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Band tails, length scales, and localization
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The one-parameter scaling theory of Anderson localization is discussed in the light of recent numerical
results. It is argued that apparent violations of scaling can be understood as crossover phenomena, which
should be expected to occur whenever the density of states varies rapidly near the mobility edge. The apparent
existence of a sharp effective band edge for some two- and three-dimensional models with off-diagonal
disorder, and the consequences for spin-glass models which follow from this, are also considered.

[. INTRODUCTION (hypencube of lengthL. The 8 function is claimed to be
universal, meaning that it should be independertt @ind of
The one-parameter scaling thebryof Anderson the probability distribution for the randomness.
localization? which is based on the idea that the behavior of We can rewrite the conductance as
the Thouless numbért as a function of length scale deter- 42
mines the localization length, has been enormously 9(E,L)=n(E,L)en(E,L)L"7, ©)
s:uccessfuT:G Recently,o however, some numerical calcula-yheren is the electron density of states,is the electronic
tions have suggestéd? that this theory does not provide a charge,u is the electron mobility, andl is the number of
complete classification of the mobility edge behavior of tWO'space dimensions of the lattice. In a metallic phaseap-
and three-dimensional systems. In addition, it has beepyy, converges to a finite constant ksncreases, while in an
known for several years that there exist One'd'menS'OnaAnderson-localized phase it behaves like [exgL/
models of smoothly varying potentié’rslzwhich fall outside ) (FY] for large L, whereA(E) is the localization length of
the scope of the simple scaling theory. In this work we will he gigenfunctions. At the boundary between a metallic phase
attempt to provide a framework with which we can under-nq an Anderson-localized phase, we find a mobility edge,
stand the apparent exceptions to the scaling theory. where u(E) falls to zero like a power of. as we take. to
For definiteness, we consider a tight-binding Hamiltonianinﬁnity.
with one orbital per site and nearest-neighbor hopping: The one-parameter scaling theory implicitly assumes that
n(E,L) can be approximated as\W¥/in the energy region of
H=2 siclg+ X wicle+vcla, (1)  interest[Actually, it is clear from the form of Eq(2) that it
! o does not matter what is, as long as it is well approximated
where we will assume that the sites fornreypencubic lat- By Some positive constahihenW is large, so that at most
tice, and(i,j) indicates a sum over neighbor pairs. When all2 small fraction of the eigenfunctions lying near the center of
of the v;; are set equal to a constavit and eache; is an the band are extended, this approximation is justified, and
independent random variable chosen from a rectanguldfd- (2) can be verified numericalfy. _ _
probability distribution of widthW, this becomes the stan-  In this limit it has even been proven thatis an analytic
dard Anderson modélDue to gauge invariance, there is no function of E in the region of interest! In general, however,
loss of generality in choosing to be real and positive. An- it iS only possible to prove that when the probability distri-
other case which has received a great deal of attention is tHtution for the randomness is continuous, thE) is strictly
random hopping modé? for which we choose all of the; positive everywhere inside the allowed e6nergy b]aﬁ“ld.ca_m
to be zero, and make thg; independent, identically distrib- Pe demonstrated that there are casEs® where n(E) is
uted random variables. The random hopping model is closelffonanalytic precisely & . It is not surprising that the one-
related to the Ising spin gla$8We will not explicitly con- ~ Parameter scaling theory, E@®), fails to describe these spe-
sider the electron spin in this work. cial cases.

Il. ONE-PARAMETER SCALING . SMOOTH RANDOM POTENTIALS

The one-parameter scaling hypothesis assumes that the Near the limits of the allowed eigenvalue spectrum, the

properties of this model at some enefyare described by eigenvectors are localized in rare, large fluctuations of the
the function random potentiat’ The properties of these Lifshitz tail states

are determined by the statistics of large fluctuations rather
din(g) than by the localization length, because the size of a po-
B(g)= ) (2)  tential fluctuation which is strong enough to create a tail state
d In(L) . . 17
is larger than\. In a mean-field theor{?"}’when the random
whereg(E,L) is the expectation valuéaveraged over the potential is weak most of the eigenstates remain extended,
randomness of the conductance at the enerdy of a  and there is a sharp effective band edife where the Lif-
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shitz tail states encounter the extended states. Lifshitz-Prange-Kadanoff behavior to the stable fixed point
Thus we see that there are two different mean-field theodescribed by Eq(2).
ries of a mobility edge, which correspond to two different  Within perturbation theory we describe this by saying the
universality classes. For weak disortfe’ we see the Lif- small-angle scattering is not effective in changing the mo-
shitz transition: most of the states are extended ang  mentum of the electron, so that the length scale on which
nonanalytic aE* . For strong disordémwe have the Ander- Mmomentum conservation breaks down becomes much larger
than the phase coherence length. The breakdown of momen-
tum conservation under these conditions defines a new
length scalelL,. The one-parameter scaling behavior can

) o only be observed on length scales larger thgnAs pointed
Harris and Lubensl&}? attempted a renormalization-group out above, we can construct mathematical models for which

calculation for the Lifshitz transition. However, their treat- . . . .
ment of the localized states must be incorrect, because i’f,]patlstr:gﬁggfi'ctsg;n (serrrgg'?herSe?th?r}tl)a?i%r:gt?sref;?ac\jtelg POOI,I[?]g
violates Wegner’s theorefi.Thus, we do not yet understand Kolmogorov-Arnold-Mose(KAM ) theorem.
how to go beyond mean-field theory for the Lifshitz transi-
tion.

The recent numerical calculationd® show that the effec- IV. SPIN GLASS
tive band edgeE seems to be well-defined in two or three
dimensions for the random hopping model. Although wey,qe1in twd and thre&'° dimensions, it turns out that the

mu_s_t treat this apparent numerical_result CaUtiOUS_Iy’ it iS_qUit(iifshitz tail states are too rare to be seen on lattices of rea-
striking, and worthy g{oour attention. In three dimensions,q,nape size. This has interesting consequences for the dy-
E. is not equal toE,™™ even in the weak disorder limit. amics of spin-glass and gauge-glass models. The random
However, in this case, the numerical results show that it réhopping model withw;; chosen randomly frome1 can be

sides in a region whera(E) is varying rapidly. The states jgentified as the high-temperature susceptibility matrix of the
whose energies are betweBg and E are Anderson states, |sing spin glass®?*?*When thew;; are chosen to be com-

localized by quantum interference. The sizes of these Andeilex numbers of moduki1 a similar identification can be
son states, unlike the Lifshitz states, are characterized by th@ade with theXY gauge glass.

localization length\(E). Since the Lifshitz states become |t was claimed by Randeria, Sethna, and Paffiibiat the
large as their energies approach the true band Hdtere  |ong-time dynamics of the Ising spin glass, as seen in nu-
must exist some energy where the size of a localized state {ferical simulations, was controlled by the Lifshitz tail states.
minimized. It is attractive to conjecture that this energy is|n fact, the observed dynamical beha?it#° does not match
E. The behavior of the transmission coefficient in the two-the predictions of Randeria, Sethna, and Palmer. The pre-
dimensional casemay also be explained by a rapid variation dicted “Griffiths singularity”?® presumably exists, since the
of n(E).® Thus, it does not provide strong evidence for theLifshitz states must exist in principle. However, this behavior
existence of an anomaly in the mobility. It has been sugis unobservably weak, and is not responsible for the ob-
gested by Godin and Haydotcthat E represents a true sin- served behavior of the simulations and real experiménts.
gular point ofn(E) even in two dimensions. The observed behavior must be coming from the Ander-
A theorem of Prange and Kadandffwhich is an exten- son states at the effective band edge. These states, which
sion of Migdal’s theoren?® requires that in the limit of weak, comprise perhaps 16 of the eigenstates in three
smoothly varying potentials the producj is independent dimensions, are all very close td,. Therefore, the renor-
of the random potential in the metallic phase. This arisesnalization of these localized states of the susceptibility ma-
from treating the random potential as a sum of long-trix across the mobility edge as the temperature is lowered,
wavelength zero-frequency phonons. This results in the exas proposed by Hertz, Fleishman, and Andefédrecomes
istence of a Ward identity valid within a perturbation theory highly plausible. The density of these states gives a mini-
for the metallic phase, which breaks dowrEat This break- mum length scale of somewhat more than ten lattice spacings
down of the Ward identity can be considered a symmetryfor critical scaling behavior in the three-dimensional Ising
breaking phase transition, and it forae$o become nonana- spin glass, because we need to have several localized eigen-
lytic at E..! Note that this picture is, in some sense, dual tostates in a sample to see the scaling behavior. A similar effect
the analysis of KohA! who argues that there is a broken has been identified in other, related problefis’ Since the
symmetry and long-range order in the metallic phase. number of Anderson states created by off-diagonal disorder
It is to be expected that we will encounter cases where thés so small ind= 3, one suspects that the susceptibility ma-
potential is smooth, but not extremely smooth. For instanceirix for the spin glass does not have any such eigenvectors
we might be interested in a three-dimensional random poterfor d=4.
tial whose wave-number power spectrugf|k|) is propor- We are left with a series of problems for future work. The
tional to (k|?+k3) %, with |koa|<1 (wherea is the lattice ~first one is whether the effective band edge is truly well
constant Whend is less than some critical dimension, the defined for the random hopping model in two and three di-
Prange-Kadanoff behavior, which is at the heart of the Lif-mensions. In other words, is it really possible to make a clear
shitz transition, is expected to be generically unstable. Thiglistinction between the Lifshitz tail states and the Anderson
critical dimension is not less than fotfrbut it may be even states for this case and, if so, why? An analysis by Soukoulis,
greater. Thus, a situation where the small-angle scattering i§ohen, and Economdtiargues for the existence of an en-
dominant should give rise to a crossover from the unstablergy like E, but it does not explain whyi(E) should be

son transition: most of the states are localized ang ana-
lytic at E.. It would not be surprising if both types of tran-
sitions can contribute to behavior in three dimensions.

In the numerical simulations for the random hopping
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nonanalytic at this energy. The second one is convincinglyglass. Thus the third problem is working out the details of the
identifying the critical dimension for the stability of the renormalization of the localized Hertz-Fleishman-Anderson
Lifshitz-Prange-Kadanoff behavior. And once we properlystates in a three-dimensional system, and showing whether or
understand what is special about the random hopping modehot it leads to a true phase transition.

we should finally be in a position to understand the Ising spin
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