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We classify the allowed order parameter symmetries in multilayer cuprates and discuss their physical con-
sequences, with emphasis on Josephson tunneling and impurity scattering. Our solutions to the gap equation
are based on highly nonspecific forms for the inter- and intraplane pairing interactions in order to arrive at the
most general conclusions. Within this framework, the bilay¢+@Q) case is discussed in detail with reference
to Y-Ba-Cu-O(YBCO) and Bi-Sr-Ca-Cu-GBSCCQ and the related Landau-Ginzburg free energy functional.
Particular attention is paid to the role of small orthorhombic distortions as would derive from the chains in
YBCO and from superlattice effects in BSCCO, which give rise to a rich and complex behavior of the
multilayer order parameter. This order parameter Hasomponents associated with each of Méands or
layers. Moreover, these components have specific phase relationships. In the orthorhombic bilayer case the
(s,—s) state is of special interest, since for a wide range of phase space, this state exlphése shifts in
corner Josephson junction experiments. In addition, its transition temperature is found to be insensitive to
nonmagnetic interplane disorder, as would be present at the rare earth site in YBCO, for example. Of particular
interest, also, are the role of van Hove singularities which are seen to stabilize statdgwjtHike symmetry
(as well as nodelessstate$ and to elongate the gap functions along the four van Hove points, thereby leading
to a substantial region of gaplessness. We find that for these rather general models of the pairing interaction the
d,2_,2-like states are the most stable solutions in a large region of parameter space. In this way, they should not
be specifically associated with a spin fluctuation driven pairing mechanism.

I. INTRODUCTION layer case, in part because of van Hove effétts, phase
shifts are fairly widespread and not uniquely associated with
The question of the order parameter symmetry in layeredhe d,2_,2 state. Moreover, the proximity to the van Hove
cuprate superconductors is one of the most important issuesngularities leads to a stabilization of thgz_,> symmetry
currently under debate. Despite strong evidence for dor a variety of different models for the pairing interaction,
di2_y2 state! at least in one particular cupraff¥-Ba-Cu-O  beyond the simple spin fluctuation mod&It also is associ-
(YBCO)], there are still experimental inconsistendiés’his  ated with a considerable distortion of the gap function away
matter is complicated further by the complexities of YBCO from the ideal representation of tlig. > state. In order to
associated with the double copper-oxide plane structure. Thenderstand the physical consequences of various order pa-
same bilayer unit is shared with the bismuth 2212 com+ameter sets we investigate the role of intra- and interlayer
poundg Bi-Sr-Ca-Cu-O(BSCCQ], where recent photoemis- impurities, include a discussion of Josephson coupling, and
sion datd® seem also to favor d,2_,» symmetry. In the present a more general analysis of our results in the context
former compound,if not in the latter! there is evidence that of both a Landau-Ginzburg theory and the solution of the
the double layer unit leads to two bands each of whicharbitrary N-layer problem.
crosses the Fermi surface and each of which presumably has A nhumber of authors have considered the possibility of
a distinct superconducting order parameter. It isaqtiori electron tunneling and pair interactions of electrons on dif-
clear whether these two gaps have the same or opposiferent planes in the context of a bilayer structure. Bulut and
phase, nor whether they are predominantly associated witBcalapind! used numerical solutions of a strong coupling
the same or different irreducible representations of the tetragnodel to show that when both interlayer interactions and
onal symmetry group. It is, therefore, essential to provide @opping were included in a bilayer model two competing
systematic classification of the order parameter in these bstates arose, one with2_,2 solutions in phase on both sub-
layer (and more generdil-layen systems before meaningful bands of the Fermi surface and the other wstistates of
and unambiguous inferences can be deduced from the ewrpposite sign. Similar observations were made by Liechten-
perimental data. stein and co-workePswho argued that the more probable
It is the purpose of this paper to expand upon earlier worlsituation for spin fluctuation induced superconductivity, cor-
by ourselve®and other groups®by classifying and estab- responded to a pair of out-of-phasestates. The conse-
lishing physical consequences of the various order parametguences of such an out-of-phasetate were considered in
symmetries inN-layer systems. Of particular interest are more detail by Golubov and Mazf.It should be noted that
those parameter sets which leadstqunction behavio*~1"  throughout this paper we will use the generic notatia
in an a,b-plane Josephson configuration. It is widely as-(and “d”) as applying to gap functions which have the same
sumed that the observation of thesephase shifts provides (or differen) signs under a rotation of the wave vector by
the strongest evidence yet for thgz_ > state in YBCO. By ~ #/2. Itis important to be particularly clear on our notational
contrast, we find that in the more general orthorhombic bi-convention since we emphasize the role of orthorhombicity

0163-1829/96/53.0)/678620)/$10.00 53 6786 © 1996 The American Physical Society



53 SUPERCONDUCTING ORDER PARAMETER SYMMETRY IN ... 6787

in our work. Among other things, this orthorhombicity leads The situation in BSCCO is even less certain with two pho-
to what we refer to as<-d” or “mixed states” (although the  toemission groups reaching opposite conclusfohBor the
overall sign under ar/2 rotation remains eithet- or —, purposes of the present paper it will be assumed that there is
depending on which component is dominaithe possibility  coherent coupling between the layers, though not between
of mixed s-d states has been discussed within Landauthe unit cells. This assumption is based in large part on the
Ginzburg theory, in a monolay@ras well as a bilayer demonstrated intrabilayer magnetic interactions which sug-
context?” In the latter, a spontaneowssd mixing was con- gest a moderate degree of communication between the lay-
sidered, using microscopic arguments based on a resonatiregs. Moreover, on this basis it may be presumed that there are
valence bondRVB) decoupling scheme. While most bilayer direct or indirect electronic interactions within the bilayer
studies considered tetragonal symmetry, earlier work by oucomplex which must be included in any complete theory of
own group® using the more conventional BCS pairing for- the superconductivity.
mulation, investigated the role of a small amount of Similarly controversial is the origin of a possibig. 2
a,b-axis anisotropy in the bilayer problem. This small state. While this state is consistent with spin fluctuation me-
orthorhombicity appears to be amplified by van Hove effectsdiated superconductivity®’ for the models we consider it
As a consequence, the solution corresponding to a pair of oatppears more generally as a solution to the gap equation in
of phases-wave states frequently has the interesting and imthe presence of repulsive interactions. Providing this repul-
portant physical consequence of leadingrtphase shifts in  sion has some wave-vector dependefrezar, although not
a corner Josephson tunneling experimént’ It should be necessarily pinned at the antiferromagnetic position
stressed that orthorhombicity is assumed to enter via thémr,m)], we find thed,2_,> state to be stable. Thus experi-
chains in YBCO. There are alternate scenarios for this matemental observation of this symmetry appears to provide
rial which explicitly build in the chain band$2°and their more support for superconductivity arising from repulsive
contribution to the superconducting gap. Here we ignorénteractions than for any detailed superconducting mecha-
these explicit effects, in large part because recent tunnelingism. While there are problems associated with interpreting
studies indicate that the order parameter behavior is largelyarious experiments withindyz_,2 context, among the most
unaffected by reducing the oxygen stoichiometry to the casperplexing from a theoretical viewpoiit*°is the evident
of YBa,Cu;044 in which limit the chains are strongly impurity insensitivity of the superconducting transition
fragmented?® It was argued in Ref. 15 that “this experiment temperaturd! Moreover, substitution at the rare earth site in
rules out the possibility that the results of previous similarYBCO with both magnetic and nonmagnetic atoms, between
experiments onYBgCu3;04 4 can be explained by the pres- the planes of the bilayer, leads to no variatiorily except
ence of Cu-O chains.” Similar observations based on twinin the special case of Pr. Here we address this fascinating
ning effects have also been made in the theoretical literaturgauzzle and demonstrate that for the case of two out of phase
The more generdll-layer problem has been studied by Bu- nodeless states in an isolated bilayer configuration, Ander-
laevski and Zyskil? as well as Klemm and LitC In these  son’s theorem applies to interplane substitutions. This pro-
calculations, it was also assumed that ¢thaxis consisted of vides additional motivation for studies of this particular pair-
a coherently coupled stack of bilayer structural units. Hereng state.
we presume that the considerable evidence for the absence of An outline of the paper is as follows. In Sec. Il we focus
c-axis coherenc®?’ requires a different starting point. on the bilayer problem as a prototype of tdayer system.
While, for simplicity, we focus on an isolated-layer com-  We introduce a generalized model for the pairing interaction
plex, it is clear that higher order effects associated with in{Sec. Il A) and then point out some general properties of
coherent coupling between unit cells must ultimately be in-solutions which arise in these systeri®ec. |1 B. In Sec.
cluded. Such incoherent coupling can be introducedl C we examine the consequences of the bilayer structure on
following, for example, Ref. 28. An additional complexity Josephson tunneling experiments between cuprates and con-
was raised in even earlier studies by Efetov and L&kin ventional superconductors as well as the problem of twinned
who pointed out that a complete treatment of interlayer elecsamples. We then constru@ec. 1l D) the free energy func-
tron pairing required the consideration of a triplet pairingtional in the Landau-Ginzburg limit, addressing the effects of
state odd under exchange of layer indices. This case wasterlayer tunneling and orthorhombicity. Impurity scattering
further investigated by Kettemann and Efétbas well as  will be discussed in Sec. Il E, where we investigate the cir-
Klemm and Lid° who argued that the mixing of triplet and cumstances under which Anderson’s theorem holds for the
singlet states would generally lead to a second transition besase of two out of phasg states.
low T.. Thus far there is no evidence for this second transi- In Sec. Il we turn to the more technical issues of a gen-
tion, nor is there much support for the triplet pairing state. eral weak coupling treatment of the problem Mftwo di-
There are important issues of controversy implicit in themensional layers. The reader uninterested in the more math-
work discussed here. There appears to be little doubt that thematical details can skip directly to the conclusions in Sec.
components of the bilayer couple magnetically. However, itV. The generalized gap equation in thelayer problem is
has not been persuasively demonstrated that there is a cohéerived (Sec. 11l A) and the two competing states are dis-
ent electronic coupling, within the unit cell®® Neutron cussed in Sec. Il B. These correspond to natural analogues
experiment$: 33 on YBCO provide evidence for a-axis  of the in-phase and out-of-phase states of the bilayer system.
modulation associated with the spacing of the planes withitWe conclude with a general discussi@®ec. Il O of the
the bilayer. While this can be explained by magnetic cou+ole of van Hove effects. Two states are found to take maxi-
pling alone®**® photoemission studies on this cuprate havemal advantage of the van Hove singularities: these are the
reported the observation of two copper oxide plane b&rits. dy2_y2 and nodeless states. Some of the technical aspects
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of these calculations as well as a complete solution of thdnas no qualitative effect on the results of this paper. This

bilayer problem are relegated to Appendixes A and B, rearises because for the model of Ref. 30 the interplane tun-

spectively. neling deviates most from the constant valyealong the
Our conclusions are presented in Sec. IV. diagonals of the Brillouin zonpvhere Eq(4) vanishe$ It is

in precisely this region where the density of states contribu-

tions are smallest, since, as will be discussed in more detail

below, they lie away from the four van Hove points.

As noted above, the bilayer system admits two other pair-
We initially study the simpler bilayer systenNE&2) in  ing states, an interlayer triplet staéé which is odd under
order to establish notation and to discuss physical results iniaterchange of layer labels and a second intralayer singlet
more familiar context. Although only singlet intraband pair- stateAﬁ’ where the order parameter has opposite phase on
ing is considered in the main part of the text, a more com-each of the two layers. Both of these correspond to interband
plete weak coupling calculation of the bilayer problem will pairing, i.e., pairing between electrons on different subbands
be presented in Appendix B. Many of the interesting featuresf the Fermi surface. Thus they appear as off-diagonal ele-
of bilayers arise in the gener®l-layer problem with only ments ofA in the band representation. Because this inter-
slight modification. However, this more general case will beband pairing is associated with a second phase transition
discussed in detail in Sec. Ill. Section Il B focuses primarily (whent, is finite) as well as a triplet state, it appears to be
on the linearized gap equation. Throughout Sec. Il, particulacurrently of less physical interest than the singlet, intraband
attention will be devoted to elucidating the role of orthor- pairing which we consider here. For the purposes of com-
hombicity. pleteness, these more exotic states are considered in Appen-

The weak coupling gap equations for two copper oxideglix B.
planes are given by In order to analyze Eq.l) we adopt a model interaction
which is believed to be sufficiently generic so as to encom-
pass most pairing mechanisms in the literature. In the spirit
. of weak coupling theory it contains no dynamical effects,
(13 although it includes as limiting forms the well studied spin
fluctuation interaction, which is strongly peaked at quasimo-
mentum transfers o= (m, ), as well as phonon based
mechanism&® Alternative scenaridé may be associated
with intermediateQ values. In the present model, the in-
(1b)  plane and interplane pairing interactions are given by

II. THE N=2 CASE

A. Gap equation and model interaction

AL+A =—DV
q

tanh; BE. tanh; BE_
I A, +A_
2E., 2E_

AL—A =—DV

q

’

tanhg BE. tanhg BE_
A 2E. AT

where we define Vi(9,0") =N jxq,(a—a’),

VL(qvq,):)\LXQO(q_q,)a 5)

Here we make the reasonable assumption that weak coupliRghere we define the generalized susceptibility, which de-
theory is adequate for indicating the form of the order Papends on the momentum transfer

rameter, although not for giving a reliable magnitude of

T.. Equation(1) was previously discussed in Ref. 8. Its gen- @ 1 > 1
eral derivation is presented in thé-layer context in Sec.  Xxq, (4=t — _ — 2
[l A. The two order parameter componemts andA _ refer ’ "o Ray [17Jo(Cosam Qo+ cotty = Qy)] (6)

to pairing on the bonding and antibonding bands of the

Fermi surface, respectively. Throughout this paper we willThis model incorporates several parametrizations, allowing
transform between the band and layer indices. The two gahe variation of the peak location throu@h, the peak width
parameters may be related to order parameters in the layera J,, and the coupling strength and sign throughWwe

Ei=€i+]ALJ2 (2)

language by the equations

AJF:AH-FAL,
A =A-A, k)

consider], to be below the critical value 0.5. The interaction
contains the underlying symmetry of the lattice. This is im-
posed by summing over all elemerRsof the point group,
h being the order of the group. Thus wh@g does not lie on
a symmetry element of the lattice then the interaction will

where A refers to singlet pairing of electrons within indi- have eight peaks in a tetragora, lattice and four peaks in
vidual layers and\ | refers to singlet pairing of electrons on an orthorhombic lattice.

different layers. Finally, the normal state energy dispersionis OQur aim is to incorporate some of the key features of the

given bye. = ¢+t , wheret, is the interlayer hopping ma-

known band structure in various cuprates. Thus the lattice

trix element and(q) is the single particle dispersion within point group will be assumed either to Bey, in the case of
the copper oxide planes. It should be noted that allowing thé 3-Sr-Cu-O (LSCO) or D, in the case of YBCO and
interlayer tunneling to depend apin the manner suggested BSCCO. We investigate two different kinds of broken tetrag-

by Chakravarty and Anderstthas well as Anderseat al,*?

t
- (cos,—cos)?, 4

onal symmetry in which either principle axes are retained as
symmetry planegorthorhombig in the case of YBCO or the
diagonals are retained as planes of symmetry
(rhombohedraf® in the case of BSCCE The band struc-
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TABLE I. Tight binding basis functions and hopping parameters

in eV di ical calculations. ,
(in eV) used in numerical calculations a) Near van Houve
. o —
7(9) LSCO YBCO BSCCO
1 0 0 0.1305
3(cogy,+cogy) -1.0 -0.50 -0.5951
Coxy,cosy, 0.2 0.15 0.1636 > /2
5(cos2},+cosay) 0 -0.05 -0.0519
3(cOS2},c05,+COKLCOS DY) 0 0 -0.1117
cos2y,cosay, 0 0 0.0510
3(cosy,—cosy) 0 0.04 0
sing,singy 0 0 0.08 0 .
0 /2 m
Q,

tures which we use throughout this paper are taken from Ref.
47. In plane energy dispersions of the normal state are given b)

by an expansion of the form m
7
&a)=2, tim(a), Y
where the basis functions; are listed in Table I. Also indi- > /2

cated in the table are the various band structures we will be

considering. It is important to note that the degree to which

the tetragonal @ ,,) symmetry is broken is reflected in the

last two parameters of the table which we ¢glandt,. The

size of these orthorhombic contributions was chosen, for il- 0
lustrative purposes, to be small, but otherwise arbitrary.

0 n/2 T

B. Order parameter symmetry in bilayers

1. Properties of monolayer solutions FIG. 1. Phase diagram showing order parameter symmetry in
Solutions to the single layer problem provide intuition LSCO: (a) near van Hove pointgp) away from van Hove points.
into those of theN-layer case, particularly when the inter- The two axes represent the wave vector componénts Q, at
layer hopping is relatively small. It is useful, therefore, to which the pairing interaction has a maximum.
characterize the allowed order parameters in the one layer
limit for each of the three band structures discussed abovéhe symmetry of the superconducting order parameter is the
before moving to the bilayer case. In the one layer systenglegree to which the vect® connects positive and negative
the functional form of the superconducting order parametefobes of the pair wave function on the Fermi surfitas
depends only on the sign and the shége distinct from the  will be illustrated under more general circumstances below,
magnitude of the pair interaction and on the electronic struc-near half filling, when only nearest neighbor hopping is in-
ture. To illustrate these pair interaction and electronic effectsgluded, the points at which tha2 2 state has maxima are
we vary the position of the peak locatid@ and plot the separated b= (7, 7), while the extrema ofl,, are sepa-
associated form of the order parameter in this two dimen¥ated by ¢r,0) and the eight lobes,, state has positive and
sional space, for each of three model band structures. Theegative lobes separated by/@,7/2). These are precisely
interaction is assumed repulsiva % 0) in this and subse- the points in the space @ near which these various solu-
quent phase plots; attractive interactions in general give ristions are favored.
to nodeless-wave solutions for any value @. The mag- Figure 1 represents this “phase diagram” for the LSCO
nitude of the interaction plays no role in determining thecase. It is a map of the irreducible representations of the
symmetry of the order parameter in the single layer problemietragonalD 4, lattice which correspond to the solutions with
it results only in a variation of the transition temperature. Bythe highesiT.. We stress that the simple functional forms of
contrast, in the two layer case tlfeelative magnitudes of the order parameter, such as are implicit in the notation
the in plane and out of plane interactions enter via @gin " dy2_y2" etc., can be misleading. The gap parameters may
an important way. We will examine this effect subsequentlyinvolve important contributions from higher order terms in
Other parameters of our model interaction have a lesse¢he associated representation. Moreover, when tetragonal
influence on the form and regions of stability of the varioussymmetry is broken, states may be highly admixed with
solutions. Variation of the peak width, affects T, to a  states of other representations. We will use this notation with
greater extent than it does the symmetry of the actual solusare, applying it only to certain solutions of systems with
tion. The component of the interaction which most influencegetragonal symmetry. When necessary we will avoid any am-
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biguity by using the common group theoretic nomenclature
for the various irreducible representatidfis.

Because proximity to the van Hove singularity is found to a)
play such a crucial role, we present two limiting cases cor-
responding to choices for the Fermi energy nea) and far
from 1(b) the van Hove singularity. The order parameters
shown plot the actual solutions f@= (7, 7), at which the
B1g (“dy2_,2") solution is found, aQ=(w/2,7/2), where .
an eight-lobedA4 solution, the so calleds,,” state, exists < /2
and atQ=(,0), where theB,4 “d,,” state is most stable.

Moreover, these symmetries persist over an extended region
of Q space as outlined by the solid lines in the figures. States
with increasing numbers of nodal planes, including states in

Near van Howve

the A,q irreducible representation, appear@s-(0,0). In- 0 ,

deed, because this region is so complicatadthe case of 0 /2 i

repulsive interactions no detailed solutions are indicated. Q,

The region where the d,2_,2"-like solution persists is

shaded in this and subsequent figures. b) Far From van Hove
Figures 1a) and Xb) demonstrate that proximity to the m - L

van Hove singularity leads to a modestly extended region
with By or “dy2_y2” symmetry. Moreover, as the Fermi
energy approaches the singularity, the lobes on the
“ dy2_ 2" state become sharper. In this way the order param-
eter takes full advantage of the four van Hove points which < /2
coincide with each of the four maxima in this gap function.
Since the gap function is sharply peaked in the direction of
the principle axes it is very small in a large region about the
nodal lines along the diagonals of the Brillouin zone. A large
gapless region will have consequences on the thermody- 0
namic properties of the samples at low temperatures and may
have been observed in angle-resolved photoemission spec-
troscopy measurements on BSCED.

Breaking of the tetragonal symmetry in our model band
structure, as is appropriate for orthorhombic YBCO, serves G, 2. phase diagram for one layer model of YBG@): near
to further enhance these van Hove effects. This is shown ioan Hove points{b) away from van Hove points. The dotted line
Fig. 2 where, as in the LSCO case above, the gap equatiaiparates,, representations with and withoatb-axis = phase
solutions are plotted at the special symmetry points and thehifts.
lines indicate the boundaries of the region over which the
representative solution persists. Solid lines separate stat;;

any mechanism involving pairing via a predominantly re-
ulsive interaction. Stated alternatively, observation of this
orm for the gap in an experiment is in itself not proof of any
specific pairing mechanism. Furthermore, it also appears

. ) e . from these figures that, quite frequently, a single mechanism
cally increased in the vicinity of the van Hove point. Further- ., give rise to widely varying forms of order parameters

more, the lobes of this gap function again become more exgenending upon the details of the band structure, doping

tendgd along the principle axes, compared with Sim”arlevel, lattice symmetry and other subtle features of the ma-
solutions farther from the van Hove point. erial.

Finally, the results in the BSCCO case are presented i;[1
Fig. 3. We see here that, contrary to the two previous cases,
the phase space in which the gap has the same sign along the
a and b directions (i.e., the totally symmetric irreducible In bilayer materials there are two possible states which
representation in thB ,, lattice) occupies a somewhat larger compete as solutions to the gap equation. These may be
region of parameter space when the Fermi level is near therudely classified by referring to the states as “interplane and
van Hove point. This is the consequence of a stabilizingntraplane dominated solutions.” These two competing sets
admixture of an isotropis-wave component. On the other of solutions were discussed in a previous short communica-
hand, states with am,b-axis 7 phase shift dominate the tion by our groug as well as elsewher&'?>*°By setting
phase space away from the van Hove points. t, =0 in the gap Eq(1) we see that\| and A, uncouple

The above three figures lead to an important conclusionfrom each other af .. Superconductivity can thus be either
the “d,2_,2" solution exists in a large region of parameter due to interlayer pairing or due to intralayer pairing depend-
space away fronQae. Therefore this state should be con- ing on the relative magnitudes and signs\pfandX, . In the
sidered as an obvious candidate form for the order parametéand representation in-plane pairing yields a solution which

belonging to different irreducible representations and dotte
lines separate states of different symmetry within a represe
tation. Figures @) and 2b) demonstrate clearly that the
phase space occupied by thd,?_." solution is dramati-

2. Bilayer effects
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—0.1 i Density of Slates

Q,? Tr/2

-0.50 -0.75 -1.00
NN

0 n/2 il
Q.

FIG. 4. Phase diagram for stability af phase shifts on tha
relative to theb axis, in the order parametébelow solid ling.
Model is for YBCO with an attractive interlayer and repulsive in-
tralayer interaction, both peaked @ir. Hole doping fraction ap-
pears on the ordinate and relative strength of the two interactions
defines the abscissa. The shaded regions denote states where the
order parameter on ornéght) or both (dark bands is nodeless.

b) Far From wvan Hove

< /2 underlying lattice symmetry. Thus mixing sfandd states
within the linearized gap requires both orthorhombicity and
interplane hopping. More genersdd mixing effects will oc-
cur at higher(quartig order in a Landau-Ginzburg expan-

sion, and will be discussed in more detail in a subsequent

0 section.
0 n/2 - To illustrate the behavior of the bilayer order parameter
qQ, and the two competitive states, we consider for concreteness

the case of an attractive interplane interaction and a repulsive
intraplane interaction peaked @t= (7, 7). This model may
FIG. 3. Phase diagram for one layer model of BSCC®near  pe viewed as derived from a generalized spin fluctuation

van Hove pointsjb) away from van Hove points. A dotted line model, where the interlayer ar-axis spin susceptibility is
separates states with four and eight lobes within a representationjncluded as a perpendicular component of the pairing inter-

action. This case was previously discussed by a number of
has the same phase on both bands while the interlayer paitifferent group$:®11:204954/hile we choose this peak loca-
ing solution undergoes & change in phase from one band to tion simply for illustrative reasons, our results can easily be
the other. This sign change follows directly from E§) in extended to other values @. Under these circumstances,
the extreme limits in which one or the other order parametethe order parameter in the band picture has the schematic

(in the layer basisis the larger. form
It is important to stress that we will refer to these two
competing solutions throughout this paper. They occur in Ay s, +d|
bilayer as well adN-layer systems. In all cases whereis N —s, +d)/)° (8)

finite, one solution is stable and the other metastable. Thus,
although one may refer to their associated transition temH the lattice is tetragonal then either or d; will vanish.
peratures, only the larger of the two has any physical meanfhus when\ , is zero the solution will havel symmetry.
ing. As a consequence, there is nothing to prevent these twioreover, both band gaps are in phase. Similarly when
competing states from having a different order parametevanishes the symmetry is-like and both gaps are out of
symmetry. phase. The transition from one type of solution to the other is
As in the one layer case, repulsive interactions are foungoverned by the size ok, /N. Frequently the crossover
to lead to nodal states such as tihestates or multilobeéd  from the in-plane to the interplane dominated regime may
states discussed above, while attractive interactions requireccur despite the fact that the rahg /\ | is small compared
nodeless states afsymmetry. In the presence of two differ- to one. What determines this crossover is the nature and sign
ent types(signg of in plane and out of plane interactions, of the competing interactions and the band structure.
these effects provide a rich and complex structure for the If tetragonal symmetry is broken even more complicated
competing order parameter states. Under these conditiorsituations obtain. Both components can be nonzero simulta-
and when there is no coherent interplane hopping, the twaeously and the transition is a smooth one as a function of
solutions may belong to different symmetry groups. Whenincreasing\, /. The regions where the various types of
t, is finite, the solutions couple while still preserving the solution exist in YBCO are illustrated in Fig. 4 for the ex-
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function on each band has a greater amplitude along one
symmetry axis than along the other, and the axis along which
a) AN o= -0.50 the pair wave function has its maximum differs from one
— subband to the other. These results are plotted for very small
orthorhombicity and for Fermi energies close to the van
Hove point. On the basis of the latter assumption, the small
orthorhombic effects are greatly magnified. The figure labels
(8)—(d) correspond ta@ two in phased-wave dominated

b) N/N = -0.68 states(b) one band nodeless and the other not&lfwo out
. of phase nodeless states which show greatly elongated lobes,
and (d) to two out of phases-wave dominated states which
T are more isotropic. The relative phase space which these so-
lutions occupy can be seen from the previous figure.
c) A /A = -0.80 Moreover, the detailed shape of the order parameter has

_ important physical consequences. Thus for o@gefor ex-
—~ ample, the solutions are in the interplane regime wierés
dominant. Here, however, the order parameter is nodeless
and yet the combination of the two gaps has features of a
o d-wave solution ima,b-axis as well ag-axis Josephson tun-
d) N /N = -2.00 neling experiment3? Case(b) is associated with ons-like
E and oned-like state. It will exhibit both power law behavior
in thermodynamical properties, as well as thehase shifts
in corner junction experiments, which are also seen in cases
(@) and (c). These Josephson experiments and their relation

to the order parameter symmetry will be discussed in more
detail in the next section.

FIG. 5. Evolution of order parameter solutions as interlayer cor-
relations are increased. The states correspond to the solutions ob- C. Josephson tunneling: Phase coherence across domain
tained in the previous figure fox=0.25 and the indicated boundaries
N, /N . Observe that proximity to the van Hove singularity results
in considerablea,b-axis anisotropy despite the very small ortho-
rhombicity.

Josephson tunneling experiments have been key to eluci-
dating the order parameter symmetry in the YBCO cuprate
family.14~1752Within this class, two types of measurements
ample discussed above. Plotted on the vertical axis is theave been performed. These involg- andc-axis tunnel
fractional hole doping. We estimate the physical values of junctions. In the former category superconducting quantum
this parameter, for a range of different oxygen stoichiom-interference device (SQUID) geometries have been
etries in YBCO, to vary from 0.1 to 0.3. The figure illustrates investigated®!” These consist of two junctions with Pb
the parameter regimes where the dominant component of trmunterelectrodes, whose interference pattern yields informa-
order parameter on the two bands id,d),(s,d), and tion about the relative phase of the order parameter along
(s,—s).%! The region below the solid line involves states in various axes in tha,b plane. In “corner junctions,’r phase
which the sum of the pair wave functions on the two bandsshifts of the order parameter between thandb axes have
changes sign unde#/2 rotation of the axes and can thus been observed and attributed to the sign change upon a
yield 7 phase shifts ina,b-axis Josephson tunneling =/2 rotation of the wave vector, within dy2_,2 state. This
experiments?~1"Moreover, the shaded regions denote statesnterpretation is further confirmed by “edge” junctions
in which the sum of the two order parameters changes sigwhich probe the interference along a single face of the ma-
even though one or both are nodeless. This issue will béerial; here no phase shifts are found to be present. These
addressed in detail in Sec. Il C. The inset plots the density ofonclusions are the same for both twinned and untwinned
states as a function of energy. There are actually four vanrystals. A variant on this geometry are the ring
Hove points associated with orthorhombic splitting of theexperiment¥ consisting of YBCO segments with different
two bands. For clarity the doping level at which the first of grain boundary orientations. Observation of a nonzero, half
these occurs is plotted in the main portion of the figure as @nteger spontaneous flux threading the ring, for specific ori-
dotted line. Note that the region labeled B/ €s) occupies entations of the grain boundaries, again provides support for
the largest fraction of phase space when the band is near tleed,2 2 state.
van Hove points in general and in particular when one sub- An alternate Josephson tunneling geometry has been in-
band of the Fermi level is closed about thepoint of the  vestigated by Sunet al>® These authors observe finite
reciprocal lattice and the other aboxit c-axis Josephson currents between a Pb counterelectrode and

The evolution of these solutions with increasig/N is @ YBCO sample. For the simplest representation of the
illustrated in Fig. 5. Indicated here is the calculated shape ofl,2_,2 symmetry, no Josephson current should be present.
the gap functions for the two bands of the bilayer. TheirWhile it is possible to invoke orthorhombici§*3to explain
relative phase is also noted. It can be seen that the pair watBese nonvanishing results, this hypothesis has been chal-
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lenged since the presence of the current is evidently not sen-
sitive to the averaging over domains which results when YBCO Pb
twins are present.

To the extent that twinned YBCO can be treated asa | et
tetragonal system, these two types of experiments appear p
manifestly incompatibler phase shifts are associated with a
sign change of the order parameter in thé plane. The
c-axis current, which reflects an average of the order param-
eter in thea,b plane, must necessarily vanish. These obser-
vations are not altered when bilayer effects are incorporated.
While there has been some attenfior® paid to the role of
chains in addressing the data, it should be noted that recent ~  {------ooooooo--
experiments on reduced oxygen YBGRef. 15 (wherethe @@ cmmmmmmmmoommon
chains are expected to be highly interrupted and, therefore,

irrelevant to the transport and superconductivityeem to FIG. 6. Schematic illustration of Josephson coupling between
reproduce the same behavior as in the optimally doped Mape antibonding band in YBCQleft) and a Pb counterelectrode
terial. In summary, if botre,b- andc-axis Josephson mea- (right). Overlap of the single particle wave functions is nonzero
surements prove to be correct, any resolution of this issugnless the two wave functions are perfectly aligned in the directions
will probably revolve around a deeper understanding Ofparallel to the plane of the interface.

twinning effects.

In a Josephson experiment, the measured Josephson csignificant fraction of thes@articularly in the vicinity of the
rent is the sum of the currents established between each bamen Hove points the states in question differ from two in
of the cuprate and the superconductor to which it is coupleghhased-like states. They are described by,d) or (s,—s)

dominant combinations. In this way, the measurement of

— 7t -

J=J7+J, ©) phase shifts cannot be uniquely associated wittates in a
where each component has the usual Ambegaokar-Baratdiultilayer system, provided orthorhombicity is also present.
form>* From the standpoint of determining the order parameter sym-

metry the most decisive experiments would, therefore, be

performed on monolayer, tetragonal systems. Recently we

learned of the observation of & phase shift by Tsuei and
(10) co-workers’ in a one-layer, tetragonal TI compound. This

) n provides the most persuasive evidence dewave pairing,
The resistances,., can be calculated by determining the presumably due to a repulsive in-plane interaction in these

I =ALAR TS [(0f + AP (] AR
+ n

single particle tunneling matrix elemerits materials.
In reality, there is some asymmetry in the Josephson cou-
Tfk/zf df((ﬁk ¢|j(r)|¢5/>, (11 pling to the symmetric and antisymmetric bands. This asym-

metry derives from(1) density of states effects related to the

where the integration is carried out over the intermediatevan Hove points, an¢2) single particle wave-function struc-
region of the junction. The wave functiorqzsi and ¢R are  ture: wave functions associated with the antibonding band of
the single particle wave functions from the left and right the bilayer cuprate have opposite phase on the two layers and
hand side of the junction, respectively, aj(d) is the usual therefore a nodal plane exists between the layers. The first
current operator. The fact that the electrons of the cuprategffect indirectly favors tunneling from the bonding band, al-
are localized on the copper-oxide planes requires that they J8ough its importance is strongly dependent on the magni-
described by wave packets with some finite spread in motude of the bilayer splitting. In most of the high- cuprates
mentum a|ong the-axis direction. A microscopic treatment for which band structure data are available, the Fermi sur-
of the tunneling process is complicated by a number of isfaces are closed about the () point so that the antibond-
sues, which we cannot address here: the propagation of eleld band lies closer to the van Hove points and thus has a
trons out of a region of localization in the direction will  higher density of states. The effects of this higher density of
lead to scattering effects as the tunneling pair enters a mor@ates are  manifested via the gap magnitudes:
isotropic material. These may influence the tunneling fromA . |>[A_[.%
both bands to a substantial degréé.should also be noted ~ On the other hand, the second effect, although also favor-
that the order parameter at the surface may be modified froig tunnelling from the bonding band, is much less impor-
its bulk form®) For definiteness, we first consider the casetant. It has been claimé¥on the basis of symmetry argu-
of coupling to a conventional superconductor such as Pb, an@iénts that tunnelling from the antibonding band into an
ignore these complications. s-wave superconductor will lead to an appreciable reduction

If we make the simplifying assumption that the Josephsorn the current contribution from this band. However, some
coupling is the same for both the symmetri¢ X and anti- Josephson coupling is expected to remain; the matrix ele-
symmetric (-) bands, it follows thatr phase shifts in a mentsT, ., only vanish under special circumstances, when
SQUID experiment will be observed in a substantial regionthe centers of the two wave functions of HGl) coincide
of the phase space, corresponding to all bilayer parametéhroughout the boundary region. In general, this matrix ele-
sets which lie below the solid line of Fig. 4. Moreover, for a ment will be nonzero, if for no other reason than because the
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bands. In Fig. 7, we schematically plot the two alternative
scenarios for theg, —s) (orthorhombi¢ bandq parts(b) and

(c)], as well as the generally expected behavior for the
(d,d) case(a). Of the two scenariogb) and (c), only the
latter would preserve ther phase shift behavior across a
twin boundary. This scenario would also be compatible with
a low twin boundary pinning of the critical current. On the
other hand only caséb) would unambiguously lead to a
finite c-axis Josephson current. Moreover, neither case can
be ruled out on microscopic grounds.

In the extreme limit where the boundary can be treated as
b) a conventional superconductor-insulator-superconductor
(SIS junction, the locking of the phase of the order param-
eter across the junction occurs via Josephson coupling. If the
bilayers on either side of the junction are properly aligned it
might be expected that only bands of equal symmetry couple
together since the matrix element in Efj1) vanishes other-
wise. Thus the even bands on either side of the junction
would couple together as would the odd bands. As a conse-
quence the positive lobes of a\( ,A_)=(d,d) solution
would point in the same spatial direction on both sides of the
twin boundary[scenario(a)]. On the other hand thes(—s)

: state would have the component of positive phase in one

twin aligned with the component with negative phase in the
other twin[scenario(b)]. This would lead to a substantially

P reduced Josephson current at a macroscopic junction due to
averaging over the twins. If instead of an SIS model, one
argued that the order parameter lobes were required to vary
in the most continuous fashion, one might conclude that the
dominant componenfA; should also be continuous. This,
too, would lead to scenari) for the (s,—s) states anda)

FIG. 7. Possible scenarios for order parameter behavior acroggr the (d,d) configuration.
twin boundaries showingm phase shifted d,d)-type (& or Nevertheless, it is also possible to assume that interlayer
(s,—s)-type[(b) and (c)] solutions. The scenarios depicted®  najr breaking effects become considerable in the boundary
and(c) give ar junction behavior ira,b-axis comer junctions while  eqinn and thad\ | retains its coherence between twins so that
case(b) will lead to cancellation of ther phase shift after averag- - goanarig(c) obtains. Moreover, stacking faults, lattice defects
ing over twin domains. and other complexities can invalidate any of the above
lattice constants of the two materials are unlikely to be comSimple models of twinned crystals. In summary, the nature of
mensurate. The situation is depicted in Fig. 6. the or(_jer pa(ameter variation across a tW|_n _boundary is qu_lte

The net result is that the contribution to the tunnelling€omplicated in one layer systems and sufficiently complex in
current from the bonding band is somewhat greater than thdp€ bilayer case so that no clear conclusions can be drawn at
from the antibonding band but both bands contribute in arfhis time.
important way’® It thus becomes clear that the possibility of
7 phase shifts due to a nodeless order parameter must be
seriously considered when interpreting SQUID experiments Thus far we have investigated only the linearized gap
on orthorhombic multilayer materials. equations, which are necessarily restricted to the vicinity of

Josephson tunneling from one YBCO crystal to anotherthe transition temperature. Additional effects may occur be-
as well as across twin boundaries, is even less amenable kow T, associated with the transition to states with other
microscopic theory. In many respects twinned materials beerder parameter symmetries. While there does not appear to
have like single crystals, with similar transition temperatureshe experimental evidence for additional phase transitions,
thermodynamics and Josephson currents in corner anghere is considerable information contained in studying the
c-axis junctions. It is clear that little is understood at a de-more general situation. In this section we derive the appro-
tailed theoretical level about the nature of the twin boundarypriate Landau-Ginzburg free energy functional in terms of
What seems to be less ambiguous, however, is that there th the layer and band indices. The behavior at quadratic
little if any pinning of the critical currentin low magnetic  order gives further insight into, and serves to validate the
fields as it flows between twin boundari&sThis would  results discussed in the previous sections. There have been
suggest that, whatever the order parameter symmetry, theeveral discussions in the literatéfé* of phenomenological
phases tend to line up with and — lobes along parallel forms for the bilayer free energy. Here we proceed from a
directions in different domains. microscopic basis. Note that while this discussion refers to a

In the context of a bilayer system, this situation is morebilayer structure, it is readily extended to the case of general
complex, since the phases are associated with multipl&l following the results of Sec. Il B.

TWIN BOUNDARY

TWIN BOUNDARY
|

TWIN BOUNDARY

D. Landau-Ginzburg free energy functional
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In the case under consideratigwhen only pairing of Fs=Fs4+Fs_, (12)
electrons on individual subbands of the Fermi surface is con-
sidered, the superconducting state of the bilayer is describedvhereFg . is the contribution to the free energy of an indi-
by a two component order parametex; andA_ . The free  vidual subband. In the Landau-Ginzburg limit the free energy
energy,F, of the superconducting state then consists of thalifference between the normal and superconducting states is
sum of terms given by

e Tf ds AP+ o.osssf ds_ 4 13
+ +:n_ T~ D | + + .
ST ) e ce M T (keTo)? ) el ce(2m) 0!

It should be stressed that, although the two subbands contrilg | A |2+ ., |A | |2+ &' (AjA* +c.c) + By A4+ BL|A L |*
: I L2 [t = L2

ute independently to the free energy, the two order param-

eters are coupled via the gap equation. Both become finite at +8'|A2A, 12+ v (A2A*2+c.c)

a commonT,. 1M1= =L
By use of the gap equations the Landau-Ginzburg free

energy functional can be recast into a form which contains a

guadratic part,

+H(AJAT + o) (| AP+ p]AL]P). 17

Here the coupling termg’ and w,, vanish if A and

ay|AL 2+ a |A_|2+ S(ALA* +c.c), (14) A, belong to different irreducible representations of the lat-
tice symmetry group. Note that one important effect of
and a quartic contribution, orthorhombicity is to require that the coupling parameters
4 4 6" and uy;; change sign upon the interchange of thend
BilA|*+B-|A| b axes of the crystal. These same terms also vanish in the

* 2 2 limit ast, goes to zero.
T(ALAZ+eo)(pefA P fA]D). (19 By direct calculation from the microscopic theory we find
Here we have assumed that each component of the ordéfat the quartic cross termy’ is positivé® so that the phase
parameter can be separated into a complex magnitude timééference betweemy| and A, is zero (if 6'<0) or = (if

a normalized real function over the Fermi surface: 8'>0).* Studies of a related Landau-Ginzburg free energy
functional have been presented by Kobuki and?#eeho
AL(Q)=A.¢.(Q). (16)  discussed the mixing betweendawave A and ans-wave

. o A, in an RVB based theory. In their approach, mixing be-
The magnitudeA. appears explicitly in the Landau- tween these two components was brought about by a self-
Ginzburg free energy expansion while. determines the consistently determined orthorhombic strain. This led to the
coefficients in the expansion. The coefficiedtandu . van-  introduction of additional terms into the free energy which
ish if A, andA _ belong to different irreducible representa- could result in a negative’. As a consequence @i cd
tions of the lattice point group. ~state was produced. In the present theory, in contrast, mixing
These Coef'fICIentS ha.Ve been dISCUSSGd by Varma in thBetweenAL and A” occurs at quadratic rather than quartic
ergy contains the same class_o_f terms as that presented jpsence of tetragonal symmetry breaking ostyd mixing
Ref. 44, because we have explicitly removed the wave vectasceyrs (at quartic order Additional arguments against an

dependences via E¢L6) above, it is not straightforward to g 4 state were presented by Normaeidal 5
determine the conditions for order parameter sign changes

under ar/2 rotation of the lattice. Nevertheless, the relative
phase of the two order parameters can be determined varia-
tionally, by minimizing the free energy. If the nontrivial cou- In this section we discuss the nature of impurity or
pling parameters and . -.) are finite then the phase differ- pair-breaking effects in bilayer systems. At the heart of
ence betweerk , andA_ can be at most O ofr. This last  this issue is the paradoxical observation that all substitutions
result is consistent with the discussion of Sec. Il B 2 and thet the rare earth site, which sits between the bilayexsept
appropriate sign depends on whether in-plane or interplantor Pr), leave T, unaffected. Rare earth substitutions with
correlations are dominaft. or without local moments and in a disordered or ordered
It is useful to transform the above free energy functionalform make no difference to the superconducting transition
to the layer representation using E®). The functional is temperature. Previously it has been argued that the even
expressed in terms &f; andA, and two explicit transition = more general insensitivity of the cuprates to impurity substi-
temperatures can then be associated with the intra- and inteution is incompatible with anisotropic ord-wave
plane interactions. In this context the mixing between vari-superconductivity® ! Here we investigate the complexity
ous symmetries can be understood in a more direct way. Imtroduced into this problem by the presence of a bilayer
this representation the free energy is givefi’by order parameter. The effects of both magnetic and nonmag-

E. Impurity effects
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netic impurities on two-band systems have been considered g das ds.
in Ref. 20. Since it is relatively straightforward to generalize D f (2m20" Py
to the magnetic case, for definiteness, we concentrate on the == == FJ(2m) g

case of nonmagnetic impurities. 20 /

A central aspect of the present work is the consideration XU (p= P (P) (P @D
of an isolated bilayer, rather than a coherent stack of bilayHereg is a combined measure of the anistropy of the order
ers. Our starting point is a necessary first step in a treatmemarametef and impurity potential. This coupling constant
of incoherent coupling along the axis. As a result of this varies from 0 to 1. The latter is appropriate to the case of a
assumption the configuration averaging proc@skich re- totally isotropic order parameter.
stores the underlying translational symmetry of the lattise It follows from Egs.(20) that intralayer impurities enter
different from that discussed in Refs. 13,65. As has beethe coupled self-consistent equations via a mixture of the two
noted elsewher& there are two types of impurities which band contributions. In this way they lead to pair breaking in
must be considered: intra and interlayer substitutions. For aall instances, except for the special case of two in phase,
isolated bilayer, interlayer impurities represent the more inisotropic s states. Thus thes(—s) states experience a re-
teresting case, since they result in only intraband scatteringlucedT. in the presence of these impuriti¥s.
A state such as an isotropis,(-s) state will thus be insen- We next consider interplane scatterers. For the sake of
sitive to interlayer impuritiedas will the in-phase g;s) generality these impurities are assumed to scatter electrons
statd.?’ By contrast, intralayer impurity effects involve pro- within as well as between planes. The impurity Hamiltonian
cesses which couple the two bands. In this way, #e-6) is given by
state exhibits intralayer pair breakihyMoreover, the same
concerns that were raised earfiet about thed-wave order
parameter apply to the bilayer case with either type of impu-
rity. Thus the §,—s) state emerges as the leadifigpn- + R
trivial) candidate state for resolving the paradox concerning +u, (€ ,Copt+cC.CYJE AT, (22)

rare earthinonmagnetic substitutions in the cuprates. It is important to note that this Hamiltonian is diagonal in the

. d\'N? belgir|1 with the stahndard treatment of %:natter_ers withimand language and that no average is taken over sites in the
individual planes using the Born approximatidithe impu-  yertical direction. Thus the renormalized self-energy and or-

rity Hamiltonian has the form der parameter satisfy equations which are decoupled in the

yim _ T T
intgrplane_ ; qz [u\\(cl,vcl,0+ C2,0C2,0)
o

band index
A:nm—glanezg qE ul(q)CiTm,a(p"'Q)Cim,o(p)e_bq.Rm' » o+ ! o (239
7 L= T 5 T
(18) 272 &L+ A%
: iy , : . — 0. A.
wherem labels impurities located &,, on layeri,, ando is A=A+ CE * (23b)

a spin index. The impurity self-energy is given by 27+ @l +A%
Here care must be taken to preserve the band labetsamm
g. This decoupling of the two bands leads to the conclusion,
stated earlier, that isotropic order parameter gsteether in
(19 or out of phasgexperience no pair breaking from interlayer
impurities®®
In summary, we see that one way of avoiding the strong
centration of impurities per layer. We assume that the gap | air breaking generally asso_ciated with substitutions at the
X RO — are earth site between the bilayers is to consider states with
the absence of impurities is given hy.(q)=A-¢-(q)  the symmetry §,—s). For this reason, along with the
where .. are functions normalized appropriately over thej,nction behavior discussed in the previous section, this state
corresponding subband of the Fermi surface and that the inspould be considered as a potentially interesting candidate

purity renormalized gap is given b.y.(q). The self-  for the YBCO system.
consistent equations then become

1 _
S (P)= = 5Mmp 2 [U(P= Q)2 (P) 8r,r1,
rH'q

where < is the averaged Green'’s function ang,, the con-

[lI. FORMULATION AND ANALYSIS OF THE N-LAYER

1 &) PROBLEM
W= o+ E-r,:i o2+ A2 ' (208 A. Gap equation in the band representation
In this section, we treat the genefddlayer problem. The
_ system under consideration corresponds to a stack of decou-
~ — g A pled N-layer structural units, each layer of which consists of
Av=Ait+ =2, ==, (200 atwo dimensional copper oxide plane. In the limit of infinite
- ! r N, we recover essentially the usual Bloch wave description

of a collection of copper oxide monolayers, aligned along the
wherer is the usual scattering time and ¢ axis®!3 Just as in the bilayer case, we find that there are
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two competing states. Depending on the relative size of the N , A ()

intra and interplane coupling constants; one of the two is Ar(q)=—2 2 ARl (q,q’)ZEr—,

stable, while the other is metastable. These two limits corre- q r'=1 r(a’)

spond to inter and intralayer dominated states. In the band 1

language the latter are in phase and the former out of phase. xtan}‘{EﬁEr/(q’) . (28

Because the system contaiMsuch bands, the interlayer gap
parameters should be viewed as sinusoidally modulated witiThe energy dispersion of the elementary excitations is given
varying band index, as will be illustrated in more detail be-or each band by the usual relatiofE, = 52+|Ar|2 Equa-
Ve .
low. . . , . . . tion (28) is the central equation of this section. In Appendix
Just as in the bilayer case, the charge carriers within indin 3 e generalize this result further by extending it to an

vidual planes and on adjacent planes within a unit cell argqfinite stack of layers, corresponding to a fully three dimen-
assumed to interact via a nonretarded pair potential. Hoppingjonal |attice®®

of quasiparticles between adjacent planes within a unit cell is
determined by the hopping matrix elemént No hopping is
allowed between unit cells, as a consequence of our assump-
tion that thec-axis coupling is incoherent. As before, only  In this subsection we establish the nature of the two com-
singlet intraband pair states are considered. Many of the dgpeting states which are the stable and metastable solutions to
tailed derivations in this section may be found in Appendixthe gap equations derived from E(8). These are most

B. Solutions of the gap equation for smalit;

Al readily introduced by considering first the limit of small
The noninteracting Hamiltonian has the form t, . For arbitrarily small, , the two solutions become inde-
pendent and appear with different onset or transition tem-
~ N N-1 peratures. These two states are respectively associated with
HN=E 21 §(q)cfgcia— 21 (tlciTUciH,UJr c.c)|, pure intra and pure interlayer pairing. Moreover, in this limit
o 1= 1=

analytical results can be obtained, while the more general
case of nonzero, is treated numerically.

After some algebra, which is outlined in Appendix A 2, it
follows that the solution to the gap equation is given by

(24

wherei is a layer andr a spin index. The superconducting
order parameter is defined by

r
Ar(Q)IA,o%(Q)—ZCOS{N—L A opi(a), (29

Aj(e)=2 Vij(a.a)F;(a), (25
a where the two Fermi surface functiogig(q) and ¢, (q) sat-
whereVj; is the interaction between electrons on layand  isfy
layer j and the anomalous thermal Green’s function 4s
Fij(a)=(ci;(a)c;,(—q)) is antisymmetrized with respect to __ f ' ,
spin indices. In this quantity--) indicates a Gibbs average. Q9@ (Zw)zvpv”(q’q Ji(@), (309
The anomalous component of the superconducting

Green'’s function is obtained by performing the usual matrix ds , ,
inversion QM/&(Q):—'[—Z V.(a,9")¢.(q").  (30b
(27T) UE
Lw;—Hy —A Here the integrations are over the degenerate bands of the
g 1l= (26) Fermi surface and the relatednumbers () and(}, , are

—A* .
A v +Hy related to the respective transition temperaturgs , deter-

The entries in this matrix problem ar& 2N matrices with mined by the equation

two spin degrees of freedom amd layer indices, withw 1140 1
=21+ 1)7B Hyy. In( ==
We diagonalize Eg(26) in the spin degrees of freedom by KeTjyiof i
multiplying the entire equation from the right by,. The  Finally, the two competing states are associated with taking
equations are then transformed to the band picture by diag@ither one of the two parametersanor A, 4in Eq.(29) to
nalizing the normal state Hamiltoniady . The resulting en- pe zero. ' '
ergy dispersion in band of the Hamiltonian is given by The above results can be generalized to the case of finite
t, , using numerical techniques. When is finite, the two
parameters)| ; and A, , can be simultaneously nonzero in
which case bothj and ¢, will belong to the same irreduc-
ible representation of the lattice point group.
We will consider only pairing of electrons within individual To illustrate these results, we plot the amplitudes on the
bands so that the order parameter is diagonal in the banarious bands of the competing inter and intralayer pair
representation with componends . With a fully diagonal- states foN=4 andN=7 in Fig. 8. As in the bilayer case, if
ized Green'’s function the gap equation for tRelayer sys- the dominant interaction is attractive then the order param-
tem can now be readily obtained. Upon performing the suneter will be nodeless, while a repulsive interaction will yield
over Matsubara frequencies, we find a nodal solution with exact form determined by the details of

(3D

. r=1,...N. (27

r
6r(OI)=§(Q)+2th05(m
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Ol) N:/I, )\J:() b) N:/j, )\H:O

A

FIG. 8. Amplitude of pure in-
tralayer and interlayer pairing so-
lutions in the band representation
for N=4 [(a and (b), respec-
tively] andN=7 [(c) and(d), re-
spectively cases. The ideal solu-
tions (t, =0) are denoted by the
dotted lines and the actual solu-
tions are calculated for moderately
larget, .

A

7T 2 3 4 5 6 7 7 2 3 4 5 6 7
Band, r Band, r

the interaction and the band structues discussed in Sec. modynamic functions at low temperatures. While the above
II B 1). In panels(a) and (b) of Fig. 8 the magnitude of the model should not be viewed as a detailed representation of
order parameter is plotted as a function of band inddéar  YBCO, it serves to illustrate the rich array of phenomena
the intraband(a) and interbandb) states for a four layer which are associated with multiband systems.
system. The dotted line indicates the analytical solution for
t, =0 and the histogram bars illustrate the numerical results
for moderatet, (comparable in magnitude to the separation
of the Fermi level from the van Hove pointdn this way Band structure effects have played an important role in
some deviation from the analytically obtained curve is seemur analysis, particularly when the Fermi energy lies in the
as the solid bars differ slightly from the dotted line. It is clear vicinity of the van Hove singularities. We have seen that
that the two competing solutions represent a natural genethese singularities distort the shape of the order parameter.
alization of the bilayer results to ad-layer system. Similar They also play a key role in determining the relative stability
results are plotted for the seven layer system in pa(@ls of various solutions to the gap equations. In this subsection
and(d). It follows from the figures and the above discussionwe show that, of all the different gap symmetries, two are
that in these highe systems, even more complex behaviorable to take maximal advantage of the van Hove points:
can be obtained, with a range of signs and magnitudes of thiliese are the nodelessf the interaction is attractive and the
order parameters associated with the different bands. “dy2_y2" states® in the case of a repulsive interaction. It
To make this complexity even more explicit, we have should be noted that there is a considerable literature on the
considered the case &f=3 for the case of a dominant at-
tractive interlayer interaction and a weak in-plane repulsion
both peaked at+,7). In this case the hopping is slightly
larger than in the previous figure. Figure 9 shows our solu-
tion to the gap equation and the normal state band structure
(inseb for this three band model of orthorhombic YBCO
with the two lower energy bands closed aboUtand the
highest energy band open. This last band can be viewed as
simulating the chain band in YBC®&,since conduction in
this band is only possible along one principle axis. Solution
of the three layer gap equation clearly shows the mixing
between the two components of the solution. The middle
(planelike band has a purd-wave solution, since interlayer
pairing contributes very little to the gap on this band, while
the other two bands hawewave symmetry. The physics of X ”
this three band model is equally complex. Because of the
dominance of ars-wave order parameter component, one
expects that the magnitude ®f is only mildly affected by FIG. 9. Solution for a three band problem illustrating coexist-
impurity scatterers. On the other hand, a nodal solution omnce of solutions of different symmetries. The inset plots the asso-
one of the bands will yield power law dependences in ther¢iated band structure.

C. Basis functions and van Hove effects
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effect of the van Hove singularities on raisifig.’ In this
paper we focus on the interplay of the van Hove singularity a)
and order parameter symmetry. Earlier wBrié has shown
that in the more general strong coupling picture, states far
from the Fermi energy may wash out, to some degree, the
effectiveness of the van Hove singularity in raisifg.
While here we use a weak coupling approach to address the
order parameter symmetry the same qualitative behavior can
be expected to follow in more general strong coupling cal-
culations.

To quantify the van Hove effects we study the linearized
form of Eq.(28)

P(A)

N
ds. , —0.38 -0.24 - ”
A=~ 2 —— V" (q,0)A(q"), Pas o OOIOE v
r'=1 e,r:E,:(27T) UF(q ) ]

(32 .

. _ b) PDOS Relative to A=1
where the integrations are performed over segments of the 2.0 - - - '
Fermi surface corresponding to the different bands and the ’

eigenvalue() defines the BCS transition temperatUrg: '

1.14,
) . (33

_1:
@ '”( keTe

P(A)/P(1)

The Fermi velocity on band is vg, andEg is the Fermi
energy.

We define a complete set of orthonormal basis functions
over the Fermi surfacE which are nonzero over only a

single band' and assume further that thegg(q) belong 0.0 . . . .
to an irreducible representatidn of the lattice point group. -0.38 -0.24 —-0.10 0.04 0.18 0.32
These basis functions satisfy E,
¢ S,
— P D T =8 8. ) S v . . o
p§=:1 LszF(zﬂ.)ZvE(q) gi Q) ’ﬂJ (a) i,jorrrorr FIG. 10. Pairing density of statd®DOS9 of the solution with

(34) highestT, in each irreducible representation for LSCO. Paagl
shows the absolute PDOS in arbitrary units and pénellustrates
The pair wave function and interaction poterftfaire ex- the PDOS normalized by the single particle density of states. The
panded in terms of these Fermi surface harmonics as isotropic s state(solid line) was calculated for an attractive pair
interaction peaked at#, ) while the other solutions were calcu-
lated for repulsive interactions, wit® chosen so as to maximize

r r
Ar:; Air( ) ir( ), (35) T
and interactions while the nodelessfunction will be most en-
hanced by an attractive interaction.
V”'(q,q’): E Vir,jr’<r),/,ir<r)(q),/,Jr’(r)(qr)' (36) . The effgct of the van Hove singularities in the single par-
o ticle density of states on the superconducting order param-

The gap equation is thus reduced to the simple set of eigerae—;gocgn(g:f q7u§nt|f|ed through the pairing density of states

value problems

G lA @
QA((F):_E VO ININ (37) J (2m)“v g
AL PA(Ep)= — (39
2
By working in the space of functions defined by E&4) j asiA(@)]

itis clear that the basis functions{ ") are weighted by the 1, integrals are taken over all bands of the Fermi surface.
inverse ofy/uf- and so regions along the directions of the vanTg jllustrate this function and its relation to the van Hove
Hove points give a correspondingly greater contribution insingularities, in Fig. 1&) we plot P, as a function of the
the gap equation. If the interactioﬁ'"(q,q’) coupling two  Fermi energy for various solutions to the gap equation. Here
points on the Fermi surface is repulsivattractive then  we focus on the one layer case for clarity. It can be seen that
states with oppositésame phase at these two points will be a peak appears at the van Hove point for all irreducible rep-
favored. Thus we can conclude that the_ > basis function  resentations. It is, however, more appropriate to normalize by
will benefit most from the van Hove points for repulsive the single particle density of stat®s _,. This gives a more
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accurate indication of the degree to which the pair wavampurities is similarly complex. Intra and interlayer impuri-
function is stabilized by the density of states. The result forties suppress . in a different fashion. Thes, —s) state is of

the four different irreducible representations of g, lat- interest because it obeys an Anderson theorem with respect
tice of LSCO is plotted against Fermi energy in Fig(d0  to interlayer substitutions. This may help explain why sub-
Here we select tha which results in a maximal . for each  stitutions at the rare earth site in YBCO make little or no
representation. In this way, we see that Byg solution, i.e.,  difference to the magnitude df..

the "d,2_,2" state, and the nodeless,; “ s”-wave solution In the process of investigating very generic model inter-
indeed benefit much more from the van Hove singularityactions for the superconductivity, we have inferred informa-
than do all other states. tion about microscopic constraints on the pairing mecha-

In summary, there are two states which take maximal adnism. d,2_2-like states are found to be general solutions to
vantage of the van Hove points. These are the nodeleghe gap equation for repulsive interactions, in large part be-
s-wave state which occurs only for attractive interactions andtause they possess the fewest number of nodes and thereby
thed,2_ 2 state, appropriate to the case of repulsive interacthe highest transition temperatures. In this way, they should
tions. It should be stressed that in general the order parammot be specifically associated with a spin fluctuation driven
eter will not have these simple functional forms correspondpairing mechanism. Moreover, van Hove effects act to stabi-
ing to a single basis function. This is all the more striking aslize some order parameters over others. Of these the
the Fermi energy approaches the van Hove singularity wheré,2_,2-like symmetry is, again, the most notable. Ortho-
admixtures of higher order basis functions are most evidenthombicity further enhances this stabilization. Thus for a va-
While in the presence of multiple bands, the results plotted iriety of reasons, this state emerges as a natural solution to the
Fig. 10 become more complicated, the essential features stifjap equatios) in the presence of repulsive interactions.
remain. While we have emphasized the bilayéd<2) case, we

also presented general multilayer calculations which view
thec axis as consisting of decoupled structural units, each of
IV. CONCLUSION which containsN copper oxide layers. By contrast, within

The most important issues in the field of high-super-  the unit cell the intra- and interplane hopping is appreciable
conductivity involve determinations of the order parameterand plays an important role in giving rise kbdistinct bands.
Symmetry and the Superconducting pairing mechanismTheseN>2 calculations may be pal’ticularly relevant in the
While there are, clearly, no definitive answers to be had agontext of the Hg and Bi based cuprates. In treating the su-
this time, this paper has been directed towards addressirRfrconductivity, we have included intra- and interplane pair-
these two issues. We have emphasized the role of multilaydRg interactions in parallel with the above intra- and inter-
effects in the cuprates, in large part because the most wefilane hopping. We demonstrated that, regardless of the
characterized material, YBCO, has two copper oxide planegiumber of layersN in the unit cell, there are always two
This complexity leads to complications in inferring the ordercompeting states: one of which is intraplane dominated, so
parameter symmetry from various experimental tests. It alséhat the resultindN band gaps are in phase, and one of which
suggests that there are differdirtter- and intraplanechan-  is interplane dominated, so that thegaps are sinusoidally
nels which should be considered in any microscopic theorynodulated. Small changes in the parametrizations can lead to
of the pairing. a transition from one of these states to another. Thus it may

In reference to the order parameter symmetry, we hav®e inferred that the order parameter symmetry is potentially
found that a multilayer system should be characterized byariable from one cuprate to another and from one stoichi-
distinct gaps appropriate to each of the multiple bands. Ametry to another.
bilayer material such as YBCO has two gaps, a trilayer, While the inclusion of these multilayer effects has been
three, etc. In the presence of even a very small amount gieen to introduce considerable complexity into the classifi-
orthorhombicity, one of the gaps can be predominantly ofcation of the order parameter symmetry, this complexity is
d, while another ofs symmetry.(Throughout this paper we inescapable. As long as the layers communicate via one or
refer tod ands states as those which are odd or even, refwo body processes.e., via hopping or pairing interactions
spectively, under ar/2 rotation of the wave vectgrOne  superconductivity in the higfi; cuprates must include these
may be nodeless while the other has nodes. The multiplgwltilayer effects.
gaps can be in or out of phase. In this way the observation of
power law behavior in thermodynamics may reflect on only ACKNOWLEDGMENTS
one of the order parameters in question. The observation of
7 phase shifts in Josephson corner junction experiments on We thank M. Norman and R. Klemm for useful conversa-
YBCO must be viewed more widely in this multiband con- tions. This work was supported by the National Science
text. Indeed, we have found that this behavior can be assd-oundation(Grant No. DMR 9120000through the Science
ciated with two out of phase states in the presence of and Technology Center for Superconductivity.

(weak orthorhombicity. This orthorhombicity leads to a

strong asymmetry of the and —s states, so that one gap APPENDIX A: CALCULATION OF GAP EQUATION

function is elongated along tree and the other along thie FOR N LAYERS

axes of the crystal. The net Josephson current behaves rather
similarly to ad,._y2 state, although the thermodynamical
behavior need not exhibit the power laws of this state. Fi- To begin we need to calculate the superconducting
nally, the behavior of multilayer systems in the presence ofsreen’s function defined by theNax 4N matrix

1. Derivation
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_HN _A
—A* o +Hy/’

f/’(rl: 1)

Fisin —— (A7)

(AL) U= N+( 1)

The componentsly andA are defined in Sec. Il A. First we
diagonalize the normal state Hamiltonian. For this purpos
we define the set of characteristic polynomials

Dn(é—e€)=de(Hy—€ly) (A2) N
and observe that they satisfy the recursion relation Z

The particle creation operators in the band and layer lan-
%uage are thus related by the equation

‘_—0'

(A8)

D;(X)=xD;-1(X) ~t?D;_5(x), . . . g
_ Since we predominantly focus on intraband pairing the order
Do(x)=0, parameter associated with each bandis thus defined

D(x)=x. (A3)  through the anomalous thermal Green'’s function components

By using the known properties of the Chebyshev polynomi-
als it is straightforward to show that these characteristic

polynomials have the form Frp(a)= [<am(q>ar n(=a)—a (@) (—a)
simf(N+1)q]
DN(X):(_tL)NW- N L jr'ar
| TN+ L 2 (=)™sin 7 [sinl Qg
Xx=—2t, cogq). (A4) =1j=1
From the zeros of these polynomials we can determine the XFi () o - (A9)

normal state energies
We thus define th&l diagonal components of the order pa-

rameter in the band languade by the equation

€(q)= §(q)+2tLCOS(N+1 =1,...N. (A5

An orthonormal set of eigenstates ldf; can be found simi- > N N o irar jrar
larly. Theith component of the state associated with band A=——=> > (1) *isin sm( Ajj
[ is given by N+ 1% &1 N+1 N+1
(A10)
. 2 fap o [T , . . : . .
¢, = N+1( 1)'"'sin NT1 (A6)  With the pairing restricted to intralayer pairing and pairing

between nearest neighbor planes we can use the definition of
and consequently the components of the unitary matriX; ; to write the order parameter on a given banih terms
which diagonalize$39) are given by of the anomalous part of the Green’s function

1 N r ir’
Ad(g)= N+1E [2 Vi(0,q")sin| 17| sinl | Fa(a)
N—1 ,
ira (i+Dra , )
—22 V,(g,9")sin NF1 sin NF1 [Fii+1(d)+Fii1(q )]]- (A11)

With a fully diagonalized Green’s function the gap equation for fhéayer system can now be readily obtained. Upon
performing the sum over Matsubara frequencies in the usual way we get

Al ):_2 % Vr,r’( ')Mtam{lﬁE ( ’)} (A12)
(g i q.q 2Er’(q’) 2 r(g '

where the interaction in the band representation is defined as

1
Vi) = o [+ 3 6,0 1V(aa) + +o- N

r,r’

rar r'm ,
2008 N7 1) NF 1 Vi(@ay,

ai(N)zar,r'i5r+r’,N+l- (A13)

rr’
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The quasiparticle dispersions in the superconducting state awhere y=~1.14 andw, is the usual cutoff energy. We can
defined by the usual relatid, = ‘/Er2+|Ar|2' now characterize all the available pairing states with func-
tional form given by and ¢, along with their BCS tran-
sition temperatures.

Equations (A17) each have one isotropic eigenvector
given byA"‘u:A”,LO with T, o determined by the equation

2. The smallt, limit

For infinitesimalt it is interesting to transform E4A12)
to the layer representation using E&10). Then to zeroth
order int, the N intralayer problems uncouple from the | ( Yo ) 1

T C . n -
N—-1 mter'laye.r problems yielding the following two sets of KsTeol Qi
gap equations:

(A18)

which give the most stable candidate pairing states for the

-1 tanH 3 BE(q')] two mechanisms. The remaining eigenvectors correspond ei-
A= > V(a.9) —Fz ther to metastable states which are symmetric in the layer
N+1< "l 2E(q’) :
g index such thal;Aj,, =0 with T given by
x> (1+3 67 M)A; ("), (Al4a) N
~ , -
: T O
===y oy (A19)
-1 tant{ ; BE(q')] ¢0 -
Ajia(@)= mz Vl(q-q/)Tqr) 20,
q!

N1 or nonpairing statesT=0) which are odd in the layer in-
_ dex.
F(N=1yA ! . . . '
X ]2::1 (1+6;; JAjj+1(a). (Al4D) Transforming to the band picture using E410) we find
that the intralayer pairing states are even under the transfor-
Linearizing with respect td and solving for the eigenvalues mationr—N+ 1—r whereas the interlayer pairing states are
and eigenfunctions of these two equations givesTitie of  odd under this transformation. The two most stable candidate

the various pairing states available to the system and onlgtates thus give a superconducting order parameter of the
one of these solutions will correspond to the maximal valugorm

of T..
Let us first define two functions on the Fermi surface, _ ro
(q) and ¢, (q), and two numbers{); and Q, , which Ar(@)=4),04(q) —2c0 N+ 1 A oi(9). (A20)

satisfy the two equations
The two parameters, and A, 5 are both nonzero only
whent, is finite and wheny and ¢, belong to the same
Qug(q)= f(z Zor Vi(a.9)¢y(a’), (Al58  jrreducible representation. Since the two different pairing
mechanisms give solutions of differentdependence, the
ds dominant type of pairing can be easily determined even
QL%(Q):—f—2—V¢(q,Q’)¢L(Q’)- (A15b)  whent, is finite. Mixing of solutions at finitet;, and the
(2m)%ve effect on the transition temperature is discussed in Appendix
The integrations are over the degenerate bands of the Fertfiin the bilayer context.
surface. The pair amplitudes can be written in the form
3. Formulation in terms of Bloch waves

A i(Q):A\I\ $(Q), For completeness we conclude by relating the above for-
Ajiia(g)= Ay (g). (Al6)  mulation to the usual treatment of layered materials. It would

be natural to define @ component of the quasimomentum
The gap equation6A14) are transformed in the usual man- vector to be

ner by separating the sum over quasimomenta to separate

integrals over energy and the Fermi surface. The energy in- r

tegral can then be performed to obtain a BCS-like transition Q2=NF1 (A21)
temperature and using Eq&.15) we derive the linear matrix

equations Note, however, that there akelinearly independent, nonde-

generate eigenstates fox@,<# and so takingg,— —q,
N

. 5 Q ) gives no new states. Thus interpretiggas a momentum is
A|'|=|n(|2/-|-C N+”12 (1+367")A}, (A178  rather unnatural.
B The usual procedure in the case of laigg®* however,
N—1 is to assume periodic boundary conditions. This means that
Al =1In ( yoc| Q) 2 (1+ 0+(N V)AL we have hopping between layers 1 ah@nd that the system
kg T, ' is translationally invariant along the axis. The eigenstates

(A17b) of this new Hamiltonian are
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2”7 We assume that the triplet component is describable by a
¢j ) (A22) single complex parametexi and a real unit vector in spin
\/_ spacen so thatA'=A'f;. The Green’s function can thus
with energies be diagonalized in its spin degrees of freedom. There are,
) therefore, four independent parameters which describe the
ra superconducting state. The components of the order param-
=&+ —. : .
¢ ZtLCO% N ) (A23) eter in the band representation are
Taking the limit of N going to infinity one obtains the gap A= A“+AS ,
equation for a fully three dimensional system. Again assum- s
ing only intraband pairing the gap equation becomes A—:Au —A7,
(q") 1 A=Ap,
A(g)= E V(a.q )2E(q jtanh 5 BE(a") |, (A24) ”

with the interaction Designating the bands by.=¢&=]t;| we solve for the

1 anomalous parts of the Green’s function as before. These
V(a,9")=[Vi(a,q") +2co80,~d,)V.(a,9)],  (A25)  may be linearized il at T and upon performing the sum

over Matsubara frequencies we arrive at the following four
and the usual quasiparticle energies E(q) gap equations:
=e(q)?+|A(q)|%. In the largeN limit this system behaves ) L
identically to the one considered throughout this paper when, | E v tanf(z Bey) A tanh(; Be_)
only singlet pairing is considered. On the other hand, it is Arta- A 2¢. T 2e ’
obvious that this formulation gives very different results in (B6a)
the smallN limit. One might expect that in any real system

the hopping between unit cells is different from that within a tanh(3 Be.) tanh(3 Be_)
unit cell and so a more general formulation than either of A+ —A_= -2 V(AL P —A-——C ,
these would be required. Such a formulation would, how- d " - (B6b)
ever, yield a continuous set of Fermi levels within some

small band and this result would be in contradiction to ex- tanh( % Be,)+tank( Be )
perimental observations. A=-2, ViA, 2 Pe- ep (B60)

q 2e,+2e_ '

APPENDIX B: INTERBAND PAIRING tanh(3 Be.)+tanh(3 Be_)

To conclude this discussion we present a more careful A2:_% Vi 2€,+2e_ - (B69)
treatment of the case for whidti=2 admitting the possibil-
ity of pairing of electrons on different subbands of the Fermilf t, =0 then there is a single transition temperature associ-
surface. We will restrict our attention to states which areated with the two intralayer pairing states and another tran-
even under inversion, neglecting the possibility of asition temperature associated with the two interlayer states.
p-wave order parameter. This necessitates the consideratidbenote the larger one of these By,. It can be shown that
of a triplet interlayer pairing state. The normal state Hamil-for nonzerot, the transitions described by Eq86¢) and

tonian has the form (B6d) have a lowelT than the intraband pairing state tran-
_t sition in Egs.(B6a and (B6b) where for smallt, the new
Ho— § L (1) transition of the interband pairing st&té2with higher T, is
S S given in terms ofT o by
wheret, =|t, [e”*?. The order parameter has the form T, t, \2
In| —|=-0.212 (B7)
3 TC 0 kBT
e o] s t,i
AjTA4 Ai- ‘gl Aoy The transition temperature for the intraband pairing states is
A= . . (B2) givenby
AS+u X Aty Af-A] Tl L[ LR -
oo [ T2 9
The o; are the three Pauli spin matrices. Upon diagonalizing '”t

(64) we obtain
where the overlap between the two pair wave functions is

H —(g_m' ° (B3) ds
2_ 1
0 §+|tl_| R= ml/lnl/ll . (Bg)
AJr Al_ LAZ . . .
A= (B4) We thus see that in the presence of interlayer tunneling the
Aty AL favored pairing state is always an intraband pairing state.
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