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We discuss an expansion of the low-energy effective Hamiltonian of the large-U Hubbard model, in which
higher-order terms involve lattice clusters with larger numbers of sites rather than larger powers of the hopping
amplitude parametert. Expressions for each term, valid to all orders int, can be obtained by exactly diago-
nalizing the Hubbard model for small clusters. Leading terms in this expansion are derived.

The Hubbard model is a highly simplified and widely
studied model for studying strongly correlated fermions on a
lattice. The usual and simplest version of the Hubbard
Hamiltonian is

H52t(
i j s

Ni j cis
† cjs1U(

i
ni↑ni↓ , ~1!

whereNi j51 if i , j are nearest-neighbor sites and is zero
otherwise. We will refer toNi j below as the link variable. In
Eq. ~1!, cis

† andcis are the creation and annihilation opera-
tors for an electron of spins on sitei andnis5cis

† cis is the
number operator for spins on site i . The one-body term
describes hopping of electrons between Wannier orbitals as-
sociated with neighboring sites, while the two-body terms
describe interactions between two electrons on the same site.
One of the virtues of this model Hamiltonian is that it pro-
vides a very simple picture of the Mott insulator state in
which strong interactions lead to an insulating state where
band theory would predict a metallic state. Fort50, site
representation occupation number states are eigenstates of
the Hamiltonian with eigenvalueE5UND , where
ND5( ini↑ni↓ is the number of doubly occupied sites. When
the number of electrons per siten51, the ground state has
energyE50 and forN sites has degeneracy 2N. The degen-
eracy reflects the two possible spin states for the single elec-
tron on each site. The ground state is separated from excited

states by a Mott-Hubbard gapU. The Mott-Hubbard gap and
the associated insulating behavior of the electronic system
survive fortÞ0, at least to a finite value of the magnitude of
the hopping parameterutcu. Low-temperature and -energy
properties of Hubbard model systems for smallt/U depend
on the manner in which the ground state degeneracy is lifted
for tÞ0.

It is convenient to describe this low-energy portion of the
Hubbard model spectrum at largeU in terms of an effective
Hamiltonian.1–4 One approach to deriving a systematic ex-
pansion of the effective Hamiltonian in powers oft/U, de-
veloped previously by one of us,5,6 is based on an analogy to
the Foldy-Wouthuysen7 transformation derivation of relativ-
istic corrections to the Schro¨dinger equation. In this ap-
proach the number of doubly occupied sites plays a role
similar to the number of electron-positron pairs in the Dirac
equation. At lowest order the resulting effective Hamiltonian
is the so-called ‘‘t-J’’ model which has, despite legitimate
concerns8 about its reliability in the metallic state, been
widely used to model the many-body physics of the CuO2

planes in high-temperature superconductors.9 In this paper
we restrict our attention to the casen51 for which the low-
energy Hilbert space evolves for finitet from those states
with one electron on each site and no orbital degrees of free-
dom. As a consequence the effective Hamiltonian can always
be expressed as a spin Hamiltonian. It follows from the ap-
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proach of Refs. 5 and 6 that this Hamiltonian can always be
expressed in the form of a sum of coupled cluster Hamilto-
nians:

H85(
N,l

(
i1 , . . . ,i N

LN,l~ i 1 , . . . ,i N!HN,l~sW i1
, . . . ,sW i N

!.

~2!

Here N is the number of distinct sites in a cluster,
i 1 , . . . ,i N range over all lattice sites,sW i52sW i is the Pauli
spin-matrix operator for sitei , l labels the distinct manners
in whichN sites can be linked by nearest-neighbor hops, and
LN,l( i 1 , . . . ,i N) is equal to 1 if the sites are linked in the
l th manner and is zero otherwise.LN,l can always be ex-
pressed as the product of theNi , j for the various sites in a
cluster. The set of possible linkage functions for up to six
sites is listed in Ref. 6. Some linkage functions for
N52,3,4 are illustrated schematically in Fig. 1. With this
form of expansion, the effective Hamiltonian depends on the
dimension and type of the lattice only through the link vari-
ables. In thet/U expansion of then51 effective Hamil-
tonian, terms involvingN linked sites appear only at order
2@(N11)/2# or larger.~Here@x# denotes the integer part of
x.) In this paper we propose an alternate approach in which
the cluster effective Hamiltonians,HN,l , are determinedto
all orders in t iteratively, starting with smallN, by exactly
diagonalizing the corresponding cluster Hamiltonians.~Spec-
tra for the Hubbard model for some clusters discussed here
are illustrated in Fig. 2.! Exact expressions are derived for
the leading cluster Hamiltonians.

The starting point for the derivation of the cluster Hamil-
tonians is the application of Eq.~2! to a system consisting of
two linked sites so thatH852H2,1. The Hubbard model for
the two-site system is readily diagonalized analytically.10

The low-energy Hilbert space is found by identifying the
eigenvalues which approach zero fort→0. For the two-site
Hubbard model there are four such eigenvalues, a triplet with
E50 and a singlet withE5U/22(4t21U2/4)1/2. It follows
that

H2,1~sW 1 ,sW 2!/U5
1

16
~12A1116x!~12sW 1•sW 2!

[ f 2~12sW 1•sW 2!, ~3!

wherex5t2/U2. The leading term in the smallx expansion
ofH2,1 is the usual term arising at leading order in the large-
U expansion of the Hubbard model; the next two terms are in
agreement with the contributions associated with the linkage
function L2,1 which appear at ordert4 and t6 in the system-
atic expansion of Refs. 5 and 6. The higher-order terms rep-
resent a subsum to all orders int of the portion of the per-
turbation expansion which is associated with theL2,1 linkage
function.

FIG. 1. Schematic illustration of some linkage functions for
N52, 3, 4. Sites connected by a solid line haveNi j51; otherwise,
Ni j50.

FIG. 2. Plots of the energy eigenvalues of the Hubbard model
for clusters of two linked cites, three linearly linked cites, and four
cyclically linked cites. The spectra for these clusters may be used to
determine cluster effective spin Hamiltonians as described in the
text. Note that subspaces associated, in thet50 limit, with different
numbers of doubly occupied sites begin to overlap at smallert/U in
larger clusters. As has been shown in Ref. 6 the cluster spin Hamil-
toniansH3,1 andH4,1 are the only ones that vanish liket4 in the
small t/U limit. HN,l vanishes at least liket

6 for N.4.

6856 53BRIEF REPORTS



Next we determine the exact form of the operatorH3,1 to
all orders int. This operator is associated with the linkage
function L3,1(1,2,3)5N12N13. The effective spin Hamil-
tonianH3,1 must be invariant under spin rotations, in order
to respect the spin-rotational symmetry of the underlying
Hubbard Hamiltonian. It must also respect the symmetries of
the cluster under site interchange operations. In addition the
state with all spins parallel must be an eigenstate with eigen-
value zero, since the corresponding state with one electron
per site is a zero-energy eigenstate of the Hubbard model.
~No hopping is possible if all spins are parallel.! It follows
thatH3,1 must have the form

H3,1~sW 1 ,sW 2 ,sW 3!/U52 f 3
a1 f 3

b2 f 3
a~sW 1•sW 21sW 1•sW 3!

2 f 3
b~sW 2•sW 3!, ~4!

where f 3
a , f 3

b are as yet undetermined functions ofx. From
Eq. ~2! it follows that the low-energy effective spin Hamil-
tonian for a cluster of three linearly linked sites has the form

H3852H2,1~sW 1 ,sW 2!12H2,1~sW 1 ,sW 3!12H3,1~sW 1 ,sW 2 ,sW 3!.
~5!

Combining Eq.~3! and Eq.~4! gives

H38/U5@4 f 214 f 3
a12 f 3

b#2@2 f 212 f 3
a#

3~sW 1•sW 21sW 1•sW 3!22 f 3
b~sW 2•sW 3!, ~6!

where f 2 was defined above. This Heisenberg-like Hamil-
tonian is readily diagonalized. The spectrum consists of three
eigenvalues:E1850 for a S53/2 multiplet with degeneracy
4, E28512f 2112f 3

a for a S51/2 doublet, and
E3854 f 214 f 3

a18 f 3
b for a S51/2 doublet. To determinef 3

a

and f 3
b we must find exact eigenvalues of the Hubbard model

for the same cluster, identify the low-energy eigenvalues, and
compare with this spectrum.

The diagonalization of the Hubbard cluster Hamiltonian is
simplified by the use of group theoretical techniques.11 The
symmetry group of this three-site cluster isC2v . The three-
site Hubbard model has Hamiltonian dimension 20: one state
each in the sectors with thez component of total spin
Sz563/2 and nine states each in the sectors with
Sz561/2. EachS53/2 multiplet and eachS51/2 doublet
has one member withSz51/2. In theSz51/2 sector, five
states belong to theA1 representation of theC2v group and
have eigenvalues

E150, E25U,

E3,4,55UF231
2

3
A1124xcosS u1 j

2p

3 D G , ~7!

where u5 1
3cos

21@2(119x)/(1124x)3/2# and j50,1,2. The
four additional states correspond to theB2 representation of
theC2v group. The eigenvalues for these states are

E6,75U~16A2x!,

E8,95US 126
1

2
A118xD . ~8!

We identify the eigenvaluesE1 , E4 , andE9 as belonging to
the low-energy sector since they vanish forx→0.

Comparing the spin-model and Hubbard-model eigenval-
ues for this cluster and using the expression forf 2 @Eq. ~3!#
we find

f 3
a52

1

144
1

1

16
A1116x1

1

18
A1124xcosu,

f 3
b5

5

144
2

1

16
A118x2

1

36
A1124xcosu,

u5
2p

3
1
1

3
cos21F2

119x

~1124x!3/2G . ~9!

For smallx we can expand Eq.~9! keeping terms up to order
x3,

f 3
a;2x3, f 3

b;2
x2

2
15x3. ~10!

The partial results up to this order are in agreement with
those obtained in Ref. 6.

Continuing in this way it is possible to uniquely deter-
mine all cluster Hamiltonians. For example, the effective
Hamiltonian for a three-site Hubbard cluster with cyclic
links contains contributions fromH2,1, H3,1, andH3,2:

H3852H2,1~sW 1 ,sW 2!12H2,1~sW 1 ,sW 3!12H2,1~sW 2 ,sW 3!

12H3,1~sW 1 ,sW 2 ,sW 3!12H3,1~sW 2 ,sW 3 ,sW 1!

12H3,1~sW 3 ,sW 1 ,sW 2!16H3,2~sW 1 ,sW 2 ,sW 3!. ~11!

Symmetry considerations~see Fig. 1! imply that

H3,2/U5 f 3
c~32sW 1•sW 22sW 1•sW 32sW 2•sW 3!, ~12!

TABLE I. Analytic all-order expressions for the effective spin Hamiltonians appearing at leading order in
the cluster expansion discussed in the text.f 2 , f 3

a , f 3
b , and f 3

c are functions ofx[t2/U2 given by Eqs.~3!,
~9!, and~17!.

Cluster Equivalent spin Hamiltonian

Two sites f 2(12sW 1•sW 2)
Three sites linearly linked @4 f 214 f 3

a12 f 3
b#2@2 f 212 f 3

a#(sW 1•sW 21sW 1•sW 3)22 f 3
b(sW 2•sW 3)

Three sites cyclically linked @2 f 214 f 3
a12 f 3

b16 f 3
c#(32sW 1•sW 22sW 1•sW 32sW 2•sW 3)
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wheref 3
c is an as yet unknown function ofx. Combining Eq.

~11! with Eqs.~3!, ~4!, and~12! we find that

H38/U5~2 f 214 f 3
a12 f 3

b16 f 3
c!

3~32sW 1•sW 22sW 1•sW 32sW 2•sW 3!. ~13!

The eigenvalues of this spin Hamiltonian areE1850 and
E2,38 56(2f 214 f 3

a12 f 3
b16 f 3

c). Identifying the effective
Hamiltonian spectrum with the low-energy portion of the
Hubbard-model spectrum for this cluster determinesf 3

c

uniquely. The symmetry group for this cluster isC3v and
there are two states that belong to theA1 representation with
eigenvalues

E150, E25U, ~14!

one state that belongs to theA2 representation with eigen-
value

E35U, ~15!

and six states that belong to theE representation with~dou-
bly degenerate! eigenvalues

E4,5,65UF231
2

3
A1127xcosS u081 j

2p

3 D G , ~16!

where u085(1/3)cos21@21/(1127x)3/2# and j50,1,2. The
three eigenvalues that belong to the low-energy cluster are
E1 andE5 ~doubly degenerate!. Comparing with the eigen-
values of the spin Hamiltonian Eq.~13! we find

f 3
c52

1

108
1

1

48
A118x2

1

48
A1116x

2
1

36
A1124xcosu1

1

54
A1127xcosu8,

u85
2p

3
1
1

3
cos21F2

1

~1127x!3/2G ~17!

@u was defined in Eq.~9!#, which in the smallx limit reduces
to f 3

c;5x3/6 in agreement with Ref. 6. In Table I we have
collected the analytic results for clusters consisting of two
and three sites.

To continue toN54, it is important to start with clusters
for which only one linkage function is nonzero and add then
additional links. For example, the effective Hamiltonian for a
linearly linked Hubbard cluster involves onlyH2,1, H3,1,
andH4,3. H4,3 can be determined by comparing with the
Hubbard spectrum for this cluster. OnceH4,3 is known,
H4,1 can be determined from the analytically known12 spec-
trum of the cyclically linkedN54 Hubbard cluster~see Fig.
1!. It should be noted that at smallt/U, as shown in Ref. 6,
the cluster spin HamiltonianH2,1 vanishes liket

2 ,H3,1 and
H4,1 vanish liket

4, and all other cluster Hamiltonians vanish
at least as fast ast6. In extending the iterative determination
of the cluster effective Hamiltonians, numerical values of the
f N
i functions can be obtained where the necessary cluster
Hubbard-model diagonalizations cannot be accomplished
analytically.

We note that when the cluster Hamiltonians are analyti-
cally continued to complex values of the hopping parameter,
singularities occur off the real axis. The two-site cluster
HamiltonianH2,1 has a singularity att/U50.25i , while
H3,1 has a singularity@Eq. ~9!# at t/U50.20i andH3,2 at
t/U50.19i @Eq. ~17!#. From the analytically known12 ei-
genvalues for the cyclically linkedN54 cluster it follows
thatH4,1 has a number of singularities of which the closest to
the origin occurs neart/U50.14i . ~These singularities have
also been discussed in Ref. 13 in connection with a series
expansion study of the ground state of the Hubbard.! The
presence of these singularities shows that the radius of con-
vergence of the direct Taylor series expansion of the effec-
tive Hamiltonians is small, further motivating the cluster re-
summation discussed here.
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