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Supercurrent flow is studied in a structure that in the Ginzburg-Landau regime can be described in terms of
an effective double-barrier potential. In the limit of strongly reflecting barriers, the passage of Cooper pairs
through such a structure may be viewed as a realization of resonant tunneling with a rigid wave function. For
interbarrier distances smaller thand05pj(T) no current-carrying solutions exist. For distances betweend0
and 2d0 , four solutions exist. The two symmetric solutions obey a current-phase relation of sin(Dw/2), while
the two asymmetric solutions satisfyDw5p for all allowed values of the current. As the distance exceeds
nd0 , a group of four solutions appears, each containing (n21) soliton-type oscillations between the barriers.
We prove the inexistence of a continuous crossover between the physical solutions of the nonlinear Ginzburg-
Landau equation and those of the corresponding linearized Schro¨dinger equation. We also show that under
certain conditions a repulsived function barrier may quantitatively describe a superconductor-normal-
superconductor~SNS! structure. We conclude that the critical current of a SNSNS structure vanishes as
ATc82T, whereTc8 is lower than the bulk critical temperature.

I. INTRODUCTION

The superconducting state is characterized by the exist-
ence of long-range phase coherence in the electron system,
and its characteristic nondissipative currents are associated
with spatial distortions of the macroscopic phase. Supercon-
ductivity is however not the only instance of electron trans-
port being phase coherent over distances much larger than
atomic length scales. Another important example is provided
by mesoscopic normal transport, which began to be investi-
gated about 15 years ago and which quickly matured into an
active branch of solid-state physics.1 Mesoscopic transport is
realized at low enough temperatures, when electrons may
preserve its phase coherence over long distances and thus
undergo coherent multiple scattering by impurities or bound-
aries. Interest in this area stimulated experimental and theo-
retical research on a rich variety of mesoscopic phenomena
in solids,2 each of which is associated with a specific quan-
tum interference process. Let us consider for a moment one
of the most characteristic examples: the Aharonov-Bohm
~AB! effect. This is the effect by which the electronic prop-
erties of a thin ring depend periodically on the threaded mag-
netic flux. As a mesoscopic phenomenon, it was first ob-
served in narrow normal cylinders3 and later in small rings.4

However, the AB effect in solids had already been observed
in superconducting rings not long after the discovery of the
Josephson effect.5 This observation was possible without the
availability of modern nanotechnology because of the exist-
ence of long-range phase coherence in superconducting
rings. Phase rigidity of the superconductor collective wave
function is enforced by the spontaneous breaking of gauge
symmetry. In contrast, the spatial coherence of the electron
field in a normal system cannot rely on the existence of a
phase transition and requires low temperatures and short
length scales to make itself noticed. One may adopt the
simple picture that the AB effect in a superconducting ring
relies on the phase coherence of the Cooper pair wave func-

tion, while its normal ring counterpart requires coherence of
the single electron propagator. This consideration leads us to
the question of whether, for any given electron interference
phenomenon observed in a normal mesoscopic system, there
may be a Cooper pair analog that could eventually be ob-
served in a macroscopic superconductor. We have seen that
there is an AB effect for single electrons as well as for Coo-
per pairs. In the first case, the conductance~more generally,
the current-voltage characteristics! is a function of the flux
with a strong periodic component.4 In the second case, it is
the critical current~more generally, the current-phase rela-
tion! that depends periodically on the flux. The question is
whether other quantum interference phenomena may also
display this dual nature whereby they can be realized in the
propagation of single electrons or Cooper pairs. A proper
comparison of the two types of dynamics requires the reso-
lution of the equations satisfied by the corresponding effec-
tive wave functions. In the case of normal electrons, and
within the noninteracting approximation, one has to look at
the wave function of Fermi electrons. In the superconducting
case, the attention must be turned to the order parameter
c(r )}^ĉ↑ĉ↓&, if one wishes to obtain information on the
global condensate behavior.

Within the Ginzburg-Landau~GL! approximation,c(r )
must be an extremum of the free-energy functional

F5E dr$u~¹2 iA!cu22@12V~r !#ucu21lucu4/2%, ~1!

whereV(r ) is an effective potential and reduced units have
been used.6,7 The parameterl is introduced here to eventu-
ally distinguish between the nonlinear GL case (l51) and
the linear case of a Schro¨dinger electron with reduced energy
equal to one (l50). Stationary solutions of Eq.~1! must
satisfy the equation

~ i¹1A!2c2@12V~r !#c1lucu2c50. ~2!
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From the study of Eq.~2!, we plan to investigate how Cooper
pairs behave under an effective potentialV(r ) that, in the
absence of nonlinearity, is known to yield a specific quantum
interference phenomenon.

Resonant tunneling~RT! is one of the best understood and
perhaps simplest quantum interference phenomenona.8 It can
occur in one dimension without the requirement of a non-
trivial topology. A quantum particle undergoes resonant tun-
neling when it has to traverse a double-barrier structure. As a
consequence of multiple inner reflection, the transmission
probability is very sensitive to such parameters as the elec-
tron energy or the interbarrier distance, peaking near well-
defined resonances. In this paper, we choose resonant tunnel-
ing as a case study in which to analyze the possibility of a
doublefold phenomenology in quantum interference pro-
cesses. For simplicity, we focus on the case of a quasi-one-
dimensional superconductor and assumed-function barriers,
so thatV(r ) in Eq. ~2! is taken to be of the form

V~x!5g@d~x2a!1d~x1a!#. ~3!

In the case ofg large andl50, Eqs.~2! and~3! yield the
essential phenomenology of RT for independent electrons.
For this reason, we will pay special attention to the case
l51 with g@1, although the crossover to moderate values
of g in the nonlinear case will also be analyzed.

We must specify the transport properties we wish to com-
pute. Ideally, one would like to compare identical device
properties, such as theI -V curve, which largely characterizes
a normal RT diode. However, we already encounter at this
stage a major difference between the two types of systems
we wish to study. Unlike in the case of normal transport, the
I -V characteristic is not the relevant quantity to obtain infor-
mation about the Cooper pair dynamics. The application of
an external biasV creates a nonequilibrium between the
populations of quasiparticles coming from each side of the
structure. Only very indirectly does this change in the quasi-
particle population affect the properties of the condensate,
and the existing effect is very sensitive to the dynamics of
single quasiparticles,9 which is very similar to that of normal
electrons. In contrast, the population of Cooper pairs cannot
be driven out of equilibrium, since they can only exist in a
condensed state. One could at most create a difference be-
tween the chemical potentials of the condensates on each
side of a structure. However, in the case of two barriers, one
only expects a straightforward realization of the ac Joseph-
son effect.

The current carried by the condensate is driven by spatial
variations of the macroscopic phase. For this reason, we fo-
cus on the study of the current-phase relation for configura-
tions c(x) satisfying Eq.~2! with V(x) given by ~3!. The
current-phase relation is only meaningful for a superconduct-
ing structure; thus, we can hope at best to give a qualitative
comparison between the two types of RT. One might still
foster hopes that something resembling the scattering wave
function of a single electron might still be obtained in the
formal limit of l→0. As we will see, however, this is not
case. Because of the difference in boundary conditions, the
solutions for the superconducting order parameter obtained
from Eq. ~2! with l51 and the wave functions for Schro¨-

dinger scattering states withl50 fall into qualitatively dif-
ferent classes of solutions that do not evolve continuosly into
one another asl→0.

The physical explanation to the major differences between
the normal and superconducting versions of RT is to be
found in the existence of strong correlations among Cooper
pairs, which is caused by their bosonic nature and by their
large mutual overlap. The picture of independent particles
undergoing coherent multiple scattering, which often applies
for Schrödinger electrons in the normal state, completely
breaks down in the case of Cooper pairs. The notion of many
independent pairs which individually experience quantum in-
terference and collectively combine to form a macroscopic
wave function would at best be adequate for a condensate
formed by noninteracting molecular pairs. However, such a
scenario is not known to occur in nature. One may have
superfluids made of strongly interacting bosons~case of
4He! or largely overlapping pairs (3He!, and superconduct-
ors with large~BCS! or moderately short coherence length
~case of cuprate superconductors!. The strong correlation in
conventional superconductors manifests itself through the
nonlinear term in Eq.~2!. As is characteristic of broken sym-
metry states, the resulting wave function is rigid and does not
obey a superposition principle. We will see that the stiffness
of the macroscopic wave function is the primary cause of the
important differences between the Cooper pair and the indi-
vidual electron scenarios.

Let us now return to the AB effect. We have already noted
that it can be observed both in superconducting and normal
~mesoscopic! rings. Being a direct consequence of electro-
magnetic gauge invariance,10 the AB effect is of a very fun-
damental nature. The transport properties of a thin ring must
always display a periodic~although not necessarily always
observable! dependence on the magnetic flux. In contrast, the
sensitivity of the current to, e.g., the interbarrier distance~for
a given electron energy and for a given normalization factor!
in a RT structure does not stem from any fundamental sym-
metry. We will see that a rich dependence of the structure of
the set of solutions on the interbarrier distance does certainly
exist. We will also conclude however that, at large separa-
tions, an important physical quantity like the critical current
becomes essentially independent of the interbarrier distance.

The search for a Cooper pair analog of resonant tunneling
has led us to investigate the interesting properties of super-
conducting structures that can be described by a free-energy
functional of the type~1!. As is proved in Appendix A, under
certain conditions, a quasi-one-dimensional superconductor-
normal-superconductor~SNS! structure without current con-
centration~S and N have the same width! can be quantita-
tively described by ad function in the effective GL equation.
As a consequence, the model given by Eqs.~2! and ~3! can
yield a quantitative description of a SNSNS structure of uni-
form width. We have found that the set of solutions to the
corresponding GL equation can display a very rich structure.
The main experimental prediction is that, in a SNSNS struc-
ture, the critical current vanishes with a law
I c(T);ATc82T, which differs markedly from the (Tc2T)2

behavior of the SNS case.11 In addition, we findTc8,Tc , i.e.,
for a SNSNS system, there is a depression~with respect to
the SNS case! of the temperature at which the critical current
vanishes.
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This paper is arranged as follows. After presenting the
model in Sec. II, an analytical study of the solutions to the
nonlinear Eq.~4! is presented in Sec. III. In Sec. IV, we
prove the inexistence of a continuous crossover between the
physical solutions of Eq.~2! and those of its linear version.
Some experimental predictions on temperature-dependent
transport properties are discussed in Sec. V. Finally, in Sec.
VI, we present some concluding remarks and comment on
how some of the qualitative conclusions of the present article
can be extended to other interference phenomena.

II. THE MODEL

In this paper, we wish to analyze the current-carrying so-
lutions of the nonlinear GL equation~2! with the effective
potential given by~3!. We may factorize the order parameter
c5Reiw and write a5A2¹w for the superfluid velocity.
The gauge-invariant electric current is then written
j52R2a. Within the assumption of a sufficiently narrow
wire ~width much smaller than the coherence and penetration
lengths! it is safe to neglect the dependence ofj andc on the
transverse variables. In these conditions, our analysis reduces
to the study of the solutions of the nonlinear differential
equation

d2R

dx2
1@12gd~x2a!2gd~x1a!#R2

j 2

R3 2lR350 ~4!

for arbitrary values ofg ~hereafter,l51, unless otherwise
stated!. In a quasi-one-dimensional superconductor, we may
chooseA50 and write for the phase

w~x!5 j E
0

x dx8

R2~x8!
, ~5!

where the current densityj is a conserved number, the total
current through a lead of cross sectionA being I5 jA. For
the superconducting order parameter we are interested in so-
lutions satisfying the boundary conditions

R5R`

w~x!5qx6Dw/2J for x→6`, ~6!

R` being the biggest solution~i.e., that with the lowest free
energy! of the equation

R62R41 j 250. ~7!

In Eq. ~6!, a nonzero value ofq5 j /R`
2 accounts for a linear

variation of the phase at infinity,12 and the possibility of a
phase offset

Dw[E
2`

`

@w8~x!2q#dx5 j E
2`

` S 1

R2~x!
2

1

R`
2 Ddx ~8!

has been introduced. As in the single-barrier case,12 Dw will
turn out to be a most convenient parameter to classify the
solutions of Eqs.~4! and ~6!.

One may wonder whether, apart from describing the con-
densate analog of resonant tunneling, the doubled barrier
model may quantitatively describe a specific physical sys-
tem. Fortunately, the answer is yes. It is proved in Appendix
A that, within the GL approximation, ad-function effective

barrier can serve as a quantitative model for a SNS structure.
More specifically, we show that, ifjN is the coherence length
of the normal metal, the effect of a normal segment of length
L inserted in a superconducting wire can be rigorously mod-
eled by ad function of strength

g5
Lj~T!

jN
2 , ~9!

provided thatL!jN!j(T), wherej(T) is the temperature-
dependent coherence length. Since this effectived barrier
yields the correct matching properties of a realistic SNS
system,13 we may conclude with confidence that a model
with a doubled-function barrier will correctly describe a
SNSNS system.14 In addition, the fact that both the barrier
strengthg and the effective lengtha are functions of tem-
perature for a given physical structure@note that
a5d/2j(T), whered is the physical distance between the
normal islands# permits us to use temperature as a conve-
nient driving parameter to tuneg(T) anda(T). This prop-
erty has important experimental consequences that will be
discussed in Sec. V.

Regarding the temperature dependence of the effective
parameters, it is interesting to note that, asT→Tc , one has
g(T)→` and a(T)→0. Therefore, the Josephson limit
(g@1) can always be explored by drivingT sufficiently
close toTc . In the Josephson regime, the currents are nec-
essarily much smaller than the bulk critical current. As a
consequence, the spatial variation of the phase can be safely
neglected for many purposes and the phase offset can be
identified with the conventional ‘‘phase difference’’ between
the two superconducting terminals,Dw.w12w2 . In Refs.
12 and 15 it was shown that, for largeg, the critical current
in the presence of ad barrier is

j c
~1!51/2g. ~10!

Since the bulk (g50) critical current is, in these units,
j b50.385, one can derive the relation

g51.30~ j b / j c
~1!!, ~11!

valid for largeg. Going beyond thed-barrier model, one can
show that the critical current for a SNS system of arbitrary
normal lengthL is16

j c
~1!5F2j~T!

jN
sinhS LjND G

21

, ~12!

provided that the resultingj c is much smaller thanj b . One
may readily note that the result~12! is consistent with Eqs.
~9! and ~10! in the limit L!jN .

III. EXACT SOLUTIONS

A. General properties

In this section, we study the solutions of Eq.~4! satisfying
the boundary conditions~6!. There is a mechanical analog
that helps to understand some general properties of its
solutions.17 Equation~4! may be viewed as the force equa-
tion for a classical particle of unit mass with positionR at
time x moving under a potential
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v~R!52lR4/41R2/21 j 2/2R2. ~13!

In the GL case (l51), configurations represented by points
A and B of Fig. 1~a! satisfy the asymptotic condition
dR/dx50, with B energetically more favorable. The picture
is that of a classical particle which, at remote times
(x→2`), stays in pointB. At negative times, it begins to
roll down and, after receiving two kicks at timesx56a, it
returns asymptotically (x→`) to pointB. At each pulse, the
change in the mechanical energy«[R82/21v(R) is deter-
mined by the matching condition

R8~x1!2R8~x2!5gR~x!, ~14!

at pointsx56a. Figure 1~b! shows one particular solution
R(x) that exactly correlates with the mechanical analogue
schematically depicted in Fig. 1~a!.

The energy before and after the two kicks is«5v(R`).
Equation~14! indicates that the effect of barriers is that of
making the velocityR8(x) more positive. If the system is to
return to pointB at x→`, it is not difficult to see that the
conditionsd«0,0 ~whered«0 is the change in mechanical
energy at pointx52a) andR8(2a2),0 must be satisfied,
and, for analogous reasons,R8(a1).0. These two con-
straints force the solutions to be of the form18

R2~x!5Z1Utanh2@k~x2x1~2 !!#, x.a~x,2a!,

R2~x!5e11~e22e1!sn
2S sAe32e1

2
~x1a!

1F0 Ue22e1
e32e1

D , uxu,a, ~15!

where Z is the smallest root of Z(Z22)258 j 2,
U[123Z/2, k[AU/2, and sn(xum) is a Jacobi elliptic
function.18 Defining the functiony(x)[R2(x) and the pa-
rametersy0[y(2a) andy08[y8(2a2) ~both of them func-
tions of x2), the matching condition~14! at x52a deter-
minese1 ,e2 ,e3 as the roots of the polynomial

P~s![~s2Z!~s211Z/2!214d«0s, ~16!

with e1<e2<e3 , and where the change in« is

d«05g~y081gy0!/2. ~17!

Finally,

F0[FSarcsinAy02e1
e22e1

Ue22e1
e32e1

D ~18!

whereF(wum) is the incomplete elliptic integral of the first
kind,18 ands in ~15! is defined as

s[sgn~y0812gy0!. ~19!

In the limit (y0812gy0)→0, it can be shown that both values
of s in Eq. ~15! lead to the same result forR2(x).

In analogy with y0 and y08 , we definey1[y(a) and
y18[y8(a2). The second kick will take us asymptotically to
the valueR` if it causes an energy changed«1 such that
d«11d«050. This leads us to write the relationship

y181gy11y081gy050 ~20!

as the global matching condition. Equation~20! determines
implicitly the parameterx2 to be introduced in Eq.~15!.
Through the integration of Eqs.~4! and ~5!, each possible
value ofx2 uniquely determines one solution of Eq.~4! sat-
isfying the boundary conditions~6!. Thus,x2 is a parameter
that completely characterizes a given physical solution. Our
goal is therefore to solve numerically for all possible values
of x2 satisfying Eq.~20! for a given value ofj .

A quantity of interest is the critical current, which we plot
in Fig. 2 as a function of the~reduced! semidistance between
barriers for several values of the barrier strength. The result
is given in units of the critical current for a single barrier
with the same strength,Jc(a,g)[I c(a,g)/I c

(1)(g). For sepa-
ration distances much larger thanj(T) the critical current
becomes identical to that of a single barrier, regardless of the
value of g. This is the limit in which the two barriers are
effectively decoupled. The decoupling at long distances is

FIG. 1. ~a! Potential energyv(R) @see Eq.
~13! in the text# for the mechanical analog of Eq.
~4! with j50.01,g52 anda52, for l51 ~solid
line! and l50.8 ~dotted line!; the straight lines
depict one possible trajectory of the equivalent
particle that begins and ends at pointB, the num-
bers in the arrows indicating time-ordered flights
between kicks~the distance between the two
horizontal lines is exactlyd«). ~b! Inverted rep-
resentation of the particular solutionR(x) of Eq.
~4! whose equivalent mechanical trajectory is that
depicted in~a!.
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caused by the nonlinear term in Eq.~4!. In contrast, the dy-
namics of an electron obeying the linear Schro¨dinger equa-
tion is always sensitive to the presence of both barriers. We
will see however that, in the nonlinear case, there are always
solutions with high free energy that are sensitive to the pres-
ence of both barriers~in the sense that they cannot be viewed
as simple combinations of single-barrier solutions!, but these
energetic solutions become increasingly irrelevant at large
separations.

We observe in Fig. 2 that, for moderate values ofg, there
is a slight depression of the critical current with respect to
the single-barrier case, if the reduced semidistance isa&1 ~a
similar effect was noticed in Ref. 19 for the case of weak
links!. This effect becomes more pronounced asg gets larger.
For g510, the law 1/2g already applies approximately for
the critical current of single barrier and thenJc.1/2 for
a50, as expected from a single barrier with doubled
strength. Deep in the Josephson regime (g520 or larger!, the
interval 0,a,p/2 is practically depleted of solutions and
the critical current is essentially zero. As will be seen later,
this has noticeable experimental consequences, since the
value of the reduced distance is temperature dependent. In
the following two subsections, we analyze the main proper-
ties of the solutions of Eqs.~4! and~6! over the whole range
of possible values ofg.

B. Josephson limit„g˜`…

In the limit of large scattering strength (g→`), the pres-
ence of a single barrier is known to yield the ideal Josephson
behavior12,15

j5~1/2g!sin~Dw!, ~21!

where the phase offsetDw can be identified with the conven-
tional ‘‘phase difference’’ between the two weakly linked
superconductors. For the double-barrier case, the parameter
d«[2d«0 serves to characterize the continuous set of solu-

tions in the regime of largeg. For a given value of the
current j , it is shown in Appendix B thatd« takes values
between 0 and (12J2)/4, whereJ[2g j is the current in
units of the critical current for a single-barrier structure. We
also show in Appendix B that the matching condition~20!
can be rewritten as

a5nG~d«!, n51,2, . . . ,

G~d«![S 2

112Ad«
D 1/2KS 122Ad«

112Ad«
D , ~22!

whereK(m)[F(p/2um) is the complete elliptic integral of
the first kind.18 For each integern that meets the requirement
~22! there are four solutionsR(x), all of them corresponding
to the same value ofd«. The quantity 2G(d«) is the spatial
period of the solution between barriers. Thus, for each solu-
tion of Eq. ~22! that we may find for a given value ofn in a
structure of interbarrier distance 2a, we can always construct
a solution for the structure of distance 2(a1G) whose index
is n11 and which is identical to the previous one except for
the presence of an extra oscillation.

The structure of the solutions can be clearly appreciated
in Fig. 3. In the Josephson limit, we see that there are no
solutions for 2a,p (Jc50). For 2a.p the critical current
becomes nonzero and a group of four solutions appears, two
symmetric and two asymmetric under the inversion
x→2x, the two asymmetric ones being the mirror image of
each other. Their current-phase relation is shown in Fig. 4~a!
for a51.74. The symmetric solutions form two branches
that combine to yield the curve

I5I c~a,g!sin~Dw/2!, ~23!

which is the naive expectation for two Josephson junctions in
series. In contrast, the two asymmetric solutions obey the
law

FIG. 2. Critical current as function of the semidistance between
barriers for several values of the parameterg. The distance is given
in units of j(T) and the current is given in units of the critical
current for a single barrier with the sameg ~see text!.

FIG. 3. Representation of the matching equation~22! in the text.
The quantitynG(d«)/p is plotted for several values of the indexn.
A set of four solutions exists for each combination ofn andd« that
meets the requirementnG(d«)5a, wherea is the reduced semi-
distance between barriers.
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Dw5p, for all I . ~24!

This peculiar current-phase relation can be simply under-
stood if the two junctions are assumed to be sufficiently far
apart. In this case, the central peak inR(x) between the two
barriers becomes a long plateau and the two barriers behave
as independent. For a given current, there are two possible
values of the phase,Dw1 andDw2 , satisfying Eq.~21!. In
the presence of the two barriers, these two phase values may
combine in four different ways. In two cases, the phase dif-
ference is the same in both barriers. Then,Dw equals
2Dw1 or 2Dw2 . This results in a sin(Dw/2) law for the
symmetric solutions. In the other two cases, a different phase
change takes place in each barrier. But the total phase differ-
enceDw is given by the sum of the two values, which is
exactly

Dw11Dw25p. ~25!

This explains Eq.~24! and the double vertical branch shown
in Fig. 4~a!. The above set of considerations makes the re-
sults~23! and~24! quite plausible, and even expected, for the
case of large separations. The not so obvious result is that the
same conclusions hold when the separation distance is com-
parable toj(T) and the two barriers can in no way be viewed
as decoupled. This result can be proved rigorously from ana-
lytical considerations~see Appendix C!. The smallness of the
distance between barriers makes itself noticed only through a
depression of the critical current with respect to the single-
barrier case, butnot in the qualitative form of theI (Dw)
curves.

As the distance grows, the maximum current of the group
of four solutions saturates to the critical value for a single
barrier. As indicated in Fig. 3, a new group of four solutions
appears whena.p, and their current-phase relation is
shown in Fig. 4~b!. Comparison with Fig. 4~a! reveals two

features of theI (Dw) relation:~i! for a not much larger than
p, the maximum current value of the second group of solu-
tions has not yet reached the saturation value, and~ii ! all the
values ofDw are shifted byp with respect to the first set of
four solutions. Again, these features are easy to understand if
the two barriers are assumed to be far apart. The new group
of solutions resembles the first set of four, except in that a
soliton ~i.e., a spontaneous local depression of the gap12!
contributing an extra phase ofp has nucleated between the
barriers. As the two barriers separate, the added depression
of the order paramater, which may initially be viewed as the
result of quantum interference oscillations, evolves into a
well-defined, isolated soliton. Remarkably, the additional de-
pression inucu contributes exactlyp to the phase, even when
the two barriers are relatively close and the depression does
not act as an isolated kink but rather as an additional oscil-
lation. It must also be noted that, sincejÞ0, we haveucu
Þ0 at all points.

As the separation distance is made increasingly larger, the
same pattern repeats itself. Each time the distance 2a ex-
ceeds an integer multiple ofp, a new group of four solutions
appears, with a structure similar to that of the preceding set
of four solutions except for an extra phase ofp. As the
interbarrier distance continues to increase, new sets of solu-
tions emerge periodically, always in groups of four. For a
given distance, the groups of solutions that are most sensitive
to the double-barrier feature~as indicated by its not yet satu-
rated maximum value! are those with a higher free energy
resulting from a higher number of modulations in the order
parameter. These very energetic solutions can be expected to
be irrelevant in practice, except perhaps to account for fine
details in the dynamic behavior. Therefore, it may be stated
with reasonable confidence that the two barriers become ef-
fectively decoupled for practical purposes~also in regard to
the dynamic behavior! when the maximum current of the
second group of solutions has reached the saturation value.
This happens approximately for 2a.3p.

Computation of the critical current.Equation ~22! ~see
also Fig. 3! indicates thatd« is a unique function ofa andn,
so that the product in the right-hand side of Eq.~B10! must
be constant within a given group of four solutions. The high-
est possible value ofJ ~which is always to be found in the
n51 group! is obtained by imposingv(12v) to take its
maximum value of 1/4. Thus we conclude that the critical
currentJc[2g jc is given by the relation

a5S 2

11A12Jc
2D 1/2KS 12A12Jc

2

11A12Jc
2D . ~26!

Equation~26! yields the curveJc(a) for the critical current
in the Josephson limit, and the result has been plotted in Fig.
2.

C. Intermediate and small values ofg

In Fig. 5 one can analyze the crossover between the re-
gimes of large and small values ofg for the same barrier
distances we considered in the discussion of the Josephson
limit ~see Fig. 4!. Let us comment on the case ofa51.74. As
we depart from the limit of very largeg, an extra branch
appears of solutions withp<Dw<2p and with a low criti-

FIG. 4. Current as a function of the total phase difference for
a51.74~a! anda53.5 ~b!, in the limit of g very large. The current
is given in units of the critical current for a single barrier with the
sameg, so that limg→`2g j is plotted.
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cal value@see the graph in Fig. 5~a! for g520#. As g de-
creases further, the low current solutions withDw near 2p
disappear and the resulting branch begins to shrink until it
merges ~for g;0.2) with the solutions that formed the
double vertical branch in the Josephson limit. Forg→0, the
two sets of solutions withDwÞ0 form a triple branch cor-
responding to three single solitons nucleated at points
x050 and

x056
1

k
arctanhS A3a221

aA32a2D , a[tanh~ka!. ~27!

This result can be obtained analytically from the matching
Eq. ~20! and from the properties of the solutions~15! in the
limit g→0. Meanwhile, in the same process of decreasingg,

the branch of solutions with the smallest phase offset evolves
towards the set of uniform solutions@those for which
R(x)5R` and Dw50# that are characteristic of a perfect
superconductor.12

As can be seen in Fig. 5~b!, the crossover presents similar
characteristics for the case wherea53.5. Like in the Joseph-
son limit, the main differences for largeg ~with respect to
previous shorter distance case! lie in the extra value ofp of
Dw shown by the second set of solutions and in the presence
of a fourfold branch with a saturated critical current value.
As g decreases, the evolution of the four solutions with
higher phase offset runs similar to that of their counterparts
in Fig. 5~a!. New interesting features appear however for low
values ofg. At g50.5 and 0.2 it is clear that the two groups
of four solutions begin to merge into a simpler pattern of
single and double solitonic solutions~with Dw tending to
p and 2p asJ→0, respectively!. Since double soliton solu-
tions cannot exist in the transparent case, the corresponding
~fourfold! branch begins to detach from the rest of curves
and to decrease its critical current until it eventually disap-
pears. Forg→0 the remaining branch is identical to its coun-
terpart in the shorter distance case: three solutions of single
solitons located in the same points as above and one uniform
branch with zero phase offset. Incidentally, it can be shown
that for a<(2k)21ln(21A3) only the soliton atx050 sur-
vives. This is not the case however in any of the two dis-
tances considered here.

An interesting consequence of studying the crossover be-
tween large and small values ofg is that, among the curves
shown in Fig. 5, we can recognize similarities with current-
phase relations computed for other structures that, not being
exactly SNSNS, share some common features. For example,
Martin-Rodero et al.20 have performed a self-consistent,
zero-temperature calculation of the current-phase relation in
mesoscopic weak links, modeled by a tight-binding chain
linked to two broad Bethe lattices that act as superconducting
reservoirs. Despite of the obvious differences between the
two physical models, the similarity between some of the re-
sulting curves is striking. For instance, the current-phase re-
lation shown for the two longest chains in Fig. 2~c! of Ref.
20 resemble some of the branches we obtain forg55 and 20
in thea51.74 case. It is interesting to note that the curves of
Ref. 20 that look alike correspond precisely to the case of
strong internal reflection at the constriction. One concludes:
~i! the nonlinear term of the GL equation has an effect very
similar to that of self-consistency in a zero-temperature cal-
culation; and~ii ! the essential physics rests in the nonlinear
effects taking place within the finite superconducting seg-
ment and the effective scattering at its two ends, the physical
details of the semi-infinite S leads being less important. Con-
clusion ~i! is what one expects from inspecting the micro-
scopic derivation of the GL formalism, and it has already
been noted in connection with the crossover for large to
smallg in the single-barrier case.12

IV. INEXISTENCE OF A CONTINUOUS CROSSOVER
BETWEEN THE LINEAR AND NONLINEAR PROBLEMS

It has already been commented in the Introduction that
there are qualitative differences in the physics described by
Eqs. ~2!–~4! in the linear~Schrödinger! and nonlinear~GL!
cases. However, one might still think that, from a mathemati-

FIG. 5. Current as a function of the phase offset for several
values ofg in the casesa51.74 ~a! and a53.5 ~b!, in the same
units as in Fig. 2.
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cal point of view, there could be a continuity~as a function
of l) between the order-parameter configurations satisfying
the GL equation (l51) and the scattering wave function for
a Schro¨dinger electron in the presence of potential~3! with
l50 and unit energy. Again, it is useful to consider the
mechanical analog represented in Fig. 1. The wave function
of a retarded scattering state is of the type
c;eikx1re2 ikx, for x<2a, if the electron is coming from
the left, so that the amplitudeR5ucu displays oscillations in
the left asympotic region. The mechanical picture to intro-
duce in Fig. 1 would be that of a particle which at remote
timesx→2` is oscillating between two return points with
energy «,v(R`), receives two sudden pulses at times
x56a, and ends asymptotically in one of the stationary
points ~this corresponds to the uniform amplitude solution
c;teikx to be found in thex.a region!. Thus we see that a
major difference between the two cases lies in the asympotic
behavior ofR(x), which is always uniform for the supercon-
ducting order parameter while it may oscillate for a Schro¨-
dinger electron. The only remaining possibility to find a
common mathematical wave function must be looked for in
that combination of parameters which yields a transmission
unity for the electron linear wave, since in this caseR would
be uniform on both sides of the structure. The equivalent
mechanical particle would start from a stationary point to
which it would return at late times. The problem is that, for
an electron satisfying the linear Schro¨dinger equation, that
stationary point has to beA ~see Fig. 1!, and notB, as is the
case for the GL order parameter. Although a rigorous dem-
onstration of this statement is possible, it suffices to note
that, asl→0, the potential maximum atB moves toward
infinite values ofv and R ~seeB8 in Fig. 1 for l50.8),
effectively disappearing from the picture whenl50. Thus
the only stationary point that is available in the linear case to
describe purely transmitted waves is precisely pointA, quali-
tatively different fromB even in the limitl→0. We con-
clude that, as the nonlinear term in Eq.~4! is made to vanish
(l→0), there does not exist a continuous crossover between
the physical solutions of the nonlinear Ginzburg-Landau
equation and those of the linear Schro¨dinger equation.

V. EXPERIMENTAL PREDICTIONS

The proximity between barriers is most noticeable when
the low-energy solutions are sensitive to it. Of course, the
most dramatic effects can be seen for 2a,p, when no so-
lutions exist at all in the largeg limit. This has interesting
experimental consequences. We must first remember thata is
the reduced semidistance in units ofj(T), i.e.,
a(T)5d/2j(T). This means that, for a given structure with a
fixed physical distanced, the reduced distance 2a can be
made arbitrarily small by driving the temperature sufficiently
close toTc , since thenj(T)5j08(12T/Tc)

21/2→` ~for a
clean superconductor,j0850.74j0 , while for a dirty super-
conductorj0850.85Al j0, l andj0 being the mean free path
and the zero-temperature coherence length, respectively21!. If
the double-barrier structure is formed by two normal seg-
ments, we know from the analysis in Sec. III thatg(T) scales
towards the Josephson limit. Therefore, there is a tempera-
ture Tc8,Tc above whichd,pj(T). Since, at the same
time, g(T) is very large, this has the consequence that no

current-carrying superconducting solutions are allowed in
the temperature intervalTc8,T,Tc . The result is that, for a
SNSNS structure, there is a depression~with respect to the
SNS case! in the critical temperature above which the critical
current becomes zero.

In Fig. 6, the critical current is plotted as a function of
temperature for both a SNS and a SNSNS structure. The
main feature of the resultingI c(T), namely, the law with
which it vanishes, is amenable to an analytical treatment. In
Sec. III, we derived Eq.~26!, which determinesJc(T) for a
given value ofa(T). Since we are interested in finding out
how the critical current vanishes, we may expand the right-
hand side of Eq.~26! for small values ofJc(T) and obtain

a~T![
d

2j08
ATc2T

Tc
.

p

2 S 11
3

16
Jc
2~T! D . ~28!

The temperatureTc8 for which Jc(Tc8)50 is Tc85Tc2DTc ,
with

DTc5S pj08

d D 2Tc . ~29!

Equation ~29! is actually an upper bound to the value of
Tc2Tc8 , and it tends to the exact value when the condition
g(Tc8)@1 is consistently satisfied.

After some simple algebra, we get for the critical current
~in real units!:

I c~T!5I c
~1!~Tc8!S 8

3p2D 1/2S dj08D S Tc82T

Tc
D 1/2, T→Tc8 ,

~30!

where

I c
~1!~T!5

A

g~T! S e\

m D c`
2 ~T!

j~T!
5
A

L S \c2

16peD S jN
kj80

2D 2 ~Tc2T!2

Tc
2

~31!

FIG. 6. Temperature dependence of the critical current in the
vicinity of the critical temperature, for SNS and SNSNS structures
without current concentration.d/j08510 has been taken, and units
are such that the prefactor of (12T/Tc)

2 in Eq. ~31! equals unity.
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is the critical current of a SNS structure at temperatureT, A
being the cross area of the junction andk[l(T)/j(T) is the
Ginzburg-Landau parameter of the superconductor. The
square-root behavior ofI c(T) for a SNSNS structure con-
trasts markedly with the (Tc2T)2 law of the SNS case.11

Simple estimates suggest that the predicted depression in
the critical temperature should be measurable. For example,
for a SNSNS structure made with superconducting Al
(Tc51.19 K andj051.6 mm! with d510j0 ~which falls
within the validity of GL regime! one would obtain a de-
crease ofDTc;0.05 K. On the other hand, it is interesting to
note that, if the conditiond@j0 is satisfied, there is a range
of temperatures sufficiently far belowTc for which
d@j(T) and, thus,I c(T).I c

(1)(T).
The sensitivity of the effectiveg to temperature can be

exploited in other interesting ways. For example, by varying
the temperature, one may drive a given SNS or SNSNS
structure from the large to the smallg regime. Consider a
SN̄S structure made in a narrow wire of finite length at
whose extremes we apply an external voltage. N¯is a normal
metal with critical temperatureT̄c,Tc . WhenT gets close
to Tc , g(T) becomes large, and so doesj(T). Both facts
contribute to yield an ideal Josephson behavior@a large value
of j(T) makes the length of the wire effectively shorter, thus
facilitating the adiabatic response characteristic of the ac Jo-
sephson effect12#. As an external voltage is applied, the cur-
rent oscillates very rapidly and one observes a zero time
average,I av50. As the temperature is lowered belowT̄c , the
structure becomes of the type SSS̄ with an effectiveg&1
~we may choose S̄to be not very different from S!. The
situation is then close to that of a uniform superconductor
and the system cannot respond adiabatically to the externally
applied bias.12,17,22Some type of resistive behavior has to be
displayed, with the result thatI avÞ0. The net effect is that,
by lowering the temperature, it is possible to drive a given
SNS structure from adiabatic to resistive response.

VI. CONCLUSIONS

We have studied superconducting flow in structures
which, in the Ginzburg-Landau regime, can be described by
a double-barrier effective potential. We have found that the
critical current is depressed with respect to the single-barrier
case. In the limit of strongly reflecting barriers,I c can be-
come effectively zero for interbarrier distances
d,d0[pj(T). As d exceedsd0 , four solutions~two sym-
metric and two asymmetric! appear, as might be expected for
two Josephson links in series. Asd grows even larger, new
solutions appear, always in groups of four. The supression of
I c for short distances has practical consequences, since
d0(T)→` as T→Tc , and the conditiond<d0 is always
reached by any device ifT is sufficiently close toTc . Thanks
to this analysis, we have found that the critical current of a
symmetric SNSNS structure is lower than that of a SNS
structure with an equivalent N segment. More important, the
law with which I c(T) vanishes is qualitatively different in
each case~see Fig. 6!: I c(T) decays asATc82T in a SNSNS
structure, as opposed to the (Tc2T)2 behavior of the SNS
case, with the inequalityTc8,Tc being always satisfied.

We have also shown that, because of the different bound-

ary conditions, the solutions of the GL equation cannot
evolve continuously towards the scattering solutions of the
linear Schro¨dinger equation as the nonlinear term is formally
made to vanish.

We close this article by returning to the question that ini-
tially motivated it, namely, the possibility of finding a mac-
roscopic quantum analog of a specific interference process
such as the resonant tunneling of Schro¨dinger electrons. It
was already commented in the Introduction that, given the
important differences between the relevant transport proper-
ties of the physical systems involved, the analogy would at
best be qualitative. We have learned that a basic fact such as
the dependence of transport behavior on the interbarrier
distance—all other parameters being equal—effectively dis-
appears in a superconducting structure withd@pj(T) ~see
Fig. 2!. Sincej(T) is the length scale needed for the nonlin-
ear term in Eq.~2! to make itself noticed, we may adopt the
view that the nonlinear term in the GL equation acts as a
dephasing term that damps any interference effect requiring
modulation of the wave-function amplitudeR ~as would be
caused, i.e., by the interference of waves traveling in differ-
ent directions!. This picture allows us to extrapolate our con-
clusion on the inequivalence of macroscopic and micro-
scopic resonant tunneling to other interference phenomena.
Consider, for instance, weak localization. If one considers a
superconducting structure which, in the GL regime, is de-
scribed by Eq.~2! with a weakly disordered effective poten-
tial V(r ), could we expect that quantum interference might
cause a reduction of, i.e., the critical current? From the
analysis presented here, the answer seems to be no, at least
when the distance between ‘‘impurities’’ is much larger than
j(T): the nonlinear term would damp interference effects to
the point of making each impurity act as isolated. In particu-
lar, one should not expect to observe the macroscopic
equivalent of Anderson localization. A similar conclusion
holds, in principle, for other mesoscopic phenomena based
on geometry-induced quantum interference such as the
modulation of current by a tuning stub:23 one should not
expect any type of interference effect associated to the col-
lective wave function in a superconductor enclosed in a spe-
cific ~topologically trivial! geometry, as long as the relevant
length scales are of orderd@j(T). As indicated in the In-
troduction, real analogs are to be found only for those ‘‘in-
terference’’ phenomena based on fundamental symmetries
such as gauge invariance, which gives rise to the Aharonov-
Bohm effect. A qualitative conclusion is that care must be
taken when developing physical intuitions based on the idea
that the superconducting order parameter plays the role of a
macroscopic quantum wave function.

ACKNOWLEDGMENTS

We wish to thank Jaime Ferrer for valuable discussions.
This work has been supported by CICyT, Project No.
MAT91-0905, by DGICyT, Project No. PB93-1248, and by
the Human and Capital Mobility Programme of the EC. One
of us ~I.Z.! gratefully acknowledges the support from the
Comunidad Auto´noma de Madrid. Support from the Institute
for Scientific Interchange~Torino, Italy! is also acknowl-
edged.

53 6701SUPERCURRENT FLOW THROUGH AN EFFECTIVE DOUBLE- . . .



APPENDIX A: DEDUCTION OF THE d BARRIER MODEL
FOR A SNS STRUCTURE

Suppose we are given a quasi-one-dimensional SNS
structure. Let the normal metal occupy the region
@2L/2,L/2#. Tc

(N) andTc
(S) are the critical temperatures of N

and S, respectively. We haveTc
(N),T,Tc

(S) and assume
Tc
(S)2Tc

(N)!Tc
(N) . Following Refs. 11 and 24, we assume

that both N and S have the same order parameter to gap ratio,
c/D, as well as the same quasiparticle mass. It can be
proved24 that, in these conditions, the Ginzburg-Landau
equations are valid for allx, and that the matching condi-
tions are determined by the continuity ofc and its first de-
rivative atx56L/2. Thus one has

2
\2

2m

d2R

dx2
1aSR1bSR

31
mj2

8e2R3 50 uxu.L/2,

~A1!

2
\2

2m

d2R

dx2
1aNR1bNR

31
mj2

8e2R3 50 uxu,L/2,

~A2!

where R(x)5uc(x)u and aN ,bN (aS ,bS) refer to the
Ginzburg-Landau parameters of the normal~superconduct-
ing! metal, all of which depend on temperature.

As T approachesTc
(S) , we can neglect the termbNR

3 in
Eq. ~A2! and the remaining parameters of the normal metal
can be replaced by their fixed values atTc

(S). Shifting to
reduced units of the superconductor7 we write

2
d2R

dx2
2R1R31

j 2

R3 50 uxu. l /2, ~A3!

2
d2R

dx2
1uR1

j 2

R3 50 uxu, l /2, ~A4!

wherel[L/j(T). This model is identical to that considered
by Jacobson16 with

u[
j2~T!

jN
2 @1. ~A5!

If u@ j c
2/R4, the integration of~A4! along the normal seg-

ment yields

R8~ l /2!2R8~2 l /2!. luR, ~A6!

whereAu l5L/jN!1 has been assumed, so thatR(x) can be
approximated as constant within the integral. In these condi-
tions, the effect of the normal metal can be exactly mimicked
by a d barrier located atx50 with a strength

g[ lu5
j~T!L

jN
2 , ~A7!

as we wished to prove.

APPENDIX B: MATCHING IN THE JOSEPHSON LIMIT

If, from the parameters intervening in Eq.~15!, we define

z[tanh@k~a1x2!#, ~B1!

it is not difficult to see thaty0 andy08 defined in the text are
given by

y05Z1Uz2, ~B2!

y085A2U3~z32z!. ~B3!

So, the conditiony08<0 implies 0<z<1. Equation~17! for
d«0 can then be rewritten as

d«0~z!5
g

2
@A2U3~z32z!1g~Z1Uz2!#. ~B4!

The additional requirementd«0,0 implies thatz is further
restricted to the rangezmin,z,zmax, wherezmin ,zmax are the
roots ofd«0(z) lying between 0 and 1. We definev as

z[zmin1v~zmax2zmin!, ~B5!

so that, obviously, 0,v,1.
In the Josephson limit (g→`) it is easy to see that

Z.J2/2g2 (J[2g j) andU.1. Since, in the same limit, the
only surviving finite root ofd«0(z) is z50, we can neglect
z3 in front of z in Eq. ~B4!. Thenzmin andzmax can be easily
calculated as the roots of

2A2z1
J2

2g
1gz250. ~B6!

To leading order in 1/g, we get

zmax,min5
1

gA2
~16A12J2! ~B7!

and, from~B5!,

z5
11~2v21!A12J2

gA2
1oS 1gD , ~B8!

where o(1/gn) stands for any expression such that
limg→`g

no(1/gn)50. From Eq. ~B4!, we obtain, also to
leading order,

d«0~z!5
g

2 SA2z1
J2

2g
1gz2D , ~B9!

which can be easily shown to lead to

d«[2d«05v~12v!~12J2!. ~B10!

For the other quantities in Eq.~15!, we obtain

e15
J2

2~124d«!

1

g2
1oS 1g2D ,

e25122Ad«1o~1!,

e35112Ad«1o~1!. ~B11!

The quantitiesb, V0 , V1 , andm are defined as

F0[
b

g
1oS 1gD , ~B12!
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2aS e32e1
2 D 1/2[V01

V1

g
1oS 1gD , ~B13!

m[
e22e1
e32e1

5
122Ad«

112Ad«
1o~1!. ~B14!

In this limit, the parameters of Eq. ~15! becomes11. The
global matching equation~20! can be rewritten as

y8~2a1!1y8~a2!5g@y~2a!2y~a!#. ~B15!

Solving this equation order by order in 1/g, we get

sn2~V0um!50, ~B16!

which is equivalent to

V052nKS 122Ad«

112Ad«
D , n51,2, . . . . ~B17!

From Eqs.~B11! and ~B13! we deduce

V0.2aS 112Ad«

2 D 1/2 ~B18!

for g large, and find that Eq.~B17! leads to Eq.~22! in the
text, which we wished to prove.

We also find thatV1 can take valuesV1522b ~for the
two symmetric solutions! or V152V0 /a ~for the two
asymmetric ones!. Solutions come in pairs because of the
quadratic character of Eq.~B10!. The behavior under the
transformationx→2x can be deduced from the expression
for the solution, which to leading order in 1/g takes the form

yn~x!.e11e2sn
2S 2nK1V1 /g

2a
x1nK

1
2b1V1

2g U122Ad«

112Ad«
D , ~B19!

whereK stands for the elliptic integral in~B17!.

APPENDIX C: OFFSET IN THE JOSEPHSON LIMIT

One can insert the asymptotic expressions obtained for
R2(x) in the previous appendix into the second integral of
Eq. ~8! and make use of the identity:

lim
g→`

gE
NK~m!1a/g

MK~m!2b/g du

11g2gsn2~uum!
~C1!

5
1

Ag
F S p

2
2arctan~aAg! D dN

~C2!

1S p

2
2arctan~bAg! D dM1pNeG ,

valid for integersN,M and arbitrary positive values of
a,b,g, with 0,m,1. In Eq.~C2!, Ne is the number of even
integersp satisfyingN,p,M , and dN is defined as one
~zero! for N even~odd!. After some lengthy but straightfor-
ward algebra, one can prove that the current-phase relation
for the solutions of Eq.~22! is (J.0)

J~Dw!5A124d«UsinS ~n11!p2Dw

2 D U,
DwP@~n21!p,~n11!p#, ~C3!

for the symmetric solutions, and

Dw5np, for all J, ~C4!

for the asymmetric solutions.
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