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We classify the allowed order parameter symmetries in multilayer cuprates and discuss their physical con-
sequences, with emphasis on Josephson tunneling and impurity scattering. Our solutions to the gap equation
are based on highly nonspecific forms for the inter- and intraplane pairing interactions in order to arrive at the
most general conclusions. Within this framework, the bilayer (N52) case is discussed in detail with reference
to Y-Ba-Cu-O~YBCO! and Bi-Sr-Ca-Cu-O~BSCCO! and the related Landau-Ginzburg free energy functional.
Particular attention is paid to the role of small orthorhombic distortions as would derive from the chains in
YBCO and from superlattice effects in BSCCO, which give rise to a rich and complex behavior of the
multilayer order parameter. This order parameter hasN components associated with each of theN bands or
layers. Moreover, these components have specific phase relationships. In the orthorhombic bilayer case the
(s,2s) state is of special interest, since for a wide range of phase space, this state exhibitsp phase shifts in
corner Josephson junction experiments. In addition, its transition temperature is found to be insensitive to
nonmagnetic interplane disorder, as would be present at the rare earth site in YBCO, for example. Of particular
interest, also, are the role of van Hove singularities which are seen to stabilize states withdx22y2-like symmetry
~as well as nodelesss states! and to elongate the gap functions along the four van Hove points, thereby leading
to a substantial region of gaplessness. We find that for these rather general models of the pairing interaction the
dx22y2-like states are the most stable solutions in a large region of parameter space. In this way, they should not
be specifically associated with a spin fluctuation driven pairing mechanism.

I. INTRODUCTION

The question of the order parameter symmetry in layered
cuprate superconductors is one of the most important issues
currently under debate. Despite strong evidence for a
dx22y2 state,

1 at least in one particular cuprate@Y-Ba-Cu-O
~YBCO!#, there are still experimental inconsistencies.2,3 This
matter is complicated further by the complexities of YBCO
associated with the double copper-oxide plane structure. The
same bilayer unit is shared with the bismuth 2212 com-
pounds@Bi-Sr-Ca-Cu-O~BSCCO!#, where recent photoemis-
sion data,4,5 seem also to favor adx22y2 symmetry. In the
former compound,6 if not in the latter,7 there is evidence that
the double layer unit leads to two bands each of which
crosses the Fermi surface and each of which presumably has
a distinct superconducting order parameter. It is nota priori
clear whether these two gaps have the same or opposite
phase, nor whether they are predominantly associated with
the same or different irreducible representations of the tetrag-
onal symmetry group. It is, therefore, essential to provide a
systematic classification of the order parameter in these bi-
layer ~and more generalN-layer! systems before meaningful
and unambiguous inferences can be deduced from the ex-
perimental data.

It is the purpose of this paper to expand upon earlier work
by ourselves8 and other groups9–13 by classifying and estab-
lishing physical consequences of the various order parameter
symmetries inN-layer systems. Of particular interest are
those parameter sets which lead top junction behavior14–17

in an a,b-plane Josephson configuration. It is widely as-
sumed that the observation of thesep phase shifts provides
the strongest evidence yet for thedx22y2 state in YBCO. By
contrast, we find that in the more general orthorhombic bi-

layer case, in part because of van Hove effects,18 p phase
shifts are fairly widespread and not uniquely associated with
the dx22y2 state. Moreover, the proximity to the van Hove
singularities leads to a stabilization of thedx22y2 symmetry
for a variety of different models for the pairing interaction,
beyond the simple spin fluctuation model.19 It also is associ-
ated with a considerable distortion of the gap function away
from the ideal representation of thedx22y2 state. In order to
understand the physical consequences of various order pa-
rameter sets we investigate the role of intra- and interlayer
impurities, include a discussion of Josephson coupling, and
present a more general analysis of our results in the context
of both a Landau-Ginzburg theory and the solution of the
arbitraryN-layer problem.

A number of authors have considered the possibility of
electron tunneling and pair interactions of electrons on dif-
ferent planes in the context of a bilayer structure. Bulut and
Scalapino11 used numerical solutions of a strong coupling
model to show that when both interlayer interactions and
hopping were included in a bilayer model two competing
states arose, one withdx22y2 solutions in phase on both sub-
bands of the Fermi surface and the other withs states of
opposite sign. Similar observations were made by Liechten-
stein and co-workers9 who argued that the more probable
situation for spin fluctuation induced superconductivity, cor-
responded to a pair of out-of-phases states. The conse-
quences of such an out-of-phases state were considered in
more detail by Golubov and Mazin.20 It should be noted that
throughout this paper we will use the generic notation ‘‘s’’
~and ‘‘d’’ ! as applying to gap functions which have the same
~or different! signs under a rotation of the wave vector by
p/2. It is important to be particularly clear on our notational
convention since we emphasize the role of orthorhombicity
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in our work. Among other things, this orthorhombicity leads
to what we refer to as ‘‘s-d’’ or ‘‘mixed states’’ ~although the
overall sign under ap/2 rotation remains either1 or 2,
depending on which component is dominant!. The possibility
of mixed s-d states has been discussed within Landau-
Ginzburg theory, in a monolayer21 as well as a bilayer
context.22 In the latter, a spontaneouss-d mixing was con-
sidered, using microscopic arguments based on a resonating
valence bond~RVB! decoupling scheme. While most bilayer
studies considered tetragonal symmetry, earlier work by our
own group,8 using the more conventional BCS pairing for-
mulation, investigated the role of a small amount of
a,b-axis anisotropy in the bilayer problem. This small
orthorhombicity appears to be amplified by van Hove effects.
As a consequence, the solution corresponding to a pair of out
of phases-wave states frequently has the interesting and im-
portant physical consequence of leading top phase shifts in
a corner Josephson tunneling experiment.14–17 It should be
stressed that orthorhombicity is assumed to enter via the
chains in YBCO. There are alternate scenarios for this mate-
rial which explicitly build in the chain bands23–25 and their
contribution to the superconducting gap. Here we ignore
these explicit effects, in large part because recent tunneling
studies indicate that the order parameter behavior is largely
unaffected by reducing the oxygen stoichiometry to the case
of YBa2Cu3O6.6 in which limit the chains are strongly
fragmented.15 It was argued in Ref. 15 that ‘‘this experiment
rules out the possibility that the results of previous similar
experiments onYBa2Cu3O6.9 can be explained by the pres-
ence of Cu-O chains.’’ Similar observations based on twin-
ning effects have also been made in the theoretical literature.
The more generalN-layer problem has been studied by Bu-
laevski and Zyskin12 as well as Klemm and Liu.10 In these
calculations, it was also assumed that thec axis consisted of
a coherently coupled stack of bilayer structural units. Here
we presume that the considerable evidence for the absence of
c-axis coherence26,27 requires a different starting point.
While, for simplicity, we focus on an isolatedN-layer com-
plex, it is clear that higher order effects associated with in-
coherent coupling between unit cells must ultimately be in-
cluded. Such incoherent coupling can be introduced
following, for example, Ref. 28. An additional complexity
was raised in even earlier studies by Efetov and Larkin29

who pointed out that a complete treatment of interlayer elec-
tron pairing required the consideration of a triplet pairing
state odd under exchange of layer indices. This case was
further investigated by Kettemann and Efetov13 as well as
Klemm and Liu10 who argued that the mixing of triplet and
singlet states would generally lead to a second transition be-
low Tc . Thus far there is no evidence for this second transi-
tion, nor is there much support for the triplet pairing state.

There are important issues of controversy implicit in the
work discussed here. There appears to be little doubt that the
components of the bilayer couple magnetically. However, it
has not been persuasively demonstrated that there is a coher-
ent electronic couplingt' within the unit cell.30 Neutron
experiments31–33 on YBCO provide evidence for ac-axis
modulation associated with the spacing of the planes within
the bilayer. While this can be explained by magnetic cou-
pling alone,34,35 photoemission studies on this cuprate have
reported the observation of two copper oxide plane bands.6,36

The situation in BSCCO is even less certain with two pho-
toemission groups reaching opposite conclusions.4,7 For the
purposes of the present paper it will be assumed that there is
coherent coupling between the layers, though not between
the unit cells. This assumption is based in large part on the
demonstrated intrabilayer magnetic interactions which sug-
gest a moderate degree of communication between the lay-
ers. Moreover, on this basis it may be presumed that there are
direct or indirect electronic interactions within the bilayer
complex which must be included in any complete theory of
the superconductivity.

Similarly controversial is the origin of a possibledx22y2

state. While this state is consistent with spin fluctuation me-
diated superconductivity,1,37 for the models we consider it
appears more generally as a solution to the gap equation in
the presence of repulsive interactions. Providing this repul-
sion has some wave-vector dependence@near, although not
necessarily pinned at the antiferromagnetic position
(p,p)#, we find thedx22y2 state to be stable. Thus experi-
mental observation of this symmetry appears to provide
more support for superconductivity arising from repulsive
interactions than for any detailed superconducting mecha-
nism. While there are problems associated with interpreting
various experiments within adx22y2 context, among the most
perplexing from a theoretical viewpoint38–40 is the evident
impurity insensitivity of the superconducting transition
temperature.41 Moreover, substitution at the rare earth site in
YBCO with both magnetic and nonmagnetic atoms, between
the planes of the bilayer, leads to no variation inTc , except
in the special case of Pr. Here we address this fascinating
puzzle and demonstrate that for the case of two out of phase
nodelesss states in an isolated bilayer configuration, Ander-
son’s theorem applies to interplane substitutions. This pro-
vides additional motivation for studies of this particular pair-
ing state.

An outline of the paper is as follows. In Sec. II we focus
on the bilayer problem as a prototype of theN-layer system.
We introduce a generalized model for the pairing interaction
~Sec. II A! and then point out some general properties of
solutions which arise in these systems~Sec. II B!. In Sec.
II C we examine the consequences of the bilayer structure on
Josephson tunneling experiments between cuprates and con-
ventional superconductors as well as the problem of twinned
samples. We then construct~Sec. II D! the free energy func-
tional in the Landau-Ginzburg limit, addressing the effects of
interlayer tunneling and orthorhombicity. Impurity scattering
will be discussed in Sec. II E, where we investigate the cir-
cumstances under which Anderson’s theorem holds for the
case of two out of phases states.

In Sec. III we turn to the more technical issues of a gen-
eral weak coupling treatment of the problem ofN two di-
mensional layers. The reader uninterested in the more math-
ematical details can skip directly to the conclusions in Sec.
IV. The generalized gap equation in theN layer problem is
derived ~Sec. III A! and the two competing states are dis-
cussed in Sec. III B. These correspond to natural analogues
of the in-phase and out-of-phase states of the bilayer system.
We conclude with a general discussion~Sec. III C! of the
role of van Hove effects. Two states are found to take maxi-
mal advantage of the van Hove singularities: these are the
dx22y2 and nodelesss states. Some of the technical aspects
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of these calculations as well as a complete solution of the
bilayer problem are relegated to Appendixes A and B, re-
spectively.

Our conclusions are presented in Sec. IV.

II. THE N52 CASE

A. Gap equation and model interaction

We initially study the simpler bilayer system (N52) in
order to establish notation and to discuss physical results in a
more familiar context. Although only singlet intraband pair-
ing is considered in the main part of the text, a more com-
plete weak coupling calculation of the bilayer problem will
be presented in Appendix B. Many of the interesting features
of bilayers arise in the generalN-layer problem with only
slight modification. However, this more general case will be
discussed in detail in Sec. III. Section II B focuses primarily
on the linearized gap equation. Throughout Sec. II, particular
attention will be devoted to elucidating the role of orthor-
hombicity.

The weak coupling gap equations for two copper oxides
planes are given by

D11D252(
q
ViS D1

tanh12 bE1

2E1
1D2

tanh12 bE2

2E2
D ,
~1a!

D12D252(
q
V'S D1

tanh12 bE1

2E1
2D2

tanh12 bE2

2E2
D ,
~1b!

where we define

E6
2 5e6

2 1uD6u2. ~2!

Here we make the reasonable assumption that weak coupling
theory is adequate for indicating the form of the order pa-
rameter, although not for giving a reliable magnitude of
Tc . Equation~1! was previously discussed in Ref. 8. Its gen-
eral derivation is presented in theN-layer context in Sec.
III A. The two order parameter componentsD1 andD2 refer
to pairing on the bonding and antibonding bands of the
Fermi surface, respectively. Throughout this paper we will
transform between the band and layer indices. The two gap
parameters may be related to order parameters in the layer
language by the equations

D15D i1D' ,

D25D i2D' , ~3!

whereD i refers to singlet pairing of electrons within indi-
vidual layers andD' refers to singlet pairing of electrons on
different layers. Finally, the normal state energy dispersion is
given bye65j7t' , wheret' is the interlayer hopping ma-
trix element andj(q) is the single particle dispersion within
the copper oxide planes. It should be noted that allowing the
interlayer tunneling to depend onq in the manner suggested
by Chakravarty and Anderson30 as well as Andersenet al.,42

t'
4

~cosqx2cosqy!
2, ~4!

has no qualitative effect on the results of this paper. This
arises because for the model of Ref. 30 the interplane tun-
neling deviates most from the constant valuet' along the
diagonals of the Brillouin zone@where Eq.~4! vanishes#. It is
in precisely this region where the density of states contribu-
tions are smallest, since, as will be discussed in more detail
below, they lie away from the four van Hove points.

As noted above, the bilayer system admits two other pair-
ing states, an interlayer triplet stateD'

t which is odd under
interchange of layer labels and a second intralayer singlet
stateD i

o where the order parameter has opposite phase on
each of the two layers. Both of these correspond to interband
pairing, i.e., pairing between electrons on different subbands
of the Fermi surface. Thus they appear as off-diagonal ele-
ments ofD in the band representation. Because this inter-
band pairing is associated with a second phase transition
~when t' is finite! as well as a triplet state, it appears to be
currently of less physical interest than the singlet, intraband
pairing which we consider here. For the purposes of com-
pleteness, these more exotic states are considered in Appen-
dix B.

In order to analyze Eq.~1! we adopt a model interaction
which is believed to be sufficiently generic so as to encom-
pass most pairing mechanisms in the literature. In the spirit
of weak coupling theory it contains no dynamical effects,
although it includes as limiting forms the well studied spin
fluctuation interaction, which is strongly peaked at quasimo-
mentum transfers ofQ5(p,p),1 as well as phonon based
mechanisms.43 Alternative scenarios44 may be associated
with intermediateQ values. In the present model, the in-
plane and interplane pairing interactions are given by

Vi~q,q8!5l ixQ0
~q2q8!,

V'~q,q8!5l'xQ0
~q2q8!, ~5!

where we define the generalized susceptibility, which de-
pends on the momentum transfer

xQ0
~q!5

1

h (
Q5RQ0

1

@12J0„cos~qx2Qx!1cos~qy2Qy!…#
2 .

~6!

This model incorporates several parametrizations, allowing
the variation of the peak location throughQ0 , the peak width
via J0 , and the coupling strength and sign throughl. We
considerJ0 to be below the critical value 0.5. The interaction
contains the underlying symmetry of the lattice. This is im-
posed by summing over all elementsR of the point group,
h being the order of the group. Thus whenQ0 does not lie on
a symmetry element of the lattice then the interaction will
have eight peaks in a tetragonalD4h lattice and four peaks in
an orthorhombic lattice.

Our aim is to incorporate some of the key features of the
known band structure in various cuprates. Thus the lattice
point group will be assumed either to beD4h in the case of
La-Sr-Cu-O ~LSCO! or D2h in the case of YBCO and
BSCCO. We investigate two different kinds of broken tetrag-
onal symmetry in which either principle axes are retained as
symmetry planes~orthorhombic! in the case of YBCO or the
diagonals are retained as planes of symmetry
~rhombohedral!45 in the case of BSCCO.46 The band struc-
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tures which we use throughout this paper are taken from Ref.
47. In plane energy dispersions of the normal state are given
by an expansion of the form

j~q!5(
i50

7

t ih i~q!, ~7!

where the basis functionsh i are listed in Table I. Also indi-
cated in the table are the various band structures we will be
considering. It is important to note that the degree to which
the tetragonal (D4h) symmetry is broken is reflected in the
last two parameters of the table which we callt6 andt7 . The
size of these orthorhombic contributions was chosen, for il-
lustrative purposes, to be small, but otherwise arbitrary.

B. Order parameter symmetry in bilayers

1. Properties of monolayer solutions

Solutions to the single layer problem provide intuition
into those of theN-layer case, particularly when the inter-
layer hopping is relatively small. It is useful, therefore, to
characterize the allowed order parameters in the one layer
limit for each of the three band structures discussed above,
before moving to the bilayer case. In the one layer system
the functional form of the superconducting order parameter
depends only on the sign and the shape~as distinct from the
magnitude! of the pair interaction and on the electronic struc-
ture. To illustrate these pair interaction and electronic effects,
we vary the position of the peak locationQ and plot the
associated form of the order parameter in this two dimen-
sional space, for each of three model band structures. The
interaction is assumed repulsive (l.0) in this and subse-
quent phase plots; attractive interactions in general give rise
to nodelesss-wave solutions for any value ofQ. The mag-
nitude of the interaction plays no role in determining the
symmetry of the order parameter in the single layer problem,
it results only in a variation of the transition temperature. By
contrast, in the two layer case the~relative! magnitudes of
the in plane and out of plane interactions enter via Eq.~1! in
an important way. We will examine this effect subsequently.

Other parameters of our model interaction have a lesser
influence on the form and regions of stability of the various
solutions. Variation of the peak widthJ0 affects Tc to a
greater extent than it does the symmetry of the actual solu-
tion. The component of the interaction which most influences

the symmetry of the superconducting order parameter is the
degree to which the vectorQ connects positive and negative
lobes of the pair wave function on the Fermi surface.37 As
will be illustrated under more general circumstances below,
near half filling, when only nearest neighbor hopping is in-
cluded, the points at which thedx22y2 state has maxima are
separated byQ5(p,p), while the extrema ofdxy are sepa-
rated by (p,0) and the eight lobedsxy state has positive and
negative lobes separated by (p/2,p/2). These are precisely
the points in the space ofQ near which these various solu-
tions are favored.

Figure 1 represents this ‘‘phase diagram’’ for the LSCO
case. It is a map of the irreducible representations of the
tetragonal,D4h lattice which correspond to the solutions with
the highestTc . We stress that the simple functional forms of
the order parameter, such as are implicit in the notation
‘‘ dx22y2’’ etc., can be misleading. The gap parameters may
involve important contributions from higher order terms in
the associated representation. Moreover, when tetragonal
symmetry is broken, states may be highly admixed with
states of other representations. We will use this notation with
care, applying it only to certain solutions of systems with
tetragonal symmetry. When necessary we will avoid any am-

TABLE I. Tight binding basis functions and hopping parameters
~in eV! used in numerical calculations.

t i
hi~q! LSCO YBCO BSCCO

1 0 0 0.1305
1
2(cosqx1cosqy) -1.0 -0.50 -0.5951
cosqxcosqy 0.2 0.15 0.1636
1
2(cos2qx1cos2qy) 0 -0.05 -0.0519
1
2(cos2qxcosqy1cosqxcos2qy) 0 0 -0.1117
cos2qxcos2qy 0 0 0.0510
1
2(cosqx2cosqy) 0 0.04 0
sinqxsinqy 0 0 0.08

FIG. 1. Phase diagram showing order parameter symmetry in
LSCO: ~a! near van Hove points;~b! away from van Hove points.
The two axes represent the wave vector componentsQx , Qy at
which the pairing interaction has a maximum.
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biguity by using the common group theoretic nomenclature
for the various irreducible representations.48

Because proximity to the van Hove singularity is found to
play such a crucial role, we present two limiting cases cor-
responding to choices for the Fermi energy near 1~a! and far
from 1~b! the van Hove singularity. The order parameters
shown plot the actual solutions forQ5(p,p), at which the
B1g ~‘‘ dx22y2’’ ! solution is found, atQ5(p/2,p/2), where
an eight-lobedA1g solution, the so called ‘‘sxy’’ state, exists
and atQ5(p,0), where theB2g ‘‘ dxy’’ state is most stable.
Moreover, these symmetries persist over an extended region
of Q space as outlined by the solid lines in the figures. States
with increasing numbers of nodal planes, including states in
the A2g irreducible representation, appear asQ→(0,0). In-
deed, because this region is so complicated~in the case of
repulsive interactions!, no detailed solutions are indicated.
The region where the ‘‘dx22y2’’-like solution persists is
shaded in this and subsequent figures.

Figures 1~a! and 1~b! demonstrate that proximity to the
van Hove singularity leads to a modestly extended region
with B1g or ‘‘dx22y2’’ symmetry. Moreover, as the Fermi
energy approaches the singularity, the lobes on the
‘‘ dx22y2’’ state become sharper. In this way the order param-
eter takes full advantage of the four van Hove points which
coincide with each of the four maxima in this gap function.
Since the gap function is sharply peaked in the direction of
the principle axes it is very small in a large region about the
nodal lines along the diagonals of the Brillouin zone. A large
gapless region will have consequences on the thermody-
namic properties of the samples at low temperatures and may
have been observed in angle-resolved photoemission spec-
troscopy measurements on BSCCO.4,5

Breaking of the tetragonal symmetry in our model band
structure, as is appropriate for orthorhombic YBCO, serves
to further enhance these van Hove effects. This is shown in
Fig. 2 where, as in the LSCO case above, the gap equation
solutions are plotted at the special symmetry points and the
lines indicate the boundaries of the region over which the
representative solution persists. Solid lines separate states
belonging to different irreducible representations and dotted
lines separate states of different symmetry within a represen-
tation. Figures 2~a! and 2~b! demonstrate clearly that the
phase space occupied by the ‘‘dx22y2’’ solution is dramati-
cally increased in the vicinity of the van Hove point. Further-
more, the lobes of this gap function again become more ex-
tended along the principle axes, compared with similar
solutions farther from the van Hove point.

Finally, the results in the BSCCO case are presented in
Fig. 3. We see here that, contrary to the two previous cases,
the phase space in which the gap has the same sign along the
a and b directions ~i.e., the totally symmetric irreducible
representation in theD2h lattice! occupies a somewhat larger
region of parameter space when the Fermi level is near the
van Hove point. This is the consequence of a stabilizing
admixture of an isotropics-wave component. On the other
hand, states with ana,b-axis p phase shift dominate the
phase space away from the van Hove points.

The above three figures lead to an important conclusion:
the ‘‘dx22y2’’ solution exists in a large region of parameter
space away fromQAF . Therefore this state should be con-
sidered as an obvious candidate form for the order parameter

in any mechanism involving pairing via a predominantly re-
pulsive interaction. Stated alternatively, observation of this
form for the gap in an experiment is in itself not proof of any
specific pairing mechanism. Furthermore, it also appears
from these figures that, quite frequently, a single mechanism
can give rise to widely varying forms of order parameters
depending upon the details of the band structure, doping
level, lattice symmetry and other subtle features of the ma-
terial.

2. Bilayer effects

In bilayer materials there are two possible states which
compete as solutions to the gap equation. These may be
crudely classified by referring to the states as ‘‘interplane and
intraplane dominated solutions.’’ These two competing sets
of solutions were discussed in a previous short communica-
tion by our group,8 as well as elsewhere.9,11,22,49By setting
t'50 in the gap Eq.~1! we see thatD i andD' uncouple
from each other atTc . Superconductivity can thus be either
due to interlayer pairing or due to intralayer pairing depend-
ing on the relative magnitudes and signs ofl i andl' . In the
band representation in-plane pairing yields a solution which

FIG. 2. Phase diagram for one layer model of YBCO:~a! near
van Hove points;~b! away from van Hove points. The dotted line
separatesA1g representations with and withouta,b-axis p phase
shifts.
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has the same phase on both bands while the interlayer pair-
ing solution undergoes ap change in phase from one band to
the other. This sign change follows directly from Eq.~3! in
the extreme limits in which one or the other order parameter
~in the layer basis! is the larger.

It is important to stress that we will refer to these two
competing solutions throughout this paper. They occur in
bilayer as well asN-layer systems. In all cases wheret' is
finite, one solution is stable and the other metastable. Thus,
although one may refer to their associated transition tem-
peratures, only the larger of the two has any physical mean-
ing. As a consequence, there is nothing to prevent these two
competing states from having a different order parameter
symmetry.

As in the one layer case, repulsive interactions are found
to lead to nodal states such as thed states or multilobeds
states discussed above, while attractive interactions require
nodeless states ofs symmetry. In the presence of two differ-
ent types~signs! of in plane and out of plane interactions,
these effects provide a rich and complex structure for the
competing order parameter states. Under these conditions
and when there is no coherent interplane hopping, the two
solutions may belong to different symmetry groups. When
t' is finite, the solutions couple while still preserving the

underlying lattice symmetry. Thus mixing ofs andd states
within the linearized gap requires both orthorhombicity and
interplane hopping. More generals-d mixing effects will oc-
cur at higher~quartic! order in a Landau-Ginzburg expan-
sion, and will be discussed in more detail in a subsequent
section.

To illustrate the behavior of the bilayer order parameter
and the two competitive states, we consider for concreteness
the case of an attractive interplane interaction and a repulsive
intraplane interaction peaked atQ5(p,p). This model may
be viewed as derived from a generalized spin fluctuation
model, where the interlayer orc-axis spin susceptibility is
included as a perpendicular component of the pairing inter-
action. This case was previously discussed by a number of
different groups.8,9,11,20,49,50While we choose this peak loca-
tion simply for illustrative reasons, our results can easily be
extended to other values ofQ. Under these circumstances,
the order parameter in the band picture has the schematic
form

S D1

D2
D 5S s'1di

2s'1di
D . ~8!

If the lattice is tetragonal then eithers' or di will vanish.
Thus whenl' is zero the solution will haved symmetry.
Moreover, both band gaps are in phase. Similarly whenl i
vanishes the symmetry iss-like and both gaps are out of
phase. The transition from one type of solution to the other is
governed by the size ofl' /l i . Frequently the crossover
from the in-plane to the interplane dominated regime may
occur despite the fact that the ratiol' /l i is small compared
to one. What determines this crossover is the nature and sign
of the competing interactions and the band structure.

If tetragonal symmetry is broken even more complicated
situations obtain. Both components can be nonzero simulta-
neously and the transition is a smooth one as a function of
increasingl' /l i . The regions where the various types of
solution exist in YBCO are illustrated in Fig. 4 for the ex-

FIG. 3. Phase diagram for one layer model of BSCCO:~a! near
van Hove points;~b! away from van Hove points. A dotted line
separates states with four and eight lobes within a representation.

FIG. 4. Phase diagram for stability ofp phase shifts on thea
relative to theb axis, in the order parameter~below solid line!.
Model is for YBCO with an attractive interlayer and repulsive in-
tralayer interaction, both peaked atQAF . Hole doping fraction ap-
pears on the ordinate and relative strength of the two interactions
defines the abscissa. The shaded regions denote states where the
order parameter on one~light! or both ~dark! bands is nodeless.
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ample discussed above. Plotted on the vertical axis is the
fractional hole dopingx. We estimate the physical values of
this parameter, for a range of different oxygen stoichiom-
etries in YBCO, to vary from 0.1 to 0.3. The figure illustrates
the parameter regimes where the dominant component of the
order parameter on the two bands is (d,d),(s,d), and
(s,2s).51 The region below the solid line involves states in
which the sum of the pair wave functions on the two bands
changes sign underp/2 rotation of the axes and can thus
yield p phase shifts ina,b-axis Josephson tunneling
experiments.14–17Moreover, the shaded regions denote states
in which the sum of the two order parameters changes sign
even though one or both are nodeless. This issue will be
addressed in detail in Sec. II C. The inset plots the density of
states as a function of energy. There are actually four van
Hove points associated with orthorhombic splitting of the
two bands. For clarity the doping level at which the first of
these occurs is plotted in the main portion of the figure as a
dotted line. Note that the region labeled by (s,2s) occupies
the largest fraction of phase space when the band is near the
van Hove points in general and in particular when one sub-
band of the Fermi level is closed about theG point of the
reciprocal lattice and the other aboutX.

The evolution of these solutions with increasingl' /l i is
illustrated in Fig. 5. Indicated here is the calculated shape of
the gap functions for the two bands of the bilayer. Their
relative phase is also noted. It can be seen that the pair wave

function on each band has a greater amplitude along one
symmetry axis than along the other, and the axis along which
the pair wave function has its maximum differs from one
subband to the other. These results are plotted for very small
orthorhombicity and for Fermi energies close to the van
Hove point. On the basis of the latter assumption, the small
orthorhombic effects are greatly magnified. The figure labels
~a!–~d! correspond to~a! two in phased-wave dominated
states,~b! one band nodeless and the other nodal,~c! two out
of phase nodeless states which show greatly elongated lobes,
and ~d! to two out of phases-wave dominated states which
are more isotropic. The relative phase space which these so-
lutions occupy can be seen from the previous figure.

Moreover, the detailed shape of the order parameter has
important physical consequences. Thus for case~c!, for ex-
ample, the solutions are in the interplane regime whereD' is
dominant. Here, however, the order parameter is nodeless
and yet the combination of the two gaps has features of a
d-wave solution ina,b-axis as well asc-axis Josephson tun-
neling experiments.52 Case~b! is associated with ones-like
and oned-like state. It will exhibit both power law behavior
in thermodynamical properties, as well as thep phase shifts
in corner junction experiments, which are also seen in cases
~a! and ~c!. These Josephson experiments and their relation
to the order parameter symmetry will be discussed in more
detail in the next section.

C. Josephson tunneling: Phase coherence across domain
boundaries

Josephson tunneling experiments have been key to eluci-
dating the order parameter symmetry in the YBCO cuprate
family.14–17,52Within this class, two types of measurements
have been performed. These involvea,b- andc-axis tunnel
junctions. In the former category superconducting quantum
interference device ~SQUID! geometries have been
investigated.15–17 These consist of two junctions with Pb
counterelectrodes, whose interference pattern yields informa-
tion about the relative phase of the order parameter along
various axes in thea,b plane. In ‘‘corner junctions,’’p phase
shifts of the order parameter between thea andb axes have
been observed and attributed to the sign change upon a
p/2 rotation of the wave vector, within adx22y2 state. This
interpretation is further confirmed by ‘‘edge’’ junctions
which probe the interference along a single face of the ma-
terial; here no phase shifts are found to be present. These
conclusions are the same for both twinned and untwinned
crystals. A variant on this geometry are the ring
experiments14 consisting of YBCO segments with different
grain boundary orientations. Observation of a nonzero, half
integer spontaneous flux threading the ring, for specific ori-
entations of the grain boundaries, again provides support for
a dx22y2 state.

An alternate Josephson tunneling geometry has been in-
vestigated by Sunet al.52 These authors observe finite
c-axis Josephson currents between a Pb counterelectrode and
a YBCO sample. For the simplest representation of the
dx22y2 symmetry, no Josephson current should be present.
While it is possible to invoke orthorhombicity52,53 to explain
these nonvanishing results, this hypothesis has been chal-

FIG. 5. Evolution of order parameter solutions as interlayer cor-
relations are increased. The states correspond to the solutions ob-
tained in the previous figure forx50.25 and the indicated
l' /l i . Observe that proximity to the van Hove singularity results
in considerablea,b-axis anisotropy despite the very small ortho-
rhombicity.
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lenged since the presence of the current is evidently not sen-
sitive to the averaging over domains which results when
twins are present.

To the extent that twinned YBCO can be treated as a
tetragonal system, these two types of experiments appear
manifestly incompatible.p phase shifts are associated with a
sign change of the order parameter in thea,b plane. The
c-axis current, which reflects an average of the order param-
eter in thea,b plane, must necessarily vanish. These obser-
vations are not altered when bilayer effects are incorporated.
While there has been some attention23–25paid to the role of
chains in addressing the data, it should be noted that recent
experiments on reduced oxygen YBCO~Ref. 15! ~where the
chains are expected to be highly interrupted and, therefore,
irrelevant to the transport and superconductivity!, seem to
reproduce the same behavior as in the optimally doped ma-
terial. In summary, if botha,b- andc-axis Josephson mea-
surements prove to be correct, any resolution of this issue
will probably revolve around a deeper understanding of
twinning effects.

In a Josephson experiment, the measured Josephson cur-
rent is the sum of the currents established between each band
of the cuprate and the superconductor to which it is coupled

J5J11J2, ~9!

where each component has the usual Ambegaokar-Baratoff
form54

J65D6
L DR

p

br6
(
n

@~vn
21D6

L 2!~vn
21DR2!#2 1/2.

~10!

The resistances,r6 , can be calculated by determining the
single particle tunneling matrix elements55

Tk,k8
6

5E dr^fk,6
L u j ~r !ufk8

R &, ~11!

where the integration is carried out over the intermediate
region of the junction. The wave functionsf6

L andfR are
the single particle wave functions from the left and right
hand side of the junction, respectively, andj (r ) is the usual
current operator. The fact that the electrons of the cuprates
are localized on the copper-oxide planes requires that they be
described by wave packets with some finite spread in mo-
mentum along thec-axis direction. A microscopic treatment
of the tunneling process is complicated by a number of is-
sues, which we cannot address here: the propagation of elec-
trons out of a region of localization in thec direction will
lead to scattering effects as the tunneling pair enters a more
isotropic material. These may influence the tunneling from
both bands to a substantial degree.~It should also be noted
that the order parameter at the surface may be modified from
its bulk form.56! For definiteness, we first consider the case
of coupling to a conventional superconductor such as Pb, and
ignore these complications.

If we make the simplifying assumption that the Josephson
coupling is the same for both the symmetric (1) and anti-
symmetric (2) bands, it follows thatp phase shifts in a
SQUID experiment will be observed in a substantial region
of the phase space, corresponding to all bilayer parameter
sets which lie below the solid line of Fig. 4. Moreover, for a

significant fraction of these~particularly in the vicinity of the
van Hove points!, the states in question differ from two in
phased-like states. They are described by (s,d) or (s,2s)
dominant combinations. In this way, the measurement ofp
phase shifts cannot be uniquely associated withd states in a
multilayer system, provided orthorhombicity is also present.
From the standpoint of determining the order parameter sym-
metry the most decisive experiments would, therefore, be
performed on monolayer, tetragonal systems. Recently we
learned of the observation of ap phase shift by Tsuei and
co-workers57 in a one-layer, tetragonal Tl compound. This
provides the most persuasive evidence ford-wave pairing,
presumably due to a repulsive in-plane interaction in these
materials.

In reality, there is some asymmetry in the Josephson cou-
pling to the symmetric and antisymmetric bands. This asym-
metry derives from~1! density of states effects related to the
van Hove points, and~2! single particle wave-function struc-
ture: wave functions associated with the antibonding band of
the bilayer cuprate have opposite phase on the two layers and
therefore a nodal plane exists between the layers. The first
effect indirectly favors tunneling from the bonding band, al-
though its importance is strongly dependent on the magni-
tude of the bilayer splitting. In most of the high-Tc cuprates
for which band structure data are available, the Fermi sur-
faces are closed about the (p,p) point so that the antibond-
ing band lies closer to the van Hove points and thus has a
higher density of states. The effects of this higher density of
states are manifested via the gap magnitudes:
uD1u.uD2u.58

On the other hand, the second effect, although also favor-
ing tunnelling from the bonding band, is much less impor-
tant. It has been claimed59 on the basis of symmetry argu-
ments that tunnelling from the antibonding band into an
s-wave superconductor will lead to an appreciable reduction
in the current contribution from this band. However, some
Josephson coupling is expected to remain; the matrix ele-
mentsTk,k8

2 only vanish under special circumstances, when
the centers of the two wave functions of Eq.~11! coincide
throughout the boundary region. In general, this matrix ele-
ment will be nonzero, if for no other reason than because the

FIG. 6. Schematic illustration of Josephson coupling between
the antibonding band in YBCO~left! and a Pb counterelectrode
~right!. Overlap of the single particle wave functions is nonzero
unless the two wave functions are perfectly aligned in the directions
parallel to the plane of the interface.
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lattice constants of the two materials are unlikely to be com-
mensurate. The situation is depicted in Fig. 6.

The net result is that the contribution to the tunnelling
current from the bonding band is somewhat greater than that
from the antibonding band but both bands contribute in an
important way.23 It thus becomes clear that the possibility of
p phase shifts due to a nodeless order parameter must be
seriously considered when interpreting SQUID experiments
on orthorhombic multilayer materials.

Josephson tunneling from one YBCO crystal to another,
as well as across twin boundaries, is even less amenable to
microscopic theory. In many respects twinned materials be-
have like single crystals, with similar transition temperatures,
thermodynamics and Josephson currents in corner and
c-axis junctions. It is clear that little is understood at a de-
tailed theoretical level about the nature of the twin boundary.
What seems to be less ambiguous, however, is that there is
little if any pinning of the critical current~in low magnetic
fields! as it flows between twin boundaries.60 This would
suggest that, whatever the order parameter symmetry, the
phases tend to line up with1 and2 lobes along parallel
directions in different domains.

In the context of a bilayer system, this situation is more
complex, since the phases are associated with multiple

bands. In Fig. 7, we schematically plot the two alternative
scenarios for the (s,2s) ~orthorhombic! bands@parts~b! and
~c!#, as well as the generally expected behavior for the
(d,d) case~a!. Of the two scenarios~b! and ~c!, only the
latter would preserve thep phase shift behavior across a
twin boundary. This scenario would also be compatible with
a low twin boundary pinning of the critical current. On the
other hand only case~b! would unambiguously lead to a
finite c-axis Josephson current. Moreover, neither case can
be ruled out on microscopic grounds.

In the extreme limit where the boundary can be treated as
a conventional superconductor-insulator-superconductor
~SIS! junction, the locking of the phase of the order param-
eter across the junction occurs via Josephson coupling. If the
bilayers on either side of the junction are properly aligned it
might be expected that only bands of equal symmetry couple
together since the matrix element in Eq.~11! vanishes other-
wise. Thus the even bands on either side of the junction
would couple together as would the odd bands. As a conse-
quence the positive lobes of a (D1 ,D2)5(d,d) solution
would point in the same spatial direction on both sides of the
twin boundary@scenario~a!#. On the other hand the (s,2s)
state would have the component of positive phase in one
twin aligned with the component with negative phase in the
other twin @scenario~b!#. This would lead to a substantially
reduced Josephson current at a macroscopic junction due to
averaging over the twins. If instead of an SIS model, one
argued that the order parameter lobes were required to vary
in the most continuous fashion, one might conclude that the
dominant componentD' should also be continuous. This,
too, would lead to scenario~b! for the (s,2s) states and~a!
for the (d,d) configuration.

Nevertheless, it is also possible to assume that interlayer
pair breaking effects become considerable in the boundary
region and thatD i retains its coherence between twins so that
scenario~c! obtains. Moreover, stacking faults, lattice defects
and other complexities can invalidate any of the above
simple models of twinned crystals. In summary, the nature of
the order parameter variation across a twin boundary is quite
complicated in one layer systems and sufficiently complex in
the bilayer case so that no clear conclusions can be drawn at
this time.

D. Landau-Ginzburg free energy functional

Thus far we have investigated only the linearized gap
equations, which are necessarily restricted to the vicinity of
the transition temperature. Additional effects may occur be-
low Tc associated with the transition to states with other
order parameter symmetries. While there does not appear to
be experimental evidence for additional phase transitions,
there is considerable information contained in studying the
more general situation. In this section we derive the appro-
priate Landau-Ginzburg free energy functional in terms of
both the layer and band indices. The behavior at quadratic
order gives further insight into, and serves to validate the
results discussed in the previous sections. There have been
several discussions in the literature22,44of phenomenological
forms for the bilayer free energy. Here we proceed from a
microscopic basis. Note that while this discussion refers to a
bilayer structure, it is readily extended to the case of general
N following the results of Sec. III B.

FIG. 7. Possible scenarios for order parameter behavior across
twin boundaries showingp phase shifted (d,d)-type ~a! or
(s,2s)-type @~b! and ~c!# solutions. The scenarios depicted in~a!
and~c! givep junction behavior ina,b-axis corner junctions while
case~b! will lead to cancellation of thep phase shift after averag-
ing over twin domains.
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In the case under consideration~when only pairing of
electrons on individual subbands of the Fermi surface is con-
sidered!, the superconducting state of the bilayer is described
by a two component order parameter :D1 andD2 . The free
energy,Fs , of the superconducting state then consists of the
sum of terms

Fs5Fs,11Fs,2 , ~12!

whereFs,6 is the contribution to the free energy of an indi-
vidual subband. In the Landau-Ginzburg limit the free energy
difference between the normal and superconducting states is
given by

Fs,62Fn,65 ln
T

Tc
E

e65EF

dS

~2p!2vF
uD6u21

0.0533

~kBTc!
2E

e65EF

dS

~2p!2vF
uD6u4. ~13!

It should be stressed that, although the two subbands contrib-
ute independently to the free energy, the two order param-
eters are coupled via the gap equation. Both become finite at
a commonTc .

By use of the gap equations the Landau-Ginzburg free
energy functional can be recast into a form which contains a
quadratic part,

a1uD1u21a2uD2u21d~D1D2* 1c.c.!, ~14!

and a quartic contribution,

b1uD1u41b2uD2u4

1~D1D2* 1c.c.!~m1uD1u21m2uD2u2!. ~15!

Here we have assumed that each component of the order
parameter can be separated into a complex magnitude times
a normalized real function over the Fermi surface:

D6~q!5D6c6~q!. ~16!

The magnitudeD6 appears explicitly in the Landau-
Ginzburg free energy expansion whilec6 determines the
coefficients in the expansion. The coefficientsd andm6 van-
ish if D1 andD2 belong to different irreducible representa-
tions of the lattice point group.

These coefficients have been discussed by Varma in the
context of a particular pairing scenario.44 While our free en-
ergy contains the same class of terms as that presented in
Ref. 44, because we have explicitly removed the wave vector
dependences via Eq.~16! above, it is not straightforward to
determine the conditions for order parameter sign changes
under ap/2 rotation of the lattice. Nevertheless, the relative
phase of the two order parameters can be determined varia-
tionally, by minimizing the free energy. If the nontrivial cou-
pling parameters (d andm6) are finite then the phase differ-
ence betweenD1 andD2 can be at most 0 orp. This last
result is consistent with the discussion of Sec. II B 2 and the
appropriate sign depends on whether in-plane or interplane
correlations are dominant.61

It is useful to transform the above free energy functional
to the layer representation using Eq.~3!. The functional is
expressed in terms ofD i andD' and two explicit transition
temperatures can then be associated with the intra- and inter-
plane interactions. In this context the mixing between vari-
ous symmetries can be understood in a more direct way. In
this representation the free energy is given by62

a iuD iu21a'uD'u21d8~D iD'
*1c.c.!1b iuD iu41b'uD'u4

1b8uD iu2uD'u21g8~D i
2D'
* 21c.c.!

1~D iD'
*1c.c.!~m iuD iu21m'uD'u2!. ~17!

Here the coupling termsd8 and m i /' vanish if D i and
D' belong to different irreducible representations of the lat-
tice symmetry group. Note that one important effect of
orthorhombicity is to require that the coupling parameters
d8 andm i /' change sign upon the interchange of thea and
b axes of the crystal. These same terms also vanish in the
limit as t' goes to zero.

By direct calculation from the microscopic theory we find
that the quartic cross termg8 is positive63 so that the phase
difference betweenD i and D' is zero ~if d8,0) or p ~if
d8.0).64 Studies of a related Landau-Ginzburg free energy
functional have been presented by Kobuki and Lee22 who
discussed the mixing between ad-waveD i and ans-wave
D' in an RVB based theory. In their approach, mixing be-
tween these two components was brought about by a self-
consistently determined orthorhombic strain. This led to the
introduction of additional terms into the free energy which
could result in a negativeg8. As a consequence ans1id
state was produced. In the present theory, in contrast, mixing
betweenD' andD i occurs at quadratic rather than quartic
order, as a consequence of finitet' . Furthermore, in the
absence of tetragonal symmetry breaking onlys1d mixing
occurs ~at quartic order!. Additional arguments against an
s1id state were presented by Normandet al.50

E. Impurity effects

In this section we discuss the nature of impurity or
pair-breaking effects in bilayer systems. At the heart of
this issue is the paradoxical observation that all substitutions
at the rare earth site, which sits between the bilayers~except
for Pr!, leaveTc unaffected. Rare earth substitutions with
or without local moments and in a disordered or ordered
form make no difference to the superconducting transition
temperature. Previously it has been argued that the even
more general insensitivity of the cuprates to impurity substi-
tution is incompatible with anisotropic ord-wave
superconductivity.38–41 Here we investigate the complexity
introduced into this problem by the presence of a bilayer
order parameter. The effects of both magnetic and nonmag-

53 6795SUPERCONDUCTING ORDER PARAMETER SYMMETRY IN . . .



netic impurities on two-band systems have been considered
in Ref. 20. Since it is relatively straightforward to generalize
to the magnetic case, for definiteness, we concentrate on the
case of nonmagnetic impurities.

A central aspect of the present work is the consideration
of an isolated bilayer, rather than a coherent stack of bilay-
ers. Our starting point is a necessary first step in a treatment
of incoherent coupling along thec axis. As a result of this
assumption the configuration averaging process~which re-
stores the underlying translational symmetry of the lattice! is
different from that discussed in Refs. 13,65. As has been
noted elsewhere,13 there are two types of impurities which
must be considered: intra and interlayer substitutions. For an
isolated bilayer, interlayer impurities represent the more in-
teresting case, since they result in only intraband scattering.
A state such as an isotropic (s,2s) state will thus be insen-
sitive to interlayer impurities@as will the in-phase (s,s)
state#.20 By contrast, intralayer impurity effects involve pro-
cesses which couple the two bands. In this way, the (s,2s)
state exhibits intralayer pair breaking.13 Moreover, the same
concerns that were raised earlier39,41about thed-wave order
parameter apply to the bilayer case with either type of impu-
rity. Thus the (s,2s) state emerges as the leading~non-
trivial! candidate state for resolving the paradox concerning
rare earth~nonmagnetic! substitutions in the cuprates.

We begin with the standard treatment of scatterers within
individual planes using the Born approximation.66 The impu-
rity Hamiltonian has the form

Ĥ in-plane
imp 5(

m
(
q,s

uI~q!cim ,s
† ~p1q!cim ,s~p!e2iq–Rm,

~18!

wherem labels impurities located atRm on layeri m ands is
a spin index. The impurity self-energy is given by

Sv,r ,r 8~p!52
1

2
nimp(

r 9,q
uuI~p2q!u2Ḡ v,r 9~p!d r ,r 8,

~19!

whereḠ is the averaged Green’s function andnimp the con-
centration of impurities per layer. We assume that the gap in
the absence of impurities is given byD6(q)5D̄6c6(q)
wherec6 are functions normalized appropriately over the
corresponding subband of the Fermi surface and that the im-
purity renormalized gap is given byD̃6c6(q). The self-
consistent equations then become

ṽ l5v l1
1

4t (
r 856

ṽ l

Aṽ l
21D̃r 8

2 , ~20a!

D̃65D̄61
g

4t (
r 856

D̃r 8

Aṽ l
21D̃r 8

2 , ~20b!

wheret is the usual scattering time and

g

2pt
5 (

r56
(
r 856

E dSr
~2p!2vF

r E dSr 8
~2p!2vF

r 8

3uI
2~p2p8!c r~p!c r 8~p8!. ~21!

Hereg is a combined measure of the anistropy of the order
parameter38 and impurity potential. This coupling constant
varies from 0 to 1. The latter is appropriate to the case of a
totally isotropic order parameter.

It follows from Eqs.~20! that intralayer impurities enter
the coupled self-consistent equations via a mixture of the two
band contributions. In this way they lead to pair breaking in
all instances, except for the special case of two in phase,
isotropic s states. Thus the (s,2s) states experience a re-
ducedTc in the presence of these impurities.67

We next consider interplane scatterers. For the sake of
generality these impurities are assumed to scatter electrons
within as well as between planes. The impurity Hamiltonian
is given by

Ĥ interplane
imp 5(

m
(
q,s

@ui~c1,s
† c1,s1c2,s

† c2,s!

1u'~c1,s
† c2,s1c.c.!#e2iq–Rm. ~22!

It is important to note that this Hamiltonian is diagonal in the
band language and that no average is taken over sites in the
vertical direction. Thus the renormalized self-energy and or-
der parameter satisfy equations which are decoupled in the
band index

ṽ l ,65v l1
1

2t6

ṽ l ,6

Aṽ l ,6
2 1D̃6

2
, ~23a!

D̃65D̄61
g6

2t6

D̃6

Aṽ l ,6
2 1D̃6

2
. ~23b!

Here care must be taken to preserve the band labels ont and
g. This decoupling of the two bands leads to the conclusion,
stated earlier, that isotropic order parameter sets~whether in
or out of phase! experience no pair breaking from interlayer
impurities.68

In summary, we see that one way of avoiding the strong
pair breaking generally associated with substitutions at the
rare earth site between the bilayers is to consider states with
the symmetry (s,2s). For this reason, along with thep
junction behavior discussed in the previous section, this state
should be considered as a potentially interesting candidate
for the YBCO system.

III. FORMULATION AND ANALYSIS OF THE N-LAYER
PROBLEM

A. Gap equation in the band representation

In this section, we treat the generalN-layer problem. The
system under consideration corresponds to a stack of decou-
pledN-layer structural units, each layer of which consists of
a two dimensional copper oxide plane. In the limit of infinite
N, we recover essentially the usual Bloch wave description
of a collection of copper oxide monolayers, aligned along the
c axis.10,13 Just as in the bilayer case, we find that there are
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two competing states. Depending on the relative size of the
intra and interplane coupling constants; one of the two is
stable, while the other is metastable. These two limits corre-
spond to inter and intralayer dominated states. In the band
language the latter are in phase and the former out of phase.
Because the system containsN such bands, the interlayer gap
parameters should be viewed as sinusoidally modulated with
varying band index, as will be illustrated in more detail be-
low.

Just as in the bilayer case, the charge carriers within indi-
vidual planes and on adjacent planes within a unit cell are
assumed to interact via a nonretarded pair potential. Hopping
of quasiparticles between adjacent planes within a unit cell is
determined by the hopping matrix elementt' . No hopping is
allowed between unit cells, as a consequence of our assump-
tion that thec-axis coupling is incoherent. As before, only
singlet intraband pair states are considered. Many of the de-
tailed derivations in this section may be found in Appendix
A 1.

The noninteracting Hamiltonian has the form

ĤN5(
s

F(
i51

N

j~q!cis
† cis2 (

i51

N21

~ t'cis
† ci11,s1c.c.!G ,

~24!

where i is a layer ands a spin index. The superconducting
order parameter is defined by

D i j ~q!5(
q8

Vi j ~q,q8!Fi j ~q8!, ~25!

whereVi j is the interaction between electrons on layeri and
layer j and the anomalous thermal Green’s function
Fi j (q)5^ci↑(q)cj↓(2q)& is antisymmetrized with respect to
spin indices. In this quantitŷ•••& indicates a Gibbs average.

The anomalous component of the superconducting
Green’s function is obtained by performing the usual matrix
inversion

G 215S iv l2HN 2D

2D* iv l1HN
D . ~26!

The entries in this matrix problem are 2N32N matrices with
two spin degrees of freedom andN layer indices, withv
5(2l11)pb2112N.

We diagonalize Eq.~26! in the spin degrees of freedom by
multiplying the entire equation from the right bys2 . The
equations are then transformed to the band picture by diago-
nalizing the normal state HamiltonianHN . The resulting en-
ergy dispersion in bandr of the Hamiltonian is given by

e r~q!5j~q!12t'cosS rp

N11D , r51, . . . ,N. ~27!

We will consider only pairing of electrons within individual
bands so that the order parameter is diagonal in the band
representation with componentsD r . With a fully diagonal-
ized Green’s function the gap equation for theN-layer sys-
tem can now be readily obtained. Upon performing the sum
over Matsubara frequencies, we find

D r~q!52(
q8

(
r 851

N

Vr ,r 8~q,q8!
D r 8~q8!

2Er 8~q8!

3tanhF12bEr 8~q8!G . ~28!

The energy dispersion of the elementary excitations is given
for each bandr by the usual relationEr5Ae r

21uD r u2. Equa-
tion ~28! is the central equation of this section. In Appendix
A 3 we generalize this result further by extending it to an
infinite stack of layers, corresponding to a fully three dimen-
sional lattice.69

B. Solutions of the gap equation for smallt'

In this subsection we establish the nature of the two com-
peting states which are the stable and metastable solutions to
the gap equations derived from Eq.~28!. These are most
readily introduced by considering first the limit of small
t' . For arbitrarily smallt' , the two solutions become inde-
pendent and appear with different onset or transition tem-
peratures. These two states are respectively associated with
pure intra and pure interlayer pairing. Moreover, in this limit
analytical results can be obtained, while the more general
case of nonzerot' is treated numerically.

After some algebra, which is outlined in Appendix A 2, it
follows that the solution to the gap equation is given by

D r~q!5D i ,0c i~q!22cosS rp

N11DD',0c'~q!, ~29!

where the two Fermi surface functionsc i(q) andc'(q) sat-
isfy

V ic i~q!52E dS

~2p!2vF
Vi~q,q8!c i~q8!, ~30a!

V'c'~q!52E dS

~2p!2vF
V'~q,q8!c'~q8!. ~30b!

Here the integrations are over the degenerate bands of the
Fermi surface and the relatedc numbers,V i andV' , are
related to the respective transition temperaturesTi /',0 deter-
mined by the equation

lnS 1.14vc

kBTi /',0
D5

1

V i /'
. ~31!

Finally, the two competing states are associated with taking
either one of the two parameters inD i ,0 or D',0 in Eq. ~29! to
be zero.

The above results can be generalized to the case of finite
t' , using numerical techniques. Whent' is finite, the two
parametersD i ,0 andD',0 can be simultaneously nonzero in
which case bothc i andc' will belong to the same irreduc-
ible representation of the lattice point group.

To illustrate these results, we plot the amplitudes on the
various bands of the competing inter and intralayer pair
states forN54 andN57 in Fig. 8. As in the bilayer case, if
the dominant interaction is attractive then the order param-
eter will be nodeless, while a repulsive interaction will yield
a nodal solution with exact form determined by the details of
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the interaction and the band structure~as discussed in Sec.
II B 1!. In panels~a! and ~b! of Fig. 8 the magnitude of the
order parameter is plotted as a function of band indexr for
the intraband~a! and interband~b! states for a four layer
system. The dotted line indicates the analytical solution for
t'50 and the histogram bars illustrate the numerical results
for moderatet' ~comparable in magnitude to the separation
of the Fermi level from the van Hove points!. In this way
some deviation from the analytically obtained curve is seen
as the solid bars differ slightly from the dotted line. It is clear
that the two competing solutions represent a natural gener-
alization of the bilayer results to anN-layer system. Similar
results are plotted for the seven layer system in panels~c!
and~d!. It follows from the figures and the above discussion
that in these higherN systems, even more complex behavior
can be obtained, with a range of signs and magnitudes of the
order parameters associated with the different bands.

To make this complexity even more explicit, we have
considered the case ofN53 for the case of a dominant at-
tractive interlayer interaction and a weak in-plane repulsion
both peaked at (p,p). In this case the hopping is slightly
larger than in the previous figure. Figure 9 shows our solu-
tion to the gap equation and the normal state band structure
~inset! for this three band model of orthorhombic YBCO
with the two lower energy bands closed aboutX and the
highest energy band open. This last band can be viewed as
simulating the chain band in YBCO,23 since conduction in
this band is only possible along one principle axis. Solution
of the three layer gap equation clearly shows the mixing
between the two components of the solution. The middle
~planelike! band has a pured-wave solution, since interlayer
pairing contributes very little to the gap on this band, while
the other two bands haves-wave symmetry. The physics of
this three band model is equally complex. Because of the
dominance of ans-wave order parameter component, one
expects that the magnitude ofTc is only mildly affected by
impurity scatterers. On the other hand, a nodal solution on
one of the bands will yield power law dependences in ther-

modynamic functions at low temperatures. While the above
model should not be viewed as a detailed representation of
YBCO, it serves to illustrate the rich array of phenomena
which are associated with multiband systems.

C. Basis functions and van Hove effects

Band structure effects have played an important role in
our analysis, particularly when the Fermi energy lies in the
vicinity of the van Hove singularities. We have seen that
these singularities distort the shape of the order parameter.
They also play a key role in determining the relative stability
of various solutions to the gap equations. In this subsection
we show that, of all the different gap symmetries, two are
able to take maximal advantage of the van Hove points:
these are the nodelesss if the interaction is attractive and the
‘‘ dx22y2’’ states

70 in the case of a repulsive interaction. It
should be noted that there is a considerable literature on the

FIG. 8. Amplitude of pure in-
tralayer and interlayer pairing so-
lutions in the band representation
for N54 @~a! and ~b!, respec-
tively# andN57 @~c! and ~d!, re-
spectively# cases. The ideal solu-
tions (t'50) are denoted by the
dotted lines and the actual solu-
tions are calculated for moderately
large t' .

FIG. 9. Solution for a three band problem illustrating coexist-
ence of solutions of different symmetries. The inset plots the asso-
ciated band structure.
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effect of the van Hove singularities on raisingTc .
71 In this

paper we focus on the interplay of the van Hove singularity
and order parameter symmetry. Earlier work47,72 has shown
that in the more general strong coupling picture, states far
from the Fermi energy may wash out, to some degree, the
effectiveness of the van Hove singularity in raisingTc .
While here we use a weak coupling approach to address the
order parameter symmetry the same qualitative behavior can
be expected to follow in more general strong coupling cal-
culations.

To quantify the van Hove effects we study the linearized
form of Eq. ~28!

VD r~q!52 (
r 851

N E
er 85EF

dSr 8
~2p!2vF

r 8~q8!
Vr ,r 8~q,q8!D r 8~q8!,

~32!

where the integrations are performed over segments of the
Fermi surface corresponding to the different bands and the
eigenvalueV defines the BCS transition temperatureTc :

V215 lnS 1.14vc

kBTc
D . ~33!

The Fermi velocity on bandr is vF
r , andEF is the Fermi

energy.
We define a complete set of orthonormal basis functions

over the Fermi surface,73 which are nonzero over only a
single bandr and assume further that thesec i

r (G)(q) belong
to an irreducible representationG of the lattice point group.
These basis functions satisfy

(
p51

N E
ep5EF

dSp
~2p!2vF

p~q!
c i
r ~G!~q!c j

r 8~G8!~q!5d i , jd r ,r 8dG,G8.

~34!

The pair wave function and interaction potential74 are ex-
panded in terms of these Fermi surface harmonics as

D r5(
G,i

D i
r ~G!c i

r ~G! , ~35!

and

Vr ,r 8~q,q8!5 (
G,i , j

Vi , j
r ,r 8~G!c i

r ~G!~q!c j
r 8~G!~q8!. ~36!

The gap equation is thus reduced to the simple set of eigen-
value problems

VD i
r ~G!52(

j ,r 8
Vi , j
r ,r 8~G!D j

r 8~G! . ~37!

By working in the space of functions defined by Eq.~34!
it is clear that the basis functionsc i

r (G) are weighted by the
inverse ofAvFr and so regions along the directions of the van
Hove points give a correspondingly greater contribution in
the gap equation. If the interactionVr ,r 8(q,q8) coupling two
points on the Fermi surface is repulsive~attractive! then
states with opposite~same! phase at these two points will be
favored. Thus we can conclude that thedx22y2 basis function
will benefit most from the van Hove points for repulsive

interactions while the nodelesss function will be most en-
hanced by an attractive interaction.

The effect of the van Hove singularities in the single par-
ticle density of states on the superconducting order param-
eter can be quantified through the pairing density of states
~PDOS! ~Ref. 75!

PD~EF!5

E dS

~2p!2vF
uD~q!u2

E dSuD~q!u2
. ~38!

The integrals are taken over all bands of the Fermi surface.
To illustrate this function and its relation to the van Hove
singularities, in Fig. 10~a! we plot PD as a function of the
Fermi energy for various solutions to the gap equation. Here
we focus on the one layer case for clarity. It can be seen that
a peak appears at the van Hove point for all irreducible rep-
resentations. It is, however, more appropriate to normalize by
the single particle density of statesPD51 . This gives a more

FIG. 10. Pairing density of states~PDOS! of the solution with
highestTc in each irreducible representation for LSCO. Panel~a!
shows the absolute PDOS in arbitrary units and panel~b! illustrates
the PDOS normalized by the single particle density of states. The
isotropic s state ~solid line! was calculated for an attractive pair
interaction peaked at (p,p) while the other solutions were calcu-
lated for repulsive interactions, withQ chosen so as to maximize
Tc .
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accurate indication of the degree to which the pair wave
function is stabilized by the density of states. The result for
the four different irreducible representations of theD4h lat-
tice of LSCO is plotted against Fermi energy in Fig. 10~b!.
Here we select thatQ which results in a maximalTc for each
representation. In this way, we see that theB1g solution, i.e.,
the ‘‘dx22y2’’ state, and the nodelessA1g ‘‘ s’’-wave solution
indeed benefit much more from the van Hove singularity
than do all other states.

In summary, there are two states which take maximal ad-
vantage of the van Hove points. These are the nodeless
s-wave state which occurs only for attractive interactions and
thedx22y2 state, appropriate to the case of repulsive interac-
tions. It should be stressed that in general the order param-
eter will not have these simple functional forms correspond-
ing to a single basis function. This is all the more striking as
the Fermi energy approaches the van Hove singularity where
admixtures of higher order basis functions are most evident.
While in the presence of multiple bands, the results plotted in
Fig. 10 become more complicated, the essential features still
remain.

IV. CONCLUSION

The most important issues in the field of high-Tc super-
conductivity involve determinations of the order parameter
symmetry and the superconducting pairing mechanism.
While there are, clearly, no definitive answers to be had at
this time, this paper has been directed towards addressing
these two issues. We have emphasized the role of multilayer
effects in the cuprates, in large part because the most well
characterized material, YBCO, has two copper oxide planes.
This complexity leads to complications in inferring the order
parameter symmetry from various experimental tests. It also
suggests that there are different~inter- and intraplane! chan-
nels which should be considered in any microscopic theory
of the pairing.

In reference to the order parameter symmetry, we have
found that a multilayer system should be characterized by
distinct gaps appropriate to each of the multiple bands. A
bilayer material such as YBCO has two gaps, a trilayer,
three, etc. In the presence of even a very small amount of
orthorhombicity, one of the gaps can be predominantly of
d, while another ofs symmetry.~Throughout this paper we
refer tod and s states as those which are odd or even, re-
spectively, under ap/2 rotation of the wave vector.! One
may be nodeless while the other has nodes. The multiple
gaps can be in or out of phase. In this way the observation of
power law behavior in thermodynamics may reflect on only
one of the order parameters in question. The observation of
p phase shifts in Josephson corner junction experiments on
YBCO must be viewed more widely in this multiband con-
text. Indeed, we have found that this behavior can be asso-
ciated with two out of phases states in the presence of
~weak! orthorhombicity. This orthorhombicity leads to a
strong asymmetry of thes and2s states, so that one gap
function is elongated along thea and the other along theb
axes of the crystal. The net Josephson current behaves rather
similarly to a dx22y2 state, although the thermodynamical
behavior need not exhibit the power laws of this state. Fi-
nally, the behavior of multilayer systems in the presence of

impurities is similarly complex. Intra and interlayer impuri-
ties suppressTc in a different fashion. The (s,2s) state is of
interest because it obeys an Anderson theorem with respect
to interlayer substitutions. This may help explain why sub-
stitutions at the rare earth site in YBCO make little or no
difference to the magnitude ofTc .

In the process of investigating very generic model inter-
actions for the superconductivity, we have inferred informa-
tion about microscopic constraints on the pairing mecha-
nism.dx22y2-like states are found to be general solutions to
the gap equation for repulsive interactions, in large part be-
cause they possess the fewest number of nodes and thereby
the highest transition temperatures. In this way, they should
not be specifically associated with a spin fluctuation driven
pairing mechanism. Moreover, van Hove effects act to stabi-
lize some order parameters over others. Of these the
dx22y2-like symmetry is, again, the most notable. Ortho-
rhombicity further enhances this stabilization. Thus for a va-
riety of reasons, this state emerges as a natural solution to the
gap equation~s! in the presence of repulsive interactions.

While we have emphasized the bilayer (N52) case, we
also presented general multilayer calculations which view
thec axis as consisting of decoupled structural units, each of
which containsN copper oxide layers. By contrast, within
the unit cell the intra- and interplane hopping is appreciable
and plays an important role in giving rise toN distinct bands.
TheseN.2 calculations may be particularly relevant in the
context of the Hg and Bi based cuprates. In treating the su-
perconductivity, we have included intra- and interplane pair-
ing interactions in parallel with the above intra- and inter-
plane hopping. We demonstrated that, regardless of the
number of layersN in the unit cell, there are always two
competing states: one of which is intraplane dominated, so
that the resultingN band gaps are in phase, and one of which
is interplane dominated, so that theN gaps are sinusoidally
modulated. Small changes in the parametrizations can lead to
a transition from one of these states to another. Thus it may
be inferred that the order parameter symmetry is potentially
variable from one cuprate to another and from one stoichi-
ometry to another.

While the inclusion of these multilayer effects has been
seen to introduce considerable complexity into the classifi-
cation of the order parameter symmetry, this complexity is
inescapable. As long as the layers communicate via one or
two body processes~i.e., via hopping or pairing interactions!,
superconductivity in the high-Tc cuprates must include these
multilayer effects.
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APPENDIX A: CALCULATION OF GAP EQUATION
FOR N LAYERS

1. Derivation

To begin we need to calculate the superconducting
Green’s function defined by the 4N34N matrix
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G 215S iv l2HN 2D

2D* iv l1HN
D . ~A1!

The componentsHN andD are defined in Sec. III A. First we
diagonalize the normal state Hamiltonian. For this purpose
we define the set of characteristic polynomials

DN~j2e!5det~HN2e1N! ~A2!

and observe that they satisfy the recursion relation

Di~x!5xDi21~x!2t'
2Di22~x!,

D0~x!50,

D1~x!5x. ~A3!

By using the known properties of the Chebyshev polynomi-
als it is straightforward to show that these characteristic
polynomials have the form

DN~x!5~2t'!N
sin@~N11!q#

sin~q!
,

x522t'cos~q!. ~A4!

From the zeros of these polynomials we can determine the
normal state energies

e r~q!5j~q!12t'cosS rp

N11D ,r51, . . . ,N. ~A5!

An orthonormal set of eigenstates ofHN can be found simi-
larly. The i th component of the state associated with band
r is given by

f i
r5A 2

N11
~21! i1rsinS irp

N11D ~A6!

and consequently the components of the unitary matrix
which diagonalizes~39! are given by

Ui j5A 2

N11
~21! i1 jsinS i j p

N11D . ~A7!

The particle creation operators in the band and layer lan-
guage are thus related by the equation

ai
†5(

j51

N

Ui j cj
† . ~A8!

Since we predominantly focus on intraband pairing the order
parameter associated with each bandr is thus defined
through the anomalous thermal Green’s function components

Fr ,r 8~q!5
1

A2
^ar↑~q!ar 8↓~2q!2ar↓~q!ar 8↑~2q!&

5
2

N11(i51

N

(
j51

N

~21! i1 jsinS irp

N11D sinS j r 8pN11D
3Fi , j~q!d r ,r 8. ~A9!

We thus define theN diagonal components of the order pa-
rameter in the band languageD r by the equation

D r5
2

N11(i51

N

(
j51

N

~21! i1 jsinS irp

N11D sinS j rp

N11DD i , j .

~A10!

With the pairing restricted to intralayer pairing and pairing
between nearest neighbor planes we can use the definition of
D i , j to write the order parameter on a given bandr in terms
of the anomalous part of the Green’s function

D r~q!5
1

N11(q8 H (
i51

N

Vi~q,q8!sinS irp

N11D sinS ir 8pN11DFii ~q8!

22(
i51

N21

V'~q,q8!sinS irp

N11D sinS ~ i11!rp

N11 D @Fi ,i11~q8!1Fi11,i~q8!#J . ~A11!

With a fully diagonalized Green’s function the gap equation for theN-layer system can now be readily obtained. Upon
performing the sum over Matsubara frequencies in the usual way we get

D r~q!52(
q8

(
r 851

N

Vr ,r 8~q,q8!
D r 8~q8!

2Er 8~q8!
tanhF12bEr 8~q8!G , ~A12!

where the interaction in the band representation is defined as

Vr ,r 8~q,q8!5
1

N11 H @11 1
2 u r ,r 8

1~N!
#Vi~q,q8!1F2cosS rp

N11D cosS r 8p

N11D1u r ,r 8
2~N!GV'~q,q8!J ,

u r ,r 8
6~N!

5d r ,r 86d r1r 8,N11 . ~A13!
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The quasiparticle dispersions in the superconducting state are
defined by the usual relationEr5Ae r

21uD r u2.

2. The small t' limit

For infinitesimalt' it is interesting to transform Eq.~A12!
to the layer representation using Eq.~A10!. Then to zeroth
order in t' the N intralayer problems uncouple from the
N21 interlayer problems yielding the following two sets of
gap equations:

D i ,i~q!5
21

N11(q8
Vi~q,q8!

tanh@ 1
2 bE~q8!#

2E~q8!

3(
j51

N

~11 1
2 u i , j

1~N!!D j , j~q8!, ~A14a!

D i ,i11~q!5
21

N11(q8
V'~q,q8!

tanh@ 1
2 bE~q8!#

2E~q8!

3 (
j51

N21

~11u i , j
1~N21!!D j , j11~q8!. ~A14b!

Linearizing with respect toD and solving for the eigenvalues
and eigenfunctions of these two equations gives theTc’s of
the various pairing states available to the system and only
one of these solutions will correspond to the maximal value
of Tc .

Let us first define two functions on the Fermi surface,
c i(q) and c'(q), and two numbers,V i and V' , which
satisfy the two equations

V ic i~q!52E dS

~2p!2vF
Vi~q,q8!c i~q8!, ~A15a!

V'c'~q!52E dS

~2p!2vF
V'~q,q8!c'~q8!. ~A15b!

The integrations are over the degenerate bands of the Fermi
surface. The pair amplitudes can be written in the form

D i ,i~q!5D i
ic i~q!,

D i ,i11~q!5D'
i c'~q!. ~A16!

The gap equations~A14! are transformed in the usual man-
ner by separating the sum over quasimomenta to separate
integrals over energy and the Fermi surface. The energy in-
tegral can then be performed to obtain a BCS-like transition
temperature and using Eqs.~A15! we derive the linear matrix
equations

D i
i5 lnS gvc

kBTc
D V i

N11(j51

N

~11 1
2 u i , j

1~N!!D i
j , ~A17a!

D'
i 5 lnS gvc

kBTc
D V'

N11(
j51

N21

~11u i , j
1~N21!!D'

j ,

~A17b!

whereg'1.14 andvc is the usual cutoff energy. We can
now characterize all the available pairing states with func-
tional form given byc i andc' along with their BCS tran-
sition temperatures.

Equations ~A17! each have one isotropic eigenvector
given byD i /'

i 5D i /',0 with Tc,0 determined by the equation

lnS gvc

kBTc,0
D5

1

V i /'
, ~A18!

which give the most stable candidate pairing states for the
two mechanisms. The remaining eigenvectors correspond ei-
ther to metastable states which are symmetric in the layer
index such that( iD i /'

i 50 with Tc given by

lnS TcTc,0
D5H 2

N

V i

2
N21

2V'

, ~A19!

or nonpairing states (Tc50) which are odd in the layer in-
dex.

Transforming to the band picture using Eq.~A10! we find
that the intralayer pairing states are even under the transfor-
mationr→N112r whereas the interlayer pairing states are
odd under this transformation. The two most stable candidate
states thus give a superconducting order parameter of the
form

D r~q!5D i ,0c i~q!22cosS rp

N11DD',0c'~q!. ~A20!

The two parametersD i ,0 and D',0 are both nonzero only
when t' is finite and whenc i andc' belong to the same
irreducible representation. Since the two different pairing
mechanisms give solutions of differentr dependence, the
dominant type of pairing can be easily determined even
when t' is finite. Mixing of solutions at finitet' and the
effect on the transition temperature is discussed in Appendix
B in the bilayer context.

3. Formulation in terms of Bloch waves

For completeness we conclude by relating the above for-
mulation to the usual treatment of layered materials. It would
be natural to define az component of the quasimomentum
vector to be

qz5
rp

N11
. ~A21!

Note, however, that there areN linearly independent, nonde-
generate eigenstates for 0,qz,p and so takingqz→2qz
gives no new states. Thus interpretingqz as a momentum is
rather unnatural.

The usual procedure in the case of largeN,10,13 however,
is to assume periodic boundary conditions. This means that
we have hopping between layers 1 andN and that the system
is translationally invariant along thec axis. The eigenstates
of this new Hamiltonian are
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f j
r5

1

AN
expS i

2rp

N
j D , ~A22!

with energies

e r5j12t'cosS 2rpN D . ~A23!

Taking the limit ofN going to infinity one obtains the gap
equation for a fully three dimensional system. Again assum-
ing only intraband pairing the gap equation becomes

D~q!52(
q8

V~q,q8!
D~q8!

2E~q8!
tanhF12bE~q8!G , ~A24!

with the interaction

V~q,q8!5
1

N
@Vi~q,q8!12cos~qz2qz8!V'~q,q8!#, ~A25!

and the usual quasiparticle energiesE(q)
5Ae(q)21uD(q)u2. In the largeN limit this system behaves
identically to the one considered throughout this paper when
only singlet pairing is considered. On the other hand, it is
obvious that this formulation gives very different results in
the smallN limit. One might expect that in any real system
the hopping between unit cells is different from that within a
unit cell and so a more general formulation than either of
these would be required. Such a formulation would, how-
ever, yield a continuous set of Fermi levels within some
small band and this result would be in contradiction to ex-
perimental observations.

APPENDIX B: INTERBAND PAIRING

To conclude this discussion we present a more careful
treatment of the case for whichN52 admitting the possibil-
ity of pairing of electrons on different subbands of the Fermi
surface. We will restrict our attention to states which are
even under inversion, neglecting the possibility of a
p-wave order parameter. This necessitates the consideration
of a triplet interlayer pairing state. The normal state Hamil-
tonian has the form

H25S j 2t'

2t'* j D , ~B1!

wheret'5ut'ue2iw. The order parameter has the form

D5S D i
e1D i

o
D'
s 2i(

i51

3

D'
t,is i

D'
s 1i(

i51

3

D'
t,is i D i

e2D i
o D . ~B2!

Thes i are the three Pauli spin matrices. Upon diagonalizing
~64! we obtain

H25S j2ut'u 0

0 j1ut'u D , ~B3!

D5S D1 D12iD2

D11iD2 D2
D . ~B4!

We assume that the triplet component is describable by a
single complex parameterD'

t and a real unit vector in spin
spacen̂ so thatD'

t,i5D'
t n̂i . The Green’s function can thus

be diagonalized in its spin degrees of freedom. There are,
therefore, four independent parameters which describe the
superconducting state. The components of the order param-
eter in the band representation are

D15D i
e1D'

s ,

D25D i
e2D'

s ,

D15D i
o ,

D252D'
t s3 . ~B5!

Designating the bands bye65j7ut'u we solve for the
anomalous parts of the Green’s function as before. These
may be linearized inD at Tc and upon performing the sum
over Matsubara frequencies we arrive at the following four
gap equations:

D11D252(
q
ViFD1

tanh~ 1
2 be1!

2e1
1D2

tanh~ 1
2 be2!

2e2
G ,

~B6a!

D12D252(
q
V'FD1

tanh~ 1
2 be1!

2e1
2D2

tanh~ 1
2 be2!

2e2
G ,

~B6b!

D152(
q
ViD1

tanh~ 1
2 be1!1tanh~ 1

2 be2!

2e112e2
, ~B6c!

D252(
q
V'D2

tanh~ 1
2 be1!1tanh~ 1

2 be2!

2e112e2
. ~B6d!

If t'50 then there is a single transition temperature associ-
ated with the two intralayer pairing states and another tran-
sition temperature associated with the two interlayer states.
Denote the larger one of these byTc,0 . It can be shown that
for nonzerot' the transitions described by Eqs.~B6c! and
~B6d! have a lowerTc than the intraband pairing state tran-
sition in Eqs.~B6a! and ~B6b! where for smallt' the new
transition of the interband pairing state76,62with higherTc is
given in terms ofTc,0 by

lnS TcTc,0
D520.2123S t'

kBTc
D 2. ~B7!

The transition temperature for the intraband pairing states is
given by

lnS TcTc,0
D5

1

U lnTc,iTc,'
U S

t'R

2kBTc
D 2, ~B8!

where the overlap between the two pair wave functions is

R5E dS

~2p!2vF
c ic' . ~B9!

We thus see that in the presence of interlayer tunneling the
favored pairing state is always an intraband pairing state.
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