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Control of the finite-size corrections in exact diagonalization studies
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The finite-size corrections in exact diagonalization studies of the one- and two-dimensional Hubbard model
can be reduced systematically by a grand-canonical integration over boundary conditions. We present results
for ground-state properties of the two-dimensiof2)) Hubbard model and an evaluation of the specific heat
for the 1D and 2D Hubbard model. We find the reduction of the finite-size corrections to be substantial,
especially in two dimensions.

I. INTRODUCTION II. INTEGRATION OVER BOUNDARY CONDITIONS

We consider the Hubbard Hamiltonian on a cluster with

The exact diagonalization of the Hubbard modal the N sites,

t-J mode) on finite clusters has become one of the promi-

nent techniques in the study of correlated electron systems.

This technique has the advantage of treating the correlations H= 2 (ti,jCiTa-Cj,(r'i_ti*jC]T JCi o)t UZ niqni (2

on finite clusters without any approximation. Since the Hil- (ii)o ’ R P

{ed, for he Hubbard model, 1o custers with Ng- 10 stes. | *ere the symboli,j) denotes pairs of nearest neighbors

By finite-size correctiongs meant the difference between the sites an(_j where the , and t_hecw are the ele_:ctron creation/

results obtained for the finite cluster and (tmknowr) value d_estructlon operators of spin=1, |, respectively. The hop-

in the thermodynamic limitNg= . ping amplitudes,
The control of the finite-size corrections poses a great

challenge to the exact diagonalization technique, especially

in the case of two dimensions. In one dimensiqn, it is adepend, in general, on phases; , related to the boundary
standard procedure to plot the results systematically as g,ngjtion. In the following all energies will be measured in
function of cha|rr1] Iength];l]sz 6’8'r110'12' o S|te|s. I'”_ tWOh unities oft. We will now give an account of the IBC for 1D,
dimensions, on the other hand, where most calculations havyge generalization to two dimensions is then straightforward.
been done up to now with either periodic or antiperiodic " he dimension we can choose the, = /N, where

3] s

bound?ry cogdlt(quns,tlt is difficult to efsh:na;ce the ff":j'_t;'s'zetae [0,2x[ is the boundary condition. Periodic and antiperi-
corrections Dy direct comparison of clusters of difterenty, i poyndary conditions correspond &=0 and a= ,

tS|zes, for twot reason$1)fTh(i. flmte-sge c:)rretctmnls are of- respectively. The IBC technique needs the exact diagonaliza-
en nonmonotonic as a function b, due to strongly vary- tion of the cluster for any particle numbemNg

"‘9 ﬁlu/sl,\tler geomlelztride$2) The nqmi.r:jal fdensiity of pa;ti(tj;l;s, =0,1,2...,Ng and anya [0,27[. For any givena one
n=N¢/Ns normally does not coincide for clusters of differ- .0 2\ 1ates the free energy,

ti’jE_t exr[iai]j], (2)

ent sizes as the allowed number of partiddgs=1,2,3 . .. is

an integer. Both of these two difficulties can be circumvented 2Ng Ny—1

by a method introduced recenflythe integration over Fo(u)= —TkBIn( > eBuNe > @ BEaNe | (3
boundary conditiongIBC). The IBC circumvents the first of “ Ng=0 k=0

the above difficulties by performing a grand-canonical inte- ) _ )
gration over boundary conditions. It has been shown that thi¢/here 8=1/(kgT) is the inverse temperaturg, is the
procedure removes all those finite-size corrections that aréhemical potentialN,, is the dimension of the Hilbert space,
caused by the special geometry of the Fermi sea of th@nd theEy(a,N¢) are the eigenenergiesN( depends on
cluster® Thegrand-canonicahpproach then leads to the pos- both onNg andN,.) The total free energy of the cluster and
sibility of directly comparing the results for differeht, with ~ the particle densityie[0,2] are then given by the average
the samedensity n, solving also the second of the above
difficulties. Fu)= f Zrde () @

In a previous publicatiohthe IBC had been introduced ® o 27 ¢ ®
and some results for the Hubbard model on very small clus-
ters had been presented. Here we want to study in detail hoand byn= —(1/N¢)[dF (u)/du]. The free energy obtained
the finite-size corrections can be estimambtematically in Eq. (4) with the IBC technique is constructed in such a
within the IBC both at zero and at finite temperatures. Foway that the finite size correctionsnish identicallyin the
this purpose we will concentrate on the Hubbard model, théimit U=0.2 One can understand this result most easily in
same study could be performed, in principle, for thé momentum space, noting that the Fermi sea, as obtained by
model or any other cluster Hamiltonian. the IBC, has no finite-size corrections for=0. This prop-
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FIG. 1. The ground-state energy per site as a function of . . (b)

particle densitiyn. Plotted are the results for the 2D Hubbard model
and U=4t. The filled circles and squares denote the results for
clusters with periodic boundary conditions o, =1, for clusters

with Ng=8 andN¢= 10 sites, respectively. The long-dashed and the
continuous line are the respective results Kgy=25. Also shown N
(starg are data obtained, by projection Monte Carlo for a<x1® 02|
system, by Furukawa and ImadRef. 6).
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1D Hubbard
U=16t
n=08,N;=6

1 boundary condition

— exact

erty of the IBC holds in any dimension and is especially

important in two dimensions. The particle densitycan, ;-_-:E::::igggo

furthermore, be tuned tany value, by choosing an appropi- -

ate u, allowing us to directly compare data from clusters 09,5 . oz =

with differentNg. These properties distingish the IBC tech- T/t

nique from other exact diagonalization studies employing a . _ _

range of boundary conditiorfs. FIG. 2. The specific heat, per site, as a function of tempera-

The integration over boundary conditions, appearing inture, of a six-site chain with periodic boundary condition; 0.8,

. . - - and(a) U=2t and(b) U=16t. Plotted are the exact res lid
Eq. (4), is replaced in actual calculations by a finite sum ove @ (b) X ultsoli

. " o rIine) and the results of the kernel polynomial approximation with
N, equidistant boundary conditions. Indeed, we will find (@ Nyom=10,100,1000 and witkb) N,,o,= 100,1000,10 000.

here that only a fevN, are needed in order to already obtain

most of the reduction in the finite-size corrections. Ground- Ill. SPECIFIC HEAT

state properties can be calculated, as usual, by the Lanczos , ,

technique. WithEy(,N,) being the ground-state energy for Equation(3) for the free energy requires knowledge of all

a givena andN,, one finds the estimaigy(u) for the grand- elgenstates- and can therefore be used only for very small

canonical ground-state energy per site to be sytems, typ.|cally up tdNg=6 for the Hubbard model. Sev-
eral approximative methods have been developed for the nu-
merical evaluation of thermodynamic properties of systems

1 with large Hilbert spaces® Here we use th&ernel polyno-
()= NN > inf [Eg(a,Ng) — uNg]. (5) rr_1ia| approximation(KPA) developed by Silver and Roeder,
sVa @ Ng since it has a very good error control. One starts by

scaling the Hamiltonian so that the magnitude of all eigen-

) ) ) energies is less than unity. The grand-canonical par-
A Legendre transformation then yields the canonical groundsitjon function, Z,(u)=exd—BF ()], is then expressed

state energy of the clustagg(n,Ns), as a function of density. 55  gn integral  over the density of states
In Fig. 1 we have plotted results obtained for the two—D N = 1NN st E N ’
dimensional(2D) Hubbard model withU=4t. The results a(@Ne) =INy2 2o "ol o~ Ey(aNe)],

for N,=1, corresponding to periodic boundary conditions 2Ng 1
only, differ typically by 10%-20% in between clusters with Z ()= > NHeﬁ“Nef dwD (w,Ng)e B,  (6)
Ns=8 andN¢=10 sites. Also shown in Fig. 1 are the data Ne=0 -1

. o5 :
2?/‘(1)&:[‘1280(/1 i:lol:r: e':lvze_e?‘fl.f g (;rr(]a d,\:r:i 18?;?] iglgreorvecr):!eynt Ei’/ The density of states can be expanded in a set of. orthogonal
one order of magnitude. For comparision we have plotte&)owom'als’ here we take Legendre polyomiBigw):

also data obtained, by projection Monte Carlo for a<11@
system with periodic boundary conditions, by Furukawa and

mada® D (w,Ne)= 2 a(a,Ne)Py(w), Y]
mada: =0

Nmom
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(b) FIG. 4. The specific heat,, per site as a function of tempera-
o | T ture, for 2D clusters witiNs=8,10,U=2t, n=0.8. Plotted are the
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FIG. 3. The specific heat, per site as a function of tempera-
ture, for 1D chains withN,=4,6,8,10,U=2t, n=0.8, and(a)

1o u=2.

data forN,=1 (dotted/dashed lineand N,=16 (dashed-dotted/
solid ling. The KPA has been used witiN,,=21000 and
N,=10,8 forN,=1,16, respectively.

U=2 and(b) U=16. The KPA becomes asymptotically ex-
act for large temperatures and any valuesNgf,,,. A nu-

. merically accurate approximation to the specific heat for
temperatures down tdl~0.2% may be obtained with
Niom~ 10° and N,on~ 104, for U=2 andU=16, respec-
tively. The large valueN .~ 10°, needed for bigJ’s, is

the reason that all data presented in Sec. IV will be for

Formula(8) is clearly not useful for larger clusters. It has

N,=1 and (b) N,=10. For N=4,6 the data are exact, for Nr random statefy ),
Ns=8,10 the KPA has been used witiN;,,=21000 and

N,=100,10 forN;=8,10, respectively.

with N, 0. Using the orthogonality relations for Leg-
endre polynomials one can express the coefficientdt is possible to evaluaté) recursively, by a procedure very
a(a,N,) in term of the eigenstates of the Hamiltonian, similar to the Lanczos technigueThe errors introduced by
random averaging vanish like dJ)Tﬂ We have performed
extensive tests of the dependence of the dathl,grwe will

H|Ek(a1Ne)>:Ek(avNe)|Ek(a1Ne)>' via

Ny—1

ai(eNe)= 5= 2 (B Ne) [PI(H)E(@Ne).

effects.

®

In practice one uses a finitd ;<. A finite value of

Nmom leads to the well-known Gibbs oscillations in

N;

r=

IV. RESULTS

al(a’,Ne)”;lE (r|Pi(H)[r).
N, &

been observedthat one carsystematicallyapproximate the
trace occuring in the right-hand side @ by sampling over

9

present in Sec. IV only data that are unaffected by fihite-

In Fig. 3 we have plotted the results for the specific heat

Da(@,Ng). The Gibbs oscillations can be smoothed out byper site for various 1D chains of lengt,=4,6,8,10, both

the replacement;—a,9;(N nom in (7). The optimal func-
tional form of the smoothing functiong);(Nyoy), With

for the case of periodic boundary conditions on\, =1,
and forN,=10. Let us first note that the specific-heat curves

Jo(Nmom =1 andgy__ . 1(Nmon) =0, has been studied in- for clusters of different sizes must eventually all coincide at
tensively in the literaturé.We useg;(Nmom =[sin(z)/z]3, large enough temperatures, due to the grand-canonical for-
with z=I7/(N pomt1). mulation. At large enough temperatures the leading terms
The numbemN,,, of polynomials necessary for an accu- contributing to the specific heat of a cluster of a given size
rate representation of the density of stateq4hincreases are identical to the leading terms of high-temperature expan-
with decreasing temperatufle We have evaluated the spe- sions. One can consequently defin@’a N, €) as the tem-
cific heatc, = 8%((H—(H))?)/N, per site for a six-site Hub- perature above which the finite-size corrections to the spe-
bard chain with periodic boundary conditions exactly, via Eq.cific heat are smaller than a given accuragysay e~1%.
(3), and via the kernel polynomial approximation with vari- As the specific heat foNg= is generally not known, we
ous Npom- We have plotted in Fig. 2 the results féa)  took as a practical estimate far* (Ng,€) the criterion that
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lc,(T,Ng) —c,(T,Ng—2)|<e for all T>T*(Ng,e). We with the IBC is even more pronounced than in one dimen-
found thatT* (Ng,€) is roughly inversely proportional to sion. The data for periodic boundary conditions are affected
N, for the 1D data presented in Fig. 3, and that the integraso much by finite-size errors that they do not allow for a
tion over boundary conditions reduc&$(Ng,€) by factors reliable estimate of the specific heat féaf<2t. For
of 2-3, as is evident from a comparison of Figé)3and N,=16 the finite-size corrections are, on the other hand,

3(b). _ _ _practically absent foff >T* (Ng=10,e~1%)~0.72.
The IBC improves the cluster estimates of the specific |n conclusion, we have shown that the IBC can be used to
heat in a second way, besides the reductiom®Ns.€).  reduce substantially the finite-size corrections occuring in

One finds empirically that the specific heat becoiiiesarat  gyact diagonalization studies. The data obtained by the IBC
low temperatures in the limiN,—ce. This property of the — gpoy typically, a smooth behavior as a function of cluster
low-T specific heat is present for 8l and is a consequence gj;e even in two dimensions, where the cluster geometry
of the absence of those finite-size corrections that are caus%qlay vary widely from cluster to cluster. This smooth behav-
by the geometry of the Fermi surface of the cluster, withinjor often allows forquantitativeestimates of the finite-size

the IBC” For finite N,, there will be in general an interme- ¢,rrections of the data obtained by the IBC, even in two
diate temperature range where the specific heat is roughlfimensions. One obtains, furthermore, certain qualitative im-
linear, as is the case o, =10 in Fig. 3b) for temperatures  yroyements with the IBC, such as a linear specific heat for

0.11=T=0.3t. This feature of the specific-heat data obtainedine Hubbard model on one- and two-dimensional clusters.
with the IBC may be used, e.g., to estimate the inverse ef-

fective mass. This work was supported by the Deutsche Forschungsge-

In Fig. 4 we present the specific heat per site, as a funcmeinschaft, the Graduiertenkolleg “Festkerspektrosko-
tion of temperature, for 2D clusters with;=8,10, U=2t, pie,” and the European Community Human Capital and Mo-
n=0.8 andN,=1, andN,=16. The improvement obtained bility program.
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