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of symmetric liquid “He films at T=0 K

Leszek Szybisz
Laboratorio Tandem Argentino, Departamento dei€a, Comisia Nacional de Energ Atamica, Av. del Libertador 8250,
RA-1429 Buenos Aires, Argentina
and Departamento de'Fica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
RA-1428 Buenos Aires, Argentina
(Received 6 July 1995

Elementary excitations in rather thick symmetric films of liqdide atT=0 K are investigated. They are
characterized by a momentub parallel to the surface and may be described by bound or continuum states,
which are obtained by solving a Bogoliubov-type equation formulated within the framework of the paired-
phonon analysis and the hypernetted-chain approximation. Films of coverag@s3 and 0.4 A2 confined
by simple Gaussian potentials are studied. The excitation spectrum is numerically evaluated by discretizing the
associated eigenvalue problem in a finite box. The evolution of the energy levels as a function of the box size
is explored. Examples of the calculated energies and wave functions are displayed in a series of figures. Two
differing sorts of continuum states may be distinguished. Depending on the behavior of their excitation ener-
gies as a function of the box size on the one hand, and the spatial distribution of their wave functions inside the
film and in the asymptotic region far apart from the interface layer on the other, the continuum solutions can
be separated into two classes of excitatigasthe “regular” continuum states an) the “resonant modes.”

The matrix elements of the particle-hole potential and the penetration factors of the most important states are
examined. The lowest-lying branch of states is always bound angfayk (qr=1.9 A~* being the momen-

tum at the roton minimumit describes surface ripplon excitations. In the atomic scale regime, 1.1
A~1<g<qg, the hardest “resonant mode” can be interpreted as a roton trapped at the center of the film and
therefore associated with “bulk” excitations of the system. Our results support the occurrence of the repulsion
between “bulk” and ripplon excitations proposed by Pitaevskii and Stringari. The strength of contributions
originated from different normal modes to the liquid structure function is evaluated. While for very small
values of momentag=<0.2 A~1) the contribution of the lowest-lying normal mode is dominant, for momenta
0> (R the structure factor is determined by the contributions originated from the three lowest-lying even states.
At g~qg there is a dramatic transfer of strength from the bound continuation of the hardest “resonant mode”
to the ripplon excitation. Experimental data of the inelastic structure feé&{tori ) may be satisfactorily
interpreted on the basis of our calculation. On the other hand, it is shown that fsg&8.9 A1 the
lowest-lying excitations become surface modes again.

I. INTRODUCTION cal as well as experimental activity in this area. Excitations
in “He films have been measured in the atomic wavelength
In a recently published review article Cheegal! em-  regime by using neutron scattering technigtfeS This mea-
phasize the increasing interest in studies of properties of ligsurement has motivated a renewal of theoretical efforts de-
uid *He interfaces and surfaces. As a matter of fact, there isoted to understanding the nature of excitations.
a continuous development in the experiment and the theory The excitation spectrum of a semi-infinittHe fluid at
of such systems. A variety of theoretical pictures have beewanishing temperature has been explored by Chang and
adopted in order to interpret experimental restiltsparticu- ~ Coheri® (see also the review by Edwards and S&amithin
lar, much work has been devoted in recent years in order tthe framework of the variational many-body theory. Such a
apply a variational procedure based on the theory of corresystem presents a density profile z£0, and the density
lated basis functiorfs* (CBF's) for understanding the behav- approaches 0 as— + and reaches the bulk densjty, as
ior of inhomogeneous liquid *He at zero absolute z— —o. In the case of a planar symmetry excitations depend
temperaturg 22 as well as at finite temperaturgs?® on the momentunk q parallel to the surface. More recently,
Perhaps one of the most interesting issues in this field ismploying the CBF theory Gernott al?>~2° have investi-
the investigation of elementary excitatiéh®f surfaces of gated excitations in a plandiHe interface at various tem-
liquid “He. Among other problems currently studied, it is peratures, & T<2 K, under vapor-liquid saturation condi-
worthwhile to mention the observation of an oscillatory de-tions. As an example of the application of a different
pendence of the third-sound velocity on film thickness for  approach in order to describe the inhomogeneous ftée
thin films**~1%2’In the present work we shall concentrate onsurface at temperatuf®=0 we can mention the paper of Ji
a microscopic analysis of the properties of elementary exciand Wortis®?> These authors have used a semiphenomeno-
tations in liquid “He films atT=0. There is a great theoreti- logical Landau model to interpret surface phenomena and
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put a special emphasis in the analysis of continuum states afeveloped and the structures of film layers were compared
the excitation spectrum. On the other hand, the CBF methodith two- and three-dimension&D and 3D homogeneous
has been applied to get information about excitations of symliquids. It is important to notice that in all the above-
metric finite films at vanishing temperature®f!’~?'These mentioned CBF studies the excitation energy at large values
systems present a central dengityand two symmetric pro- of q and, in particular, at the roton minimum is too high. On
files where the density approaches zas+co (cf. Fig. 5in  the basis of results obtained for the phonon-roton excitation
Ref. 17. Furthermore, excitations of realistic systems suchspectrum of a bulk liquidHe atT=0 K (see Fig. 15 in Ref.
as finite films adsorbed to solid substrates have been alsg6 and Fig. 18 in Ref. 37 one expects that the inclusion of
analyzed within CBF theory by Krotscheck and higher-order correlatiofsand backflow effect will lower
co-workerg?10:12.13.15,16 the spectrum of an inhomogeneous system and, therefore, it
It is known that the lowest-lying excitations of a strongly should be considered for any future theoretical improvement.
correlated quantum many-body system in the long- The aim of the present work is to study elementary exci-
wavelength limit(i.e., at small values of momentur) are tations forg>0, since the long-wavelength limit has been
surface ripplons which may be described within the frame-already treated elsewheteFor our investigation we have
work of simple hydrodynamic modef$3334 It has been chosen symmetric finite-width films supported by simple
showr??%?? that results obtained for physical observablesGaussian-type potentials already adopted in previous
within the CBF method for small momenta agree with thepapers-’~?*Although this kind of potential is somewhat un-
hydrodynamic predictions. However, Atkiid'description is  realistic, the behavior of films confined by them deserves
not adequate for momenta corresponding to atomic waveattention. These idealistic systems do not exhibit a layered
lengths ¢~1 A~1) because the behavior of ripplons at pattern, but resemble characteristics of the semi-infinite he-
these momenta is not governed by laws resembling classiciim discussed in Refs. 22,24. Nevertheless, since they are
hydrodynamics. In a more recent paper, Pitaevskii andndeed finite films, a manifestation of film properties is also
Stringart® have used the Green’s function formalism within to be expected, so that it is reasonable to undertake the
a quantized hydrodynamic description in order to estimatenalysis of these systems awaiting meaningful information to
the lowest-lying(ripplon) dispersion curve close to the roton be compared with that obtained from studies of layered
minimum (Qr=1.9 A~1). They found that due to the inter- films.***>'®From such a comparison it might be possible to
action between surface ripplons and bulk roton excitationgsolate and recognize features independent of layered struc-
(which has been suggested many years before by Edwardigres. Hence, in order to gain some useful piece of knowl-
et al3+) the ripplon dispersion relation remains below theedge we carried out a detailed microscopic calculation of
energy of bulk rotons. excitations in symmetric finite-width films embedded in
Let us now focus our attention on the most recent theoGaussian potentials. The evaluations were performed over a
retical advances within CBF theory concerning the excitadarge domain of momenta, i.e.<0q<4 A~1. A comprehen-
tions in nonuniform*He atT=0. As mentioned before, sev- sive analysis of the excitation energy spectrm,(q), the
eral properties have been exploréi: by studying a semi- penetration factorF.(q), the particle-hole energie¥, (q)
infinite systerd®?* and (i) by investigating layered films and V(q), and the liquid structure factors(q,%w) and
adsorbed on substratEs'>®Gernoth and Ristig performed S(q) is reported. Among the obtained results, we would like
a classification of continuum states taking into account theo emphasize the fundamental role of the hardest “resonant”
behavior of wave functions and excitation energiesstate already identified in our previous wdidf. Figs. 4 and
fhw,(q); the quantum numbex labels the eigenstates. The 5 in Ref. 19, which for atomic wavelengths can be associ-
latter results were mapped ontd & vs g plot and compared ated with the “bulk” excitations of the film. This state pro-
with the known results for a bulk systefeee Fig. 9 in Ref. vides the dominant contribution to the static structure func-
24). Furthermore, in a subsequent papéne ripplon disper- tion S(q) for 1.2 A-'<q<gg. In this momentum region
sion relation and the associated wave functions were anahere are some crossings and repulsions between bound
lyzed for O<qg=qr. From the behavior at small momenta states, which are examined in detail. In particular, we ana-
the third-sound velocite; was evaluated. At atomic wave- lyze the connection of our results with the phenomenon dis-
lengths (1 A '<qg=qg) the wave functions associated with cussed by Pitaevskii and StringatiAnother very encourag-
ripplons are localized in the surface layer, their energies aping result is the successful qualitative interpretation of the
proaching the bulk roton energy at the characteristic waveexperimental data 05(q,% ) reported in Ref. 28.
lengthg=qgr. These states were interpreted as trapped ro- The procedure to obtain the ground state of a Bose many-
tons. On the other hand, Krotscheck and TyméZak body problem for a planar symmetry @t=0 within CBF
discussed layered films for three coverages, following theitheory is outlined in Sec. Il. The equations for the elementary
behavior from a thin, surface-mode-dominated to a thickexcitations are summarized in Sec. Ill, where the main prop-
zero-sound-dominated system. Exploring the continuunerties of the eigenvalue problems formulated within both the
states they found some well-defined modes and, in particulapaired-phonon analysi$®PA procedure and the generalized
identified a nearly momentum-independent mode describinffeynman relations are discussed. In this section we also give
a transverse oscillation of the different layers with respect tdhe formulas needed for the evaluation of the dynamic and
each other. Moreover, they analyzed the dynamic structuretatic liquid structure functions. In Sec. IV we illustrate the
function S(q,% w). This kind of film has been also studied in findings of this paper, showing results corresponding prima-
subsequent works reported by Clemeetsal,'®>® where a rily to a symmetric film of coveraga,=0.4 A~2. Elemen-
formalism for the excitation spectrum within a generalizedtary excitations are obtained by solving eigenvalue problems
Feynman theory with time-dependent pair correlations wagor optimal long-ranged two-body correlation factors deter-
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mined in our previous papet$:?! In the present work we SHod Uy ,Us]
shall still ignore higher-order correlations and backflow ef- — =
fects. Finally, a summary of all the results is presented in
Sec. V. In practice, however, in order to derive the EL equations it is
convenient to eliminat@;(z) from the energy expectation
Il. CBF FORMALISM FOR THE GROUND STATE value in favor of the one-body density(zi) and the two-
_ _ _ . body distribution function g(#;;,z,z) by using the
The physical behavior of an interactidrbody quantum  Bogoliubov-Born-Green-Kirkwood-Yvon equatioffor in-
system embedded in an external one-body field is determinegtance, cf.(2.5) in Ref. 17. The hypernetted-chaifHNC)
by the Hamiltonian approximation vyields to a set of coupled equations which
.2 N rﬁlateu(n,zi ,dzj) andg(rr];,zi ,éj) (fromhnok\:v o; we simplift))/ .
_ 2 the notation dropping the index 2, which indicates two-body
H‘;l ~2m Vi T Vedri) +i21 v(rip). 2D fynctions, and settingy= 7;). When all elementary dia-
<’i'<]'> grams are neglected this approddenoted as HNCJjOeads
to the hypernetted equation

and OHod U1,Us] _
ouq ou,

0. (2.5

where Ug(r;) is an external one-body potential and
v(rij=|ri—r;|]) a two-body potential which describes the 9(7,21,2) =exd U(7,21,2,) +N(7,21,2,)]  (2.6)
bare interaction between a pair of helium atoms. Effects due _ 3040 _ _

to three-body potentials are usually neglected. In the case @nd the Ornstel_n-ZermE% chain equation, which may be
a planar geometry, the system is translationally invariant irfonveniently written in momentum space as

the x-y plane and symmetry is broken in tlredirection, .

giving rise to a surface structure. Thls may be due to the N(q,Zl,Zz)=J dz[X(q,21,2,)

action of an external potential of the form o

Uex(ri) =Uex(z). Accordingly, any one-body quantity be-

comes a one-dimensional functiofy(r;)=f,(z), depend- +N(9,21,2,)]X(4,23,22), 27
ing only upon thez; coordinate which is the position of the \yhere

atomi with respect to a fixek-y plane. Furthermore, any

t\_/vo—body quar_ltityf 2(ri,r;) depends only on_three _variables: X(1,21,25)=9(7,21,2,) —1—-N(7%,21,2,). (2.8
(i) the z coordinate of each of the two particles, i.B.,and

z;, and(ii) the distance between both particles—r;| pro- ~ Here the auxiliary two-body functiondN(7,2,,2;) and
jected onto thex-y plane, i.e., X(7n,z1,2,) are the total and dire¢hon-nodal correlations,

respectively. Any two-body quantitf(q,z;,z,) is the Han-
ni == m—m= \/(Xj—Xi)2+(yj—Yi)2- (2.2) kel transform of the correspondirf§»,z,,z,) evaluated ac-
cording to
Hence, all two-body quantities can be written as
f2( 75,2 ,z;). Taking into account this simplification a trial
N-body wave function for the ground state can be repre-
sented by the variational ansatz

f(0,21,25)= VP(Zl)p(Zz)f f(7,21,25)expli(ayx

+q,y)ldxdy

N o ~2m (202 | mdndo(m)
=exp{§ 2 U1(Zi)+§ > Ux(7ij,2,2) + -+ |.

i=1 ij=1 Xf(nvleZZ)! (29)
(i<j)

Vo(l,... N)

(2.3 wherein Jg is the zeroth-order Bessel function of the first

. kind.
Hereu,(z) andu,(7; ,z; ,z;) are, respectively, the one- and

two-body correlation factors. 12.3) correlation factors of
more than two particles are neglected.

The optimal values of the correlation factors contributing The EL equation fon=1 is derived from(2.5) with the
to the wave function2.3) should be determined from the constraint of a fixed particle number per unit arga some-
Euler-Lagrange(EL) equations derived by minimizing the times denoted as coverage, defined by
energy expectation value

A. Optimization equations

Hod U1, U] ne= fﬁmp(z)dz. (2.10
T3y . B Wo(ry, ... FHP (M, . ) This pfror?edure It()aaé:is :jo a Hartree-like equation for the square
= . root of the one-body density:
S B Wa(ry,. ..M\
with respect to both these one- and two-body quantities, i.e., 2mdZ TUed2)+Vi(2) Np(2) = uNp(2),

by imposing simultaneously (2.11
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where u is the chemical potential and,,(z) is the generalized Hartree potential defined in the Appendix.
On the other hand, the EL equation derived fr@rb) for n=2 within the PPA procedure gives an optimization equation
for the non-nodal correlatioX(q,z;,2,):

_[H(qizl)+ H(quZ)]x(qizlsz)+ J:cd23X(q,zl,Zg)H(q,z3)X(q,Z3,22)=2Vp_h(q,zl,zz). (212

Here,H(q,2) is a single-patrticle differential operator defined by

w2, 1d d 1]
H(q,z)—% q _ﬁd_zp(z)d_zm =¢€p(q)+Ho(2), (2.13

where () =%2g%/2m is the kinetic energy of a freéHe  with by=2.8 A andb;=9.98 A* while the optimal long-
atom with momentumzq parallel to thex-y plane, and ranged correctiom\u(#,z;,2,) remained to be determined
Vpn(0,21,2,) is the Hankel transform of the particle-hole from the optimization PPA relatiof2.12), where we set

potentialV,.,(7,2z,,2,) introduced in Ref. 6 and defined in
the Appen?jir;(, . X(d,21,2,) = Xsr(0,21,22) + Au(Q,21,25). (2.1

In practice, the algorithm starts solving the HNC/0 equa-
S tions for an initial choice of the density profijgz) and the
B. Optimization procedure short-ranged two-body correlation factoty( 7,2, ,2,) given

Solutions of the whole EL-HNC/O problem must be found by (2.15. Next, the density profile is improved by solving
by solving self-consistently the chain relatiéh7), the Har-  the Hartree equation. This procedure is continued (Atd)
tree equation(2.11), and the PPA conditiof2.12). Equation and (2.1 are solved self-consistently. Then, the finite-
(2.7) may be solved by either iteration or matrix inversion. difference relaxation method proposed in Ref. 17 is applied
The solution of(2.11) can be easily found by using the to get the first long-ranged correctiaxu*)(q,z;,z,) from
Newton-Raphson method. The evaluation of the two-bodyfhe PPA equation(2.12. The new correlation factor
correlation factors is the most cumbersome task and, indeed™(7,21,2,) = Us(7,21,2) + Aut)(9,2,,2,) is used to
it has been the main difficulty for solving inhomogeneoussolve self-consistently the HNC/O and Hartree equations.
systems in the past. In order to calculate the optimal twoSubsequently, a second correctian(®)(q,z;,z,) is deter-
body correlation factor,u(7,z;,2,), we developed an mined from(2.12) and it is used to update the one-body
algorithm'” which follows as close as possible the proceduredensity and the two-body distribution functions by solving,
devised by Feenbetgand Campbeft for treating the uni- once more, self-consistently Eq8.7) and(2.11). The whole
form liquid. Thus we asserted the decomposition algorithm is iterated until convergence is achieved. We shall

not give more details about the method here, since a com-

prehensive description of it has been very recently reported
U(7,21,2) =Usp(17.21,22) T AU(7,21,22), (214§, Ref. 22.

where the short-ranged correlation factey( 7,z1,2,) was I1l. EXCITATION SPECTRUM
assumed to be of the generalized McMillan-Schiff-Vérét WITHIN THE CBF FORMALISM
type introduced in Ref. 17:

The excitation spectrum of an inhomogeneous Bose fluid

c . . . :
bt bVo(z ) o(Z2) with planar symmetryi w (), is determined by an equation
Usr(7,21,25) = — 0o 1 p(zl)p(22)> , (2.15  of the Bogoliubov type derived in Ref. 6 within the frame-
VP + (21— 25)? work of the PPA:
Hz(q,zl)zﬁ,{(q,zl)-l—Zf_ dZZVp-h(qizl’ZZ)H(q’ZZ)(ﬂK(q’ZZ):ﬁzwi(q)wK(qYZl)' (3.0

The quantum numbek may indicate a bound statdy an integer or it may be a continuous number characterizing the
associated energy to continuum states with a nonzero amplitude at veryZardiecan be demonstrated thet.(q,z) are
orthogonal in the metri¢i(q,z), obeying

(pdaDH@2102)= [ 02,0 2H@.29(02) e )5, 32
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It is useful to consider the adjoint eigenvalue equatio(8td) introduced in Ref. 17, which may be obtained by multiplying
(3.2) from the left byH(q,z;) and redefining the terms

H%(0,21)¥4(9,20) +2 f:dzz[mq,zl)vp.h(q,zl,z2>]¢1(q,z2>=ﬁ2wi<q>w1(q,z1>, (3.3
where

¥1(0,2)=a,(q)H(9,2) ¥.(a,2). (3.4

It is straightforward to show thd8.1) and(3.3) have both the same spectrum of eigenvalues. An important feat83pfs
that the eingenfunctionafl(q,z) can be identified with the spatial shapes of the normal modes defined in Refs. 6,7. A
generalized orthonormalization integral may be written as

<¢K<q,z>|wi<q,z>>=f:dzm(q,z)wlm,z)=av<q><wk<q,z>|H<q,z>|wy<q,z>>

=a,(0)€,(d),,=N,(q) Sy, (3.9

so that we are dealing with two families of eigenfunctions,Egs.(3.1) and(3.3) for a fixed value ofg on a finite mesh
which are orthogonal to one another according (8d5). over thez;-z, plane. Such a procedure will, of course, only
Therefore, there are two sets of normalization factors, on@rovide discrete states and, in particular, a discrete subset of
for each family, which may be chosen depending on the systhe continuum states. In practice, since the long-range behav-
tem to be studied. Although the actual valuesepfq) and ior of functions appearing in the kernels of these equations is
a.(q) do depend on the normalization choices, the physicaknown, it is possible to get a better representation of the
observables are independent of them. continuous spectrum by extending the mesh to larger box
sizes. This improvement provides a denser spectrum from
which reliable information on physical observables can be
A. Nature of the eigenstates extracted.
When treating finite-size films it is convenient to normal-

In the present paper the spectrum of elementary excita‘-Ze both kinds of eigenfunctions to unity, i.e.,

tions was determined from the eigenvalue problé$) and
(3.3). Solutions of these dispersion relations provide bound .
and continuum staté8—*?Furthermore, according to the dis- (W(Q,2)| (q,z»zf dz2(@.2)=1 (3.7
cussions of Refs. 10,13,22,24,25 enerdies,(q) of bound “ “ e

states should be lower than the separation enegfy) cor-
responding to the emission of a fretHe atom into a
vacuum:

and

(¥l(a.2)|yl(a,2)=1. (3.9

ho,(q)<es(q)=—pu+€(q). (3.6 Using this normalization, the expectation value of the one-

] body operatoH(q,z) defined in(3.2) may be cast, after a
The number of bound states depends on the particular chagyaightforward algebra, into the suitable form

acteristics of the system which is analyzed. In general, there
2

may be one or more of these states which form a discrete 2 (o d ¥,.(9,2)
spectrum restricted to have energies smaller thgn) and e.(d)=eo(q)+ ﬁj dzp(2)| 53 N (3.9
—w P

on top of this upper limit the continuous spectrum is built.
The usual way to obtain the excitation energies and thé&urthermore, it is also useful to define the adjoint expecta-
corresponding eigenfunctions numerically is to discretizetion value

12 (=
el (@)= (#l(0.2)]H(aD ¥ (@.2) = o)+ 5| dzo() (310

d wkq.z)r
dz \p(z) |

An expression for the eigenvalues can be derived f(8r8) by multiplying from the left by,(q,z;) and integrating over
Z4,
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w0l | dmpiazulaa- | dzp(azH@zli@

+2[ " [ dadzu(aziH@a ez 2z vla2), (311

which may be cast in a more compact form

e.(q)
NZ(a)

_ed@)lel@+2Via] _ ed(q) Wi
NZ(q) EE) s

hlwi(q)=

f dz,,(0,20)H(9,20) (0, 22) +2 f f_mdzldzzwuq,zl)vp.h(q,zl,zzwkq,zz)

). (3.12

B. Expressions for liquid structure factors

As mentioned in the Introduction, an interesting issue is to establish at which valugthefdifferent kind of solutions
described above yield sizable contributions to the static structure f&¢tr This quantity is defined as

S<q>:; S(g,fiw), (3.13

where S(qg,% w) is the diagonal dynamic structure function and the sum runs over bound and continuum states of the
eigenvalue problent3.3). However, since we have discretized the equations, the summation runs over bound states and a
discrete set representing the continuous spectrum. Accorditg4oof Ref. 13 we have

S(q,hw)zf:f:dzldzzx/p(nzcl) \/%f A2y 1(r, 1y, ), (3.14

e.(d)
ho(qNZ(Qq)

wherek stands for bound states and the discretized subset of the continuunvistaitesoduced by our procedure. Therefore
within the framework of this normal-mode decomposition we arrive at

with

f d25e' 9 7S(ry 1, fiw) = Pi(a,20)¥l(a,2,), (3.19

e.(q) N p(z1) P(Zz)
S(q,fiw) = ho ONAQ) ) dzdz n l/f (9,21)¥1(0.2,)
1 [ed@][ (= p( 2P,
Finally, the static structure function in the parallel direction may be expressed as
e.(q) p( ) o
S@=2 Sda=2 = q) NG (Q)HJ —¥ia z)} (317

This form indicates that all addends are positive definitesymmetric films confined by a simple external potential
Furthermore, sinc&/p(z) is an even function of only, even  Ug,(2) of the form

eigenstatesbl(q,z) will lead to nonzero results fo8,(q).

We shall examine in the next section the size of all partial ~ Uex(2) = —Uzexf —z%/(2s?)]— U exy —z*/(4s%)].
contributions to the expansion for the static structure factor (4.1

as a function of momentum. . . ) .
The parameters of this potential were fixed in order to get

films with a central density close to the experimental equi-

librium density of bulk liquid “He at T=0 K, i.e.,
According to the motivation discussed in the Introduction,p.=0.0218 A3 (see Refs. 19-31It was assumed that he-

we shall report results obtained for elementary excitations ofium atoms interact via the improved Hartree-Fock disper-

IV. NUMERICAL RESULTS AND ANALYSIS
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sion potentialdubbed HFDHER with the parameters deter-
mined by Azizet al** The main findings will be illustrated
with results for a film of coverage,=0.4 A2 confined by
Uex(2) with the parametertl,=0, U,=12 K, ands=6 A,
although marginally we shall also comment on a film with
n.=0.3 A~2 supported by a potential wittl,=7 K,
U,=7 K, ands=5 A.

A. Classification of states

The complete EL-HNC/0 problem has been solved within
a box size ¢ 2%, ~<z<275,=18.6 A. Once having opti-
mized the one-body densify(z) and the two-body correla-
tion factoru(#,z;,2z,), dispersion relations were solved to
get information about excitations. It is well known that wave
functions of bound states must vanish exponentially for
z— * . Therefore, in order to be sure that numerical calcu-
lations have been carried out within a sufficiently large box,
we verified that the amplitudes of bound eigenstates decay
exhibiting negligible values ar=+2z°_ . The number of
bound states depends on the momentynthe thickness of
the system, and the strength and width of the external poten-
tial. Furthermore, it was also checked that wave functions
corresponding to continuum states approach plane waves
within the selected box. These results guarantee that at the
boundary all local as well as nonlocal terms in the dispersion
relations have already reached their asymptotic values. FIG. 1. Evolution of the discretized excitation energy spectrum

In order to get a rather dense subset of continuum state¥ the symmetric film of coverage,=0.4 A~? as a function of the
the eigenvalue problem@.1) and (3.3) were discretized in box size for two fixed values of momentum Only energies cor-
boxes of sizez,,, larger thanz%ax in which the complete responding to even eiggnstates are displayed. In orde_r to have a
numerical EL-HNC/O task has been performed. For the ex!eference for the continuous spectrum the separation energy
tended calculations the particle-hole interaction was set t6s(4)= ~#+ €(0) is indicated. For the sake of comparison the
zero outside the region of the original box, ie., maxon energy,, and the roton energyg both of them evaluated

-~ 0 for a bulk liquid at a density op, =0.0218 A2 are also plotted.
Vpn(0,21,2,) =0 wheneverz, "’T“dlor 23> Zmgy: ON the a) Data calculated an=0.1 A~%. (b) Same as(@) at q=1.0
other hand, the one-body density was extrapolated to largg -1

distances by the known asymptotic form

p(2% yexd — 2y—2mulh(z—2°,)] when the box is enlarged. Fig_uzre 1 shows, in the case of the
film with coveragen,=0.4 A~2, the evolution of energy

: 0
if 2> 275 levels of the even eigenstates as a function of box size for
p(— 22 exd 2V —2mulh%(z+22,)] tWE)l fixed momentum values, namely, g=0.1 and 1.0
) o A ~1. Energies corresponding to odd eigenstates are not dis-
if 2< = Zpay played for two reasongi) because they do not contribute to
(4.2) physical observables like, for instance, the liquid structure
The extended eigenvalue problems were solved by assumirfgctors and(ii) in order to avoid the overload of plots. This

#w,(q) [K]

40 60 80 40 60 80
2z [A]

p(2)=

vanishing boundary conditions, i.e., drawing indicates clearly that above the separation energy
+ e5(q) there are a few states which energy does not change
$1Q,2= £ Zina) = (0, 2= £ Zpna) =0, (4.3 whenz,., is increased. The wave functions corresponding to

so that we imposed that all wave functions must have a nodiese special continuum states obtainedja0.1 A~* are
at the border. This choice is the appropriate one for the corshown in Fig. 2, where for the sake of comparison a typical
tinuum stateswhich become standard standing waves for‘regular” continuum mode and the lowest-lying eigenfunc-
large z) and, since anyway all bound wave functions havetion for =0, which is nothing but to the normalized square
negligible amplitudes fotz|>22,,, we are not losing any root of the density profilejo(q=0,2)=Vp(z)/n,, are also
information about them due to the conditi¢h3). plotted. These special wave functions exhibit inside the film
In practice, instead of calculating only one spectrum for a&nhanced amplitudes which decrease rapidly in the inhomo-
rather large box, we evaluated a series of spectra by enlargeneous interface region €&=<13 A) and show strongly
ing slowly z.,,,. During this procedure we followed the evo- attenuated plane waves in the asymptotic limit. The general
lution of the obtained eigenstates by looking at their energyeatures of these modes change very little with momentum
and wave function. Of course, as is to be expected in soip to a value ofj around 0.8 A™%. Beyond this momentum
doing, the energies and wave functions of the bound state§e number of oscillations with large amplitudes becomes
do not change. However, to our surprise, we found that theremaller. For instance, Fig. 3 shows results obtained at
are also continuum states which energy remains constagt=1.3 A1 In this plot, the highest level placed at
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FIG. 2. Thed,, d,, andd, “resonant modes” atiw=22.38, FIG. 3. Thed,, &,, and d, “resonant modes” atiw=23.21,

19.89, and 17.41 K obtained in the case of coverage0.4 A~2  22.13, and 20.31 K obtained in the case of covenage0.4 A2
for q=0.1 A~ together with a typical “regular” continuum mode for q=1.3 A~ together with neighboring “regular” continuum
atfw=19.27 K. For comparison the solid curve indicates the nor-modes at w=23.18, 22.10, and 20.35 K. For comparison the solid
malized square root of the density profilg(q=0,2)= Vp(2)/n.. curve indicates the normalized square root of the density profile
All these quantities are symmetric z& 0. ¥o(q=02)=p(2)/n,. All these quantities are symmetric at
z=0.

hw=23.21 K develops only one large amplitude and its as-, Y . .
sociated plane Wavep remaﬁns almogst neg;igible. The Iowerregul.ar continuum. Therefpre, due to the_ fact that their

. -~ . energies are very well defined one can indeed speak of
special state @i w=22.13 K presents three large amp“tUdeS“resonant modes.”
within the film domain(note that in Fig. 3 only half of the '
film is displayed and a somewhat more intense plane wave
than that corresponding to the leveliab = 23.21 K. Finally,
the state atiw=20.31 K develops five large amplitudes and  Let us as now analyze the excitation spectrum as a func-
exhibits the biggest plane wave component of all three extion of momentumg. Figures 4 and 5 show the energies of
amined wave functions. Taking into account the properties ofhe even eigenstates obtained from the dispersion relations
these special continuum states described above we shall d&1 and (3.3 in the case of two different coverages
note them as “resonant modes.” Namely, we shall refer toc=0-4 and 0.3 ATZ’ respectively. To guide the eye when
them as k=4, (for the highest and hardest “resonant looking at these flg_ures, several a}ddltlonal curves are also
mode”), k=5, (the first lower ong and =4, (the lowest Plotted: the separation energy(q) given by(3.6); the Bijl-
and softest one The indexn of §, is even because we are Feynman dispersion relation for bulk liquitte,
just treating even eigenstates. As a matter of fact, in a pre- 12q eo(Q)
liminary report we have already identified the= 5, “reso- ho(9)=¢€.(q)= = ,
nant mode” and commented some of its featuids Figs. 4 2m&(q)  S(a)

and 5 in Ref. 19 However, since in general the evaluatedeyaluated at experimental equilibrium densjiy=0.0218
‘continuum modes.” are really a superposition of many A ~3: and two horizontal straight lines representing the
modes in an energy interval determined by the discretizatiomaxon energye,, and the roton energyg of the bulk sys-
mesh, at least, a brief clarification should be made about theem. Of course, the results provided £8.1) and (3.3 are
nature of these “resonant modes.” An analysis of theircoincident. A comparison of these drawings indicates a simi-
widths indicates that these quantities are confined to verar general behavior; however, there are some differences.
narrow energy bands, much smaller than the typical distance In the case oh,=0.3 A2 the three lowest-lying levels
between two consecutive “regular” continuum solutions. Forare always bound, whereas fog=0.4 A~2 there are only
instance, Fig. 3 shows that in the neighborhood of all theséwo states of this kind. Note that the third bound level
special states there are levels which lying at a distance gresent in Fig. 4 at small momenta merges into the con-
only AZw~0.03 K already exhibit the behavior of the tinuum atq~0.5 A~. Furthermore, in both figures a barely

B. Excitation energy spectrum

2

(4.9
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FIG. 4. Excitation spectrum of even eigenstates as a function of ’ q [3_1] '

momentum for the film of coverage,=0.4 A=2. The open sym-
bols O, O, A, and ¢ stand for bound states, which are surface

excitations foriw,(q)<eg. The excitation energies of “resonant FIG. 5. Same as Fig. 4 for the film of coverage=0.3 A~2.
modes” like those examined in Figs. 2 and 3 are pointed out by full

symbols. The® represents the highest “resonant mode.” The solidb followi imatel llel fow Th
curves without any particular mark indicate energies of the dis- y following a curve approximately parafle L(0). The

cretized “regular” continuum modes. The dashed line is the sepa-beh"j“/ior after the crossing with the separation energy

ration energyes(q) being the upper limit for discrete eigenvalues. €s(d) IS very interesting and will be analyzed in detail in the
The dot-dashed line is the dispersion relatigiiq) for a uniform ~ Next paragraph. Another feature worthy of being pointed out
system, while the horizontal dot-dot-dot-dashed lines are the maxol$ the appearance of a further “resonant mode™gat 0.9
energyey,~23.6 K and the roton energsr~19.3 K; all of them A~Yin both FigS. 4 and 5, which energies are a bit smaller

were evaluated for a bulk liquid at a density mf=0.0218 A3, than the roton energyr. This mode merges into the “regu-
lar” continuum at aboug~1.15 A~1.
bound level athw~ — u for q<0.2 A~! appears; however, Let us now focus our attention on the analysis of the film

in particular forn.= 0.4 A~2 due to numerical uncertainties, of coveragen,=0.4 A=2. In Fig. 4, forq>1.35 A~ and

it becomes very difficult to disentangle whether it is really below the separation energy, besides several level crossings
the fourth bound state. For both coverages the first- anthere are three level repulsions. These features may be ob-
second-lowest modes are clearly surface excitations up to trgerved better in Fig. 7 which shows an amplification of the
roton minimum. Their wave functions are very similar to that region to be explored. First of all, notice the appearance of a
obtained when studying a semi-infinite system: see Figs. 4hird bound state at~1.35 A~! and of a fourth one at

5, and 6 in Ref. 22. Here we shall restrict ourselves to showj~1.4 A~1. Figure 7 indicates that the “resonant modes”
in Fig. 6(a) the spatial shape of the lowest-lying excitation, first cross “regular” continuum modes above the separation
normally identified with the ripplon, calculated for,=0.4  energy, and then become bound bele¥{q) and continue
A2 at values ofq shortly below the momentum corre- the fall until are repelled by lower-lying surface modes with
sponding to the roton minimungg~1.9 A~1. We display a similar number of large amplitudes. The first level repul-
these results because they will be needed for a forthcomingion occurs atgj~1.5 A~! between thex=4 elementary
discussion. Above the separation energy a discrete set @Xcitation and the bound continuation of tke= 5, “reso-
states representing the continuous spectrum is mounted. Ti@nt mode,” the second one takes placejatl.7 A~1 be-
energies of the “regular” continuum indicated by solid tween thex=2 surface excitation and the bound continua-
curves build a sequence of levels almost parallekd(n). tion of the k=4, “resonant mode,” and finally the bound
On the other hand, the excitation energies of “resonantontinuation of thex= &, “resonant mode” is repelled by
modes” like those examined in Figs. 2 and 3 are indicated byhe =0 ripplon excitation agj~1.9 A~1. All these results
solid symbols(circles, squares, and trianglesThere are provide evidence for the existence of a sort of repulsive in-
three of the latter kind of modes in Fig. 4 and two in Fig. 5. teraction between the approaching levels arofiads ey in

The energies of these modes vary slowly up to the maxomgreement with the suggestion of Pitaevskii and Stringari.
domain, and then rise more pronouncedly, reaching a maxi- In the momentum region of the repulsions, due to the
mum in the interval 1.05q=<1.25 A~1, and subsequently strong interaction between eigenstates, the character of the
fall approaching the area of the roton minimueg~19.3 K,  corresponding wave functions is changed. The clearest trans-
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FIG. 7. Same as Fig. 4 for the maxon-roton region. The big
circles indicate the region where repulsions of states take place.

and two-node volume wave functions, respectively. Similar
features to that displayed in Fig. 6 also occur close to the
other repulsions aj~1.5 and 1.7 A'1. Moreover, the same
kind of repulsions is also present in the energy spectrum
corresponding to the thinner film of coveragg=0.3 A~2

FIG. 6. The lowest-lying«=0 excitation and the, “resonant  shown in Fig. 5.
mode” as a function ok at momenta close to the roton minimum On the other hand, turning now to both Figs. 4 and 5, it

~ -1 ; i ’ ; ) o
dr~1.9 A - The dashed curve is the normalized square root ofyyay pe seen that shortly after the repulsions all excitation
the density profilajo(q=02) = Vp(2)/n;. (a) Curves(1), (2, (3, energies become nearly parallel to the separation line
and(4) correspond, in turn, tq_=1.6;&}.17, 18 and 1.85 A% (b () je., they depend to a good approximation quadrati-
Both these wave function @j=1.9 A . (¢) Curves(1) and(2) a1/ on ¢ in that momentum regime. As a matter of fact, for
correspond, in turn, tg=1.925 and 1.95 A!. All these quantities q>1.5 AL in the region delimited from above by the sepa-
are symmetric az=0. ration lineeg(q) and from below by the curve (q), that is,

) o when the excitation energies cross the bulk result after all

formation of the character of _excﬂgtlon modes happens Wheﬂearrangements, it is then convenient to make a new identi-
the =0 and the bound continuation of the= 5, approach fication of these bound wave functions, characterizing them

one another; therefore we concentrate our discussion on thbcy integral numbers which indicate the number of nodes.
case. The situation is documented in Fig. 6, which shows

these wave functions shortly below and shortly above the
level repulsion aty~1.9 A~1. Figure 7 indicates that for
q>1.8 A~! these modes are the first- and second-lowest To learn something more about the properties of the
even excitations. From Fig. 6 it is obvious that during the“resonant modes” we have analyzed the expectation values
approach the geometric shape of the wave functions changé3.12 making a contact with excitations of bulk liquid. In
continuously in such a way that after the repulsion none othis part of the investigation we shall proceed in a similar
these modes is a surface excitation any more. As shown imanner as Gernotht al?? studied the semi-infinite system.
Fig. 6(c) for g=1.95 A~! the lowest-lying and the first- Accordingly, we cast the dispersion relati¢®.12 into the
excited even state exhibit the behavior of typical nodeles$orm given by Eq.(35) of Ref. 22:

C. Particle-hole matrix elements

e.(a) F.(a)

2 2 —
el )

[el(a)+2Vi(a)]= eo(@el(@)+2vi(a)], (4.5

whereF ,(q) is the penetration factor,

g _edlq)
R CIIATTE “0

It is worth mentioning that foik= 0 the relation(4.5) provides a useful stability condition on the elementary excitatises
discussion of Eq(3.89) in Ref. 17]. The energy expressio.5 is an analog of the familiar dispersion relation of the
elementary excitations in bulk liquiHe described by plane wavés:
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€2(q) = eo(q)[ e0(q) +2V ()], 4.7)

where the quantity/, (q) is the 3D Fourier transform of the isotropic particle-hole potential at depgityRemember that for
a uniform system the penetration factorHg(q) =q. Moreover, for optimized solutions expressi@h?) is equivalent to the
Bijl-Feynman relation(4.4).

In the case of a half-space system, Gerraital ?? found that the penetration factor for ripplon excitatioRg(q), merges
into the bulk factor= (q) near the roton momentuny, (see Fig. 7 therein Making a connection between this result and the
expression(4.6) one may conclude that in this momentum regime the rai(q)/NS(q) closely approaches the kinetic energy
€0(g). On the other hand, Fig. 8 in Ref. 22 shows that in the same momentum Iceﬂgtq))walso tends tay(q). In trying to
understand these findings in terms of theoretical expressions, one realizes that neglecting the éffgasinf(3.2), (3.9),
and(3.10 we just gete}(q) =eo(q) = €o(q). In light of this result, we may conjecture that for this class of states the influence
of the operatoH,(z) on the wave functiongsy(q,z) would become very small. Under such an assumption defin{Bof)
yields

$3(0,2) =ao(q)H(,2) ¥o(a,2) = a(a)[ €0(A) + Ho(2) 150(0,2) = (4, 2). (4.9

Using this result in(3.5 we obtain thatNgy(q)=1, which leads toeo(q)/Ng(q)weg(q)weo(q). Hence, the result
Fo(q)=~q neargg can be well understood. In addition, due to the propéftp), the two different matrix elements of the
particle-hole potential, namely,g(q) andV,(q), become approximately equal in this momentum regime:

V() =(¥(0,20) [Vpn(,21,25) |80, 22))
~(0(0,21)[Vpn(0,21,22) [ ¥6(9,22) ) = V(). 4.9

Then, for the excitation energy of this class of modes we are led to the approximation

1203(0)~ eo(A)[ €0(A) +2VH(A) 1= eo(A)[ €0(q) +2Vo(a)]. (4.10

Of course, a next step in Ref. 22 was to compare the calcithe finite-size effects are still important. Therefore from now
lated values of the particle-hole energiggq) andV,(q). It  on we shall concentrate our discussion on results for the film
is shown in Fig. 11 of Ref. 22 that the surface quantityof coveragen,=0.4 A2
Vg(q) approaches the bulk enerd (q) close togg. Ac- The values of the penetration factors and the particle-hole
cording to Gernothet al?? the similarity of the dispersion energies are collected in Figs. 9 and 10, respectively. Our
relations(4.7) and(4.10), on the one hand, and the nature of Study has not been restricted to the lowest-lying state. We
the results for the driving force¥((q) andV,(g), on the @lso examined the behavior of the first-excited even state as
other, point to an intimate relation between rotons and th&vell as of “resonant modes” and their bound continuations.
surface modes at large momenta. Since bulk rotons drigure 9 indicates that the penetration fadtg(q) evaluated
g~qg respond to the strengtN,(q), while the surface N the present work exhibits a behavior similar to that ob—.
modes at atomic wavelengths are driven by the correspon@€rved in the case of the half-space system. In particular, it
ing surface quantitwg(q), they interpreted these surface also approaches the straight I_lﬁg(q)=q atq~qg. On the
modes as rotons trapped in the surface layer. oth?r hand,F; (q) is much bigger tharF,(q) for g<1.1

We performed in the case of symmetric finite-width films A ' and then it crosses wiffip(q) and approaches the bulk
a similar analysis to that described above. In Fig. 8 we comt€sult atq~1.3 _A lying very close toF (q) for g<qg.
pare the quantity/g(q) calculated for the symmetric films of At q~Qg there _'S a neV\{ crossing Gt;o(q) with F_O(Q)’ arnd
coverages.= 0.3 and 0.4 A 2 with the results for the semi- the latter quantity remains close fq (q). As an illustration
infinite system published in Ref. 22 and the particle-hoIeOf the behavior of the penetrqtlon_ factors corresponding t_o
energyV, (q) at a density ofp, =0.0218 A3. The values other modes we also plotted in Fig. 9 the data of the pair
obtained for the film withn,=0.4 A~2 lie close to those F2(q) andF 5,(q). The former one grows at small momenta
corresponding to the half-space along the whole domain nti{ q~0.5 A~ where it reaches the valuE,(q)~2
surface excitations belovgg; furthermore, for momenta A  for larger momenta it remains approximately constant
larger thang, these results agree very well with (q). On  UP 104~0r. The quantity ; (q) exhibits a behavior resem-
the other hand, the evaluations for thg=0.3 A2 film  bling that of F 5 (q). After starting from large values it de-
exhibit larger discrepancies with the half-space values asreases abruptly and crosses wWit(q) atq~0.9 A~ %; sub-
well as withV| (q), which indicates that for this thinner film sequently, it lies belowF,(qg) until a momentum slightly



6716 LESZEK SZYBISZ 53

V,'(q) [K]
|

. 15 2 25 8 35 4 |
e g [87"]
0 PRV WA WA R S SR TR TR [ TN TR S S NN ST S SO S N T S

a4l s 4 i 0 0.5 1 1.5 2 2.5
a} ’rbc=0‘30 R “ 9 q [A_1]

o n,=0.40 872 i ,

FIG. 9. Penetration factd¥,(q) defined by Eq(4.6) as a func-
tion of the momentung. The symbolsO andO stand, in turn, for
Fo(q) andF,(qg), whereas the corresponding solid symbols indi-
cate the results foF(;o(q) and F52(q) and their bound continua-
tions. The star stands for the expectation vahgéq) obtained in

1 Ref. 22 in the case of the half-space system and the dashed line

g [37] indicates the bulk penetration facter (q) =q. The inset shows the
ratio F,(q)/q for large momenta up tgq=4 A~!; the symbols
represent the same modes as in the main plot.

* semi—infinite system

0 1

FIG. 8. Particle-hole energiéﬁg(q) plotted against the wave
numberq. The symbold] andO stand for evaluations performed
for films with coverages\.=0.3 and 0.4 A2, respectively. The
star stands for the expectation valué(q) obtained in Ref. 22 in L . 1
the case of the half-space system, whereas the dashed curve ingNNINg of the maxon region at momentugr=1.2 A™%In
cates the particle-hole enery (q) calculated for a bulk liquid ata the case of both these branches, oWgéq) andV,(q) ap- .
density ofp,=0.0218 A3, proach one another their values for larger momenta remain

indistinguishable in the scale of the figure. An important
belowq=1.7 A~ where a new crossing occurs. Note that property ofV}O(q) andV,;O(q) is that when these quantities

the repulsiqn between these states displayed in Fig. 7 tak@gscome almost identical they also approach the very steep
place at this momentum too. On the other haRd,(d)  particle-hole potentiaV/,(q). This behavior continues until
never approaches the bulk result so muchFas(q). For  the repulsion region aj~qg, where both couples of expec-
momenta larger thagg all these penetration factors follow tation values displayed in Fig. 10 approach one another, so
curves, which on this scale, are almost parallel to the bulkhat close to the roton minimum we get
result. The inset of Fig. 9 will be discussed further below.

Figure 10 shows two pairs of expectation valuésq) Vg(Q)~Vo(Q)%VEO(Q)*V%(QWVL(Q)- (4.13
and V,(q) calculated over a large domain of momenta,
0<q=<4 A~', compared withV (q). These evaluations Following the argumentation of Gernott al.?? since the
were carried out for the lowest-lying=0 state and for the ripplon excitation of the symmetric film studied in this paper
dp “resonant mode” and its continuation foy>qg, i.e., the  appears to terminate by merging with the bulk excitation
new k=2 state. The quantityg(q) matchesVy(q) shortly  curve near the roton minimurtsee Fig. 7 leading to

below gg, while sto(q) matchesvtgo(q) already at the be-

Fo(a)
q

h2wi(q=qg) = eo(@ed(@)+2VE(a) ]~ eo(a o(a) +2VL ()], (4.12

we may also interpret these lowest-lying modes as rotons trapped in the surface layer. On the other hand, a physically
meaningful extension of this kind of analysis can be made. Due to the fact that for momenta corresponding to atomic scale,
1.2 A l<qg=qR, we haveF; (a)~q, efso(q)~eo(q) andV}o(q)va(q), the dispersion curves of th& “resonant mode”

and the bulk excitation are very similégsee Figs. 4 and)7i.e.,

Fs(a)

fiws (a)= eo(@)[ ] (a) +2V] (a)]= eo(A) €0(a) +2VL(a)]=€(q). (4.13
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Actually, in this momentum regime the trend of both these
curvesﬁzwﬁo(q) and €. (q) is equal and the energy differ-

ences are small, amounting only about 3%. Therefore, for
atomic wavelengths, thé, “resonant mode” and its bound
continuation can be interpreted as a roton trapped at the cen-
ter of the film, which represents to a good approximation the
“bulk” excitations of this inhomogeneous system.

In order to complete this part of the study, the particle-
hole energies corresponding to the other pairs involved in the
repulsions shown in Fig. 7 were also examined. The results
for V,(q), stz(q), andV§4(q) are displayed in the inset of

Fig. 10. This plot shows tha\i}z(q) andV§4(q) are smaller
thanV,_(q) and V}O(q) but, nevertheless, they exhibit very

steep slopes similar to that of the bulk particle-hole energy.
The latter property gives support to the interpretation of
these “resonant modes” and their bound continuations as a
sort of “bulk excitation.” Looking at their wave functions
(see, e.g., Figs. 3 and 6ne realizes that thé, mode is an
excitation located just at the center of the film and the
mode is more extended than the previous one, whereas the
6, mode is the softest resonance, being spread out over the
whole width of the film. On the other hand, the values of

v 1(g,2) [873

k=2 (new)

(2

5 10

z [A]

15

V5(q) indicate a behavior similar td,(q) as is expected for
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FIG. 10. Particle-hole energieé((q) andV,(q) plotted against
the wave number. The symbolsO and @ stand, in turn, for
Vg(q) and Vy(q), whereas the symbol® and ¢ stand for

FIG. 11. Wave functionsy/,t(q,z) for the two lowest-lying even
excitations as a function of calculated for a few values of mo-
menta of the interval 389=<3.8 A™!, where the particle-hole
energiesVy(d), Vi ey(d), andV,(q) displayed in Fig. 10 turn
out to be positive for the second time. The dashed curve is the
normalized square root of the density profilg,(q=0,2)
=+p(2)/n,. Curves (1), (2), and (3) correspond, in turn, to
q=3.0, 3.4, and 3.8 AL, All these quantities are symmetric at
z=0.

a surface mode. Furthermore, the quantity(q), which is
not shown in Fig. 10, also exhibits typical characteristics of
surface excitations.

Turning to the main plot of Fig. 10, we see thét(q)
remains negative fogr<q<2.7 A~1. In this region the
results for thex=0 state coincide with the bulk particle-hole
energy, whereas the values of the continuatioﬁ/@(}‘(q),

i.e., the expectation valuasz(new)(q), lie somewhat higher
thanV, (q). The typical wave functions of these=0 and
2 (new) states are similar to that plotted in Figch(

Figure 10 shows that for larger momenta, 2@<3.9
A1, the particle-hole energie¥{(q), V1 eu(d). and
V. (q) turn out to be positive again, but now bcmﬁ(q) and
Vg(new)(q) are smaller thaty| (q). By examining the wave
functions of the two lowest-lying even states we found that
they are surface excitations in this interval. These important
novel results are displayed in Fig. 11. It is worthwhile to
notice the striking similarity between the curves shown in
this plot and the wave functions corresponding to the lowest-
lying excitations in a semi-infinite system at low momenta,

Vgo(q) and V, (q), respectively. The dashed curve indicates the0.1<q=<0.8 A~*, which are displayed in Figs. 4 and 6 of

particle-hole energ¥/ (q) calculated for a bulk liquid at a density

of p_=0.0218 A3, The additional data displayed in the inset, i.e.,

Vi(a), vgz(q), andv;4(q), are indicated by the symbal, full
solid squares, and solid triangles, respectively.

Ref. 22. The latter ones were interpreted physically in terms
of surface phonons and capillary waves. In addition, in the
case of a symmetric film, the penetration factors for the
k=0 and 2 (new) states in the 28<3.9 A~ regime are
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for a bulk liquid at a density op=0.02185 A 3. The symbols 005F 4 058 | F =°'°21|/1 Soe| |11
O, @, and stand, in turn, for the contributions from the lowest- FoY = T P N 2 . I AT
lying k=0 mode, thes, “resonant mode,” and its bound continu- 10 15 <0 15 20 25
ation forq>qg, i.e., thex=2 (new) state, and the second branch ko [K]

of even-bound states=2 below the roton minimum and its con-

tinuation denoted as the=4 ( new) state. The dot-dashed line in-

dicates the sum of the first two of these contributions. The symbol FIG. 13. Diagonal dynamic structure functi®(q,7w) as a

¢ stands for the contribution originated from the “regular” con- function of energy for several values of momentum. In addition,
tinuum modes and thé, “resonant mode.” this plot indicates the strength originated from #g &,, 84, and

s “resonant modes” and from the third branch of even-bound
hsetates emerging belows(q). In order to have a reference the en-

almost equal to one another, presenting a departure from t Kgiese(q), €,.(q), er, andey are also plotted.

bulk value, as may be seen in the inset of Fig. 9.

these intermediate momenta, in the domain &461.35
A~1 it appears the contribution from the “regular” con-
More information on the structure of the system is re-tinuum to the diagonal dynamic structure function
vealed by studying the structure functions. Therefore, in this>(0,% ). This contribution corresponds to excitations lying
section, we shall examine how the full static structure func-above the separation energy(q) and, of course, one must
tion in the parallel directionS(q), is composed of the con- be aware that the “regular” continuum modes obtained from
tributions originating from the different excitations in the a discretization are really a superposition of many modes in
film. Along this analysis one must also keep in mind that thean energy band determined by the box size and the mesh
character of modes changes with momentum. The soligtep. Nevertheless, in this case we shall still speak in a
curve in Fig. 12 shows the fus(q) as a function of momen- broader sense of “modes,” but keeping in mind that this
tum obtained by summation of all collective modes accord-denomination is not strictly precise. Figure 13 shows this
ing to the expansiof3.17); in addition, for the sake of com- S(g,%w) as a function of energy for several valuegjofOne
parison a dashed curve indicates the results corresponding ¢@n see that for any momentum only excitations of energy
a 3D uniform liquid at a density gf, =0.0218 A~3. Figure  lower or approximately equal te; provide sizable contribu-
12 also shows the size of the partial contributions to theions. Forq<0.9 A~* the maximum of strength is centered
static structure factor given by three special modésthe  aroundfw=¢€ (q) and its width decreases for increasing
lowest-lying x=0 stateii) the 5, “resonant mode” and its momentum until forq~0.8 A~* a well-defined peak is de-
bound continuation folg>qg, i.e., the k=2 (new) state, veloped. At g~0.9 A~?! this peak gives rise close to
and (iii ) the second branch of even-bound states? below 7% w=eg to a “resonant mode” denoted a%, which merges
the roton minimum and its continuation denoted as theagain into the “regular” continuum around~1.15 A1,
k=4 (new) state. Finally, the strength originated from theThe wave function of thejs “resonant mode” evaluated at
“regular” continuum part of the spectrum is plotted in this q=1.0 A~ is displayed in Fig. 1éh). As an illustration of
figure too. the results for other continuous “modes” in this regime, the
Looking at Fig. 12 one realizes that at small momenta, irwave functions corresponding to those carrying the biggest
the regionq<0.2 A~%, as a contribution from thec=0  strength toS(q,%w) atq=0.7 and 1.3 A'* are also shown
mode to S(q) does exhaust the sum rul@.17). Subse- in Figs. 14a) and 14c). The dg “resonant mode” lying at
guently, at larger momenta, the ripplon contribution de-Aw=19.17 K is very sharp. In order to corroborate this as-
creases untig~1.0 A~! where the trend is reversed. At sertion a neighboring “mode” lying at w=19.11 K is also

D. Liquid structure factors
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FIG. 14. (a) The continuum mode dtw=15.31 K carrying the
maximum strength fog=0.7 A~! as a function ofz. (b) The &
“resonant mode” athw=19.17 K compared with the “regular”
continuum mode atiw=19.11 K, both of them evaluated for
g=1.0 A~1. (c) The continuum mode dtw=19.21 K carrying the
maximum strength foq=1.3 A~1. For comparison the solid curve

FIG. 15. Partial contribution$,(q) to the full static structure
function originating from bound states and “resonant modes” as a
function of momentum. The double parallel biigdicate the place
where the “resonant modes” become bound stai@sContribution
from the lowest-lyingk=0 mode together with that from thé&,
“resonant mode” and its bound continuatiaip) Contribution from
tt¥1e second branch of even-bound states? below the roton mini-
mum and its continuation together with the contribution from the
8, “resonant mode” and its bound continuatiofc) Contribution

. A from the third branch of even-bound states- 4 below the roton
depicted in Fig. 1h). In fact, we can see that the latter one, minimum and its continuation together with the contribution from

lying only 0.06 K lower thands, already exhibits a typical  the 5, “resonant mode” and its bound continuation.
behavior of a “regular” continuum mode. Moreover, it is
worthwhile to point out the similarity between the spatial creases with increasing rate and thg “resonant mode”
distribution of thedg “resonant mode” and the wave func- Pegins to contribute. The strength of the latter mode grows
tions of the other “resonant modes” plotted in Fig. 2 for so rapidly that ag=1.2 A~! it is already bigger than the
q=0.1 A1 ripplon one. Both of these contributions become the domi-
It turns out that the “regular” continuum plays a domi- nant ones in this regime, amounting to a large part of the
nant role in the momentum regime @:ﬁ<11 A*]-, where total_ Str_ength as indicated by f[he_dot—dashed curve in Flg 12.
it carries the most important contribution$¢q) as is shown  Their simultaneous Q[OWth with increasing momentum con-
in Fig. 12. The data plotted in this figure do also contain thelinues untilg~1.8 A This strength enhancement may be
contribution from thed, “resonant mode,” the strength of followed more clearllg/ on a finer scale in Fig. (& For
which is indicated in Fig. 13. Of course, its inclusion rein- Momentumgq>1.8 A~ the ripplon contribution grows dra-

forces considerably the contribution from the continuum torenxi?]t;cl?sllé IglriL:)CsT iovr\aagiettz?; ifjesaﬁtnzéit%nagé?ﬁmg? it

71 - . . _ ,
S.(q’ﬁwSER) for O.9$q§11.1 A% It is interesting to no course, on the contrary the contribution from the bound con-
tice that aroundj~1.2 A~! a bound state emerges from the

: L . : ) tinuation of thed, “resonant mode” falls to very small val-
continuum, giving rise again to the third branch of even- s he aprupt variation of these contributions, character-
bound statesc=4 already observed at low momenta; the e py 5 strength transfer from the higher-energy state to the
strength carried by this mode is |nc1|(l:ated in Fig. 13. Itiower-energy one, may be attributed to the interaction re-
should be emphasized that fqe-1.5 A™* there is no con-  gponsible for the repulsion between the ripplon and the
tribution to S(q) from the continuous spectrum at all. The pound continuation of thé, “resonant mode” described in a
“regular” continuum does not contribute anymore and theprevious section, which also occurs at momenta close to the
continuations of thes,, d,, and J, “resonant modes” are roton minimum. The almost complete transfer of strength
already bound states. may be related to a some kind of phase transition which is

Let us now turn back to the=0 mode. Figure 12 shows also corroborated by the change of the character of modes
that for g>1.0 A1 the ripplon contribution toS(q) in-  depicted in Fig. 6.

profile o(g=0,2) = Vp(2)/n.. All these quantities are symmetric
atz=0.
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Figure 15 also shows partial contributions to the (&) ——
stemming from the other two pairs of states undergoing the
repulsions displayed in Fig. 7. Although the size of these
contributions is much smaller than the magnitude of the i
dominant ones, data plotted in Figs.(fhband 1%c) exhibit a 1
similar transfer of strength to that observed iNd5These
features occur at the same momenta where the corresponding
repulsions take place. Looking at this drawing one realizes S
that there are a few narrow perturbations){q). These %
localized transfers of strength occur@t1.725 and 1.825
A ~1, which correspond to the crossings of the=4 state
with the bound continuation of thé, “resonant mode” and
of the k=2 state with the bound continuation of th®
“resonant mode,” respectively. In both these cases, when the . L L L
excitations are approaching one another the state coming 0.5 1 1.5 2
from a lower energy captures a piece of strength from the g [&7"]
decreasing energy state; subsequently, after the crossing, the
captured intensity is given back. Evidence that these are in- FIG. 16. Corrected excitation spectrum of some even eigenstates
deed level crossings is provided by the analysis of the wavas a function of momentum for the film of coverage=0.4
functions shortly below and shortly above the critical mo-A ~2. The open symbol© andJ stand for the two lowest-lying
menta; however, we shall skip the illustration of this argu-bound states, which are surface excitationsgfergg. The excita-
ment. tion energies of thé,, J,, andés, “resonant modes” are indicated,

In passing let us point out that there is no change of trendespectively, by solid circles, boxes, and triangles. The stars indicate
of the strength at any of the double parallel bars indicating irfesults for “regular” continuum and thés “resonant mode.” Par-

Fig. 15 the momenta at which the “resonant modes” becomdial contributionsS,(q) to the full static structure function origi-
bound states. This is due to the fact that there is no evidendited from these modes are given. The dashed line is the dispersion
for important changes in the behavior of the correspondingelation e((a) for a 3D uniform system, while the horizontal dot-
wave functions. The only feature worthy of being mentioneddashed lines are the corrected maxgnand rotone, energies for

is that the oscillatory components outside of the film stjll @ Pulk liquid at a density of, =0.0218 A

exhibited in Fig. 3 vanish definitively for the new bound

states. cally improved with the inclusion of the backflow effects

In the momentum regime abowe~1.7 A~! the contri-  introduced by Feynman and ColBtogether with three- and
butions of the three modes displayed in Fig. 12 exhaust theur-body distribution functiongthe reader may find very
sum almost completely, and indeed, as indicated by the dointeresting comments on the Feynman-Cohen work in the
dashed curve the largest two contributions already amount tgeview article of PineS). Quite recently, Clementst al®
a great part of the fulS(q). Finally, it is interesting to note  have calculated the excitation spectrum of nonuniform sys-
that in the regime where the lowest-lying level clearly be-tems by using the CBF approach within a generalized Feyn-
comes a surface state again, i.e., for3qp<3.7 A" (see  man theory with time-dependent pair correlations treated
also Fig. 13, its contribution toS(q) is smaller than that of with the Brilluoin-Wigner perturbation theoryCBF-BW
the first-excited even state. This finding resembles the situamethod. Their results are compared in Fig. 9 of Ref. 16 with
tion already observed in Fig. (& for 1.2<q<1.8 A% the experimental data of Ref. 28. From this figure one real-
izes that theoretical predictions are still too high. Of course,
this result is to be expected since from Fig. 2 of Ref. 16 it
becomes clear that the CBF-BW approach is not sufficient

Let us conclude this section comparing theory with ex-even to reproduce the experimental data of the 3D uniform
periment. As mentioned in the Introduction, Lautral?® liquid. As pointed out by Clements and collaborators, further
have measured the structure fact®(q,zw) of films of  corrections upon the CBF-BW theory should be included to
atomic thickness. It becomes, therefore, of interest to estatpbtain a better agreement.
lish the extent to which the main features of these experi- It is beyond the scope of this paper to carry out any new
mental data can be interpreted on the basis of our result§alculation of corrected dispersion relations since such an
However, before making this comparison it will be conve-eévaluation is a task of a great numerical complexity. How-
nient to discuss briefly a shortcoming of the theoretical ap€ver, in order to facilitate the comparison of theory with
proach adopted for our calculations and to select an appréXperiment we estimated an improved spectrum, adopting
priate form of presenting our evaluations. the simplest way to emulate the above-mentioned corrective

A well-known result of the calculations carried out for ffects. Namely, we used a scaling procedure in which one
bulk liquid “He atT=0 K within the framework of the origi- assumes that at a fixed valueathe whole calculated exci-
nal Feynman theofy in conjunction with the EL-HNC/0 tation spectrum of a nonuniform liquid is depressed by a
approximation is that the energies of the phonon-roton specsommon factor equal to the ratiq(q) = e;**(q)/ € (q) de-
trum evaluated at the maxon-roton region are too high by &rmined from the EL-HNC/O analysis of the bulk system. In
factor of about 23 Manousakis and Pandharipadieave ~ practice, besides the correct phonon-roton bulk spectrum
demonstrated that the agreement with experiment is dramatig (q) =r(q) €, (q) this procedure gives a plausible estima-
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tion of all corrected dispersion relationsiw:(q) darker we get the following pairs of valueS;..(q=1.5)
=r(g)hw,(q). Figure 16 shows the most important part of =0.316 to be compared withSy(q=1.7)=0.292 and
the improved inhomogeneous energy spectrum. In this plot3,. (q=1.7)=0.468 equivalent t&,(q=1.8)=0.453. Close
instead of showing a contour map 8q,%A ), we directly  to gg where the total strength is larger than unity the black is
indicate the strength of the contributions originated from dif-reached. All these values show a very good quantitative
ferent kind of modes. agreement between the calculated strength and the trend of
Our Fig. 16 forn,=0.4 A~2 is to be compared with Fig. experimental data. In fact, this is a striking result if one takes
1 of Lauteret al?® where these authors plotted data for ainto account that for our calculations we assumed that the

coverage of 0.448 A2, It becomes clear that in both these films are confined by a somewhat unphysical potential.
drawings most of the strength is mainly concentrated alon%2 Furthermore, Fig. 16 also shows that the contributions
two well-defined lines, which correspond to different types (q) originating from the second even-bound state are

of excitations in the system. The excitation energy of thesmaller thar(q). An analysis of Fig. 1 in Ref. 28 indicates

upper curie cancdes wih te bule phonon maxon- 1o 1156 = Qe consitentuith e wesk shade o ray
roton corrected dispersion relatiefi(q). The contributions P y b gp

. o A-1 “bulk” and ripplon lines forq=<1.2 A~1. The behavior be-
lying along this line for 0.5q<0.9 stem from the  yyeen these curves for larger momenta is more complex in

‘regular” continuum([note in Fig. 13 that for these momenta ot giscussed figures since in that region there is a larger
the maximum of strength is centered arouh@=¢€ (q)],  concentration of contributions.

while in the atomic wavelength regime 0.9 A<q<qg,
they originate from “resonant modes” in the first part of the
interval and subsequently from the bound continuation of the

89 mode. On the other hand, the lowest-lying curve in Fig.  properties of the behavior of inhomogeneous systems of
16 is associated with the surface mode analyzed in previoqﬁquid “He at zero absolute temperature have been investi-
sections. It is interesting to mention that our corrected rip'gated. Due to the reasons discussed in the Introduction,
plon energyh wg(q) is in good agreement with the disper- rather thick films supported by an external potential of the
sion curve calculated by Edwards and S&amith the pa-  Gaussian form given by4.1) have been examined. Now, in
rametersa= +1.0 A> and 5= —0.336 A, which in turn fits  Jight of the interesting results obtained in this work, we can
the data of Ref. 28. Moreover, in the caption to Fig. 2 of Ref.state that a study performed by using such a simple potential
28 the authors point out that for=0.8 A~* the bulk phonon  is well justified. Films of coverages,=0.3 and 0.4 A2
lies at/i w=1.05 meV and the ripplon peak is experimentally were selected to illustrate the explored features. Here the
found at 0.47 meV, whereas according to our corrected reanalysis was focused on the behavior for finite momenta,
sults the corresponding energies are 1.04 and 0.45 meV, rg=0, since the long-wavelength limit has been already stud-
spectively. The latter result for the surface excitation, on théed in a previous papét.In fact, our results may be consid-
one hand, and the satisfactory overall energy pattern exhitered as complementary to that published by Krotscheck and
ited in Fig. 16, on the other, point to a justificatianposte-  Tymczak® and Clementet al,'®>*®on the one hand, and by
riori for the use of a common hindrance factor for the wholeGernothet al,?? on the other. The authors of Refs. 13,15,16
energy spectrum at each fixed value of momentum. It is exinvestigated the behavior of layered films of various cover-
pected that the introduced scaling should have no importariges, while Gernotlet al?? analyzed excitations in the ge-
effect on any other quantity. In passing, we may note that t@metry of a half-space.
some extent our results also resemble qualitatively the data The present study was performed in two steps: First, we
displayed in Fig. 13 of Clementst al*® for q<1.5 A1 in  discretized the eigenvalue problems for several different box
the case of coverage,=0.17 A~ 2, sizesz,ay iN order to get excitation energy spectra and the
In order to complete the study it is illuminating to com- associated wave functions; second, by using the obtained
pare along the curves (q) and%wg(q) the evolution of the wave function we calculated the matrix elements of the
strength obtained from our calculations with the differentparticle-hole potentiaM(q,z,,z,) for the most interesting
shades of grey depicted in Fig. 1 of Ref. 28. A feasible wayeigenstates and evaluated the structure function in the paral-
for performing this analysis is to examine the evaluatedel direction S(q,%w). Let us summarize in the following
strength at the momenta where there is a change of grdines the main findings of this work.
intensity in that figure. The comparison may begin at The evolution of the discretized energy spectrum as a
g=0.5 A~ where both branches exhibit an equal shade ofunction of the box size was explored. Typical results are
gray. Going along the phonon-roton curve towards increasindisplayed in Fig. 1. In general, the spectra calculated at a
momenta the first change of gray intensity already occurs dtxed momentum in the regime<0q=<1.5 A~! show that the
g=0.6 A~1, where our calculation yields a contribution energy of several levels remains constant whgg, is en-
S,-(0=0.6)=0.069, while the ripplon branch presents thelarged. These levels correspond to two different sorts of
first definitive gray enhancement gt=1.1 A~1 where we states; in fact, besides the expected bound levels, a few states
obtainedSy(g=1.1)=0.072. The next change of gray scale belonging to the continuum also exhibit such a feature. The
along the phonon-roton line takes place 1.1 A~* latter states also present a special spatial behavior developing
where the “resonant modes” provide a contribution large amplitudes inside of the film but having oscillations of
S-(=1.1)=0.142 against a value dB,(q=1.5)=0.160 smaller amplitudes in the asymptotic regime as displayed in
obtained close to the corresponding edge on the ripplofrigs. 2, 3, and 1®). Therefore, we denoted them as “reso-
curve. Near the subsequent points where the shade becom@ant modes.” One must always keep in mind that “regular”

V. SUMMARY
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continuum modes are really a superposition of many moderepulsions by lower-lying surface excitations. Looking at the
in an energy band determined by the step of the discretizaenergy location of these repulsions it becomes apparent that
tion. However, from the analysis of data like those plotted inwe can define a stripe arourg, where all these processes
Fig. 3 one concludes that the “resonant” states have a veryake place. Making a connection of this finding with the re-
narrow width; hence, their energy is defined well enough thapulsive effect discussed in Ref. 35, we can state that the
one can indeed speak of “resonant modes.” Let us mentioehavior of the excitation energies calculated in the present
that in a preliminary repolf we have already provided some Work supports the occurrence of the repulsion between rip-
evidence for the existence of this kind of state. Figures 2 an@lon and bulk levels suggested by Pitaevskii and Stringari on
3 show that these collective excitations present a “softeningthe basis of their calculations performed by assuming a

effect; i.e., the amplitudes outside the film are larger forSimple mechanism of hybridization. _
lower-lying “resonant modes.” At the above-mentioned repulsions there is a change of

The wave functions of the discrete states @grgg and character of the involved modes. The clearest example of this

% w,(q) < eg exhibit characteristics of surface excitations. As féature is documented in Fig. 6, which shows the evolution
pointed out in Ref. 22 the number of surface states in th@f theé wave functions of the 5“”}"‘0‘2"20 mode an”d the
momentum region 08g<1.3 A~! depends on the thick- Pound continuation of the«=4, ‘resonant mode.” We

ness of the system and the strength and width of the externgould stress that the character of the repelled modes is not
potential. In particular, our results fon,=0.3 and 0.4 exchanged, but there is a real change of it. For instance, Fig.

A 2, displayed in Figs. 5 and 4, respectively, seem to con® indicates undoubtedly that the surface and bulk modes are

firm the finding of Krotscheck and Tymczkhat the num-  transformed into typical zero- and two-node volume wave
ber of bound states in this regime decreases with increasiry"ctions, the geometric shapes of which are completely dif-

coverage. Furthermore, it is interesting to notice that in thde'ent from the initial ones. _
case of the thicker filmp,=0.4 A=2, two branches of even The size of the partial contributions to the static structure

surface states appear in the spectrum and this is just the sa/f¢tor S(a) originated from the different kind of modes is
number of branches found by Gernahal 22 in the limiting displayed in Figs. 12, 13, 15, and 16. Figure 12 shows that at

71 .
case of a semi-infinite system. The dispersion curves of themall momentaq<0.2 A%, the lowest-lying mode ex-

ripplon branches shown in Figs. 4 and 5 terminate by mergl@usts the sum rul€3.17) and for larger values of its

ing with the bulk excitation curve near the roton minimum asimPortance decreases. A further anilllysis indicates that at in-
in the half-space system. termed_|ate momenta, oiﬁqs;.o A~ the COI’]tI’IbutIOﬂS.
Turning to the “resonant modes,” in the regime of large Stmming from “regular” continuum mogies are the domi-
wave numbers corresponding to atomic scale, 1.f1antones. Subsequently, for £9<1.7 A”* the “resonant
A ~l<g<gg, the analysis of the wave functionfz; (9,2) mpdgs” and their bounq contlnuat_lons carry the largest con-
. . .n tributions toS(q) (see Fig. 1b An interesting phenomenon
(sTee, e.g., Fig. Band the particle-hole matrix elements ;.0\, rs cigse to the momenta corresponding to the repulsions
V;,(0) (see Fig. 1Dsuggests that these= 5, states may be  gisplayed in Fig. 7. As shown in Fig. 15, in the vicinity of
associated with “bulk” excitations of the film. In particular, such momenta there is an almost total transfer of strength
the k=6, mode deserves a special attention; its excitatiorfrom the “bulk” excitations to the lower-lying surface ones.
energyfiw 5, () lies very close to the bulk (), the matrix  In particular, atq~qg there is a dramatic, due to the large

e|ementvg (q) almost coincides W|th/|_(q), and the pen- size of involved Strengths, transfer from the bound continu-
0

. _ _ation of the k=5, “resonant mode” to thexk=0 surface
etration factongo(q) approaches the bulk, (q)=gq. Tak mode. The latter behavior may be interpreted as further evi-

ing into accognt these featyres and the spatial'distr.ibution Afience for a sort of phase transition of the system: remember
5,(0,2) we interpreted this branch of states in this wave-ihat this conclusion is also supported by the change of char-
number range as a roton trapped at the center of the filmgcter of both these modes found just aroupd Finally, we
where the system is to a good approximation a 3D uniformshould point out that fog> gk the sum of the contributions
liquid. The nextk= 48, mode can be also interpreted in a originating from the two lowest-lying even states reproduces
similar way, even though in this case the wave functionthe main features of the behavior 8fq), and if one also
z/x}z(q,z) is more extended than the former dicé Figs. 3a)  adds the strength carried by the second-excited even state,
and 3b)] and, in addition, the quantitiebw,(q), V5 (q) chieSSlir; ;:ée%l?) becomes, in practice, exhaustésee
a-nd Fs,(q) present Iarggr departures from the _bu”( results. gdn the basis of the results reported in the present paper,
Finally, the =, mode is the softest “bulk” excitation be- one can understand the main features exhibited by the con-
ing expanded over the whole film. On the other hand, oukoyr plot of the measured inelastic structure fad(a,% )
calculations for films of coverages=0.22(not included in  shown in Fig. 1 of Ref. 28. The experimental fact that the
this reporj, 0.3, and 0.4 A2 indicate that for increasing strength is mainly concentrated along the bufi(q) and
n. the number of “Tresonant modes” increases and the r.e.sultﬁppmn fhwg(q) excitation curves is reproduced by our cal-
for fw;,(q) andV; (q) approach better the bulk quantities cyation. In addition, our approach is also able to account for
e.(q) andV (q). the quantitative evolution of the strength as a function of the
A very interesting phenomenon appears near the rotowave numberq. Perhaps, it is worthy of notice that multi-
energyeg . Figure 7 indicates that the “resonant modes” first plying the whole spectrum by a hindrance factor derived
become bound after crossing with teg(q) curve, and then from the analysis of bulk fluid, which therefore only depends
in the vicinity of eg all these “bulk” excitations undergo on the momentum, one obtains a satisfactory corrected spec-
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trum and, in particular, a good approximation for the ripplontial physical information needed for a plausible qualitative
excitation energy. The striking similarity between our Fig. 16description of the behavior of the system. In this context, any
for n.=0.4 A~2 and Fig. 1 of Ref. 28 fon.=0.448 A2  more elaborated theoretical approach would mainly provide
suggests that for films of large coverages the main features ef better quantitative agreement, so that the inclusion of
the contour map o8(q,%w) for g=0.5 A~* might not be  higher-order correlatioA$53” and backflow effects as those
very sensitive to details of the external substrate potential. introduced by Feynman and Colmwould primarily im-

Another new result of this work is the finding of a second prove the quantitative description of an inhomogeneous sys-
region where the ground-state excitations are surface modegm as happens in the case of the a uniform fluid. However,
This featurg ocTcurs for 2§qs3.9 At Wh6_r_e the pgrﬂcle- to get accurate results it is, of course, of great importance
hole energies/(q) andV; (e, (d) are positive again. The o0 Therefore it is worthwhile to point out that, since the
corresponding wave functions are displayed in Fig. 11. The;BF theory affords a systematic way of incorporating back-
change of the geometric shape of these modes is also maRjow correlations}* it is expected that a future inclusion of
fested in other quantities likBo(q) andF; (new(d) (s€€ in-  sych effects will not pose any formal difficulties.
set of Fig. 9 as well asSy(q) andS; (hewy(d) (look at Fig.
12).

All told, we may have a reasonable confidence in our
theoretical calculation, giving a strong support to the CBF
method for treating boson quantum fluids. Moreover, one This work was supported, in part, by the Fundacn-
could conjecture that the simplest EL-HNC/O approximationtorchas of Argentina. The author thanks Professor F. Bary
for the ground state together with the original Feynman apMalik for stimulating discussions at the early stage of this
proach for elementary excitations already contains the essemork.
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APPENDIX: POTENTIALS FOR THE OPTIMIZATION EQUATIONS

The generalized Hartree potential needed for the determination of the optimal local g€a¥itg

Viu(z1)= fj;dZZP(ZZ)WH(ZlyZZ)- (A1)

For the calculations carried out in the present work we adoptetVig(z; ,z,) the formula derived by Saareé al.®

w ﬁZ
ndn(g(nazllzz)v(r12)+ %Hvl Vg( 7]121122)|2+ |V2 Vg(n121122)|2]
%2 %2
- %[Vlg( 7,21,25) - VaN(9,21,25) +V,0(79,21,25) - VoN(7,21,2,) | — %VZN(%Zl,Zz)'sz( 7,21,23) |

WH(ZlaZZ):ZWf
0

(A2)
with
ro=\Nn7°+(2,—2)° (A3)

The “particle-hole” (p-h) interactionV,(q,2;,2;) required in the PPA procedure is the Hankel transfe29) of the
potential defined by3.17) of Ref. 6:

hZ
Vpn(1,21,25) =9(71,21,25)v(r 1) + ﬁHVlVg(nazlvzz)F"' |V oNO(7,21,25)17]

hZ
+[9(7,21,2,) —1] m[D(l)-FD(2)]N(77,Zl,22)+VC(77,21,22) . (A4)

HereD(i) is the abbreviated derivative,

D(i)=V2+

1 d
A d_Zip(Zi)d_Zi’ (A5)
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whererI is the Laplace operator in they plane. The quantit¥<(#,z,,2,) is a convolution-type contribution which can be

conveniently expressed in momentum space as

1 )
Vc(9,21,25)= 2 fﬁ dz3X(d,21,23)H(q,23)X(q,23,2;).
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