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We discuss an expansion of the low-energy effective Hamiltonian of the largetbbard model, in which
higher-order terms involve lattice clusters with larger numbers of sites rather than larger powers of the hopping
amplitude parametdr. Expressions for each term, valid to all orderstjrcan be obtained by exactly diago-
nalizing the Hubbard model for small clusters. Leading terms in this expansion are derived.

The Hubbard model is a highly simplified and widely states by a Mott-Hubbard gap. The Mott-Hubbard gap and
studied model for studying strongly correlated fermions on &he associated insulating behavior of the electronic system
lattice. The usual and simplest version of the Hubbardsurvive fort+0, at least to a finite value of the magnitude of

Hamiltonian is the hopping parametdt,|. Low-temperature and -energy
properties of Hubbard model systems for sméall depend
W= —tE NijC'T Cjot UE ni N (1) on the manner in which the ground state degeneracy is lifted
o lo~]o !
ijo i for t+#0.

It is convenient to describe this low-energy portion of the
Hubbard model spectrum at largein terms of an effective
Hamiltonian'=* One approach to deriving a systematic ex-
. o pansion of the effective Hamiltonian in powerstét), de-
tors for an electron of spitr on sitei andn;,=c;, veloped previously by one of S is based on an analogy to

numbgr operator for spie on sitei. The one-.body term the Foldy-Wouthuyséehtransformation derivation of relativ-
describes hopping of electrons between Wannier orbitals as-

sociated with neighboring sites, while the two-body terms'StIC corrections to the Schdinger eq_uatlo_n. In this ap-
.tBroach the number of doubly occupied sites plays a role

similar to the number of electron-positron pairs in the Dirac

One of the virtues of this model Hamiltonian is that it pro- X ) . o
vides a very simple picture of the Mott insulator state in€quation. At lowest order the resulting effective Hamiltonian

which strong interactions lead to an insulating state wheréS the so-called t-J” model which has, despite legitimate
band theory would predict a metallic state. Ret0, site concern8 about its reliability in the metallic state, been
representation occupation number states are eigenstates Wdely used to model the many-body physics of the GuO
the Hamiltonian with eigenvalueE=UNp, where planes in high-temperature superconductohs.this paper
Np=3n;;n;, is the number of doubly occupied sites. Whenwe restrict our attention to the case=1 for which the low-

the number of electrons per site=1, the ground state has energy Hilbert space evolves for finitefrom those states
energyE=0 and forN sites has degeneracy'2The degen- with one electron on each site and no orbital degrees of free-
eracy reflects the two possible spin states for the single eledlom. As a consequence the effective Hamiltonian can always
tron on each site. The ground state is separated from excitdze expressed as a spin Hamiltonian. It follows from the ap-

where N;;=1 if i,j are nearest-neighbor sites and is zero
otherwise. We will refer td\;; below as the link variable. In
Eq. (2), ciT(, andc;, are the creation and annihilation opera-
T iy is the
lo
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FIG. 1. Schematic illustration of some linkage functions for
N=2, 3, 4. Sites connected by a solid line haVg=1; otherwise,

proach of Refs. 5 and 6 that this Hamiltonian can always be
expressed in the form of a sum of coupled cluster Hamilto-

nians:
=2 2 Ly(in, i (i o)
N g, iN
)
Here N is the number of distinct sites in a cluster,

i,, ...,y range over all lattice sitesy;=2s; is the Pauli
spin-matrix operator for site, | labels the distinct manners

in which N sites can be linked by nearest-neighbor hops, and

Lng(ig, ... iyN) is equal to 1 if the sites are linked in the
Ith manner and is zero otherwiskey |, can always be ex-
pressed as the product of thg ; for the various sites in a
cluster. The set of possible linkage functions for up to six
sites is listed in Ref. 6. Some linkage functions for
N=2,3,4 are illustrated schematically in Fig. 1. With this

form of expansion, the effective Hamiltonian depends on the

dimension and type of the lattice only through the link vari-
ables. In thet/U expansion of then=1 effective Hamil-

tonian, terms involving\ linked sites appear only at order
2[(N+1)/2] or larger.(Here[x] denotes the integer part of

x.) In this paper we propose an alternate approach in which

the cluster effective Hamiltonians7) |, are determinedo
all orders in titeratively, starting with smalN, by exactly
diagonalizing the corresponding cluster Hamiltonid&mec-
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FIG. 2. Plots of the energy eigenvalues of the Hubbard model

tra for the Hubbard model for some clusters discussed heri@r clusters of two linked cites, three linearly linked cites, and four
are illustrated in Fig. 3.Exact expressions are derived for cyclically linked cites. The spectra for these clusters may be used to

the leading cluster Hamiltonians.

The starting point for the derivation of the cluster Hamil-
tonians is the application of EQR) to a system consisting of
two linked sites so tha#’' = 2.7, ;. The Hubbard model for
the two-site system is readily diagonalized analyticHlly.
The low-energy Hilbert space is found by identifying the
eigenvalues which approach zero fer 0. For the two-site
Hubbard model there are four such eigenvalues, a triplet wit
E=0 and a singlet witle =U/2— (4t>+ U?%/4)Y2, It follows
that

- - 1 - -
.7./)/2’1(0'1,0'2)/U: 1_6(1_ \/1+ 16X)(1_0'10'2)

©)

=fy(1— 0, 05),

determine cluster effective spin Hamiltonians as described in the
text. Note that subspaces associated, irt the limit, with different
numbers of doubly occupied sites begin to overlap at smeN¢in
larger clusters. As has been shown in Ref. 6 the cluster spin Hamil-
tonians. 75 1 and. 7, ; are the only ones that vanish lik& in the
smallt/U limit. .7y, vanishes at least lik&® for N>4.

Mherex=t%/U2. The leading term in the smatl expansion

of .7, , is the usual term arising at leading order in the large-
U expansion of the Hubbard model; the next two terms are in
agreement with the contributions associated with the linkage
function L, ; which appear at ordet andt® in the system-
atic expansion of Refs. 5 and 6. The higher-order terms rep-
resent a subsum to all orderstrof the portion of the per-
turbation expansion which is associated with thg linkage
function.
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Next we determine the exact form of the opera#@s , to E,=0, E,=U,
all orders int. This operator is associated with the linkage
function L34(1,2,3)=N,N;3. The effective spin Hamil- 2 2 27
tonian. 73, must be invariant under spin rotations, in order Esas=Uj3+3 1+24XC05( 0+] ?” (7)
to respect the spin-rotational symmetry of the underlying
Hubbard Hamiltonian. It must also respect the symmetries ovhere = 3cos [ —(1+9x)/(1+24x)%?] and j=0,1,2. The
the cluster under site interchange operations. In addition théour additional states correspond to g representation of
state with all spins parallel must be an eigenstate with eigerthe C,, group. The eigenvalues for these states are
value zero, since the corresponding state with one electron

per site is a zero-energy eigenstate of the Hubbard model. Eg=U(1x V2x),
(No hopping is possible if all spins are paralldk follows
. 11
that. 75, must have the form £y o U(E ii‘/l“L—SX . ®
T31(01,02,09)/U=23+ 15— 15(01- 05t 01 79) We identify the eigenvalueg, , E,, andEg as belonging to
by > the low-energy sector since they vanish for 0.
—f3(02- 03), (4) Comparing the spin-model and Hubbard-model eigenval-

ues for this cluster and using the expressionfipfEq. (3)]
wheref3,f5 are as yet undetermined functions>of From  we find
Eq. (2) it follows that the low-energy effective spin Hamil-
tonian for a cluster of three linearly linked sites has the form

fa= ! + l\/1+16 + 1J1+24 9
3T 124" 16 X T 18 XCOw,

=290 1(01,0) + 275 A(01,03) + 2 W3 4(71,05,03).

5 1 1
©) b_ = _ -
ts=1aa 16\/1+8x 36\/1+24xcos9,
Combining Eq.(3) and Eq.(4) gives
g Ea.(3) a.(4) g ; 2m 1, 1+ ox o
=—+ 5C0S *| — =31/
T U=[4F o+ 4T3+ 28] — [ 2f,+ 23] 3 3 (1+24%)
. b, > > For smallx we can expand Ed9) keeping terms up to order
X(O’l'O'2+0'1'0'3)_2f3(0'2'0'3), (6) X3,
where f, was defined above. This Heisenberg-like Hamil- a A3 b x? 3
tonian is readily diagonalized. The spectrum consists of three fa~2x7,  f3~— P +5x°. (10

eigenvaluesE; =0 for a S=3/2 multiplet with degeneracy . i . .
4, E,=12f,+12f2 for a S=1/2 doublet, and The partla! reSl_JIts up to this order are in agreement with
EL=4f,+4f3+8f5 for a S=1/2 doublet. To determiné3 those obtained in Ref. 6. : .

andfgwe must find exact eigenvalues of the Hubbard mode]| Continuing in this way it is possible to uniquely deter-

for th me cluster. identify the low-enerav eigenval n ine all cluster Hamiltonians. For example, the effective
orthe same cluster, lde fy the low-energy eigenvalues, a amiltonian for a three-site Hubbard cluster with cyclic
compare with this spectrum.

. o . i i ibuti 7. . Ty .
The diagonalization of the Hubbard cluster Hamiltonian j/inks contains contributions from¥, . 75,, and. 7

simplified by the use of group theoretical techniglfeShe

symmetry group of this three-site clusterGs, . The three- H3=2H24(01,02) ¥ 2724(01,09) ¥ 2724(02,03)

site Hubbard model has Hamiltonian dimension 20: one state A P -2

- ) ) 4273 (01,05,03)+2.75(05,03,0
each in the sectors with the component of total spin 31(01,02,73) 31(02,03,01)
S,=*+3/2 and nine states each in the sectors with 123 1(03,01,02)+ 673 01,00,03). (12)

S,=*1/2. EachS=3/2 multiplet and eacls=1/2 doublet ) ) ) )
has one member witls,=1/2. In the S,=1/2 sector, five Symmetry considerationsee Fig. 1imply that

states belong to tha, representation of th€,, group and . . s s s .
have eigenvalues H3lU=13(3—01-0,—01-03—05-03), (12

TABLE I. Analytic all-order expressions for the effective spin Hamiltonians appearing at leading order in
the cluster expansion discussed in the téxt. {3, fg, andf$§ are functions ok=t%/U? given by Egs(3),

(9), and(17).

Cluster Equivalent spin Hamiltonian

Two sites fz(]__(;-l. (;2)

Three sites linearly linked [4f,+4f3+2f5]—[2f,+ 2f3)(01- 0o+ 01~ 03) — 2f(05- 03)

Three sites cyclically linked [2f,+4f3+ 215+ 6f5](3— 01 0p— 01+ G3— G- 03)
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wheref§ is an as yet unknown function & Combining Eq. [ 6 was defined in E(9)], which in the smalk limit reduces

(1) with Egs.(3), (4), and(12) we find that to f§~5x3/6 in agreement with Ref. 6. In Table | we have
collected the analytic results for clusters consisting of two
TEU=(2f,+ 413+ 25+ 6f5) and three sites.
e L. To continue toN=4, it is important to start with clusters
X(3=01: 02— 01 03— 03" 03). (13 for which only one linkage function is nonzero and add then

additional links. For example, the effective Hamiltonian for a
linearly linked Hubbard cluster involves only?, ;, .73 1,
and .7, 3. 7743 can be determined by comparing with the
Hubbard spectrum for this cluster. Onc&, ; is known,

The eigenvalues of this spin Hamiltonian afé=0 and
%5 5= 6(2f,+ 415+ 213+ 6f5). Identifying the effective
Hamiltonian spectrum with the low-energy portion of the

Hubbard-model spectrum for this cluster determirfgs : .
uniquely. The symmetry group for this cluster @, and 41 can be determined from the analytically knowepec-

there are two states that belong to therepresentation with trum of the cyclically linkedN =4 Hubbard cluste(see Fig.
eigenvalues 1). It should be noted that at smallU, as shown in Ref. 6,

the cluster spin Hamiltonian#, , vanishes like? , .73 ; and
£1=0, &£,=U, (14 7,44 vanish liket*, and all other cluster Hamiltonians vanish
at least as fast a$. In extending the iterative determination

one state that belongs to ti#g representation with eigen- of the cluster effective Hamiltonians, numerical values of the

value .
y functions can be obtained where the necessary cluster
“3=U, (15)  Hubbard-model diagonalizations cannot be accomplished
analytically.

and six states that belong to tRerepresentation witlidou-

. We note that when the cluster Hamiltonians are analyti-
bly degenerateeigenvalues

cally continued to complex values of the hopping parameter,
singularities occur off the real axis. The two-site cluster

2 2
—+ =1+ 27xco

z o =U 5(9'+j 2_77” (16) Hamiltonian .77, ; has a singularity at/U=0.25, while
T4567 Y137 3 ol 3 31 has a singularitfEq. (9)] att/U=0.20 and.7;, at

- 1 3/ L t/U=0.19 [Eq. (17)]. From the analytically knowr ei-
where 65=(1/3)cos {—1/(1+27x)*"] and j=0,1,2. The envalues for the cyclically linketN=4 cluster it follows

three eigenvalues that belong to the low-energy cluster ar%]

#, and #5 (doubly degeneraje Comparing with the eigen- thatH 4 ; has a number of singularities of which the closest to
values of the spin Hamiltonian E¢L3) we find the origin occurs nea’U=0.14. (These singularities have

also been discussed in Ref. 13 in connection with a series
expansion study of the ground state of the Hubbafthe

presence of these singularities shows that the radius of con-
vergence of the direct Taylor series expansion of the effec-

fS= ! 1\/18 1¢1 16x
3= E8+Z8 + 8X I8 +

tive Hamiltonians is small, further motivating the cluster re-
— =—=V1+24xcoh+ —+/1+27xcosh’, X X '
36 54 summation discussed here.
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