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The one-parameter scaling theory of Anderson localization is discussed in the light of recent numerical
results. It is argued that apparent violations of scaling can be understood as crossover phenomena, which
should be expected to occur whenever the density of states varies rapidly near the mobility edge. The apparent
existence of a sharp effective band edge for some two- and three-dimensional models with off-diagonal
disorder, and the consequences for spin-glass models which follow from this, are also considered.

I. INTRODUCTION

The one-parameter scaling theory1 of Anderson
localization,2 which is based on the idea that the behavior of
the Thouless number,3,4 as a function of length scale deter-
mines the localization length, has been enormously
successful.5,6 Recently, however, some numerical calcula-
tions have suggested7–10 that this theory does not provide a
complete classification of the mobility edge behavior of two-
and three-dimensional systems. In addition, it has been
known for several years that there exist one-dimensional
models of smoothly varying potentials11,12which fall outside
the scope of the simple scaling theory. In this work we will
attempt to provide a framework with which we can under-
stand the apparent exceptions to the scaling theory.

For definiteness, we consider a tight-binding Hamiltonian
with one orbital per site and nearest-neighbor hopping:
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where we will assume that the sites form a~hyper!cubic lat-
tice, and̂ i , j & indicates a sum over neighbor pairs. When all
of the n i j are set equal to a constantV, and each« i is an
independent random variable chosen from a rectangular
probability distribution of widthW, this becomes the stan-
dard Anderson model.2 Due to gauge invariance, there is no
loss of generality in choosingV to be real and positive. An-
other case which has received a great deal of attention is the
random hopping model,13 for which we choose all of the« i
to be zero, and make then i j independent, identically distrib-
uted random variables. The random hopping model is closely
related to the Ising spin glass.10 We will not explicitly con-
sider the electron spin in this work.

II. ONE-PARAMETER SCALING

The one-parameter scaling hypothesis assumes that the
properties of this model at some energyE are described by
the function

b~g!5
d ln~g!

d ln~L !
, ~2!

whereg(E,L) is the expectation value~averaged over the
randomness! of the conductance at the energyE of a

~hyper!cube of lengthL. The b function is claimed to be
universal, meaning that it should be independent ofE and of
the probability distribution for the randomness.

We can rewrite the conductance as

g~E,L !5n~E,L !em~E,L !Ld22, ~3!

wheren is the electron density of states,e is the electronic
charge,m is the electron mobility, andd is the number of
space dimensions of the lattice. In a metallic phase,m rap-
idly converges to a finite constant asL increases, while in an
Anderson-localized phase it behaves like exp@22L/
l(E)] for large L, wherel(E) is the localization length of
the eigenfunctions. At the boundary between a metallic phase
and an Anderson-localized phase, we find a mobility edge,
wherem(E) falls to zero like a power ofL as we takeL to
infinity.

The one-parameter scaling theory implicitly assumes that
n(E,L) can be approximated as 1/W in the energy region of
interest.@Actually, it is clear from the form of Eq.~2! that it
does not matter whatn is, as long as it is well approximated
by some positive constant.# WhenW is large, so that at most
a small fraction of the eigenfunctions lying near the center of
the band are extended, this approximation is justified, and
Eq. ~2! can be verified numerically.6

In this limit it has even been proven thatn is an analytic
function ofE in the region of interest.14 In general, however,
it is only possible to prove that when the probability distri-
bution for the randomness is continuous, thenn(E) is strictly
positive everywhere inside the allowed energy band.15 It can
be demonstrated that there are cases11,12,16 where n(E) is
nonanalytic precisely atEc . It is not surprising that the one-
parameter scaling theory, Eq.~2!, fails to describe these spe-
cial cases.

III. SMOOTH RANDOM POTENTIALS

Near the limits of the allowed eigenvalue spectrum, the
eigenvectors are localized in rare, large fluctuations of the
random potential.17 The properties of these Lifshitz tail states
are determined by the statistics of large fluctuations rather
than by the localization lengthl, because the size of a po-
tential fluctuation which is strong enough to create a tail state
is larger thanl. In a mean-field theory,13,17when the random
potential is weak most of the eigenstates remain extended,
and there is a sharp effective band edgeEc* , where the Lif-
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shitz tail states encounter the extended states.
Thus we see that there are two different mean-field theo-

ries of a mobility edge, which correspond to two different
universality classes. For weak disorder13,17 we see the Lif-
shitz transition: most of the states are extended andn is
nonanalytic atEc* . For strong disorder

2 we have the Ander-
son transition: most of the states are localized andn is ana-
lytic at Ec . It would not be surprising if both types of tran-
sitions can contribute to behavior in three dimensions.

Harris and Lubensky18 attempted a renormalization-group
calculation for the Lifshitz transition. However, their treat-
ment of the localized states must be incorrect, because it
violates Wegner’s theorem.15 Thus, we do not yet understand
how to go beyond mean-field theory for the Lifshitz transi-
tion.

The recent numerical calculations7–10show that the effec-
tive band edgeẼ seems to be well-defined in two or three
dimensions for the random hopping model. Although we
must treat this apparent numerical result cautiously, it is quite
striking, and worthy of our attention. In three dimensions,
Ec is not equal toẼ,9,10 even in the weak disorder limit.
However, in this case, the numerical results show that it re-
sides in a region wheren(E) is varying rapidly. The states
whose energies are betweenEc and Ẽ are Anderson states,
localized by quantum interference. The sizes of these Ander-
son states, unlike the Lifshitz states, are characterized by the
localization lengthl(E). Since the Lifshitz states become
large as their energies approach the true band edge,17 there
must exist some energy where the size of a localized state is
minimized. It is attractive to conjecture that this energy is
Ẽ. The behavior of the transmission coefficient in the two-
dimensional case7 may also be explained by a rapid variation
of n(E).8 Thus, it does not provide strong evidence for the
existence of an anomaly in the mobility. It has been sug-
gested by Godin and Haydock7 that Ẽ represents a true sin-
gular point ofn(E) even in two dimensions.

A theorem of Prange and Kadanoff,19 which is an exten-
sion of Migdal’s theorem,20 requires that in the limit of weak,
smoothly varying potentials the productnm is independent
of the random potential in the metallic phase. This arises
from treating the random potential as a sum of long-
wavelength zero-frequency phonons. This results in the ex-
istence of a Ward identity valid within a perturbation theory
for the metallic phase, which breaks down atEc . This break-
down of the Ward identity can be considered a symmetry-
breaking phase transition, and it forcesn to become nonana-
lytic at Ec .

11 Note that this picture is, in some sense, dual to
the analysis of Kohn,21 who argues that there is a broken
symmetry and long-range order in the metallic phase.

It is to be expected that we will encounter cases where the
potential is smooth, but not extremely smooth. For instance,
we might be interested in a three-dimensional random poten-
tial whose wave-number power spectrum,S(uku) is propor-
tional to (uku21k0

2)21, with uk0au!1 ~wherea is the lattice
constant!. Whend is less than some critical dimension, the
Prange-Kadanoff behavior, which is at the heart of the Lif-
shitz transition, is expected to be generically unstable. This
critical dimension is not less than four,18 but it may be even
greater. Thus, a situation where the small-angle scattering is
dominant should give rise to a crossover from the unstable

Lifshitz-Prange-Kadanoff behavior to the stable fixed point
described by Eq.~2!.

Within perturbation theory we describe this by saying the
small-angle scattering is not effective in changing the mo-
mentum of the electron, so that the length scale on which
momentum conservation breaks down becomes much larger
than the phase coherence length. The breakdown of momen-
tum conservation under these conditions defines a new
length scaleLp . The one-parameter scaling behavior can
only be observed on length scales larger thanLp. As pointed
out above, we can construct mathematical models for which
Lp is infinite. Some readers may be interested in noting
that the effect of smooth perturbations is related to the
Kolmogorov-Arnold-Moser~KAM ! theorem.

IV. SPIN GLASS

In the numerical simulations for the random hopping
model in two8 and three9,10 dimensions, it turns out that the
Lifshitz tail states are too rare to be seen on lattices of rea-
sonable size. This has interesting consequences for the dy-
namics of spin-glass and gauge-glass models. The random
hopping model withn i j chosen randomly from61 can be
identified as the high-temperature susceptibility matrix of the
Ising spin glass.10,22,23When then i j are chosen to be com-
plex numbers of modulus 1 a similar identification can be
made with theXY gauge glass.

It was claimed by Randeria, Sethna, and Palmer24 that the
long-time dynamics of the Ising spin glass, as seen in nu-
merical simulations, was controlled by the Lifshitz tail states.
In fact, the observed dynamical behavior23,25does not match
the predictions of Randeria, Sethna, and Palmer. The pre-
dicted ‘‘Griffiths singularity’’26 presumably exists, since the
Lifshitz states must exist in principle. However, this behavior
is unobservably weak, and is not responsible for the ob-
served behavior of the simulations and real experiments.27

The observed behavior must be coming from the Ander-
son states at the effective band edge. These states, which
comprise perhaps 1023 of the eigenstates in three
dimensions,9 are all very close toEc . Therefore, the renor-
malization of these localized states of the susceptibility ma-
trix across the mobility edge as the temperature is lowered,
as proposed by Hertz, Fleishman, and Anderson,22 becomes
highly plausible. The density of these states gives a mini-
mum length scale of somewhat more than ten lattice spacings
for critical scaling behavior in the three-dimensional Ising
spin glass, because we need to have several localized eigen-
states in a sample to see the scaling behavior. A similar effect
has been identified in other, related problems.28–31Since the
number of Anderson states created by off-diagonal disorder
is so small ind53, one suspects that the susceptibility ma-
trix for the spin glass does not have any such eigenvectors
for d>4.

We are left with a series of problems for future work. The
first one is whether the effective band edge is truly well
defined for the random hopping model in two and three di-
mensions. In other words, is it really possible to make a clear
distinction between the Lifshitz tail states and the Anderson
states for this case and, if so, why? An analysis by Soukoulis,
Cohen, and Economou32 argues for the existence of an en-
ergy like Ẽ, but it does not explain whyn(E) should be
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nonanalytic at this energy. The second one is convincingly
identifying the critical dimension for the stability of the
Lifshitz-Prange-Kadanoff behavior. And once we properly
understand what is special about the random hopping model,
we should finally be in a position to understand the Ising spin

glass. Thus the third problem is working out the details of the
renormalization of the localized Hertz-Fleishman-Anderson
states in a three-dimensional system, and showing whether or
not it leads to a true phase transition.
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