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Supercurrent flow through an effective double-barrier structure
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Supercurrent flow is studied in a structure that in the Ginzburg-Landau regime can be described in terms of
an effective double-barrier potential. In the limit of strongly reflecting barriers, the passage of Cooper pairs
through such a structure may be viewed as a realization of resonant tunneling with a rigid wave function. For
interbarrier distances smaller thadg= 7w£&(T) no current-carrying solutions exist. For distances betwegen
and A, four solutions exist. The two symmetric solutions obey a current-phase relation &fp&h( while
the two asymmetric solutions satistye= 7 for all allowed values of the current. As the distance exceeds
ndy, a group of four solutions appears, each containimg {) soliton-type oscillations between the barriers.

We prove the inexistence of a continuous crossover between the physical solutions of the nonlinear Ginzburg-
Landau equation and those of the corresponding linearized @olger equation. We also show that under
certain conditions a repulsivé function barrier may quantitatively describe a superconductor-normal-
superconductoSNS structure. We conclude that the critical current of a SNSNS structure vanishes as
VTi—T, whereT/ is lower than the bulk critical temperature.

[. INTRODUCTION tion, while its normal ring counterpart requires coherence of
the single electron propagator. This consideration leads us to
The superconducting state is characterized by the existhe question of whether, for any given electron interference
ence of long-range phase coherence in the electron systefenomenon observed in a normal mesoscopic system, there
and its characteristic nondissipative currents are associatétidy be a Cooper pair analog that could eventually be ob-
with spatial distortions of the macroscopic phase. Supercorserved in a macroscopic superconductor. We have seen that
ductivity is however not the only instance of electron trans-there is an AB effect for single electrons as well as for Coo-
port being phase coherent over distances much larger thd¥er pairs. In the first case, the conductafmere generally,
atomic length scales. Another important example is providedhe current-voltage characteristids a function of the flux
by mesoscopic normal transport, which began to be investiwith a strong periodic componehin the second case, it is
gated about 15 years ago and which quickly matured into athe critical current(more generally, the current-phase rela-
active branch of solid-state physit#lesoscopic transport is tion) that depends periodically on the flux. The question is
realized at low enough temperatures, when electrons mayhether other quantum interference phenomena may also
preserve its phase coherence over long distances and thdisplay this dual nature whereby they can be realized in the
undergo coherent multiple scattering by impurities or boundpropagation of single electrons or Cooper pairs. A proper
aries. Interest in this area stimulated experimental and the@omparison of the two types of dynamics requires the reso-
retical research on a rich variety of mesoscopic phenomention of the equations satisfied by the corresponding effec-
in solids? each of which is associated with a specific quan-tive wave functions. In the case of normal electrons, and
tum interference process. Let us consider for a moment onwithin the noninteracting approximation, one has to look at
of the most characteristic examples: the Aharonov-Bohnthe wave function of Fermi electrons. In the superconducting
(AB) effect. This is the effect by which the electronic prop- case, the attention must be turned to the order parameter
erties of a thin ring depend periodically on the threaded mag#(r)=<(#;¢,), if one wishes to obtain information on the
netic flux. As a mesoscopic phenomenon, it was first obglobal condensate behavior.
served in narrow normal cylindérand later in small ring8. Within the Ginzburg-Landa{GL) approximation,y(r)
However, the AB effect in solids had already been observednust be an extremum of the free-energy functional
in superconducting rings not long after the discovery of the
Josephson effectThis observation was possible without the . ) ) 4
availability of modern nanotechnology because of the exist- sz dr{l(V=1A)¢|*=[1=VIOly[*+ N ¢]*2, (D)
ence of long-range phase coherence in superconducting
rings. Phase rigidity of the superconductor collective wavewhereV(r) is an effective potential and reduced units have
function is enforced by the spontaneous breaking of gaugbeen use@.” The parameteX is introduced here to eventu-
symmetry. In contrast, the spatial coherence of the electroally distinguish between the nonlinear GL case<1) and
field in a normal system cannot rely on the existence of dhe linear case of a Schitimger electron with reduced energy
phase transition and requires low temperatures and shoegual to one X=0). Stationary solutions of Eql) must
length scales to make itself noticed. One may adopt theatisfy the equation
simple picture that the AB effect in a superconducting ring
relies on the phase coherence of the Cooper pair wave func- (iV+AZY—[1-V(r) g+ \|y|?p=0. 2
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From the study of Eq.2), we plan to investigate how Cooper dinger scattering states with=0 fall into qualitatively dif-
pairs behave under an effective potentglr) that, in the ferent classes of solutions that do not evolve continuosly into
absence of nonlinearity, is known to yield a specific quantumone another as — 0.

interference phenomenon. The physical explanation to the major differences between

Resonant tunnelingRT) is one of the best understood and the normal and superconducting versions of RT is to be
perhaps simplest quantum interference phenomefitirean  found in the existence of strong correlations among Cooper
occur in one dimension without the requirement of a non-pairs, which is caused by their bosonic nature and by their
trivial topology. A quantum particle undergoes resonant tunfarge mutual overlap. The picture of independent particles
neling when it has to traverse a double-barrier structure. As andergoing coherent multiple scattering, which often applies
consequence of multiple inner reflection, the transmissiofor Schralinger electrons in the normal state, completely
probability is very sensitive to such parameters as the eledreaks down in the case of Cooper pairs. The notion of many
tron energy or the interbarrier distance, peaking near wellindependent pairs which individually experience quantum in-
defined resonances. In this paper, we choose resonant tunngirference and collectively combine to form a macroscopic
ing as a case study in which to analyze the possibility of avave function would at best be adequate for a condensate
doublefold phenomenology in quantum interference proformed by noninteracting molecular pairs. However, such a
cesses. For simplicity, we focus on the case of a quasi-on&cenario is not known to occur in nature. One may have
dimensional superconductor and assufrfeinction barriers, superfluids made of strongly interacting bosaftsse of
so thatV/(r) in Eq. (2) is taken to be of the form “He) or largely overlapping pairs®He), and superconduct-
ors with large(BCS or moderately short coherence length
(case of cuprate superconduciorEhe strong correlation in
conventional superconductors manifests itself through the
nonlinear term in Eq(2). As is characteristic of broken sym-

In the case ofy large and\ =0, Egs.(2) and(3) yield the =~ Metry states, the resulting wave function is rigid and does not
essential phenomenology of RT for independent electrong®2bey & superposition principle. We will see that the stiffness
For this reason, we will pay special attention to the caséf the macroscopic wave function is the primary cause of the
\=1 with g>1, although the crossover to moderate valuedmMportant differences between the Cooper pair and the indi-
of g in the nonlinear case will also be analyzed. vidual electron scenarios.

We must specify the transport properties we wish to com- L€t us now return to the AB effect. We have already noted
pute. Ideally, one would like to compare identical devicethat it can be observed both in superconducting and normal
properties, such as theV curve, which largely characterizes (meSOSQOPm rings. Being a direct consequence of electro-
a normal RT diode. However, we already encounter at thighagnetic gauge invariancethe AB effect is of a very fun-
stage a major difference between the two types of systenﬁamema[ nature. The_ transport properties of a th_|n ring must
we wish to study. Unlike in the case of normal transport, thedlways display a periodicalthough not necessarily always
-V characteristic is not the relevant quantity to obtain infor-observablgdependence on the magnetic flux. In contrast, the
mation about the Cooper pair dynamics. The application of€nsitivity of the current to, e.g., the interbarrier distatioe
an external bias/ creates a nonequilibrium between the & given electron energy and for a given normalization factor
populations of quasiparticles coming from each side of thdn & RT structure does not stem from any fundamental sym-
structure. Only very indirectly does this change in the quasimetry. We will see that a rich dependence of the structure of
particle population affect the properties of the condensatehe set of solutions on the interbarrier distance does certainly
and the existing effect is very sensitive to the dynamics ofXiSt. We will also conclude however that, at large separa-
single quasiparticle$which is very similar to that of normal tions, an important physical quantity like the critical current
electrons. In contrast, the population of Cooper pairs canndiecomes essentially mdepend_ent of the interbarrier dlstar_]ce.
be driven out of equilibrium, since they can only exist in a  1he search for a Cooper pair analog of resonant tunneling
condensed state. One could at most create a difference bas led us to investigate the interesting properties of super-
tween the chemical potentials of the condensates on ead®nducting structures that can be described by a free-energy
side of a structure. However, in the case of two barriers, oné!nctional of the type1). As is proved in Appendix A, under
only expects a straightforward realization of the ac Josephtertain conditions, a quasi-one-dimensional superconductor-
son effect. normal-superconductdSNS structure without current con-

The current carried by the condensate is driven by spatigféntration(S and N have the same widthan be quantita-
variations of the macroscopic phase. For this reason, we fdively described by & function in the effective GL equation.
cus on the study of the current-phase relation for configura®S & consequence, the model given by E@.and(3) can
tions y(x) satisfying Eq.(2) with V(x) given by (3). The Yield a quantitative description of a SNSNS structure of uni-
current-phase relation is only meaningful for a superconductform width. We have found that the set of solutions to the
ing structure; thus, we can hope at best to give a qualitativ€0rresponding GL equation can display a very rich structure.
comparison between the two types of RT. One might stillThe main experimental prediction is that, in a SNSNS struc-
foster hopes that something resembling the scattering wav&re, the critical current vanishes with a law
function of a single electron might still be obtained in the lc(T)~VT¢—T, which differs markedly from theT,—T)?
formal limit of A—0. As we will see, however, this is not behavior of the SNS cagéln addition, we findT,<T,, i.e.,
case. Because of the difference in boundary conditions, thior a SNSNS system, there is a depresdiaith respect to
solutions for the superconducting order parameter obtainethe SNS cageof the temperature at which the critical current
from Eq. (2) with A=1 and the wave functions for Schro vanishes.

V(x)=g[d(x—a)+ s(x+a)]. 3
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This paper is arranged as follows. After presenting thebarrier can serve as a quantitative model for a SNS structure.
model in Sec. Il, an analytical study of the solutions to theMore specifically, we show that, & is the coherence length
nonlinear Eq.(4) is presented in Sec. lll. In Sec. IV, we of the normal metal, the effect of a normal segment of length
prove the inexistence of a continuous crossover between the inserted in a superconducting wire can be rigorously mod-
physical solutions of Eq(2) and those of its linear version. eled by aé function of strength
Some experimental predictions on temperature-dependent
transport properties are discussed in Sec. V. Finally, in Sec. L&(T)

VI, we present some concluding remarks and comment on 9= g—ﬁ ©
how some of the qualitative conclusions of the present article
can be extended to other interference phenomena. provided thatl. < £&y<¢(T), whereé(T) is the temperature-
dependent coherence length. Since this effectivbarrier
Il. THE MODEL yields the correct matching properties of a realistic SNS
systemt®> we may conclude with confidence that a model

In this paper, we wish to analyze the current-carrying sowith a double §-function barrier will correctly describe a
lutions of the nonlinear GL equatiof) with the effective  SNSNS system® In addition, the fact that both the barrier
potential given by(3). We may factorize the order parameter strengthg and the effective lengtla are functions of tem-
y=Re? and writta=A—V¢ for the superfluid velocity. perature for a given physical structurénote that
The gauge-invariant electric current is then writteng=d/2¢(T), whered is the physical distance between the
j=—R%a. Within the assumption of a sufficiently narrow normal island permits us to use temperature as a conve-
wire (width much smaller than the coherence and penetratiofjent driving parameter to tung(T) anda(T). This prop-
lengthg it is safe to neglect the dependencg ahds onthe  erty has important experimental consequences that will be
transverse variables. In these conditions, our analysis reducggscussed in Sec. V.
to the study of the solutions of the nonlinear differential Regarding the temperature dependence of the effective
equation parameters, it is interesting to note that,Tas T, one has

4R 9 g(T)—o and a(T)—0. Therefore, thg .Joseph-sgn limit
—2+[1—95(x—a)—g(5(x+a)]R—1—3—)\R3=0 (4) (g>1) can always be explored py driving sufficiently
dx R close toT.. In the Josephson regime, the currents are nec-
essarily much smaller than the bulk critical current. As a
onsequence, the spatial variation of the phase can be safely
eglected for many purposes and the phase offset can be
identified with the conventional “phase difference” between
x dx’' the two superconducting terminaldp=¢,—¢5,. In Refs.
o(X)=]j f —— (5) 12 and 15 it was shown that, for large the critical current
o R°(x") in the & barrier |
presence of & barrier is

for arbitrary values ofy (hereafter\ =1, unless otherwise
stated. In a quasi-one-dimensional superconductor, we ma
chooseA=0 and write for the phase

where the current densityis a conserved number, the total (1)
current through a lead of cross sectinbeing | =jA. For jo'=1/2. (10
the superconducting order parameter we are interested in s

lutions satisfying the boundary conditions Since the bulk ¢=0) critical current is, in these units,

jpb=0.385, one can derive the relation
R=R.,

() =ax=A /zJ for x—xe, (6) 9=1.30js/j¢"). (1)
eX)=4xX=a¢

valid for largeg. Going beyond thé-barrier model, one can
show that the critical current for a SNS system of arbitrary

normal lengthL is*®
24(T) ’_< L)
sinh —
én én

provided that the resulting. is much smaller thanj,. One
may readily note that the result?) is consistent with Egs.
(9) and (20) in the limit L<&y.

R.. being the biggest solutiofi.e., that with the lowest free
energy of the equation

-1
: (12)

R®—R*+j?=0. (7)

(1)
j&=

In Eq. (6), a nonzero value of=j/R? accounts for a linear
variation of the phase at infiniy}, and the possibility of a
phase offset

w (=1 1
A¢Efw[¢'(x)_Q]dX21fx(m‘@)dx ®)

has been introduced. As in the single-barrier caskee will

turn out to be a most convenient parameter to classify the

solutions of Eqs(4) and (6). In this section, we study the solutions of E4) satisfying
One may wonder whether, apart from describing the conthe boundary condition§6). There is a mechanical analog

densate analog of resonant tunneling, the doublearrier that helps to understand some general properties of its

model may quantitatively describe a specific physical syssolutions'’ Equation(4) may be viewed as the force equa-

tem. Fortunately, the answer is yes. It is proved in Appendixion for a classical particle of unit mass with positienhat

A that, within the GL approximation, a-function effective  time x moving under a potential

IIl. EXACT SOLUTIONS

A. General properties
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FIG. 1. (a) Potential energw(R) [see Eq.
(13) in the texi for the mechanical analog of Eq.
(4) with j=0.01,g=2 anda=2, for \=1 (solid
line) and A =0.8 (dotted ling; the straight lines
depict one possible trajectory of the equivalent
particle that begins and ends at paBjtthe num-
bers in the arrows indicating time-ordered flights
between kicks(the distance between the two
horizontal lines is exactlye). (b) Inverted rep-
resentation of the particular solutid(x) of Eq.

(4) whose equivalent mechanical trajectory is that
depicted in(a).

v(R)=—NR*4+R?12+j?/2R?. (13 P(s)=(s—2Z)(s—1+Z/2)%+438e0s, (16)
In the GL case X=1), configurations represented by points With e;<e,<e3z, and where the change inis
A and B of Fig. 1(a) satisfy the asymptotic condition o,
dR/dx=0, with B energetically more favorable. The picture 5e0=9(Yo+9g¥o)/2. (17)
is that of a classical particle which, at remote timesFrinally,
(x— —), stays in pointB. At negative times, it begins to
roll down and, after receiving two kicks at times- +a, it _ . [Yo—€1|e—eg
returns asymptoticallyX— o) to pointB. At each pulse, the Fo=F|arcsim/ e—e; |ea—e, (18)

change in the mechanical energR’?%/2+v(R) is deter-

mined by the matching condition whereF(¢|m) is the incomplete elliptic integral of the first

kind,® and o in (15) is defined as
R'(x")—R/(x7)=gR(x), (14 ,

o=sgnYo+29Yo). (19
at pointsx=*a. Figure I1b) shows one particular solution S, :
R(x) that exactly correlates with the mechanical analogud” the limit (Yo+29gyo)—0, it can be shown that both values
schematically depicted in Fig(a. of o in Eq. (15 I(_aad to the same result_fcﬁz(x).

The energy before and after the two kickssis v (R..). I ,ana7I09y withyo and yo, we definey,=y(a) and
Equation(14) indicates that the effect of barriers is that of Y1=Y'(@"). The second kick will take us asymptotically to
making the velocityR’ (x) more positive. If the system is to the valueR., if it causes an energy chang; such that
return to pointB at x—oo, it is not difficult to see that the de1+ deo=0. This leads us to write the relationship
conditions 5g(<0 (where d¢ is the change in mechanical
energy at poink=—a) andR’(—a~) <0 must be satisfied,
and, for analogous reasonB’(a*)>0. These two con-
straints force the solutions to be of the fdfim

y1+9Yy1+Yotgyo=0 (20)

as the global matching condition. Equati®0) determines
implicitly the parameterx_ to be introduced in Eq(15).
Through the integration of Eq$4) and (5), each possible
value ofx_ uniquely determines one solution of Hg) sat-
isfying the boundary condition®). Thus,x_ is a parameter
that completely characterizes a given physical solution. Our
goal is therefore to solve numerically for all possible values
of x_ satisfying Eq.(20) for a given value of].

A quantity of interest is the critical current, which we plot
in Fig. 2 as a function of th@educed semidistance between
barriers for several values of the barrier strength. The result

R2(x)=Z+ Utantf[K(X—X4 ()],

R2(x)=e1+(e2—e1)sn?( a\/e3;e1(x+ a)

€~ €
€376

x>a(x<-—a),

+Fo

(19

), [x|<a,

where Z is the smallest root of Z(Z—2)?=8j?,

U=1-3z/2, k=4U/2, and snk|m) is a Jacobi elliptic
function!® Defining the functiony(x)=R?(x) and the pa-
rameters/o=y(—a) andy,=y’(—a") (both of them func-
tions of x_), the matching conditior{14) at x=—a deter-
minese; ,e,,e;z as the roots of the polynomial

is given in units of the critical current for a single barrier
with the same strengtl (a,g)=1.(a,g)/1*(g). For sepa-
ration distances much larger tha(T) the critical current

becomes identical to that of a single barrier, regardless of the

value ofg. This is the limit in which the two barriers are
effectively decoupled. The decoupling at long distances is
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FIG. 2. Critical current as function of the semidistance between FIG. 3. Representation of the matching equati@®) in the text.

barriers for several values of the paramefefThe distance is given ~The quantiynG(de)/ is plotted for several values of the index
in units of &T) and the current is given in units of the critical A Set of four solutions exists for each combinatiomaénd 6= that

current for a single barrier with the sarge(see text meets the requirememG(de)=a, wherea is the reduced semi-
distance between barriers.

caused by the nonlinear term in B¢). In contrast, the dy- ) ) _
namics of an electron obeying the linear Sctinger equa- tions in the regime of largg. For a given value of the
tion is always sensitive to the presence of both barriers. wéurrentj, it is shown in Appendix B thave takes values
will see however that, in the nonlinear case, there are alwaydetween 0 and (%J%)/4, whereJ=2gj is the current in
solutions with high free energy that are sensitive to the presunits of the critical current for a single-barrier structure. We
ence of both barrierén the sense that they cannot be viewedalso show in Appendix B that the matching conditi(#0)
as simple combinations of single-barrier solutipiait these ~ an be rewritten as
energetic solutions become increasingly irrelevant at large
separations.

We observe in Fig. 2 that, for moderate valuegpthere

a=nG(de), n=1.2,...,

1/2
is a slight depression of the critical current with respect to G(8e)= 2 K 1-2\se 22)
the single-barrier case, if the reduced semidistaneesit (a &)= 1+2./6e 1+26e )’

similar effect was noticed in Ref. 19 for the case of weak

links). This effect becomes more pronouncedjagets larger. WhereK(m)=F(w/2|m) is the complete elliptic integral of
For g=10, the law 1/8 already applies approximately for the first kind*8 For each integen that meets the requirement
the critical current of single barrier and theh=1/2 for (22 there are four solutionB(x), all of them corresponding
a=0, as expected from a single barrier with doubledto the same value ofe. The quantity Z5(e) is the spatial
strength. Deep in the Josephson regime @0 or largey, the ~ period of the solution between barriers. Thus, for each solu-
interval 0<a< /2 is practically depleted of solutions and tion of Eq.(22) that we may find for a given value ofin a
the critical current is essentially zero. As will be seen laterstructure of interbarrier distance2we can always construct
this has noticeable experimental consequences, since tResolution for the structure of distancea2 G) whose index
value of the reduced distance is temperature dependent. ifn+1 and which is identical to the previous one except for
the following two subsections, we analyze the main properthe presence of an extra oscillation.

ties of the solutions of Eq$4) and (6) over the whole range The structure of the solutions can be clearly appreciated
of possible values of. in Fig. 3. In the Josephson limit, we see that there are no

solutions for 2a<7 (J.=0). For 2a> 7 the critical current
becomes nonzero and a group of four solutions appears, two
symmetric and two asymmetric under the inversion
In the limit of large scattering strengtly{>=), the pres-  x_, —x, the two asymmetric ones being the mirror image of
ence of a single barrier is known to yield the ideal JosephsoBach other. Their current-phase relation is shown in Fig. 4

B. Josephson limit(g—x)

behaviot?*° for a=1.74. The symmetric solutions form two branches
) ) that combine to yield the curve
j=(1/2g)sin(Ap), (21
I=1.(a,g)sin(A¢/2), (23

where the phase offsatey can be identified with the conven-

tional “phase difference” between the two weakly linked which is the naive expectation for two Josephson junctions in
superconductors. For the double-barrier case, the parametseries. In contrast, the two asymmetric solutions obey the
de=— dg serves to characterize the continuous set of solutaw
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features of thd (A ¢) relation: (i) for a not much larger than
7, the maximum current value of the second group of solu-

05| (a) tions has not yet reached the saturation value,(@hall the
values ofA ¢ are shifted byr with respect to the first set of
J o8 four solutions. Again, these features are easy to understand if

the two barriers are assumed to be far apart. The new group

of solutions resembles the first set of four, except in that a

021 soliton (i.e., a spontaneous local depression of thelgap

contributing an extra phase af has nucleated between the

barriers. As the two barriers separate, the added depression

(b) of the order paramater, which may initially be viewed as the

08 result of quantum interference oscillations, evolves into a

well-defined, isolated soliton. Remarkably, the additional de-

pression in ¢| contributes exactlyr to the phase, even when

04 the two barriers are relatively close and the depression does

not act as an isolated kink but rather as an additional oscil-

021 lation. It must also be noted that, singe&0, we have| |

o #0 at all points.

e 1 2 3 a4 s & 71 8 s 10 As the separation distance is made increasingly larger, the

Ay same pattern repeats itself. Each time the distareee?
ceeds an integer multiple of, a new group of four solutions

FIG. 4. Current as a function of the total phase difference forgppears, with a structure similar to that of the preceding set

a= 174(3) anda:3.5(b), in the limit Ofg very |a|'ge. The current of four solutions except for an extra phase of As the

is given in units of the critical current for a single barrier with the jnterbarrier distance continues to increase, new sets of solu-

0.4+

sameg, so that lim_...2g] is plotted. tions emerge periodically, always in groups of four. For a
given distance, the groups of solutions that are most sensitive
Ap=m, forall I. (249 to the double-barrier featu@s indicated by its not yet satu-

This peculiar current-phase relation can be simply under[atEd maximum valyeare those with a higher free energy

stood if the two junctions are assumed to be sufficiently falresultlng from a higher ”“mbef of mo_dulat|ons in the order
apart. In this case, the central peakii(x) between the two parameter. These very energetic solutions can be expected to
barriers becomes ’a long plateau and the two barriers beha\p ir_relgvant in prac’Fice, except perhaps to account for fine
as independent. For a given current, there are two possib (_etalls in the dynam|p behavior. Therefore, It may be stated
values of the phaseb ¢, andA¢ sa,ltisfying Eq.21). In with reasonable confidence that the two barriers become ef-
the presence of the twg barriers_t'hese two phase values m ctively de_coupled _for practical purpps&ﬂso in regard to

; the dynamic behavigrwhen the maximum current of the

combine in four different ways. In two cases, the phase difsecond roub of solutions has reached the saturation value
ference is the same in both barriers. Thexy equals ) group utl uration vaiue.
This happens approximately foa2- 3.

2A ¢, or 2A¢_. This results in a sii{¢/2) law for the ; e .
symmetric solutions. In the other two cases, a different phase Cor_nputgtlo_n of the crlt!cal Cu_rrentEqua.tlon (22) (see
Iso Fig. 3 indicates thats is a unique function o andn,

change takes place in each barrier. But the total phase diffef: : ) .
ence%go is gi\f)en by the sum of the two valuesp which is 3° that the product in the right-hand side of E§10) must
exactly ' be constant within a given group of four solutions. The high-

est possible value af (which is always to be found in the
Ag,+Ao_=. (25) n=1 group is obtained by imposingw(1— w) to take its
maximum value of 1/4. Thus we conclude that the critical
This explains Eq(24) and the double vertical branch shown currentJ.=2gj.. is given by the relation
in Fig. 4@). The above set of considerations makes the re-

sults(23) and(24) quite plausible, and even expected, for the 2 Y2 g 1-3¢
case of large separations. The not so obvious result is that the a= \/——2 Kl 72/ (26)
same conclusions hold when the separation distance is com- 1+V1-J¢ 1+vi-J;

parable to(T) and the two barriers can in no way be viewed g ation(26) yields the curvel (a) for the critical current

as decoupled. This result can be proved rigorously from angp, the josephson limit, and the result has been plotted in Fig.
lytical considerationgsee Appendix € The smallness of the

distance between barriers makes itself noticed only through a
depression of the critical current with respect to the single-
barrier case, buhot in the qualitative form of thd (A¢)
curves. In Fig. 5 one can analyze the crossover between the re-
As the distance grows, the maximum current of the groumgimes of large and small values gdf for the same barrier
of four solutions saturates to the critical value for a singledistances we considered in the discussion of the Josephson
barrier. As indicated in Fig. 3, a new group of four solutionslimit (see Fig. 4 Let us comment on the case@f 1.74. As
appears whema>, and their current-phase relation is we depart from the limit of very largg, an extra branch
shown in Fig. 4b). Comparison with Fig. @) reveals two appears of solutions withr<A <27 and with a low criti-

C. Intermediate and small values ofg
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the branch of solutions with the smallest phase offset evolves
towards the set of uniform solutionfthose for which
R(x)=R., and A¢o=0] that are characteristic of a perfect
superconducto?

As can be seen in Fig.(B), the crossover presents similar
characteristics for the case where 3.5. Like in the Joseph-
son limit, the main differences for largg (with respect to
previous shorter distance cadie in the extra value ofr of
A ¢ shown by the second set of solutions and in the presence
of a fourfold branch with a saturated critical current value.
As g decreases, the evolution of the four solutions with
higher phase offset runs similar to that of their counterparts
in Fig. 5@). New interesting features appear however for low
values ofg. At g=0.5 and 0.2 it is clear that the two groups
of four solutions begin to merge into a simpler pattern of
single and double solitonic solutior(with A¢ tending to
7 and 2 asJ— 0, respectively. Since double soliton solu-
tions cannot exist in the transparent case, the corresponding
(fourfold) branch begins to detach from the rest of curves
and to decrease its critical current until it eventually disap-
pears. Fog— 0 the remaining branch is identical to its coun-
terpart in the shorter distance case: three solutions of single
solitons located in the same points as above and one uniform
branch with zero phase offset. Incidentally, it can be shown
that for a<(2k) ~In(2+ \/§) only the soliton ay=0 sur-
vives. This is not the case however in any of the two dis-
tances considered here.

An interesting consequence of studying the crossover be-
tween large and small values gfis that, among the curves
shown in Fig. 5, we can recognize similarities with current-
phase relations computed for other structures that, not being
exactly SNSNS, share some common features. For example,
Martin-Rodero et al?® have performed a self-consistent,
zero-temperature calculation of the current-phase relation in
mesoscopic weak links, modeled by a tight-binding chain
linked to two broad Bethe lattices that act as superconducting
reservoirs. Despite of the obvious differences between the
two physical models, the similarity between some of the re-
sulting curves is striking. For instance, the current-phase re-
lation shown for the two longest chains in FigcRof Ref.

20 resemble some of the branches we obtaimgfe and 20
in thea=1.74 case. It is interesting to note that the curves of

FIG. 5. Current as a function of the phase offset for severaRef. 20 that look alike correspond precisely to the case of

values ofg in the casesa=1.74 (a) anda=3.5 (b), in the same

units as in Fig. 2.

strong internal reflection at the constriction. One concludes:
(i) the nonlinear term of the GL equation has an effect very
similar to that of self-consistency in a zero-temperature cal-

cal value[see the graph in Fig.(8 for g=20]. As g de-  culation; and(ii) the essential physics rests in the nonlinear
creases further, the low current solutions witlkp near 2r  effects taking place within the finite superconducting seg-
disappear and the resulting branch begins to shrink until itnent and the effective scattering at its two ends, the physical
merges (for g~0.2) with the solutions that formed the details of the semi-infinite S leads being less important. Con-
double vertical branch in the Josephson limit. e 0, the  clusion (i) is what one expects from inspecting the micro-

two sets of solutions witlh ¢ #0 form a triple branch cor- scopic derivation of the GL formalism, and it has already

responding to three single solitons nucleated at pointbeen noted in connection with the crossover for large to
Xo=0 and smallg in the single-barrier casg.

IV. INEXISTENCE OF A CONTINUOUS CROSSOVER
BETWEEN THE LINEAR AND NONLINEAR PROBLEMS

J3a?—1

/ 2
a3 a It has already been commented in the Introduction that
This result can be obtained analytically from the matchingthere are qualitative differences in the physics described by
Eq. (20) and from the properties of the solutioftb) in the  Egs.(2)—(4) in the linear(Schralingep and nonlinea(GL)
limit g— 0. Meanwhile, in the same process of decreaging cases. However, one might still think that, from a mathemati-

1
x0=tEarctan?< ) a=tanh’ka). (27
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cal point of view, there could be a continuifgs a function 5
of \) between the order-parameter configurations satisfying

the GL equation X =1) and the scattering wave function for

a Schrdlinger electron in the presence of potenti@l with 4
A=0 and unit energy. Again, it is useful to consider the
mechanical analog represented in Fig. 1. The wave function

of a retarded scattering state is of the type | 37 SNS
Y~ +re 1 for x< —a, if the electron is coming from (1093)
the left, so that the amplitud@= || displays oscillations in
the left asympotic region. The mechanical picture to intro-
duce in Fig. 1 would be that of a particle which at remote
timesx— —« is oscillating between two return points with 14 SNSNS
energy e<v(R.), receives two sudden pulses at times
Xx=*a, and ends asymptotically in one of the stationary
points (this corresponds to the uniform amplitude solution T I T I I
y~te’** to be found in the<>a region. Thus we see that a 0.9 0.92 0.94 0.96 0.98 1.0
major difference between the two cases lies in the asympotic T /Tc

behavior ofR(x), which is always uniform for the supercon-

d_uctmg order parameter while |t_may OSC'”‘fﬂ_e_ for a Sehro FIG. 6. Temperature dependence of the critical current in the
dinger electron. The only remaining possibility to find a icinity of the critical temperature, for SNS and SNSNS structures

common mathematical wave function must be looked for inyithout current concentratiord/£y=10 has been taken, and units
that combination of parameters which yields a transmissionye sych that the prefactor of £IT/T,)2 in Eq. (31) equals unity.
unity for the electron linear wave, since in this césevould

be uniform on both sides of the structure. The equivalengyrrent-carrying superconducting solutions are allowed in
mechanical particle would start from a stationary point t0the temperature interval,<T<T,. The result is that, for a
which it would return at late times. The problem is that, for g\gNg structure, there is a depressiwith respect to the

an electron satisfying the linear Schlioger equation, that  gNg caspin the critical temperature above which the critical
stationary point has to b& (see Fig. ], and notB, asisthe ., rent becomes zero.

case for the GL order parameter. Although a rigorous dem- |, Fig 6, the critical current is plotted as a function of
onstration of this statement is possible, it suffices to ”Ot%mperature for both a SNS and a SNSNS structure. The
that, asn—0, the potential maximum a8 moves toward  mgain feature of the resulting.(T), namely, the law with
infinite values ofv andR (seeB’ in Fig. 1 for A=0.8),  \yhjch it vanishes, is amenable to an analytical treatment. In
effectively disappearing from the picture whar=0. Thus  ggc IIl, we derived Eq(26), which determines (T) for a

the only stationary point that is available in the linear case tc{;iven value ofa(T). Since we are interested in finding out
describe purely transmitted waves is precisely péinquali-  how the critical current vanishes, we may expand the right-

tatively different fromB even in the limith —0. We con-  hanq side of Eq(26) for small values ofl,(T) and obtain
clude that, as the nonlinear term in E4) is made to vanish

24

(A—0), there does not exist a continuous crossover between d [T-T =« 3
the physical solutions of the nonlinear Ginzburg-Landau a(m= 2V T, "2 1+ EJﬁ(T) : (28
equation and those of the linear Sctiirgger equation. 0 €

The temperaturd for which Jo(T.)=0 is T, =T, — AT,

V. EXPERIMENTAL PREDICTIONS with

The proximity between barriers is most noticeable when pAL
the low-energy solutions are sensitive to it. Of course, the ATC=(—O> T.. (29
most dramatic effects can be seen f@<2w, when no so- d
lutions exist at all in the largg limit. This has interesting  Equation (29) is actually an upper bound to the value of
experimental consequences. We must first remembeatisat 1 _ 7/ and it tends to the exact value when the condition
the _reduced sgm|d|stance in unl'ts o&(T), ie., g(T})>1 is consistently satisfied.
a(T)=d/2¢(T). This means that, for a given structure with a =~ A some simple algebra, we get for the critical current
fixed physical distancel, the reduced distancea2can be (in real units: ’
made arbitrarily small by driving the temperature sufficiently

close toT,, since then&(T)=£y(1—T/T.) V2= (for a 8 \M2(d\(T,—T\¥
clean superconducto&,=0.74,, while for a dirty super- |c(T):|(cl)(Té)<ﬁ> (?)( T ) , T=TE,
conductoréy=0.85y1 &g, | and &, being the mean free path 0 ¢ (30)

and the zero-temperature coherence length, respectivefy

the double-barrier structure is formed by two normal segWwhere

ments, we know from the analysis in Sec. lll tiggf) scales 5 5 ) 5
towards the Josephson limit. Therefore, there is a temperal-(l)(T): A [ef| P(T) _A[ hcC ( &n ) (Te—T)
ture T.<T. above whichd<w§&(T). Since, at the same ° g(Mim) &T) L\|16me/\ ké's T?
time, g(T) is very large, this has the consequence that no (31
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is the critical current of a SNS structure at temperaliydd  ary conditions, the solutions of the GL equation cannot
being the cross area of the junction atet \(T)/&(T) isthe  evolve continuously towards the scattering solutions of the
Ginzburg-Landau parameter of the superconductor. Théinear Schrdinger equation as the nonlinear term is formally
square-root behavior df(T) for a SNSNS structure con- made to vanish.
trasts markedly with theT(,—T)? law of the SNS cas€. We close this article by returning to the question that ini-
Simple estimates suggest that the predicted depression {lly motivated it, namely, the possibility of finding a mac-
the critical temperature should be measurable. For exampl%scopic quantum ana|og of a Speciﬁc interference process
for a SNSNS structure made with superconducting Alsych as the resonant tunneling of Sainger electrons. It
(Tc=1.19 K and§,=1.6 um) with d=10¢, (which falls a5 already commented in the Introduction that, given the
within the validity of GL regim¢ one would obtain a de- important differences between the relevant transport proper-
crease oA T.~0.05 K. On the other hand, it is interesting 10 yjeg of the physical systems involved, the analogy would at
note that, if the CO”d't'9@>50 is satisfied, there is a range pest be qualitative. We have learned that a basic fact such as
of temperatures suﬁ|C|er(1lt;y far belowf; for which 0 yenendence of transport behavior on the interbarrier
d>£(T) and, thus] (T)=1¢"(T). distance—all other parameters being equal—effectively dis-
The sensitivity of the effectivgy to temperature can be appears in a superconducting structure veith w&(T) (see
exploited in other interesting ways. For example, by varying ig. 2). Since&(T) is the length scale needed for the nonlin-

the temperature, one may drive a given SNS or SNSNRgar term in Eq(2) to make itself noticed, we may adopt the
structure from the large to the smgiregime. Consider a e,y that the nonlinear term in the GL equation acts as a
SNS structure made in a narrow wire of_finite length atgephasing term that damps any interference effect requiring
whose extremes we apply an external voltages |l normal  modulation of the wave-function amplitud® (as would be
metal with critical temperatur@ <T.. WhenT gets close caused, i.e., by the interference of waves traveling in differ-
to T¢, g(T) becomes large, and so dogfT). Both facts  ent directions This picture allows us to extrapolate our con-
contribute to yield an ideal Josephson behajéolarge value clusion on the inequivalence of macroscopic and micro-
of £(T) makes the length of the wire effectively shorter, thusscopic resonant tunneling to other interference phenomena.
facilitating the adiabatic response characteristic of the ac Jagonsider, for instance, weak localization. If one considers a
sephson effe¢f]. As an external voltage is applied, the cur- superconducting structure which, in the GL regime, is de-
rent oscillates very rapidly and one observes a zero timecribed by Eq(2) with a weakly disordered effective poten-
average|,,—0. As the temperature is lowered beldy, the  tial V(r), could we expect that quantum interference might
structure becomes of the type SSvith an effectiveg<1 cause a reduction of, i.e., the critical current? From the
(we may choose So be not very different from 5 The  analysis presented here, the answer seems to be no, at least
situation is then close to that of a uniform superconductomwhen the distance between “impurities” is much larger than
and the system cannot respond adiabatically to the externall§{T): the nonlinear term would damp interference effects to
applied biag?!"??Some type of resistive behavior has to bethe point of making each impurity act as isolated. In particu-
displayed, with the result thaf,#0. The net effect is that, lar, one should not expect to observe the macroscopic
by lowering the temperature, it is possible to drive a givenequivalent of Anderson localization. A similar conclusion
SNS structure from adiabatic to resistive response. holds, in principle, for other mesoscopic phenomena based
on geometry-induced quantum interference such as the
modulation of current by a tuning stdB:one should not

VI. CONCLUSIONS expect any type of interference effect associated to the col-

gective wave function in a superconductor enclosed in a spe-

We have studied superconducting flow in structures . .
ific (topologically trivia) geometry, as long as the relevant

which, in the Ginzburg-Landau regime, can be described b L .
a double-barrier effective potential. We have found that th ength scales are of ordel>¢(T). As indicated in the In-

critical current is depressed with respect to the single-barriet OSUCIIOH,“ reﬁl analogs ?)re t% be f?‘ung %]Lynrglr tshcr):rie![rr]i_es
case. In the limit of strongly reflecting barrieig, can be- erierence” pnenomena based on funda y

come effectively zero for interbarrier distances such as gauge invariance, which gives rise to the Aharonov-
d<dy=m¢&(T). As d exceeddl,, four solutions(two sym- Bohm effect. A qualitative conclusion is that care must be

metric and two asymmetii@ppear, as might be expected for taken when developm_g physical intuitions based on the idea
two Josephson links in series. Aisgrows even larger, new that the superconducting order parameter plays the role of a

solutions appear, always in groups of four. The supression gpacroscopic guantum wave function.

I, for short distances has practical consequences, since

do(T)—> as T—T;, and the conditiord=d, is always

reached by any device T is sufficiently close ta .. Thanks ACKNOWLEDGMENTS
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APPENDIX A: DEDUCTION OF THE & BARRIER MODEL it is not difficult to see thay, andy, defined in the text are
FOR A SNS STRUCTURE given by

Suppose we are given a quasi-one-dimensional SNS
structure. Let the normal metal occupy the region
[—L/2,L/2]. TgN). andT® are th?N():ritical t(esr)nperatures of N yo= 2032~ 2). (B3)
and S, respectively. We havé;’'<T<T;” and assume
T(CS)—TEN)<T‘(:N)_ Following Refs. 11 and 24, we assume So, the conditiory,<0 implies O<z<1. Equation(17) for
that both N and S have the same order parameter to gap ratiégo can then be rewritten as
YlIA, as well as the same quasiparticle mass. It can be
proved* that, in these conditions, the Ginzburg-Landau
equations are valid for ak, and that the matching condi-
tions are determined by the continuity g¢fand its first de-

yo=2+UZz? (B2)

Seo(z)= g[ V2U3(Z8—2)+g(Z+UZ?)]. (B4)

fivative atx—= =L /2. Thus one has The .additional requiremende <0 implies thatz is further
restricted to the rangein<z<znax, Wherezyin,Znax are the
52 d2R 5 mj?2 ] roots of deq(z) lying between 0 and 1. We defire as
———2'+C(5R+BsR +_2_g:O X>L/2,
2m dx 8e'R (A1) Z=Zpint+ O(Zmax— Zmin)» (BS)

so that, obviously, & w<1.
In the Josephson limitg—«) it is easy to see that

Z=1J?%/29? (J=2gj) andU=1. Since, in the same limit, the
(A2) only surviving finite root ofdeqy(z) is z=0, we can neglect
where RO)=|¢(x)| and ay,By (as,B<) refer to the Z% in front of z in Eq. (B4). Thenz,, andz,, can be easily
Ginzburg-Landau parameters of the nornfsliperconduct- calculated as the roots of
ing) metal, all of which depend on temperature. 2

As T approache3 ¥, we can neglect the terfiyR® in —\2z+ 2_+922:o_ (B6)

Eq. (A2) and the remaining parameters of the normal metal 9
can be replaced by their fixed values E{P’. Shifting to  To leading order in 4, we get
reduced units of the superconductare write

7?2 d’R 5. Mj
—ﬁd—xz‘l‘aNR‘FIBNR +W:0 |X|<L/21

1
d°R B z = (1+1-32 (B7)
—W—R+R3+%=O Ix|>1/2, (A3) e min gﬁ( )
and, from(B5),
d2 j2
— g FORTRs=0 [x<Ii2, (A4) 1+ (20—1)y1-32 (1)
zZ= +o| =], (B8)
wherel=L/£(T). This model is identical to that considered gV2
by Jacobsot? with where o(1/g") stands for any expression such that
£(T) limg_...g"0(1/g")=0. From Eg.(B4), we obtain, also to
b= —5—>1. (A5) leading order,
éN ,
If 9>j§/R4, the integration ofA4) along the normal seg- Seo(2)= 9( \/§z+ J_+gz2 , (B9)
ment yields 2 29
R/(112) =R (= 1/2)=1 R, (A6) which can be easily shown to lead to
= _ — _ _ 12
where /6l = L/&y<1 has been assumed, so tRgk) can be de=—Jeo=w(1l-w)(1-J). (B10)
approximated as constant within the integral. In these condigor the other quantities in E415), we obtain
tions, the effect of the normal metal can be exactly mimicked
by a é barrier located ak=0 with a strength J? 1 1
L &= 2(1—40s) g7 °lg7)
gEI 0= 2 y (A?)
& e,=1-2se+0(1),
as we wished to prove.
e;=1+28s+0(1). (B11)
APPENDIX B: MATCHING IN THE JOSEPHSON LIMIT The quantities3, Q,, Q,, andm are defined as
If, from the parameters intervening in E@.5), we define B
z=tanf k(a+x_)], (B1) FOE§+0 g (812
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2 e3_el>1/2 Qg+ 2y 1) (B13)
a = —+o| =],

2 ° g 9

e,—e; 1-26
m=—-— = ° ). (B14)

= +0(1
€s—e 1+28e (

In this limit, the parameteo of Eq. (15) becomes+1. The
global matching equatiof20) can be rewritten as

y'(—ah)+y'(a)=gly(-a)-y(a)]. (B1H
Solving this equation order by order ingl/we get
srt(Qo|m)=0, (B16)
which is equivalent to
1-246
Qo=2nK 1-2Joe . n=12,.... (B1?
1+2se
From Egs.(B11) and (B13) we deduce
142/8e |2
Q=22 TJ—S) (B18)

for g large, and find that EqB17) leads to Eq(22) in the
text, which we wished to prove.

We also find that); can take value$),=—2p (for the
two symmetric solutions or Q,;=—Qg/a (for the two

asymmetric ones Solutions come in pairs because of the
guadratic character of EqB10). The behavior under the
transformationx— —x can be deduced from the expression

for the solution, which to leading order ingltakes the form

2nK+Q,/
SNRTEaIg. L

>a nK

ya(X)=e;+ ezsnz<

L 2B+ 1—2Ja—s), ©19

20 |1+2\se
whereK stands for the elliptic integral i(B17).
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APPENDIX C: OFFSET IN THE JOSEPHSON LIMIT

One can insert the asymptotic expressions obtained for
R2(x) in the previous appendix into the second integral of
Eqg. (8) and make use of the identity:

|' JMK(m)—Blg du c
im
gawg NK(m)+a/ig 1+0 ysré(u[m)
1
=T[(g—arctama\/;)>§,\,
Y
(C2)

T

> —arctan 8 Jy)

+

8M+7TN6},

valid for integersN,M and arbitrary positive values of
a,B,y, with 0<m<1. In Eq.(C2), N, is the number of even
integersp satisfyingN<p<M, and &y is defined as one
(zero for N even(odd. After some lengthy but straightfor-
ward algebra, one can prove that the current-phase relation
for the solutions of Eq(22) is (J>0)

n+1)m—A
J(Ag)=1—45s|sin ()#) ,
Ape[(n—=1)m,(n+1)7], (C3
for the symmetric solutions, and
Ap=nq, forall J, (C9

for the asymmetric solutions.
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