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Elementary excitations in rather thick symmetric films of liquid4He atT50 K are investigated. They are
characterized by a momentum\q parallel to the surface and may be described by bound or continuum states,
which are obtained by solving a Bogoliubov-type equation formulated within the framework of the paired-
phonon analysis and the hypernetted-chain approximation. Films of coveragesnc50.3 and 0.4 Å22 confined
by simple Gaussian potentials are studied. The excitation spectrum is numerically evaluated by discretizing the
associated eigenvalue problem in a finite box. The evolution of the energy levels as a function of the box size
is explored. Examples of the calculated energies and wave functions are displayed in a series of figures. Two
differing sorts of continuum states may be distinguished. Depending on the behavior of their excitation ener-
gies as a function of the box size on the one hand, and the spatial distribution of their wave functions inside the
film and in the asymptotic region far apart from the interface layer on the other, the continuum solutions can
be separated into two classes of excitations:~a! the ‘‘regular’’ continuum states and~b! the ‘‘resonant modes.’’
The matrix elements of the particle-hole potential and the penetration factors of the most important states are
examined. The lowest-lying branch of states is always bound and forq,qR (qR.1.9 Å21 being the momen-
tum at the roton minimum! it describes surface ripplon excitations. In the atomic scale regime, 1.1
Å21,q,qR , the hardest ‘‘resonant mode’’ can be interpreted as a roton trapped at the center of the film and
therefore associated with ‘‘bulk’’ excitations of the system. Our results support the occurrence of the repulsion
between ‘‘bulk’’ and ripplon excitations proposed by Pitaevskii and Stringari. The strength of contributions
originated from different normal modes to the liquid structure function is evaluated. While for very small
values of momenta (q<0.2 Å21) the contribution of the lowest-lying normal mode is dominant, for momenta
q.qR the structure factor is determined by the contributions originated from the three lowest-lying even states.
At q'qR there is a dramatic transfer of strength from the bound continuation of the hardest ‘‘resonant mode’’
to the ripplon excitation. Experimental data of the inelastic structure factorS(q,\v) may be satisfactorily
interpreted on the basis of our calculation. On the other hand, it is shown that for 2.9<q<3.9 Å21 the
lowest-lying excitations become surface modes again.

I. INTRODUCTION

In a recently published review article Chenget al.1 em-
phasize the increasing interest in studies of properties of liq-
uid 4He interfaces and surfaces. As a matter of fact, there is
a continuous development in the experiment and the theory
of such systems. A variety of theoretical pictures have been
adopted in order to interpret experimental results.1 In particu-
lar, much work has been devoted in recent years in order to
apply a variational procedure based on the theory of corre-
lated basis functions2–4 ~CBF’s! for understanding the behav-
ior of inhomogeneous liquid 4He at zero absolute
temperature5–22 as well as at finite temperatures.23–25

Perhaps one of the most interesting issues in this field is
the investigation of elementary excitations26 of surfaces of
liquid 4He. Among other problems currently studied, it is
worthwhile to mention the observation of an oscillatory de-
pendence of the third-sound velocityc3 on film thickness for
thin films.14–16,27In the present work we shall concentrate on
a microscopic analysis of the properties of elementary exci-
tations in liquid 4He films atT50. There is a great theoreti-

cal as well as experimental activity in this area. Excitations
in 4He films have been measured in the atomic wavelength
regime by using neutron scattering techniques.28,29This mea-
surement has motivated a renewal of theoretical efforts de-
voted to understanding the nature of excitations.

The excitation spectrum of a semi-infinite4He fluid at
vanishing temperature has been explored by Chang and
Cohen30 ~see also the review by Edwards and Saam31! within
the framework of the variational many-body theory. Such a
system presents a density profile atz.0, and the density
approaches 0 asz→1` and reaches the bulk densityr` as
z→2`. In the case of a planar symmetry excitations depend
on the momentum\q parallel to the surface. More recently,
employing the CBF theory Gernothet al.22–25 have investi-
gated excitations in a planar4He interface at various tem-
peratures, 0<T<2 K, under vapor-liquid saturation condi-
tions. As an example of the application of a different
approach in order to describe the inhomogeneous free4He
surface at temperatureT50 we can mention the paper of Ji
and Wortis.32 These authors have used a semiphenomeno-
logical Landau model to interpret surface phenomena and
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put a special emphasis in the analysis of continuum states of
the excitation spectrum. On the other hand, the CBF method
has been applied to get information about excitations of sym-
metric finite films at vanishing temperature in.6,7,17–21These
systems present a central densityrc and two symmetric pro-
files where the density approaches 0 asz→6` ~cf. Fig. 5 in
Ref. 17!. Furthermore, excitations of realistic systems such
as finite films adsorbed to solid substrates have been also
analyzed within CBF theory by Krotscheck and
co-workers.8,10,12,13,15,16

It is known that the lowest-lying excitations of a strongly
correlated quantum many-body system in the long-
wavelength limit~i.e., at small values of momentumq! are
surface ripplons which may be described within the frame-
work of simple hydrodynamic models.31,33,34 It has been
shown9,21,22 that results obtained for physical observables
within the CBF method for small momenta agree with the
hydrodynamic predictions. However, Atkins’33 description is
not adequate for momenta corresponding to atomic wave-
lengths (q;1 Å21) because the behavior of ripplons at
these momenta is not governed by laws resembling classical
hydrodynamics. In a more recent paper, Pitaevskii and
Stringari35 have used the Green’s function formalism within
a quantized hydrodynamic description in order to estimate
the lowest-lying~ripplon! dispersion curve close to the roton
minimum (qR.1.9 Å21). They found that due to the inter-
action between surface ripplons and bulk roton excitations
~which has been suggested many years before by Edwards
et al.31,34! the ripplon dispersion relation remains below the
energy of bulk rotons.

Let us now focus our attention on the most recent theo-
retical advances within CBF theory concerning the excita-
tions in nonuniform4He atT50. As mentioned before, sev-
eral properties have been explored:~i! by studying a semi-
infinite system22,24 and ~ii ! by investigating layered films
adsorbed on substrates.13,15,16Gernoth and Ristig performed
a classification of continuum states taking into account the
behavior of wave functions and excitation energies
\vk(q); the quantum numberk labels the eigenstates. The
latter results were mapped onto a\v vsq plot and compared
with the known results for a bulk system~see Fig. 9 in Ref.
24!. Furthermore, in a subsequent paper22 the ripplon disper-
sion relation and the associated wave functions were ana-
lyzed for 0<q<qR . From the behavior at small momenta
the third-sound velocityc3 was evaluated. At atomic wave-
lengths (1 Å21<q<qR) the wave functions associated with
ripplons are localized in the surface layer, their energies ap-
proaching the bulk roton energy at the characteristic wave-
length q.qR . These states were interpreted as trapped ro-
tons. On the other hand, Krotscheck and Tymczak13

discussed layered films for three coverages, following their
behavior from a thin, surface-mode-dominated to a thick,
zero-sound-dominated system. Exploring the continuum
states they found some well-defined modes and, in particular,
identified a nearly momentum-independent mode describing
a transverse oscillation of the different layers with respect to
each other. Moreover, they analyzed the dynamic structure
functionS(q,\v). This kind of film has been also studied in
subsequent works reported by Clementset al.,15,16 where a
formalism for the excitation spectrum within a generalized
Feynman theory with time-dependent pair correlations was

developed and the structures of film layers were compared
with two- and three-dimensional~2D and 3D! homogeneous
liquids. It is important to notice that in all the above-
mentioned CBF studies the excitation energy at large values
of q and, in particular, at the roton minimum is too high. On
the basis of results obtained for the phonon-roton excitation
spectrum of a bulk liquid4He atT50 K ~see Fig. 15 in Ref.
36 and Fig. 18 in Ref. 37!, one expects that the inclusion of
higher-order correlations3 and backflow effects38 will lower
the spectrum of an inhomogeneous system and, therefore, it
should be considered for any future theoretical improvement.

The aim of the present work is to study elementary exci-
tations forq.0, since the long-wavelength limit has been
already treated elsewhere.21 For our investigation we have
chosen symmetric finite-width films supported by simple
Gaussian-type potentials already adopted in previous
papers.17–21Although this kind of potential is somewhat un-
realistic, the behavior of films confined by them deserves
attention. These idealistic systems do not exhibit a layered
pattern, but resemble characteristics of the semi-infinite he-
lium discussed in Refs. 22,24. Nevertheless, since they are
indeed finite films, a manifestation of film properties is also
to be expected, so that it is reasonable to undertake the
analysis of these systems awaiting meaningful information to
be compared with that obtained from studies of layered
films.13,15,16From such a comparison it might be possible to
isolate and recognize features independent of layered struc-
tures. Hence, in order to gain some useful piece of knowl-
edge we carried out a detailed microscopic calculation of
excitations in symmetric finite-width films embedded in
Gaussian potentials. The evaluations were performed over a
large domain of momenta, i.e., 0,q<4 Å21. A comprehen-
sive analysis of the excitation energy spectrum\vk(q), the
penetration factorFk(q), the particle-hole energiesVk(q)
and Vk

†(q), and the liquid structure factorsS(q,\v) and
S(q) is reported. Among the obtained results, we would like
to emphasize the fundamental role of the hardest ‘‘resonant’’
state already identified in our previous work~cf. Figs. 4 and
5 in Ref. 19!, which for atomic wavelengths can be associ-
ated with the ‘‘bulk’’ excitations of the film. This state pro-
vides the dominant contribution to the static structure func-
tion S(q) for 1.2 Å21,q,qR . In this momentum region
there are some crossings and repulsions between bound
states, which are examined in detail. In particular, we ana-
lyze the connection of our results with the phenomenon dis-
cussed by Pitaevskii and Stringari.35 Another very encourag-
ing result is the successful qualitative interpretation of the
experimental data ofS(q,\v) reported in Ref. 28.

The procedure to obtain the ground state of a Bose many-
body problem for a planar symmetry atT50 within CBF
theory is outlined in Sec. II. The equations for the elementary
excitations are summarized in Sec. III, where the main prop-
erties of the eigenvalue problems formulated within both the
paired-phonon analysis~PPA! procedure and the generalized
Feynman relations are discussed. In this section we also give
the formulas needed for the evaluation of the dynamic and
static liquid structure functions. In Sec. IV we illustrate the
findings of this paper, showing results corresponding prima-
rily to a symmetric film of coveragenc50.4 Å22. Elemen-
tary excitations are obtained by solving eigenvalue problems
for optimal long-ranged two-body correlation factors deter-
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mined in our previous papers.19–21 In the present work we
shall still ignore higher-order correlations and backflow ef-
fects. Finally, a summary of all the results is presented in
Sec. V.

II. CBF FORMALISM FOR THE GROUND STATE

The physical behavior of an interactingN-body quantum
system embedded in an external one-body field is determined
by the Hamiltonian

H5(
i51

N F2
\2

2m
“ i

21Uext~r i !G1 (
i , j51
~ i, j !

N

v~r i j !, ~2.1!

where Uext(r i) is an external one-body potential and
v(r i j5ur i2r j u) a two-body potential which describes the
bare interaction between a pair of helium atoms. Effects due
to three-body potentials are usually neglected. In the case of
a planar geometry, the system is translationally invariant in
the x-y plane and symmetry is broken in thez direction,
giving rise to a surface structure. This may be due to the
action of an external potential of the form
Uext(r i)5Uext(zi). Accordingly, any one-body quantity be-
comes a one-dimensional function,f 1(r i)5 f 1(zi), depend-
ing only upon thezi coordinate which is the position of the
atom i with respect to a fixedx-y plane. Furthermore, any
two-body quantityf 2(r i ,r j ) depends only on three variables:
~i! the z coordinate of each of the two particles, i.e.,zi and
zj , and~ii ! the distance between both particlesur j2r i u pro-
jected onto thex-y plane, i.e.,

h i j5uhi j u5uhj2hi u5A~xj2xi !
21~yj2yi !

2. ~2.2!

Hence, all two-body quantities can be written as
f 2(h i j ,zi ,zj ). Taking into account this simplification a trial
N-body wave function for the ground state can be repre-
sented by the variational ansatz

C0~1, . . . ,N!

5expF 12 (
i51

N

u1~zi !1
1

2 (
i , j51
~ i, j !

N

u2~h i j ,zi ,zj !1•••G .
~2.3!

Hereu1(zi) andu2(h i j ,zi ,zj ) are, respectively, the one- and
two-body correlation factors. In~2.3! correlation factors of
more than two particles are neglected.

The optimal values of the correlation factors contributing
to the wave function~2.3! should be determined from the
Euler-Lagrange~EL! equations derived by minimizing the
energy expectation value

H00@u1 ,u2#

5
*d3r1 . . .d

3rNC0~r1 , . . . ,rN!HC0~r1 , . . . ,rN!

*d3r1 . . .d
3rNC0

2~r1 , . . . ,rN!
,

~2.4!

with respect to both these one- and two-body quantities, i.e.,
by imposing simultaneously

dH00@u1 ,u2#

du1
50 and

dH00@u1 ,u2#

du2
50. ~2.5!

In practice, however, in order to derive the EL equations it is
convenient to eliminateu1(zi) from the energy expectation
value in favor of the one-body densityr(zi) and the two-
body distribution function g(h i j ,zi ,zj ) by using the
Bogoliubov-Born-Green-Kirkwood-Yvon equation@for in-
stance, cf.~2.5! in Ref. 17#. The hypernetted-chain~HNC!
approximation yields to a set of coupled equations which
relateu(h,zi ,zj ) andg(h,zi ,zj ) ~from now on we simplify
the notation dropping the index 2, which indicates two-body
functions, and settingh[h i j ). When all elementary dia-
grams are neglected this approach~denoted as HNC/0! leads
to the hypernetted equation

g~h,z1 ,z2!5exp@u~h,z1 ,z2!1N~h,z1 ,z2!# ~2.6!

and the Ornstein-Zernike39,40 chain equation, which may be
conveniently written in momentum space as

N~q,z1 ,z2!5E
2`

`

dz3@X~q,z1 ,z2!

1N~q,z1 ,z2!#X~q,z3 ,z2!, ~2.7!

where

X~h,z1 ,z2![g~h,z1 ,z2!212N~h,z1 ,z2!. ~2.8!

Here the auxiliary two-body functionsN(h,z1 ,z2) and
X(h,z1 ,z2) are the total and direct~non-nodal! correlations,
respectively. Any two-body quantityf (q,z1 ,z2) is the Han-
kel transform of the correspondingf (h,z1 ,z2) evaluated ac-
cording to

f ~q,z1 ,z2!5Ar~z1!r~z2!E f ~h,z1 ,z2!exp@ i ~qxx

1qyy!#dxdy

52pAr~z1!r~z2!E
0

`

hdhJ0~hq!

3 f ~h,z1 ,z2!, ~2.9!

wherein J0 is the zeroth-order Bessel function of the first
kind.

A. Optimization equations

The EL equation forn51 is derived from~2.5! with the
constraint of a fixed particle number per unit areanc , some-
times denoted as coverage, defined by

nc5E
2`

`

r~z!dz. ~2.10!

This procedure leads to a Hartree-like equation for the square
root of the one-body density:

F2
\2

2m

d2

dz2
1Uext~z!1VH~z!GAr~z!5mAr~z!,

~2.11!
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wherem is the chemical potential andVH(z) is the generalized Hartree potential defined in the Appendix.
On the other hand, the EL equation derived from~2.5! for n52 within the PPA procedure gives an optimization equation

for the non-nodal correlationX(q,z1 ,z2):

2@H~q,z1!1H~q,z2!#X~q,z1 ,z2!1E
2`

`

dz3X~q,z1 ,z3!H~q,z3!X~q,z3 ,z2!52Vp-h~q,z1 ,z2!. ~2.12!

Here,H(q,z) is a single-particle differential operator defined by

H~q,z!5
\2

2mFq22 1

Ar~z!

d

dz
r~z!

d

dz

1

Ar~z!
G5e0~q!1H0~z!, ~2.13!

wheree0(q)5\2q2/2m is the kinetic energy of a free4He
atom with momentum\q parallel to thex-y plane, and
Vp-h(q,z1 ,z2) is the Hankel transform of the particle-hole
potentialVp-h(h,z1 ,z2) introduced in Ref. 6 and defined in
the Appendix.

B. Optimization procedure

Solutions of the whole EL-HNC/0 problem must be found
by solving self-consistently the chain relation~2.7!, the Har-
tree equation~2.11!, and the PPA condition~2.12!. Equation
~2.7! may be solved by either iteration or matrix inversion.
The solution of ~2.11! can be easily found by using the
Newton-Raphson method. The evaluation of the two-body
correlation factors is the most cumbersome task and, indeed,
it has been the main difficulty for solving inhomogeneous
systems in the past. In order to calculate the optimal two-
body correlation factor,u(h,z1 ,z2), we developed an
algorithm17 which follows as close as possible the procedure
devised by Feenberg3 and Campbell41 for treating the uni-
form liquid. Thus we asserted the decomposition

u~h,z1 ,z2!5uSR~h,z1 ,z2!1Du~h,z1 ,z2!, ~2.14!

where the short-ranged correlation factoruSR(h,z1 ,z2) was
assumed to be of the generalized McMillan-Schiff-Verlet42,43

type introduced in Ref. 17:

uSR~h,z1 ,z2!52S b01b1Ar~z1!r~z2!

Ah21~z12z2!
2 D 5, ~2.15!

with b052.8 Å andb159.98 Å4, while the optimal long-
ranged correctionDu(h,z1 ,z2) remained to be determined
from the optimization PPA relation~2.12!, where we set

X~q,z1 ,z2!5XSR~q,z1 ,z2!1Du~q,z1 ,z2!. ~2.16!

In practice, the algorithm starts solving the HNC/0 equa-
tions for an initial choice of the density profiler(z) and the
short-ranged two-body correlation factoruSR(h,z1 ,z2) given
by ~2.15!. Next, the density profile is improved by solving
the Hartree equation. This procedure is continued until~2.7!
and ~2.11! are solved self-consistently. Then, the finite-
difference relaxation method proposed in Ref. 17 is applied
to get the first long-ranged correctionDu(1)(q,z1 ,z2) from
the PPA equation~2.12!. The new correlation factor
u(1)(h,z1 ,z2)5uSR(h,z1 ,z2)1Du(1)(h,z1 ,z2) is used to
solve self-consistently the HNC/0 and Hartree equations.
Subsequently, a second correctionDu(2)(q,z1 ,z2) is deter-
mined from ~2.12! and it is used to update the one-body
density and the two-body distribution functions by solving,
once more, self-consistently Eqs.~2.7! and~2.11!. The whole
algorithm is iterated until convergence is achieved. We shall
not give more details about the method here, since a com-
prehensive description of it has been very recently reported
in Ref. 22.

III. EXCITATION SPECTRUM
WITHIN THE CBF FORMALISM

The excitation spectrum of an inhomogeneous Bose fluid
with planar symmetry,\vk(q), is determined by an equation
of the Bogoliubov type derived in Ref. 6 within the frame-
work of the PPA:

H2~q,z1!ck~q,z1!12E
2`

`

dz2Vp-h~q,z1 ,z2!H~q,z2!ck~q,z2!5\2vk
2~q!ck~q,z1!. ~3.1!

The quantum numberk may indicate a bound state~by an integer! or it may be a continuous number characterizing the
associated energy to continuum states with a nonzero amplitude at very largeuzu. It can be demonstrated thatck(q,z) are
orthogonal in the metricH(q,z), obeying

^ck~q,z!uH~q,z!ucn~q,z!&5E
2`

`

dzck~q,z!H~q,z!cn~q,z!5ek~q!dkn . ~3.2!
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It is useful to consider the adjoint eigenvalue equation to~3.1! introduced in Ref. 17, which may be obtained by multiplying
~3.1! from the left byH(q,z1) and redefining the terms

H2~q,z1!ck
†~q,z1!12 E

2`

`

dz2@H~q,z1!Vp-h~q,z1 ,z2!#ck
†~q,z2!5\2vk

2~q!ck
†~q,z1!, ~3.3!

where

ck
†~q,z!5ak~q!H~q,z!ck~q,z!. ~3.4!

It is straightforward to show that~3.1! and~3.3! have both the same spectrum of eigenvalues. An important feature of~3.3! is
that the eingenfunctionsck

†(q,z) can be identified with the spatial shapes of the normal modes defined in Refs. 6,7. A
generalized orthonormalization integral may be written as

^ck~q,z!ucn
†~q,z!&5E

2`

`

dzck~q,z!cn
†~q,z!5an~q!^ck~q,z!uH~q,z!ucn~q,z!&

5ak~q!ek~q!dkn5Nk~q!dkn , ~3.5!

so that we are dealing with two families of eigenfunctions,
which are orthogonal to one another according to~3.5!.
Therefore, there are two sets of normalization factors, one
for each family, which may be chosen depending on the sys-
tem to be studied. Although the actual values ofek(q) and
ak(q) do depend on the normalization choices, the physical
observables are independent of them.

A. Nature of the eigenstates

In the present paper the spectrum of elementary excita-
tions was determined from the eigenvalue problems~3.1! and
~3.3!. Solutions of these dispersion relations provide bound
and continuum states.30–32Furthermore, according to the dis-
cussions of Refs. 10,13,22,24,25 energies\vk(q) of bound
states should be lower than the separation energyeS(q) cor-
responding to the emission of a free4He atom into a
vacuum:

\vk~q!,eS~q!52m1e0~q!. ~3.6!

The number of bound states depends on the particular char-
acteristics of the system which is analyzed. In general, there
may be one or more of these states which form a discrete
spectrum restricted to have energies smaller thaneS(q) and
on top of this upper limit the continuous spectrum is built.

The usual way to obtain the excitation energies and the
corresponding eigenfunctions numerically is to discretize

Eqs. ~3.1! and ~3.3! for a fixed value ofq on a finite mesh
over thez1-z2 plane. Such a procedure will, of course, only
provide discrete states and, in particular, a discrete subset of
the continuum states. In practice, since the long-range behav-
ior of functions appearing in the kernels of these equations is
known, it is possible to get a better representation of the
continuous spectrum by extending the mesh to larger box
sizes. This improvement provides a denser spectrum from
which reliable information on physical observables can be
extracted.

When treating finite-size films it is convenient to normal-
ize both kinds of eigenfunctions to unity, i.e.,

^ck~q,z!uck~q,z!&5E
2`

`

dzck
2~q,z!51 ~3.7!

and

^ck
†~q,z!uck

†~q,z!&51. ~3.8!

Using this normalization, the expectation value of the one-
body operatorH(q,z) defined in~3.2! may be cast, after a
straightforward algebra, into the suitable form

ek~q!5e0~q!1
\2

2mE2`

`

dzr~z!F ddz ck~q,z!

Ar~z!
G 2. ~3.9!

Furthermore, it is also useful to define the adjoint expecta-
tion value

ek
†~q!5^ck

†~q,z!uH~q,z!uck
†~q,z!&5e0~q!1

\2

2mE2`

`

dzr~z!F ddz ck
†~q,z!

Ar~z!
G 2. ~3.10!

An expression for the eigenvalues can be derived from~3.3! by multiplying from the left byck(q,z1) and integrating over
z1 ,
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\2vk
2~q!E

2`

`

dz1ck~q,z1!ck
†~q,z1!5E

2`

`

dz1ck~q,z1!H
2~q,z1!ck

†~q,z1!

12E
2`

` E
2`

`

dz1dz2ck~q,z1!@H~q,z1!Vp-h~q,z1 ,z2!#ck
†~q,z2!, ~3.11!

which may be cast in a more compact form

\2vk
2~q!5

ek~q!

Nk
2~q! F E

2`

`

dz1ck
†~q,z1!H~q,z1!ck

†~q,z1!12E
2`

` E
2`

`

dz1dz2ck
†~q,z1!Vp-h~q,z1 ,z2!ck

†~q,z2!G
5
ek~q!@ek

†~q!12Vk
†~q!#

Nk
2~q!

5
ek~q!

Nk
2~q!

hk
†~q!. ~3.12!

B. Expressions for liquid structure factors

As mentioned in the Introduction, an interesting issue is to establish at which values ofq the different kind of solutions
described above yield sizable contributions to the static structure factorS(q). This quantity is defined as

S~q!5(
\v

S~q,\v!, ~3.13!

where S(q,\v) is the diagonal dynamic structure function and the sum runs over bound and continuum states of the
eigenvalue problem~3.3!. However, since we have discretized the equations, the summation runs over bound states and a
discrete set representing the continuous spectrum. According to~4.4! of Ref. 13 we have

S~q,\v!5E
2`

` E
2`

`

dz1dz2Ar~z1!

nc
Ar~z2!

nc
E d2heiq•hS~r1 ,r2 ,\v!, ~3.14!

with

E d2heiq•hS~r1 ,r2 ,\v!5
ek~q!

\vk~q!Nk
2~q!

ck
†~q,z1!ck

†~q,z2!, ~3.15!

wherek stands for bound states and the discretized subset of the continuum states\v introduced by our procedure. Therefore
within the framework of this normal-mode decomposition we arrive at

S~q,\v!5
ek~q!

\vk~q!Nk
2~q!

E
2`

` E
2`

`

dz1dz2Ar~z1!

nc
Ar~z2!

nc
ck
†~q,z1!ck

†~q,z2!

5
1

\vk~q! F ek~q!

Nk
2~q!GF E2`

`

dzAr~z!

nc
ck
†~q,z!G25Sk~q!. ~3.16!

Finally, the static structure function in the parallel direction may be expressed as

S~q!5(
k

Sk~q!5(
k

1

\vk~q! F ek~q!

Nk
2~q!GF E2`

`

dzAr~z!

nc
ck
†~q,z!G2. ~3.17!

This form indicates that all addends are positive definite.
Furthermore, sinceAr(z) is an even function ofz only, even
eigenstatesck

†(q,z) will lead to nonzero results forSk(q).
We shall examine in the next section the size of all partial
contributions to the expansion for the static structure factor
as a function of momentum.

IV. NUMERICAL RESULTS AND ANALYSIS

According to the motivation discussed in the Introduction,
we shall report results obtained for elementary excitations of

symmetric films confined by a simple external potential
Uext(z) of the form

Uext~z!52U2exp@2z2/~2s2!#2U4exp@2z4/~4s4!#.
~4.1!

The parameters of this potential were fixed in order to get
films with a central density close to the experimental equi-
librium density of bulk liquid 4He at T50 K, i.e.,
rc.0.0218 Å23 ~see Refs. 19–21!. It was assumed that he-
lium atoms interact via the improved Hartree-Fock disper-
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sion potential~dubbed HFDHE2! with the parameters deter-
mined by Azizet al.44 The main findings will be illustrated
with results for a film of coveragenc50.4 Å22 confined by
Uext(z) with the parametersU250, U4512 K, ands56 Å,
although marginally we shall also comment on a film with
nc50.3 Å22 supported by a potential withU257 K,
U457 K, ands55 Å.

A. Classification of states

The complete EL-HNC/0 problem has been solved within
a box size (2zmax

0 <z<zmax
0 518.6 Å!. Once having opti-

mized the one-body densityr(z) and the two-body correla-
tion factor u(h,z1 ,z2), dispersion relations were solved to
get information about excitations. It is well known that wave
functions of bound states must vanish exponentially for
z→6`. Therefore, in order to be sure that numerical calcu-
lations have been carried out within a sufficiently large box,
we verified that the amplitudes of bound eigenstates decay
exhibiting negligible values atz56zmax

0 . The number of
bound states depends on the momentumq, the thickness of
the system, and the strength and width of the external poten-
tial. Furthermore, it was also checked that wave functions
corresponding to continuum states approach plane waves
within the selected box. These results guarantee that at the
boundary all local as well as nonlocal terms in the dispersion
relations have already reached their asymptotic values.

In order to get a rather dense subset of continuum states
the eigenvalue problems~3.1! and ~3.3! were discretized in
boxes of sizezmax larger thanzmax

0 in which the complete
numerical EL-HNC/0 task has been performed. For the ex-
tended calculations the particle-hole interaction was set to
zero outside the region of the original box, i.e.,
Vp-h(q,z1 ,z2)50 wheneverz1 and/or z2.zmax

0 . On the
other hand, the one-body density was extrapolated to large
distances by the known asymptotic form

r~z!55
r~zmax

0 !exp@2 2A22mm/\2~z2zmax
0 !#

if z.zmax
0 ,

r~2zmax
0 !exp@2A22mm/\2~z1zmax

0 !#

if z,2zmax
0 .

~4.2!

The extended eigenvalue problems were solved by assuming
vanishing boundary conditions, i.e.,

ck~q,z56zmax!5ck
†~q,z56zmax!50, ~4.3!

so that we imposed that all wave functions must have a node
at the border. This choice is the appropriate one for the con-
tinuum states~which become standard standing waves for
large z! and, since anyway all bound wave functions have
negligible amplitudes foruzu.zmax

0 , we are not losing any
information about them due to the condition~4.3!.

In practice, instead of calculating only one spectrum for a
rather large box, we evaluated a series of spectra by enlarg-
ing slowly zmax. During this procedure we followed the evo-
lution of the obtained eigenstates by looking at their energy
and wave function. Of course, as is to be expected in so
doing, the energies and wave functions of the bound states
do not change. However, to our surprise, we found that there
are also continuum states which energy remains constant

when the box is enlarged. Figure 1 shows, in the case of the
film with coveragenc50.4 Å22, the evolution of energy
levels of the even eigenstates as a function of box size for
two fixed momentum values, namely, atq50.1 and 1.0
Å 21. Energies corresponding to odd eigenstates are not dis-
played for two reasons:~i! because they do not contribute to
physical observables like, for instance, the liquid structure
factors and~ii ! in order to avoid the overload of plots. This
drawing indicates clearly that above the separation energy
eS(q) there are a few states which energy does not change
whenzmax is increased. The wave functions corresponding to
these special continuum states obtained atq50.1 Å21 are
shown in Fig. 2, where for the sake of comparison a typical
‘‘regular’’ continuum mode and the lowest-lying eigenfunc-
tion for q50, which is nothing but to the normalized square
root of the density profilec0(q50,z)5Ar(z)/nc, are also
plotted. These special wave functions exhibit inside the film
enhanced amplitudes which decrease rapidly in the inhomo-
geneous interface region (8<z<13 Å! and show strongly
attenuated plane waves in the asymptotic limit. The general
features of these modes change very little with momentum
up to a value ofq around 0.8 Å21. Beyond this momentum
the number of oscillations with large amplitudes becomes
smaller. For instance, Fig. 3 shows results obtained at
q51.3 Å21. In this plot, the highest level placed at

FIG. 1. Evolution of the discretized excitation energy spectrum
of the symmetric film of coveragenc50.4 Å22 as a function of the
box size for two fixed values of momentumq. Only energies cor-
responding to even eigenstates are displayed. In order to have a
reference for the continuous spectrum the separation energy
eS(q)52m1e0(q) is indicated. For the sake of comparison the
maxon energyeM and the roton energyeR both of them evaluated
for a bulk liquid at a density ofrL50.0218 Å23 are also plotted.
~a! Data calculated atq50.1 Å21. ~b! Same as~a! at q51.0
Å21.
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\v523.21 K develops only one large amplitude and its as-
sociated plane wave remains almost negligible. The lower
special state at\v522.13 K presents three large amplitudes
within the film domain~note that in Fig. 3 only half of the
film is displayed! and a somewhat more intense plane wave
than that corresponding to the level at\v523.21 K. Finally,
the state at\v520.31 K develops five large amplitudes and
exhibits the biggest plane wave component of all three ex-
amined wave functions. Taking into account the properties of
these special continuum states described above we shall de-
note them as ‘‘resonant modes.’’ Namely, we shall refer to
them as k5d0 ~for the highest and hardest ‘‘resonant
mode’’!, k5d2 ~the first lower one!, andk5d4 ~the lowest
and softest one!. The indexn of dn is even because we are
just treating even eigenstates. As a matter of fact, in a pre-
liminary report we have already identified thek5d0 ‘‘reso-
nant mode’’ and commented some of its features~cf. Figs. 4
and 5 in Ref. 19!. However, since in general the evaluated
‘‘continuum modes.’’ are really a superposition of many
modes in an energy interval determined by the discretization
mesh, at least, a brief clarification should be made about the
nature of these ‘‘resonant modes.’’ An analysis of their
widths indicates that these quantities are confined to very
narrow energy bands, much smaller than the typical distance
between two consecutive ‘‘regular’’ continuum solutions. For
instance, Fig. 3 shows that in the neighborhood of all these
special states there are levels which lying at a distance of
only D\v'0.03 K already exhibit the behavior of the

‘‘regular’’ continuum. Therefore, due to the fact that their
energies are very well defined one can indeed speak of
‘‘resonant modes.’’

B. Excitation energy spectrum

Let us as now analyze the excitation spectrum as a func-
tion of momentumq. Figures 4 and 5 show the energies of
the even eigenstates obtained from the dispersion relations
~3.1! and ~3.3! in the case of two different coverages
nc50.4 and 0.3 Å22, respectively. To guide the eye when
looking at these figures, several additional curves are also
plotted: the separation energyeS(q) given by~3.6!; the Bijl-
Feynman dispersion relation for bulk liquid4He,

\vL~q!5eL~q!5
\2q2

2mSL~q!
5

e0~q!

SL~q!
, ~4.4!

evaluated at experimental equilibrium densityrL50.0218
Å 23; and two horizontal straight lines representing the
maxon energyeM and the roton energyeR of the bulk sys-
tem. Of course, the results provided by~3.1! and ~3.3! are
coincident. A comparison of these drawings indicates a simi-
lar general behavior; however, there are some differences.

In the case ofnc50.3 Å22 the three lowest-lying levels
are always bound, whereas fornc50.4 Å22 there are only
two states of this kind. Note that the third bound level
present in Fig. 4 at small momenta merges into the con-
tinuum atq'0.5 Å21. Furthermore, in both figures a barely

FIG. 2. Thed0 , d2 , andd4 ‘‘resonant modes’’ at\v522.38,
19.89, and 17.41 K obtained in the case of coveragenc50.4 Å22

for q50.1 Å21 together with a typical ‘‘regular’’ continuum mode
at \v519.27 K. For comparison the solid curve indicates the nor-
malized square root of the density profilec0(q50,z)5Ar(z)/nc.
All these quantities are symmetric atz50.

FIG. 3. Thed0 , d2 , andd4 ‘‘resonant modes’’ at\v523.21,
22.13, and 20.31 K obtained in the case of coveragenc50.4 Å22

for q51.3 Å21 together with neighboring ‘‘regular’’ continuum
modes at\v523.18, 22.10, and 20.35 K. For comparison the solid
curve indicates the normalized square root of the density profile
c0(q50,z)5Ar(z)/nc. All these quantities are symmetric at
z50.
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bound level at\v'2m for q<0.2 Å21 appears; however,
in particular fornc50.4 Å22 due to numerical uncertainties,
it becomes very difficult to disentangle whether it is really
the fourth bound state. For both coverages the first- and
second-lowest modes are clearly surface excitations up to the
roton minimum. Their wave functions are very similar to that
obtained when studying a semi-infinite system; see Figs. 4,
5, and 6 in Ref. 22. Here we shall restrict ourselves to show
in Fig. 6~a! the spatial shape of the lowest-lying excitation,
normally identified with the ripplon, calculated fornc50.4
Å 22 at values ofq shortly below the momentum corre-
sponding to the roton minimum,qR'1.9 Å21. We display
these results because they will be needed for a forthcoming
discussion. Above the separation energy a discrete set of
states representing the continuous spectrum is mounted. The
energies of the ‘‘regular’’ continuum indicated by solid
curves build a sequence of levels almost parallel toeS(q).
On the other hand, the excitation energies of ‘‘resonant
modes’’ like those examined in Figs. 2 and 3 are indicated by
solid symbols ~circles, squares, and triangles!. There are
three of the latter kind of modes in Fig. 4 and two in Fig. 5.
The energies of these modes vary slowly up to the maxon
domain, and then rise more pronouncedly, reaching a maxi-
mum in the interval 1.05<q<1.25 Å21, and subsequently
fall approaching the area of the roton minimum,eR'19.3 K,

by following a curve approximately parallel to\vL(q). The
behavior after the crossing with the separation energy
eS(q) is very interesting and will be analyzed in detail in the
next paragraph. Another feature worthy of being pointed out
is the appearance of a further ‘‘resonant mode’’ atq'0.9
Å 21 in both Figs. 4 and 5, which energies are a bit smaller
than the roton energyeR . This mode merges into the ‘‘regu-
lar’’ continuum at aboutq'1.15 Å21.

Let us now focus our attention on the analysis of the film
of coveragenc50.4 Å22. In Fig. 4, for q.1.35 Å21 and
below the separation energy, besides several level crossings
there are three level repulsions. These features may be ob-
served better in Fig. 7 which shows an amplification of the
region to be explored. First of all, notice the appearance of a
third bound state atq'1.35 Å21 and of a fourth one at
q'1.4 Å21. Figure 7 indicates that the ‘‘resonant modes’’
first cross ‘‘regular’’ continuum modes above the separation
energy, and then become bound beloweS(q) and continue
the fall until are repelled by lower-lying surface modes with
a similar number of large amplitudes. The first level repul-
sion occurs atq'1.5 Å21 between thek54 elementary
excitation and the bound continuation of thek5d4 ‘‘reso-
nant mode,’’ the second one takes place atq'1.7 Å21 be-
tween thek52 surface excitation and the bound continua-
tion of the k5d2 ‘‘resonant mode,’’ and finally the bound
continuation of thek5d0 ‘‘resonant mode’’ is repelled by
thek50 ripplon excitation atq'1.9 Å21. All these results
provide evidence for the existence of a sort of repulsive in-
teraction between the approaching levels around\v'eR in
agreement with the suggestion of Pitaevskii and Stringari.35

In the momentum region of the repulsions, due to the
strong interaction between eigenstates, the character of the
corresponding wave functions is changed. The clearest trans-

FIG. 4. Excitation spectrum of even eigenstates as a function of
momentum for the film of coveragenc50.4 Å22. The open sym-
bols s, h, n, andL stand for bound states, which are surface
excitations for\vk(q),eR . The excitation energies of ‘‘resonant
modes’’ like those examined in Figs. 2 and 3 are pointed out by full
symbols. Thed represents the highest ‘‘resonant mode.’’ The solid
curves without any particular mark indicate energies of the dis-
cretized ‘‘regular’’ continuum modes. The dashed line is the sepa-
ration energyeS(q) being the upper limit for discrete eigenvalues.
The dot-dashed line is the dispersion relationeL(q) for a uniform
system, while the horizontal dot-dot-dot-dashed lines are the maxon
energyeM'23.6 K and the roton energyeR'19.3 K; all of them
were evaluated for a bulk liquid at a density ofrL50.0218 Å23.

FIG. 5. Same as Fig. 4 for the film of coveragenc50.3 Å22.
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formation of the character of excitation modes happens when
thek50 and the bound continuation of thek5d0 approach
one another; therefore we concentrate our discussion on this
case. The situation is documented in Fig. 6, which shows
these wave functions shortly below and shortly above the
level repulsion atq'1.9 Å21. Figure 7 indicates that for
q.1.8 Å21 these modes are the first- and second-lowest
even excitations. From Fig. 6 it is obvious that during the
approach the geometric shape of the wave functions changes
continuously in such a way that after the repulsion none of
these modes is a surface excitation any more. As shown in
Fig. 6~c! for q>1.95 Å21 the lowest-lying and the first-
excited even state exhibit the behavior of typical nodeless

and two-node volume wave functions, respectively. Similar
features to that displayed in Fig. 6 also occur close to the
other repulsions atq'1.5 and 1.7 Å21. Moreover, the same
kind of repulsions is also present in the energy spectrum
corresponding to the thinner film of coveragenc50.3 Å22

shown in Fig. 5.
On the other hand, turning now to both Figs. 4 and 5, it

may be seen that shortly after the repulsions all excitation
energies become nearly parallel to the separation line
eS(q); i.e., they depend to a good approximation quadrati-
cally onq in that momentum regime. As a matter of fact, for
q.1.5 Å21 in the region delimited from above by the sepa-
ration lineeS(q) and from below by the curveeL(q), that is,
when the excitation energies cross the bulk result after all
rearrangements, it is then convenient to make a new identi-
fication of these bound wave functions, characterizing them
by integral numbersk which indicate the number of nodes.

C. Particle-hole matrix elements

To learn something more about the properties of the
‘‘resonant modes’’ we have analyzed the expectation values
~3.12! making a contact with excitations of bulk liquid. In
this part of the investigation we shall proceed in a similar
manner as Gernothet al.22 studied the semi-infinite system.
Accordingly, we cast the dispersion relation~3.12! into the
form given by Eq.~35! of Ref. 22:

\2vk
2~q!5

ek~q!

Nk
2~q!

@ek
†~q!12Vk

†~q!#5
Fk~q!

q
e0~q!@ek

†~q!12Vk
†~q!#, ~4.5!

whereFk(q) is the penetration factor,

Fk~q!5
q

e0~q!
3
ek~q!

Nk
2~q!

. ~4.6!

It is worth mentioning that fork50 the relation~4.5! provides a useful stability condition on the elementary excitations@see
discussion of Eq.~3.8! in Ref. 17#. The energy expression~4.5! is an analog of the familiar dispersion relation of the
elementary excitations in bulk liquid4He described by plane waves:2,3

FIG. 6. The lowest-lyingk50 excitation and thed0 ‘‘resonant
mode’’ as a function ofz at momenta close to the roton minimum
qR'1.9 Å21. The dashed curve is the normalized square root of
the density profilec0(q50,z)5Ar(z)/nc. ~a! Curves~1!, ~2!, ~3!,
and~4! correspond, in turn, toq51.6, 1.7, 1.8, and 1.85 Å21. ~b!
Both these wave function atq51.9 Å21. ~c! Curves~1! and ~2!
correspond, in turn, toq51.925 and 1.95 Å21. All these quantities
are symmetric atz50.

FIG. 7. Same as Fig. 4 for the maxon-roton region. The big
circles indicate the region where repulsions of states take place.
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eL
2~q!5e0~q!@e0~q!12VL~q!#, ~4.7!

where the quantityVL(q) is the 3D Fourier transform of the isotropic particle-hole potential at densityrL . Remember that for
a uniform system the penetration factor isFL(q)5q. Moreover, for optimized solutions expression~4.7! is equivalent to the
Bijl-Feynman relation~4.4!.

In the case of a half-space system, Gernothet al.22 found that the penetration factor for ripplon excitations,F0(q), merges
into the bulk factorFL(q) near the roton momentumqR ~see Fig. 7 therein!. Making a connection between this result and the
expression~4.6! one may conclude that in this momentum regime the ratioe0(q)/N0

2(q) closely approaches the kinetic energy
e0(q). On the other hand, Fig. 8 in Ref. 22 shows that in the same momentum regione0

†(q) also tends toe0(q). In trying to
understand these findings in terms of theoretical expressions, one realizes that neglecting the effects ofH0(z) in ~3.2!, ~3.9!,
and~3.10! we just gete0

†(q)5e0(q)5e0(q). In light of this result, we may conjecture that for this class of states the influence
of the operatorH0(z) on the wave functionsc0(q,z) would become very small. Under such an assumption definition~3.4!
yields

c0
†~q,z!5a0~q!H~q,z!c0~q,z!5a0~q!@e0~q!1H0~z!#c0~q,z!'c0~q,z!. ~4.8!

Using this result in ~3.5! we obtain thatN0(q)'1, which leads toe0(q)/N0
2(q)'e0

†(q)'e0(q). Hence, the result
F0(q)'q nearqR can be well understood. In addition, due to the property~4.8!, the two different matrix elements of the
particle-hole potential, namely,V0

†(q) andV0(q), become approximately equal in this momentum regime:

V0
†~q!5^c0

†~q,z1!uVp-h~q,z1 ,z2!uc0
†~q,z2!&

'^c0~q,z1!uVp-h~q,z1 ,z2!uc0~q,z2!&5V0~q!. ~4.9!

Then, for the excitation energy of this class of modes we are led to the approximation

\2v0
2~q!'e0~q!@e0~q!12V0

†~q!#'e0~q!@e0~q!12V0~q!#. ~4.10!

Of course, a next step in Ref. 22 was to compare the calcu-
lated values of the particle-hole energiesV0

†(q) andVL(q). It
is shown in Fig. 11 of Ref. 22 that the surface quantity
V0
†(q) approaches the bulk energyVL(q) close toqR . Ac-

cording to Gernothet al.22 the similarity of the dispersion
relations~4.7! and~4.10!, on the one hand, and the nature of
the results for the driving forcesV0

†(q) andVL(q), on the
other, point to an intimate relation between rotons and the
surface modes at large momenta. Since bulk rotons at
q'qR respond to the strengthVL(q), while the surface
modes at atomic wavelengths are driven by the correspond-
ing surface quantityV0

†(q), they interpreted these surface
modes as rotons trapped in the surface layer.

We performed in the case of symmetric finite-width films
a similar analysis to that described above. In Fig. 8 we com-
pare the quantityV0

†(q) calculated for the symmetric films of
coveragesnc50.3 and 0.4 Å22 with the results for the semi-
infinite system published in Ref. 22 and the particle-hole
energyVL(q) at a density ofrL50.0218 Å23. The values
obtained for the film withnc50.4 Å22 lie close to those
corresponding to the half-space along the whole domain of
surface excitations belowqR ; furthermore, for momenta
larger thanqR these results agree very well withVL(q). On
the other hand, the evaluations for thenc50.3 Å22 film
exhibit larger discrepancies with the half-space values as
well as withVL(q), which indicates that for this thinner film

the finite-size effects are still important. Therefore from now
on we shall concentrate our discussion on results for the film
of coveragenc50.4 Å22.

The values of the penetration factors and the particle-hole
energies are collected in Figs. 9 and 10, respectively. Our
study has not been restricted to the lowest-lying state. We
also examined the behavior of the first-excited even state as
well as of ‘‘resonant modes’’ and their bound continuations.
Figure 9 indicates that the penetration factorF0(q) evaluated
in the present work exhibits a behavior similar to that ob-
served in the case of the half-space system. In particular, it
also approaches the straight lineFL(q)5q at q'qR . On the
other hand,Fd0

(q) is much bigger thanFL(q) for q<1.1

Å 21, and then it crosses withF0(q) and approaches the bulk
result atq'1.3 Å21 lying very close toFL(q) for q,qR .
At q'qR there is a new crossing ofFd0

(q) with F0(q), and

the latter quantity remains close toFL(q). As an illustration
of the behavior of the penetration factors corresponding to
other modes we also plotted in Fig. 9 the data of the pair
F2(q) andFd2

(q). The former one grows at small momenta

until q'0.5 Å21 where it reaches the valueF2(q)'2
Å 21; for larger momenta it remains approximately constant
up toq'qR . The quantityFd2

(q) exhibits a behavior resem-

bling that ofFd0
(q). After starting from large values it de-

creases abruptly and crosses withF2(q) atq'0.9 Å21; sub-
sequently, it lies belowF2(q) until a momentum slightly
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below q51.7 Å21 where a new crossing occurs. Note that
the repulsion between these states displayed in Fig. 7 takes
place at this momentum too. On the other hand,Fd2

(q)

never approaches the bulk result so much asFd0
(q). For

momenta larger thanqR all these penetration factors follow
curves, which on this scale, are almost parallel to the bulk
result. The inset of Fig. 9 will be discussed further below.

Figure 10 shows two pairs of expectation valuesVk
†(q)

and Vk(q) calculated over a large domain of momenta,
0,q<4 Å21, compared withVL(q). These evaluations
were carried out for the lowest-lyingk50 state and for the
d0 ‘‘resonant mode’’ and its continuation forq.qR , i.e., the
new k52 state. The quantityV0

†(q) matchesV0(q) shortly

below qR , while Vd0
† (q) matchesVd0

(q) already at the be-

ginning of the maxon region at momentumq'1.2 Å21. In
the case of both these branches, onceVk

†(q) andVk(q) ap-
proach one another their values for larger momenta remain
indistinguishable in the scale of the figure. An important
property ofVd0

† (q) andVd0
(q) is that when these quantities

become almost identical they also approach the very steep
particle-hole potentialVL(q). This behavior continues until
the repulsion region atq'qR , where both couples of expec-
tation values displayed in Fig. 10 approach one another, so
that close to the roton minimum we get

V0
†~q!'V0~q!'Vd0

† ~q!'Vd0
~q!'VL~q!. ~4.11!

Following the argumentation of Gernothet al.,22 since the
ripplon excitation of the symmetric film studied in this paper
appears to terminate by merging with the bulk excitation
curve near the roton minimum~see Fig. 7! leading to

\2v0
2~q>qR!5

F0~q!

q
e0~q!@e0

†~q!12V0
†~q!#'e0~q!@e0~q!12VL~q!#, ~4.12!

we may also interpret these lowest-lying modes as rotons trapped in the surface layer. On the other hand, a physically
meaningful extension of this kind of analysis can be made. Due to the fact that for momenta corresponding to atomic scale,
1.2 Å21<q<qR , we haveFd0

(q)'q, ed0
† (q)'e0(q) andVd0

† (q)'VL(q), the dispersion curves of thed0 ‘‘resonant mode’’

and the bulk excitation are very similar~see Figs. 4 and 7!, i.e.,

\2vd0
2 ~q!5

Fd0
~q!

q
e0~q!@ed0

† ~q!12Vd0
† ~q!#'e0~q!@e0~q!12VL~q!#5eL~q!. ~4.13!

FIG. 8. Particle-hole energiesV0
†(q) plotted against the wave

numberq. The symbolsh ands stand for evaluations performed
for films with coveragesnc50.3 and 0.4 Å22, respectively. The
star stands for the expectation valueV0

†(q) obtained in Ref. 22 in
the case of the half-space system, whereas the dashed curve indi-
cates the particle-hole energyVL(q) calculated for a bulk liquid at a
density ofrL50.0218 Å23.

FIG. 9. Penetration factorFk(q) defined by Eq.~4.6! as a func-
tion of the momentumq. The symbolss andh stand, in turn, for
F0(q) andF2(q), whereas the corresponding solid symbols indi-
cate the results forFd0

(q) andFd2
(q) and their bound continua-

tions. The star stands for the expectation valueF0(q) obtained in
Ref. 22 in the case of the half-space system and the dashed line
indicates the bulk penetration factorFL(q)5q. The inset shows the
ratio Fk(q)/q for large momenta up toq54 Å21; the symbols
represent the same modes as in the main plot.
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Actually, in this momentum regime the trend of both these
curves\2vd0

2 (q) and eL(q) is equal and the energy differ-

ences are small, amounting only about 3%. Therefore, for
atomic wavelengths, thed0 ‘‘resonant mode’’ and its bound
continuation can be interpreted as a roton trapped at the cen-
ter of the film, which represents to a good approximation the
‘‘bulk’’ excitations of this inhomogeneous system.

In order to complete this part of the study, the particle-
hole energies corresponding to the other pairs involved in the
repulsions shown in Fig. 7 were also examined. The results
for V2(q), Vd2

† (q), andVd4
† (q) are displayed in the inset of

Fig. 10. This plot shows thatVd2
† (q) andVd4

† (q) are smaller

thanVL(q) andVd0
† (q) but, nevertheless, they exhibit very

steep slopes similar to that of the bulk particle-hole energy.
The latter property gives support to the interpretation of
these ‘‘resonant modes’’ and their bound continuations as a
sort of ‘‘bulk excitation.’’ Looking at their wave functions
~see, e.g., Figs. 3 and 6! one realizes that thed0 mode is an
excitation located just at the center of the film and thed2
mode is more extended than the previous one, whereas the
d4 mode is the softest resonance, being spread out over the
whole width of the film. On the other hand, the values of
V2(q) indicate a behavior similar toV0(q) as is expected for

a surface mode. Furthermore, the quantityV4(q), which is
not shown in Fig. 10, also exhibits typical characteristics of
surface excitations.

Turning to the main plot of Fig. 10, we see thatVL(q)
remains negative forqR,q<2.7 Å21. In this region the
results for thek50 state coincide with the bulk particle-hole
energy, whereas the values of the continuation ofVd0

† (q),

i.e., the expectation valuesV2 (new)
† (q), lie somewhat higher

thanVL(q). The typical wave functions of thesek50 and
2 (new) states are similar to that plotted in Fig. 6(c).

Figure 10 shows that for larger momenta, 2.8<q<3.9
Å 21, the particle-hole energiesV0

†(q), V2 (new)
† (q), and

VL(q) turn out to be positive again, but now bothV0
†(q) and

V2 (new)
† (q) are smaller thanVL(q). By examining the wave

functions of the two lowest-lying even states we found that
they are surface excitations in this interval. These important
novel results are displayed in Fig. 11. It is worthwhile to
notice the striking similarity between the curves shown in
this plot and the wave functions corresponding to the lowest-
lying excitations in a semi-infinite system at low momenta,
0.1<q<0.8 Å21, which are displayed in Figs. 4 and 6 of
Ref. 22. The latter ones were interpreted physically in terms
of surface phonons and capillary waves. In addition, in the
case of a symmetric film, the penetration factors for the
k50 and 2 (new) states in the 2.8<q<3.9 Å21 regime are

FIG. 10. Particle-hole energiesVk
†(q) andVk(q) plotted against

the wave numberq. The symbolss and % stand, in turn, for
V0
†(q) and V0(q), whereas the symbolsd and L stand for

Vd0
† (q) and Vd0

(q), respectively. The dashed curve indicates the
particle-hole energyVL(q) calculated for a bulk liquid at a density
of rL50.0218 Å23. The additional data displayed in the inset, i.e.,
V2
†(q), Vd2

† (q), andVd4
† (q), are indicated by the symbolh, full

solid squares, and solid triangles, respectively.

FIG. 11. Wave functionsck
†(q,z) for the two lowest-lying even

excitations as a function ofz calculated for a few values of mo-
menta of the interval 3.0<q<3.8 Å21, where the particle-hole
energiesV0

†(q), V2 (new)
† (q), andVL(q) displayed in Fig. 10 turn

out to be positive for the second time. The dashed curve is the
normalized square root of the density profilec0(q50,z)
5Ar(z)/nc. Curves ~1!, ~2!, and ~3! correspond, in turn, to
q53.0, 3.4, and 3.8 Å21. All these quantities are symmetric at
z50.
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almost equal to one another, presenting a departure from the
bulk value, as may be seen in the inset of Fig. 9.

D. Liquid structure factors

More information on the structure of the system is re-
vealed by studying the structure functions. Therefore, in this
section, we shall examine how the full static structure func-
tion in the parallel direction,S(q), is composed of the con-
tributions originating from the different excitations in the
film. Along this analysis one must also keep in mind that the
character of modes changes with momentum. The solid
curve in Fig. 12 shows the fullS(q) as a function of momen-
tum obtained by summation of all collective modes accord-
ing to the expansion~3.17!; in addition, for the sake of com-
parison a dashed curve indicates the results corresponding to
a 3D uniform liquid at a density ofrL50.0218 Å23. Figure
12 also shows the size of the partial contributions to the
static structure factor given by three special modes:~i! the
lowest-lyingk50 state,~ii ! thed0 ‘‘resonant mode’’ and its
bound continuation forq.qR , i.e., thek52 (new) state,
and~iii ! the second branch of even-bound statesk52 below
the roton minimum and its continuation denoted as the
k54 (new) state. Finally, the strength originated from the
‘‘regular’’ continuum part of the spectrum is plotted in this
figure too.

Looking at Fig. 12 one realizes that at small momenta, in
the regionq,0.2 Å21, as a contribution from thek50
mode to S(q) does exhaust the sum rule~3.17!. Subse-
quently, at larger momenta, the ripplon contribution de-
creases untilq'1.0 Å21 where the trend is reversed. At

these intermediate momenta, in the domain 0.40<q<1.35
Å21, it appears the contribution from the ‘‘regular’’ con-
tinuum to the diagonal dynamic structure function
S(q,\v). This contribution corresponds to excitations lying
above the separation energyeS(q) and, of course, one must
be aware that the ‘‘regular’’ continuum modes obtained from
a discretization are really a superposition of many modes in
an energy band determined by the box size and the mesh
step. Nevertheless, in this case we shall still speak in a
broader sense of ‘‘modes,’’ but keeping in mind that this
denomination is not strictly precise. Figure 13 shows this
S(q,\v) as a function of energy for several values ofq. One
can see that for any momentum only excitations of energy
lower or approximately equal toeR provide sizable contribu-
tions. Forq,0.9 Å21 the maximum of strength is centered
around\v5eL(q) and its width decreases for increasing
momentum until forq'0.8 Å21 a well-defined peak is de-
veloped. At q'0.9 Å21 this peak gives rise close to
\v5eR to a ‘‘resonant mode’’ denoted asd6 , which merges
again into the ‘‘regular’’ continuum aroundq'1.15 Å21.
The wave function of thed6 ‘‘resonant mode’’ evaluated at
q51.0 Å21 is displayed in Fig. 14~b!. As an illustration of
the results for other continuous ‘‘modes’’ in this regime, the
wave functions corresponding to those carrying the biggest
strength toS(q,\v) at q50.7 and 1.3 Å21 are also shown
in Figs. 14~a! and 14~c!. The d6 ‘‘resonant mode’’ lying at
\v519.17 K is very sharp. In order to corroborate this as-
sertion a neighboring ‘‘mode’’ lying at\v519.11 K is also

FIG. 12. Static structure functionS(q) as a function of momen-
tum. The solid curve is the full static structure function evaluated
with ~3.17!, whereas the dashed line indicates the results calculated
for a bulk liquid at a density ofr50.021 85 Å23. The symbols
s, d, andh stand, in turn, for the contributions from the lowest-
lying k50 mode, thed0 ‘‘resonant mode,’’ and its bound continu-
ation for q.qR , i.e., thek52 (new) state, and the second branch
of even-bound statesk52 below the roton minimum and its con-
tinuation denoted as thek54 ( new) state. The dot-dashed line in-
dicates the sum of the first two of these contributions. The symbol
L stands for the contribution originated from the ‘‘regular’’ con-
tinuum modes and thed6 ‘‘resonant mode.’’

FIG. 13. Diagonal dynamic structure functionS(q,\v) as a
function of energy for several values of momentum. In addition,
this plot indicates the strength originated from thed0 , d2 , d4 , and
d6 ‘‘resonant modes’’ and from the third branch of even-bound
states emerging beloweS(q). In order to have a reference the en-
ergieseS(q), eL(q), eR , andeM are also plotted.
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depicted in Fig. 14~b!. In fact, we can see that the latter one,
lying only 0.06 K lower thand6 , already exhibits a typical
behavior of a ‘‘regular’’ continuum mode. Moreover, it is
worthwhile to point out the similarity between the spatial
distribution of thed6 ‘‘resonant mode’’ and the wave func-
tions of the other ‘‘resonant modes’’ plotted in Fig. 2 for
q50.1 Å21.

It turns out that the ‘‘regular’’ continuum plays a domi-
nant role in the momentum regime 0.5,q,1.1 Å21, where
it carries the most important contribution toS(q) as is shown
in Fig. 12. The data plotted in this figure do also contain the
contribution from thed6 ‘‘resonant mode,’’ the strength of
which is indicated in Fig. 13. Of course, its inclusion rein-
forces considerably the contribution from the continuum to
S(q,\v<eR) for 0.9<q<1.1 Å21. It is interesting to no-
tice that aroundq'1.2 Å21 a bound state emerges from the
continuum, giving rise again to the third branch of even-
bound statesk54 already observed at low momenta; the
strength carried by this mode is indicated in Fig. 13. It
should be emphasized that forq.1.5 Å21 there is no con-
tribution to S(q) from the continuous spectrum at all. The
‘‘regular’’ continuum does not contribute anymore and the
continuations of thed0 , d2 , andd4 ‘‘resonant modes’’ are
already bound states.

Let us now turn back to thek50 mode. Figure 12 shows
that for q.1.0 Å21 the ripplon contribution toS(q) in-

creases with increasing rate and thed0 ‘‘resonant mode’’
begins to contribute. The strength of the latter mode grows
so rapidly that atq51.2 Å21 it is already bigger than the
ripplon one. Both of these contributions become the domi-
nant ones in this regime, amounting to a large part of the
total strength as indicated by the dot-dashed curve in Fig. 12.
Their simultaneous growth with increasing momentum con-
tinues untilq'1.8 Å21. This strength enhancement may be
followed more cleanly on a finer scale in Fig. 15~a!. For
momentumq.1.8 Å21 the ripplon contribution grows dra-
matically in such a way that close to the roton minimum it
exhausts almost completely the sum rule~3.17! again; of
course, on the contrary the contribution from the bound con-
tinuation of thed0 ‘‘resonant mode’’ falls to very small val-
ues. The abrupt variation of these contributions, character-
ized by a strength transfer from the higher-energy state to the
lower-energy one, may be attributed to the interaction re-
sponsible for the repulsion between the ripplon and the
bound continuation of thed0 ‘‘resonant mode’’ described in a
previous section, which also occurs at momenta close to the
roton minimum. The almost complete transfer of strength
may be related to a some kind of phase transition which is
also corroborated by the change of the character of modes
depicted in Fig. 6.

FIG. 14. ~a! The continuum mode at\v515.31 K carrying the
maximum strength forq50.7 Å21 as a function ofz. ~b! The d6

‘‘resonant mode’’ at\v519.17 K compared with the ‘‘regular’’
continuum mode at\v519.11 K, both of them evaluated for
q51.0 Å21. ~c! The continuum mode at\v519.21 K carrying the
maximum strength forq51.3 Å21. For comparison the solid curve
indicates in all the cases the normalized square root of the density
profile c0(q50,z)5Ar(z)/nc. All these quantities are symmetric
at z50.

FIG. 15. Partial contributionsSk(q) to the full static structure
function originating from bound states and ‘‘resonant modes’’ as a
function of momentum. The double parallel barsi indicate the place
where the ‘‘resonant modes’’ become bound states.~a! Contribution
from the lowest-lyingk50 mode together with that from thed0

‘‘resonant mode’’ and its bound continuation.~b! Contribution from
the second branch of even-bound statesk52 below the roton mini-
mum and its continuation together with the contribution from the
d2 ‘‘resonant mode’’ and its bound continuation.~c! Contribution
from the third branch of even-bound statesk54 below the roton
minimum and its continuation together with the contribution from
the d4 ‘‘resonant mode’’ and its bound continuation.

53 6719PROPERTIES OF BOUND, RESONANT, AND REGULAR . . .



Figure 15 also shows partial contributions to the fullS(q)
stemming from the other two pairs of states undergoing the
repulsions displayed in Fig. 7. Although the size of these
contributions is much smaller than the magnitude of the
dominant ones, data plotted in Figs. 15~b! and 15~c! exhibit a
similar transfer of strength to that observed in 15~a!. These
features occur at the same momenta where the corresponding
repulsions take place. Looking at this drawing one realizes
that there are a few narrow perturbations ofSk(q). These
localized transfers of strength occur atq51.725 and 1.825
Å 21, which correspond to the crossings of thek54 state
with the bound continuation of thed2 ‘‘resonant mode’’ and
of the k52 state with the bound continuation of thed0
‘‘resonant mode,’’ respectively. In both these cases, when the
excitations are approaching one another the state coming
from a lower energy captures a piece of strength from the
decreasing energy state; subsequently, after the crossing, the
captured intensity is given back. Evidence that these are in-
deed level crossings is provided by the analysis of the wave
functions shortly below and shortly above the critical mo-
menta; however, we shall skip the illustration of this argu-
ment.

In passing let us point out that there is no change of trend
of the strength at any of the double parallel bars indicating in
Fig. 15 the momenta at which the ‘‘resonant modes’’ become
bound states. This is due to the fact that there is no evidence
for important changes in the behavior of the corresponding
wave functions. The only feature worthy of being mentioned
is that the oscillatory components outside of the film still
exhibited in Fig. 3 vanish definitively for the new bound
states.

In the momentum regime aboveq'1.7 Å21 the contri-
butions of the three modes displayed in Fig. 12 exhaust the
sum almost completely, and indeed, as indicated by the dot-
dashed curve the largest two contributions already amount to
a great part of the fullS(q). Finally, it is interesting to note
that in the regime where the lowest-lying level clearly be-
comes a surface state again, i.e., for 3.0<q<3.7 Å21 ~see
also Fig. 11!, its contribution toS(q) is smaller than that of
the first-excited even state. This finding resembles the situa-
tion already observed in Fig. 15~a! for 1.2<q<1.8 Å21.

E. Interpretation of experimental data of S„q,\v…

Let us conclude this section comparing theory with ex-
periment. As mentioned in the Introduction, Lauteret al.28

have measured the structure factorS(q,\v) of films of
atomic thickness. It becomes, therefore, of interest to estab-
lish the extent to which the main features of these experi-
mental data can be interpreted on the basis of our results.
However, before making this comparison it will be conve-
nient to discuss briefly a shortcoming of the theoretical ap-
proach adopted for our calculations and to select an appro-
priate form of presenting our evaluations.

A well-known result of the calculations carried out for
bulk liquid 4He atT50 K within the framework of the origi-
nal Feynman theory26 in conjunction with the EL-HNC/0
approximation is that the energies of the phonon-roton spec-
trum evaluated at the maxon-roton region are too high by a
factor of about 2.3,36 Manousakis and Pandharipande37 have
demonstrated that the agreement with experiment is dramati-

cally improved with the inclusion of the backflow effects
introduced by Feynman and Cohen38 together with three- and
four-body distribution functions~the reader may find very
interesting comments on the Feynman-Cohen work in the
review article of Pines45!. Quite recently, Clementset al.16

have calculated the excitation spectrum of nonuniform sys-
tems by using the CBF approach within a generalized Feyn-
man theory with time-dependent pair correlations treated
with the Brilluoin-Wigner perturbation theory~CBF-BW
method!. Their results are compared in Fig. 9 of Ref. 16 with
the experimental data of Ref. 28. From this figure one real-
izes that theoretical predictions are still too high. Of course,
this result is to be expected since from Fig. 2 of Ref. 16 it
becomes clear that the CBF-BW approach is not sufficient
even to reproduce the experimental data of the 3D uniform
liquid. As pointed out by Clements and collaborators, further
corrections upon the CBF-BW theory should be included to
obtain a better agreement.

It is beyond the scope of this paper to carry out any new
calculation of corrected dispersion relations since such an
evaluation is a task of a great numerical complexity. How-
ever, in order to facilitate the comparison of theory with
experiment we estimated an improved spectrum, adopting
the simplest way to emulate the above-mentioned corrective
effects. Namely, we used a scaling procedure in which one
assumes that at a fixed value ofq the whole calculated exci-
tation spectrum of a nonuniform liquid is depressed by a
common factor equal to the ratior (q)5eL

expt(q)/eL(q) de-
termined from the EL-HNC/0 analysis of the bulk system. In
practice, besides the correct phonon-roton bulk spectrum
eL
c(q)5r (q)eL(q) this procedure gives a plausible estima-

FIG. 16. Corrected excitation spectrum of some even eigenstates
as a function of momentum for the film of coveragenc50.4
Å22. The open symbolss andh stand for the two lowest-lying
bound states, which are surface excitations forq,qR . The excita-
tion energies of thed0 , d2 , andd4 ‘‘resonant modes’’ are indicated,
respectively, by solid circles, boxes, and triangles. The stars indicate
results for ‘‘regular’’ continuum and thed6 ‘‘resonant mode.’’ Par-
tial contributionsSk(q) to the full static structure function origi-
nated from these modes are given. The dashed line is the dispersion
relation eL

c(q) for a 3D uniform system, while the horizontal dot-
dashed lines are the corrected maxoneM

c and rotoneR
c energies for

a bulk liquid at a density ofrL50.0218 Å23.
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tion of all corrected dispersion relations\vk
c(q)

5r (q)\vk(q). Figure 16 shows the most important part of
the improved inhomogeneous energy spectrum. In this plot,
instead of showing a contour map ofS(q,\v), we directly
indicate the strength of the contributions originated from dif-
ferent kind of modes.

Our Fig. 16 fornc50.4 Å22 is to be compared with Fig.
1 of Lauteret al.28 where these authors plotted data for a
coverage of 0.448 Å22. It becomes clear that in both these
drawings most of the strength is mainly concentrated along
two well-defined lines, which correspond to different types
of excitations in the system. The excitation energy of the
upper curve coincides with the bulk4He phonon-maxon-
roton corrected dispersion relationeL

c(q). The contributions
lying along this line for 0.5<q,0.9 Å21 stem from the
‘‘regular’’ continuum @note in Fig. 13 that for these momenta
the maximum of strength is centered around\v5eL(q)#,
while in the atomic wavelength regime 0.9 Å21<q,qR ,
they originate from ‘‘resonant modes’’ in the first part of the
interval and subsequently from the bound continuation of the
d0 mode. On the other hand, the lowest-lying curve in Fig.
16 is associated with the surface mode analyzed in previous
sections. It is interesting to mention that our corrected rip-
plon energy\v0

c(q) is in good agreement with the disper-
sion curve calculated by Edwards and Saam31 with the pa-
rametersa511.0 Å2 andd520.336 Å, which in turn fits
the data of Ref. 28. Moreover, in the caption to Fig. 2 of Ref.
28 the authors point out that forq50.8 Å21 the bulk phonon
lies at\v51.05 meV and the ripplon peak is experimentally
found at 0.47 meV, whereas according to our corrected re-
sults the corresponding energies are 1.04 and 0.45 meV, re-
spectively. The latter result for the surface excitation, on the
one hand, and the satisfactory overall energy pattern exhib-
ited in Fig. 16, on the other, point to a justificationa poste-
riori for the use of a common hindrance factor for the whole
energy spectrum at each fixed value of momentum. It is ex-
pected that the introduced scaling should have no important
effect on any other quantity. In passing, we may note that to
some extent our results also resemble qualitatively the data
displayed in Fig. 13 of Clementset al.16 for q<1.5 Å21 in
the case of coveragenc50.17 Å22.

In order to complete the study it is illuminating to com-
pare along the curveseL

c(q) and\v0
c(q) the evolution of the

strength obtained from our calculations with the different
shades of grey depicted in Fig. 1 of Ref. 28. A feasible way
for performing this analysis is to examine the evaluated
strength at the momenta where there is a change of gray
intensity in that figure. The comparison may begin at
q.0.5 Å21 where both branches exhibit an equal shade of
gray. Going along the phonon-roton curve towards increasing
momenta the first change of gray intensity already occurs at
q.0.6 Å21, where our calculation yields a contribution
Sp-r(q50.6)50.069, while the ripplon branch presents the
first definitive gray enhancement atq.1.1 Å21 where we
obtainedS0(q51.1)50.072. The next change of gray scale
along the phonon-roton line takes place atq.1.1 Å21

where the ‘‘resonant modes’’ provide a contribution
Sp-r(q51.1)50.142 against a value ofS0(q51.5)50.160
obtained close to the corresponding edge on the ripplon
curve. Near the subsequent points where the shade becomes

darker we get the following pairs of values:Sp-r(q51.5)
50.316 to be compared withS0(q51.7)50.292 and
Sp-r(q51.7)50.468 equivalent toS0(q51.8)50.453. Close
to qR where the total strength is larger than unity the black is
reached. All these values show a very good quantitative
agreement between the calculated strength and the trend of
experimental data. In fact, this is a striking result if one takes
into account that for our calculations we assumed that the
films are confined by a somewhat unphysical potential.

Furthermore, Fig. 16 also shows that the contributions
S2(q) originating from the second even-bound state are
smaller thanS0(q). An analysis of Fig. 1 in Ref. 28 indicates
that this fact is quite consistent with the weak shade of gray
found experimentally at the corresponding place between the
‘‘bulk’’ and ripplon lines for q<1.2 Å21. The behavior be-
tween these curves for larger momenta is more complex in
both discussed figures since in that region there is a larger
concentration of contributions.

V. SUMMARY

Properties of the behavior of inhomogeneous systems of
liquid 4He at zero absolute temperature have been investi-
gated. Due to the reasons discussed in the Introduction,
rather thick films supported by an external potential of the
Gaussian form given by~4.1! have been examined. Now, in
light of the interesting results obtained in this work, we can
state that a study performed by using such a simple potential
is well justified. Films of coveragesnc50.3 and 0.4 Å22

were selected to illustrate the explored features. Here the
analysis was focused on the behavior for finite momenta,
q.0, since the long-wavelength limit has been already stud-
ied in a previous paper.21 In fact, our results may be consid-
ered as complementary to that published by Krotscheck and
Tymczak13 and Clementset al.,15,16 on the one hand, and by
Gernothet al.,22 on the other. The authors of Refs. 13,15,16
investigated the behavior of layered films of various cover-
ages, while Gernothet al.22 analyzed excitations in the ge-
ometry of a half-space.

The present study was performed in two steps: First, we
discretized the eigenvalue problems for several different box
sizeszmax in order to get excitation energy spectra and the
associated wave functions; second, by using the obtained
wave function we calculated the matrix elements of the
particle-hole potentialV(q,z1 ,z2) for the most interesting
eigenstates and evaluated the structure function in the paral-
lel direction S(q,\v). Let us summarize in the following
lines the main findings of this work.

The evolution of the discretized energy spectrum as a
function of the box size was explored. Typical results are
displayed in Fig. 1. In general, the spectra calculated at a
fixed momentum in the regime 0,q<1.5 Å21 show that the
energy of several levels remains constant whenzmax is en-
larged. These levels correspond to two different sorts of
states; in fact, besides the expected bound levels, a few states
belonging to the continuum also exhibit such a feature. The
latter states also present a special spatial behavior developing
large amplitudes inside of the film but having oscillations of
smaller amplitudes in the asymptotic regime as displayed in
Figs. 2, 3, and 14~b!. Therefore, we denoted them as ‘‘reso-
nant modes.’’ One must always keep in mind that ‘‘regular’’
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continuum modes are really a superposition of many modes
in an energy band determined by the step of the discretiza-
tion. However, from the analysis of data like those plotted in
Fig. 3 one concludes that the ‘‘resonant’’ states have a very
narrow width; hence, their energy is defined well enough that
one can indeed speak of ‘‘resonant modes.’’ Let us mention
that in a preliminary report19 we have already provided some
evidence for the existence of this kind of state. Figures 2 and
3 show that these collective excitations present a ‘‘softening’’
effect; i.e., the amplitudes outside the film are larger for
lower-lying ‘‘resonant modes.’’

The wave functions of the discrete states forq,qR and
\vk(q),eR exhibit characteristics of surface excitations. As
pointed out in Ref. 22 the number of surface states in the
momentum region 0.8<q<1.3 Å21 depends on the thick-
ness of the system and the strength and width of the external
potential. In particular, our results fornc50.3 and 0.4
Å 22, displayed in Figs. 5 and 4, respectively, seem to con-
firm the finding of Krotscheck and Tymczak13 that the num-
ber of bound states in this regime decreases with increasing
coverage. Furthermore, it is interesting to notice that in the
case of the thicker film,nc50.4 Å22, two branches of even
surface states appear in the spectrum and this is just the same
number of branches found by Gernothet al.22 in the limiting
case of a semi-infinite system. The dispersion curves of the
ripplon branches shown in Figs. 4 and 5 terminate by merg-
ing with the bulk excitation curve near the roton minimum as
in the half-space system.

Turning to the ‘‘resonant modes,’’ in the regime of large
wave numbers corresponding to atomic scale, 1.1
Å 21,q,qR , the analysis of the wave functionscdn

† (q,z)

~see, e.g., Fig. 3! and the particle-hole matrix elements
Vdn
† (q) ~see Fig. 10! suggests that thesek5dn states may be

associated with ‘‘bulk’’ excitations of the film. In particular,
the k5d0 mode deserves a special attention; its excitation
energy\vd0

(q) lies very close to the bulkeL(q), the matrix

elementVd0
† (q) almost coincides withVL(q), and the pen-

etration factorFd0
(q) approaches the bulkFL(q)5q. Tak-

ing into account these features and the spatial distribution of
cd0
† (q,z) we interpreted this branch of states in this wave-

number range as a roton trapped at the center of the film,
where the system is to a good approximation a 3D uniform
liquid. The nextk5d2 mode can be also interpreted in a
similar way, even though in this case the wave function
cd2
† (q,z) is more extended than the former one@cf. Figs. 3~a!

and 3~b!# and, in addition, the quantities\vd2
(q), Vd2

† (q)

andFd2
(q) present larger departures from the bulk results.

Finally, thek5d4 mode is the softest ‘‘bulk’’ excitation be-
ing expanded over the whole film. On the other hand, our
calculations for films of coveragesnc50.22 ~not included in
this report!, 0.3, and 0.4 Å22 indicate that for increasing
nc the number of ‘‘resonant modes’’ increases and the results
for \vd0

(q) andVd0
† (q) approach better the bulk quantities

eL(q) andVL(q).
A very interesting phenomenon appears near the roton

energyeR . Figure 7 indicates that the ‘‘resonant modes’’ first
become bound after crossing with theeS(q) curve, and then
in the vicinity of eR all these ‘‘bulk’’ excitations undergo

repulsions by lower-lying surface excitations. Looking at the
energy location of these repulsions it becomes apparent that
we can define a stripe aroundeR where all these processes
take place. Making a connection of this finding with the re-
pulsive effect discussed in Ref. 35, we can state that the
behavior of the excitation energies calculated in the present
work supports the occurrence of the repulsion between rip-
plon and bulk levels suggested by Pitaevskii and Stringari on
the basis of their calculations performed by assuming a
simple mechanism of hybridization.

At the above-mentioned repulsions there is a change of
character of the involved modes. The clearest example of this
feature is documented in Fig. 6, which shows the evolution
of the wave functions of the surfacek50 mode and the
bound continuation of thek5d0 ‘‘resonant mode.’’ We
should stress that the character of the repelled modes is not
exchanged, but there is a real change of it. For instance, Fig.
6 indicates undoubtedly that the surface and bulk modes are
transformed into typical zero- and two-node volume wave
functions, the geometric shapes of which are completely dif-
ferent from the initial ones.

The size of the partial contributions to the static structure
factor S(q) originated from the different kind of modes is
displayed in Figs. 12, 13, 15, and 16. Figure 12 shows that at
small momenta,q,0.2 Å21, the lowest-lying mode ex-
hausts the sum rule~3.17! and for larger values ofq its
importance decreases. A further analysis indicates that at in-
termediate momenta, 0.5<q<1.0 Å21, the contributions
stemming from ‘‘regular’’ continuum modes are the domi-
nant ones. Subsequently, for 1.0,q,1.7 Å21 the ‘‘resonant
modes’’ and their bound continuations carry the largest con-
tributions toS(q) ~see Fig. 15!. An interesting phenomenon
occurs close to the momenta corresponding to the repulsions
displayed in Fig. 7. As shown in Fig. 15, in the vicinity of
such momenta there is an almost total transfer of strength
from the ‘‘bulk’’ excitations to the lower-lying surface ones.
In particular, atq'qR there is a dramatic, due to the large
size of involved strengths, transfer from the bound continu-
ation of thek5d0 ‘‘resonant mode’’ to thek50 surface
mode. The latter behavior may be interpreted as further evi-
dence for a sort of phase transition of the system; remember
that this conclusion is also supported by the change of char-
acter of both these modes found just aroundqR . Finally, we
should point out that forq.qR the sum of the contributions
originating from the two lowest-lying even states reproduces
the main features of the behavior ofS(q), and if one also
adds the strength carried by the second-excited even state,
the sum rule~3.17! becomes, in practice, exhausted~see
Figs. 12 and 15!.

On the basis of the results reported in the present paper,
one can understand the main features exhibited by the con-
tour plot of the measured inelastic structure factorS(q,\v)
shown in Fig. 1 of Ref. 28. The experimental fact that the
strength is mainly concentrated along the bulkeL

c(q) and
ripplon \v0

c(q) excitation curves is reproduced by our cal-
culation. In addition, our approach is also able to account for
the quantitative evolution of the strength as a function of the
wave numberq. Perhaps, it is worthy of notice that multi-
plying the whole spectrum by a hindrance factor derived
from the analysis of bulk fluid, which therefore only depends
on the momentum, one obtains a satisfactory corrected spec-
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trum and, in particular, a good approximation for the ripplon
excitation energy. The striking similarity between our Fig. 16
for nc50.4 Å22 and Fig. 1 of Ref. 28 fornc50.448 Å22

suggests that for films of large coverages the main features of
the contour map ofS(q,\v) for q>0.5 Å21 might not be
very sensitive to details of the external substrate potential.

Another new result of this work is the finding of a second
region where the ground-state excitations are surface modes.
This feature occurs for 2.9<q<3.9 Å21 where the particle-
hole energiesV0

†(q) andV2 (new)
† (q) are positive again. The

corresponding wave functions are displayed in Fig. 11. The
change of the geometric shape of these modes is also mani-
fested in other quantities likeF0(q) andF2 (new)(q) ~see in-
set of Fig. 9! as well asS0(q) andS2 (new)(q) ~look at Fig.
12!.

All told, we may have a reasonable confidence in our
theoretical calculation, giving a strong support to the CBF
method for treating boson quantum fluids. Moreover, one
could conjecture that the simplest EL-HNC/0 approximation
for the ground state together with the original Feynman ap-
proach for elementary excitations already contains the essen-

tial physical information needed for a plausible qualitative
description of the behavior of the system. In this context, any
more elaborated theoretical approach would mainly provide
a better quantitative agreement, so that the inclusion of
higher-order correlations3,36,37and backflow effects as those
introduced by Feynman and Cohen38 would primarily im-
prove the quantitative description of an inhomogeneous sys-
tem as happens in the case of the a uniform fluid. However,
to get accurate results it is, of course, of great importance
too. Therefore it is worthwhile to point out that, since the
CBF theory affords a systematic way of incorporating back-
flow correlations,3,4 it is expected that a future inclusion of
such effects will not pose any formal difficulties.
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APPENDIX: POTENTIALS FOR THE OPTIMIZATION EQUATIONS

The generalized Hartree potential needed for the determination of the optimal local densityr(z) is

VH~z1!5E
2`

`

dz2r~z2!WH~z1 ,z2!. ~A1!

For the calculations carried out in the present work we adopted forWH(z1 ,z2) the formula derived by Saarelaet al.,5

WH~z1 ,z2!52pE
0

`

hdhS g~h,z1 ,z2!v~r 12!1
\2

2m
@ u“1Ag~h,z1 ,z2!u21u“2Ag~h,z1 ,z2!u2#

2
\2

8m
@“1g~h,z1 ,z2!•“1N~h,z1 ,z2!1“2g~h,z1 ,z2!•“2N~h,z1 ,z2!#2

\2

8m
“2N~h,z1 ,z2!•“2X~h,z1 ,z2! D ,

~A2!

with

r 125Ah21~z22z1!
2. ~A3!

The ‘‘particle-hole’’ (p-h) interactionVp-h(q,z1 ,z2) required in the PPA procedure is the Hankel transform~2.9! of the
potential defined by~3.17! of Ref. 6:

Vp-h~h,z1 ,z2!5g~h,z1 ,z2!v~r 12!1
\2

2m
@ u“1Ag~h,z1 ,z2!u21u“2Ag~h,z1 ,z2!u2#

1@g~h,z1 ,z2!21#F \2

4m
@D~1!1D~2!#N~h,z1 ,z2!1VC~h,z1 ,z2!G . ~A4!

HereD( i ) is the abbreviated derivative,

D~ i !5“h
21

1

r~zi !

d

dzi
r~zi !

d

dzi
, ~A5!
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where“h
2 is the Laplace operator in thex-y plane. The quantityVC(h,z1 ,z2) is a convolution-type contribution which can be

conveniently expressed in momentum space as

VC~q,z1 ,z2!52
1

2 E
2`

`

dz3X~q,z1 ,z3!H~q,z3!X~q,z3 ,z2!. ~A6!
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