC improves the cluster estimates of the specific
heat in a second way, besides the reduction ofT* (Ns ,e).
One finds empirically that the specific heat becomeslinear at
low temperatures in the limitNa→`. This property of the
low-T specific heat is present for allNs and is a consequence
of the absence of those finite-size corrections that are caused
by the geometry of the Fermi surface of the cluster, within
the IBC.3 For finiteNa there will be in general an interme-
diate temperature range where the specific heat is roughly
linear, as is the case forNa510 in Fig. 3~b! for temperatures
0.1t&T&0.3t. This feature of the specific-heat data obtained
with the IBC may be used, e.g., to estimate the inverse ef-
fective mass.

In Fig. 4 we present the specific heat per site, as a func-
tion of temperature, for 2D clusters withNs58,10, U52t,
n50.8 andNa51, andNa516. The improvement obtained

with the IBC is even more pronounced than in one dimen-
sion. The data for periodic boundary conditions are affected
so much by finite-size errors that they do not allow for a
reliable estimate of the specific heat forT,2t. For
Na516 the finite-size corrections are, on the other hand,
practically absent forT.T* (Ns510,e;1%);0.72t.

In conclusion, we have shown that the IBC can be used to
reduce substantially the finite-size corrections occuring in
exact diagonalization studies. The data obtained by the IBC
show, typically, a smooth behavior as a function of cluster
size, even in two dimensions, where the cluster geometry
may vary widely from cluster to cluster. This smooth behav-
ior often allows forquantitativeestimates of the finite-size
corrections of the data obtained by the IBC, even in two
dimensions. One obtains, furthermore, certain qualitative im-
provements with the IBC, such as a linear specific heat for
the Hubbard model on one- and two-dimensional clusters.
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