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We study the interaction of sound waves with vortices in type-II superconductors, taking into account
pinning and electrodynamic forces between vortices and crystal displacements. We propose ultrasound tech-
niques as a method for obtaining information about vortex dynamics. This is particularly appropiate at low
temperatures where transport measurements are ineffective. The changes in sound velocity and attenuation due
to vortices, can provide information on the elastic constants of the vortex system and on vortex dissipation,
respectively. At low temperatures the Magnus force acting on vortices leads to theacoustic Faraday effect:
there is a rotation of the polarization plane of tranverse sound waves propagating along the magnetic field. This
effect is linear in the Magnus force and magnetic field in crystals with equivalenta andb axes for a field
parallel to thec axis. We discuss how this effect can be measured by means of either pulse-echo techniques or
standing sound waves. Also, we show that an ac electromagnetic field acting on the vortex system can generate
ultrasound. We calculate the amplitude of the generated sound waves in the linear regime and compare with
recent experiments.

I. INTRODUCTION

In the presence of magnetic fields the transport and elec-
tromagnetic properties of superconductors are determined
largely by the dynamical behavior of quantized vortices.
Their motion when driven by currents produces dissipation
which takes place predominantly in the normal core of vor-
tices. Understanding the mechanisms that control vortex mo-
tion and dissipation is therefore important for applications of
superconductors because they determine losses in the super-
conducting state.

When in motion, superconducting vortices are subject to
several forces including Lorentz, viscous,1 and hydrody-
namic or Magnus2 forces, resulting in components both par-
allel and normal to their instantaneous velocity. The resultant
motion depends upon the relative magnitudes of these forces
and is therefore field and temperature dependent. The com-
plexity of this situation and the difficulty of separating the
effects of the various components is responsible for the fact
that phenomena such as the Hall effect in the mixed state,
which depend upon the details of vortex motion, are still
controversial after many years of study. This situation is fur-
ther complicated for high-temperature superconductors by
the small size of the normal core which results in discrete,
well-separated states in the core, leading to the expectation
that viscous dissipation may be ‘‘frozen out’’ at low
temperature.3 The low-temperature vortex dynamics depends
strongly on the type~especially symmetry! of the supercon-
ducting pairing, so that obtaining information on vortex dy-
namics in this temperature region may also help to under-
stand the pairing mechanism in high-Tc superconductors.

Additionally, the low-temperature dynamics of vortices is of
great interest for fundamental quantum-statistical physics be-
cause of the quantum effects on vortex motion: To a large
degree it resembles the behavior of electons in a very strong
magnetic field, where a quantum Hall effect has been studied
recently.4

Until now the only information available on high-
temperature vortex dynamics comes from transport measure-
ments. Such methods are ineffective for providing informa-
tion on the low-temperature behavior of vortices, because
here strong pinning suppresses vortex transport. In fact, in-
formation on vortex dynamics available now from transport
measurements covers the temperatures above 13 K for
Y-Ba-Cu-O with Tc560 K ~Ref. 5! and above 50 K in
Bi-Sr-Ca-Cu-O.6 A method to study vortex dynamics based
on measurements of sound propagation in the vortex state of
type-II superconductors was proposed by Pankert7 and ex-
tended to the low-temperature regime by Domı´nguezet al.8,9

Pankert argued that the coupling of sound waves with
vortices via pinning leads to a modified attenuation and dis-
persion of sound. The modification of the dispersion~sound
velocity! comes from the involvement of vortices in crystal
displacements and therefore there is an addition of vortex
lattice elasticity to the crystal elasticity. The attenuation of
sound was predicted by Pankert for the thermally activated
flux flow ~TAFF! regime valid above the irreversibility line:
It originates from thermally activated jumps of vortices be-
tween pinning centers when vortices follow oscillating pin-
ning centers. Experimental data10 confirmed the main theo-
retical predictions of Pankert in that temperature range.

At low temperatures the Magnus force becomes important
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for vortex dynamics and it results in novel effects: the
change of sound polarization, as was discussed in Refs. 8,9.
In the following we will present a detailed consideration of
sound progation in the mixed state of type-II superconduct-
ors, taking into account all mechanisms of the sound-vortex
interaction and all forces acting on vortices~Sec. II!. Our
main attention will be given to the effect of the Magnus force
for vortices on the propagation of sound at low temperatures
~Secs. III and IV, and the Appendix for a general approach!.
This results in a new effect: namely, the Faraday rotation of
sound polarization. We will discuss possible experiments

with ultrasound to extract the parameters of Magnus and vis-
cous forces acting on vortices~Sec. V! and the generation of
sound waves by an ac magnetic field acting on vortices~Sec.
VI !.

II. GENERAL EQUATIONS

We use the London model to describe vortices so that our
approach is valid only well belowTc . The equation of mo-
tion for displacements of vortices from their equilibrium po-
sitionsv(r ,t) is

hvv̇1aM@ v̇3n#2~C112C66!¹'div~v!1C66¹'
2v1Ĉ44

]2

]2z
v52

1

c
@ j3B#1ap~u'2v!, ~1!

where we takeB along thec (z) axis, n is the unit vector
alongB, andu is the crystal displacement in the sound wave.
The vortex displacements have only components in thex,y
plane, v5(vx ,vy), and thus the interaction is only with
u'5(ux ,uy), and we have¹'5(]/]x,]/]y). The vortex
inertial term is omitted here because it is small in compari-
son with the other dynamic terms on the left-hand side, as
follows from estimates of vortex mass: See Refs. 11,12.

The theoretical prediction for the Magnus force coeffi-
cient made by Nozie`res and Vinen2 by extension of ideal
fluid results to superconductors isaM5p\ns(B/F0), where
ns is the density of superconducting electrons. There are dif-
ferent contributions toaM : Kopnin and Kravtsov3 have
shown that ins-wave BCS superconductors the contribution
of quasiparticles inside the vortex core decreases this result
at nonzero temperatures. They concluded that the Nozie`res–
Vinen result remains valid in the limitT→0 in the super-
clean regime when the electron scattering rate becomes
smaller than the separation of the energy levels of quasipar-
ticles inside the normal core,'D2/EF (D is the supercon-
ducting gap!. Another contribution toaM is related to the
dynamics of the order parameter, as shown by Kopnin
et al.13 and by Dorsey;14 see also Ref. 15. Experimental mea-
surements~see, for example, Ref. 16! show that at low tem-
peraturesaM has the same sign as in the normal state and
subsequently changes sign twice with increasing temperature
in the temperature region belowTc . In high-Tc supercon-
ductors the sign ofaM is positive in the normal state due to
the hole-type conductivity in these materials.

The estimate forhv obtained by Bardeen and Stephen1

and associated with dissipation caused by quasiparticles in-
side the vortex core ishv5BHc2sn /c

2, wheresn is the
conductivity in the normal state. In ans-wave superconduc-
tor in a superclean limit at low temperatures viscosityhv
tends to zero. In a gapless superconductorhv remains finite
in the limit T→0.17

C11, C44, andC66 are the compression, tilt, and shear
modulii of the vortex system. For uniform distortions~i.e.,
long wavelengths! the elastic modulii can be obtained from
thermodynamic arguments,18

C44~0!5
BBa
4p

,

C11~0!2C665
B2

4p

dBa
dB

; ~2!

hereCL(0)5C11(0)2C66 is the modulus for isotropic com-
pression,Ba is the applied field, andB(Ba) defines the mag-
netization curve~for B.2Hc1 , one hasB'Ba). For defor-
mations with wavelengths smaller than the London
penetration length, the vortex system is softer than for ho-
mogeneous strains and the elasticity becomes nonlocal.19 For
a vortex lattice in an anisotropic superconductor, the nonlo-
cal elastic modulii, for distortions with wave vectork, are
given by19

C44~k!5
B2

4p F 1

11lc
2~kx

21ky
2!1lab

2 kz
2 1

F0f ~kz!

4pBlab
2 G , ~3!

C11~k!5CL~k!1C665
B2

4p F 11lc
2k2

~11lab
2 k2!~11lc

2~kx
21ky

2!1lab
2 kz

2!G , ~4!

C665
F0B~12B/Hc2!

2

~8plab!
2 , ~5!
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with f (kz)51/2g2ln@jc
22/(lab

221kz
214pg2F0 /B)#11/

2kz
2lab

2 ln@11kz
2/(lab

2214pF0 /B)#. Herelc is the penetration
length for currents along thec axis, lab is the penetration
length for currents in theab directions, andjc and jab
are the corresponding superconducting correlation lengths.
For sound waves,k is small and the elastic modulii of the
vortex lattice can be taken asC115C445B2/4p and
C665BF0 /(8plab)

2 in superconductors with small and
moderate anisotropy at high magnetic fields.19 However, in
Bi-2:2:1:2 the anisotropy ratiog5lc /lab was estimated to
be as large as 300–1000; see Ref. 20. For sound frequency
10 MHz and velocityct523105 cm/s we obtainklc'1.7 at
g5300 andlab51700 Å. In this case the dispersion of the
tilt modulus ~at high fields!, C44(k)5B2/4p@11lc

2(kx
2

1ky
2)1lab

2 kz
2], becomes important. For a vortex liquid, the

elastic modulii can be defined within a hydrodynamic ap-
proach in a coarse-grained free energy.21 The tilt modulus of
the liquid is identical to that of the vortex lattice as given by
Eq. ~3!.21 The liquid bulk modulusCL(k) can be obtained
from the compressional modulusC11(k) of the lattice by
settingC6650 in Eq. ~4!,21 since the shear modulus is zero
in the vortex liquid state. In the presence of strong pinning,
i.e., for a vortex glass phase, the elastic constants are slightly
renormalized by the disorder.22–25At very large length scales
the compression and tilt modulus are still given by
C115C445B2/4p, as prescribed by the thermodynamic re-
sults of Eq.~2!. It has been argued26 that disorder can lead to
the presence of dislocations in the lattice for scalesR.Ra

@Ra defined as ^u2(Ra)&'a0
2 , thus of the order of

Ra'(a0 /j)
2Rc with Rc the Larkin-Ovchinikov length

27 and
a05(F0 /B)

1/2 the intervortex distance#. Then the shear
modulus may be renormalized asC66(k)}k

2b for k→0 by
the presence of dislocations,25 so that the system may behave

as a liquid at large length scales.~See the discussion in Sec.
VII C of Ref. 25!. Recently Giamarchi and Le Doussal24

have shown that the elastic properties of the original vortex
lattice are not destroyed by weak disorder, forming a so-
called ‘‘Bragg glass’’ without dislocations~so the shear
modulus is not driven to zero fork→0 in this case!. Here we
will take C11,C44,C66 as parameters in Eq.~1!, and we will
show how their actual values for long wavelengths can be
obtained from ultrasound measurements. Our phenomeno-
logical approach is valid for sound wavelengths that are
much larger than the intervortex distancea0 , so that the
vortex displacement fieldv(r ) can be regarded as a continu-
ous function ofr .

The first term in the right-hand side of Eq.~1! is the
Lorentz force acting on the vortex due to the currentj caused
by ion motion. This force can be expressed through the lat-
tice displacementu using the expression for the current den-
sity:

j5
c

4p
@¹3@¹3A##52

c

4plab
2 A1enI u̇. ~6!

The first term in the right-hand side is the electron current
and the second one is the current of lattice ions;28 nI is the
ion density. Such an expression for the total current implies
the absence of impurities~weak momentum relaxation!. In
this case there is no drag of electrons by impurities. We also
ignore the effect of electron drag by ions in a pure sample.
This effect exists as soon as the electron spectrum in a crys-
tal differs from the spectrum of a free electron. The electron
drag by ions results in the renormalization of the ionic cur-
rent in Eq.~6!. Using ~6! we can obtainj as a function of
u and replace it in~1!. Therefore we obtain the dynamical
equation in Fourier space forv(k,v):

ivFhvv i1e i jzS aMv j1a I

lab
2 k2

11lab
2 k2

uj D G5@~C112C66!kikj1C66kmkmd i j #v j1C44kz
2v i1ap~v i2ui !, ~7!

wherei5x,y are coordinates in theab plane,e i jk is the unit
antisymmetric tensor, andv is the frequency of sound. The
term with coefficienta I5p\nIB/F0 takes into account the
Lorentz force acting on vortices due to the current induced
by moving ions and screened by superconducting electrons,
and the sign ofa I is positive since it is determined by the
ionic charge;lab is the penetration length for currents along
the layers.28 This term is important only for frequencies
v/2p5csk/2p>1 GHz and it will be omitted in the follow-
ing. Herecs is the sound velocity.

The termap(v2u) was introduced by Pankert7 to de-
scribe the interaction of sound waves with vortices because
of pinning in the TAFF regime. In the absence of sound
waves (u50) Eq. ~7! with

ap5aL~12 i /vtT!21 ~8!

was used by many authors; see Refs. 29–31. HereaL is the
Labusch constant andtT is the relaxation rate which takes

into account thermally activated hopping of vortices between
different pinning centers. Using heuristic arguments,
Brandt29 obtained

tT5~hv /aL!exp@U~B!/T#, ~9!

whereU(B) is the characteristic pinning potential barrier. A
similar expression was obtained by Coffey and Clem for a
periodic pinning potential.30 The generalization made by
Pankert is transparent: Replacement ofv by (v2u) accounts
for the absence of pinning when vortices and ions move with
the same velocity. We will use the same termap(v2u) be-
low the irreversibility line as well, thus neglecting jumps of
vortices between pinning centers in the vortex glass phase.26

This is valid for large frequencies such thatvtT.1,31 mean-
ing temperaturesT,U/ ln(aL /vhv). For the typical ultra-
sound frequencies (10 MHz! and the parameters of the
samples studies in, for example, Ref. 10, this is valid for
T,30 K. When approaching the vortex glass transition this
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approximation ceases to be valid. Here we will take this form
of ap(v,T) as a qualitative interpolation between the low-
temperature regime of strong pinning whereap'aL and the
high-temperature~above the irreversibility line! TAFF re-
gime whereap' ivtTaL . The Labusch parameter may be
expressed in terms of the critical currentJc as
aL5JcB/crp , wherer p is the pinning interaction range~ap-
proximately the superconducting coherence lengthjab in
high-Tc superconductors!.

31 For Bi-2:2:1:2 the critical cur-
rent is in the range (53105253106) A/cm2 at helium tem-
perature in magnetic fields of several T~see Ref. 32!, and we
estimateaLF0 /B in the interval (53104253105) g/cm
s2. From the resistivity data10 in this system in the TAFF
regime,U'500 K.

The equation for crystal displacements is

rü1Du̇2~l1m!¹div~u!2m¹2u5Fi2ap~u'2v!, ~10!

wherel andm are the elastic modulii of the crystal andr is
the crystal mass density.~The uz component is decoupled.!
The term with the coefficientD5h01hq accounts for sound
dissipation in the absence of vortices (h0) and sound dissi-
pation caused by quasiparticles inside the vortex core (hq).
The second term on the right-hand side of Eq.~10! is just
opposite to the analogous term in Eq.~1!. Fi is the force
acting on ions from electrons. Within the same approxima-
tion as for Eq.~6! ~ignoring electron drag!, this force can be
written as

Fi5nI S eE1
e

c
@ u̇3B# D . ~11!

The electric field produced by vortices isE5@B3 v̇#/c and
the expression forFi takes the form

Fi5
nI
c

@B3~ v̇2u̇!#. ~12!

Using Eq.~12!, the equation for the crystal displacement in
the Fourier components has the form

~rv21 ivD !ui1 iva Ie i jz~uj2v j !

5~l1m!kikjuj1mk2ui1ap~ui2v i !. ~13!

Besides pinning and electromagnetic forces, there is an-
other mechanism for the vortex-sound interaction: Vortices
induce strain in the superconducting crystal because they
have normal cores where the specific volume is larger than in
the superconducting state. This effect was discussed by
Šimánek12 in connection with the enhancement of the vortex
mass.~The crystal displacements induced by moving a vor-
tex have an additional kinetic energy.! The strain induced by
vortices also provides an additional mechanism for the inter-
action of vortices, as discussed by Koganet al.33 The corre-
sponding term in the equation of motion for crystal displace-
mentsui is hstrkikj (uj2v j ) andh str'22jab

2 lz. Here the
superconducting correlation length inside the layers,jab , de-
termines the area of the normal core. The coefficientz char-
acterizes the relative change of specific volume in the normal
and superconducting states, typicallyz'1027–1025. Using
these parameters andjab'20 Å we estimate that the strain-

induced vortex-sound interaction is negligible as compared
with the pinning-induced interaction sincehstrk

2/aL;1026

at least.

III. ULTRASOUND PROPAGATION PARALLEL TO THE
MAGNETIC FIELD

Let us discuss first the case when the acoustic Faraday
effect is maximum: sound propagation along the direction of
the magnetic fieldkiBic in crystals wherea andb axes are
equivalent~e.g., Bi- and Tl-based superconductors!. We take
kx5ky50, kz5k. We have from Eq.~7! for vortices

ivhvvx1 ivaMvy5C44k
2vx1ap~vx2ux!,

ivhvvy2 ivaMvx5C44k
2vy1ap~vy2uy!, ~14!

and from Eq.~13! for sound waves

~rv21 ivD !ux1 iva I~uy2vy!5mk2ux1ap~ux2vx!,

~rv21 ivD !uy2 iva I~ux2vx!5mk2uy1ap~uy2vy!,

~rv21 ivD !uz5~l12m!k2uz , ~15!

for an isotropic material in theab plane. In the absence of an
interaction (ap5a I50) the sound propagates either with
transverse waves (ux ,uy) with velocityct5Am/r, which are
degenerate with respect to polarization, or with longitudinal
waves (uz) with velocity cl5A(l12m)/r. Theuz compo-
nent is always decoupled, and thus the longitudinal sound
waves are unaffected by the presence of vortices.

We solve forv in ~14! and substitute in~15!, obtaining the
effective equations for transverse sound waves~in first order
in aM ,a I):

@U2ap~12g!#ux1 iv@a I~12g!1aMg
2#uy50, ~16!

2 iv@a I~12g!1aMg
2#ux1@U2ap~12g!#uy50,

where U5rv22mk21 ivD, V5C44k
21ap2 ivhv , with

g5ap /V. The conditionsU50 andV50 give the unper-
turbed dispersion relations for sound and vortices, respec-
tively.

The modified dispersion relation can be obtained from
solving

U2ap~12g!56v@a I~12g!1aMg
2#. ~17!

The solution can be written in the general form

rv22r c̃t
2k21 ivD̃56v~F1 ivG!, ~18!

wherec̃t is the modified transverse sound velocity,D̃ is the
modified dissipation coefficient, andF andG account for the
circular polarization effect in sound velocity and dissipation
~the latter effect is always negligible,vG!D̃; see the Ap-
pendix!. From Eqs.~16!, we can see that the eigenwaves
satisfy

ux /uy56 i ; ~19!

i.e., the sound is circularly polarized due to Magnus and
electromagnetic forces. The split in sound velocity for differ-
ent circular polarizations isc̃t,65 c̃t(16F/2rv). If ultra-
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sound with a given polarization is introduced at one bound-
ary of the sample, after traveling a lengthl the polarization
plane will rotate. This is theacoustic Faraday effect. The
rotation angle per unit length will be given by
u/l 5v/2(1/c̃t,221/c̃t,1)'F/2r c̃t .

With the definitionsQ5(C44k
21aT)

21v2(hv1hT)
2,

ap5aT2 ivhT , aT5aLv
2tT

2/(11v2tT
2), andhT5aLtT /

(11v2tT
2), the solution for the modified transverse sound

velocity is

c̃t
25ct

21
C44

r

v2hT
21aT~C44k

21aT!

Q
1

aTv
2hv

2

rk2Q
, ~20!

for the dissipation,

D̃5D1
hTC44

2 k41hv@aT
21v2hT~hv1hT!#

Q
, ~21!

and for the circular polarization coefficient,

F5aM$@aT~C44k
21aT!1v2hT~hv1hT!#2

2v2@hTC44k
22aThv#

2%Q22

1a I@C44k
2~C44k

21aT!1v2hv~hv1hT!#Q21. ~22!

Let us consider the low-temperature regime (vtT@1,
meaningT,40 K in Bi 1.6Pb0.4Sr2Cu3Oy studied in Ref. 7!.
In this case aT'aL is the largest parameter,
aL@vaM ,vhv ,C11k

2,C66k
2,C44k

2, and hT is negligible.
In this limit vortices are completely involved in sound oscil-
lations, i.e.,v i'ui . Then, the modified sound velocity is
simply

c̃t
25ct

21C44/r, ~23!

and the modified dissipation is

D̃5D1hv . ~24!

Therefore, a measurement of the change in sound velocity
and dissipation will give direct information onC44 andhv at
low temperatures. Particularly, measurements as a function
of the ultrasound wave vectork will give information on the
dispersion ofC44(k), and thus ong through Eq.~3!. The
Faraday effect is dominated by the Magnus force,

F'aM . ~25!

The rotation angleu/l 5aM/2rct is about 7°/cm for
aMF0 /B51026 g/cm s,r'5–7 g/cm3, andB55 T. There-
fore a measurement ofu can provide direct information on
the Magnus force constantaM below 40 K. The advantage
here is that for sound propagation the effects of vortex dis-
sipationhv and Magnus forceaM are decoupled in contrast
to their effect on resistivity and Hall angle; see Ref. 16.

Note that the Magnus force acts on vortices in the same
way as a magnetic field acts on electrons: A vortex rotates
around its equilibrium position when displaced from such
position. It is this rotation that leads to the change in sound
polarization due to the sound-vortex interaction; see Fig. 1. A
similar phenomenon occurs in a ferromagnet, where a
change of sound polarization results from the rotation of
magnetization, which is coupled with sound waves by the
magnetostriction effect.34

Now we consider the high-temperature limitvtT!1,
where aT!C44k

2 and hT'hvexp(U/T), so that
ap'2 ivhT . In other words, at high temperatures the inter-
action through pinning mechanisms is via the TAFF viscosity
hT . In this limit c̃t in Eq. ~20! reduces to the value calcu-
lated by Pankert,7

c̃t
25ct

21
C44

r

v2hT
2

C44
2 k41v2hT

2 , ~26!

the modified sound attenuation is

D̃5D1hT

C44
2 k4

C44
2 k41v2hT

2 1hv

v2hT
2

C44
2 k41v2hT

2 , ~27!

which differs from that calculated by Pankert7 in the hv
term, and the Faraday coefficient is

F5aM

v2hT
2~v2hT

22C44
2 k4!

~C44
2 k41v2hT

2!2
1a I

C44
2 k4

C44
2 k41v2hT

2 . ~28!

There is a peak for sound dissipation whenC44k
2'vhT ~in

Ref. 7 it occurs at about 60 K forv/2p53MHz andB55
T!. Below the peak,C44k

2!vhT , and the circular polariza-
tion coefficient is given byF'aM . Above the peak,
C44k

2@vhT , and we haveF'a I . Therefore, at the dissi-
pation peak there is a crossover in the Faraday effect from a
regime dominated by the Magnus force to a regime domi-
nated by the electrodynamic forces acting on the ions (a I
term! at high temperatures. This temperature behavior is
schematically shown in Fig. 2.

IV. ULTRASOUND PROPAGATION PERPENDICULAR TO
THE MAGNETIC FIELD

We now discuss the case of sound propagation perpen-
dicular to the magnetic field,k'B, where we can take
ky5kz50, kx5k.

We have for vortices

FIG. 1. Propogation of sound along thec axis of a unaxial
crystal in the mixed state. The sound wave induces vortex displace-
ments~shown below! due to pinning. They are circularly polarized
because of the Magnus forceFM . These circularly polarized dis-
placements result in the rotation of sound polarization shown above.
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ivhvvx1 ivaMvy5C11k
2vx1ap~vx2ux!,

ivhvvy2 ivaMvx5C66k
2vy1ap~vy2uy!, ~29!

and for sound waves

~rv21 ivD !ux1 iva I~uy2vy!

5~l12m!k2ux1ap~ux2vx!,

~rv21 ivD !uy2 iva I~ux2vx!5mk2uy1ap~uy2vy!,
~30!

~rv21 ivD !uz5mk2uz ,

for an isotropic material. Now, in the absence of interaction
(ap5a I50) the sound propagation is transversal for the dis-
placementsuy ,uz with velocity ct5Am/r and longitudinal
for the displacementsux with velocity cl5A(l12m)/r. In
this case theuz component of the transversal waves is always
decoupled, whereas the other transversal componentuy and
the longitudinal componentux are coupled by the electro-
magnetic force.

Again, we solve forv in ~29! and replace in~30! obtaining
the effective equations for sound waves~in first order in
aM ,a I):

@U12ap~12g1!#ux1 iv@a I~12g2!1aMg1g2#uy50,
~31!

2 iv@a I~12g1!1aMg1g2#ux1@U22ap~12g2!#uy50,

where U15rv22(l12m)k21 ivD, U25rv22mk2

1 ivD, gi5ap /Vi with V15C11k
21ap2 ivhv and

V25C66k
21ap2 ivhv . This leads to the eigenvalue equa-

tion

@U12ap~12g1!#@U22ap~12g2!#5v2@a I~12g1!1aMg1g2#@a I~12g2!1aMg1g2#. ~32!

The longitudinal and transversal componentsux ,uy are coupled because of the Magnus and electrodynamics forces; their
eigenwaves are

ux
uy

5 iArv21 ivDv2r~ct
v!2k2

rv21 ivDv2r~cl
v!2k2

. ~33!

Thus the sound is elliptically polarized in this case. Here we defined (ct
v)25ct

21C66/r, (cl
v)25cl

21C11/r, and
Dv5D1hv .

Let us first discuss the low-temperature limitvtT@1. Proceeding as in the previous section, we obtain the dispersion
relation

rv21 ivDv5
r@~cl

v!21~ct
v!2#k2

2
6Ar2@~cl

v!22~ct
v!2#2k4

4
1aM

2 v2. ~34!

Considering thatr@(cl
v)22(ct

v)2#k2/2@vaM we obtain that
the longitudinal sound waves are now quasilongitudinal with
velocity

c̃l
25~cl

v!2H 11
1

2

aM
2 ~cl

v!2

r2v2@~cl
v!22~ct

v!2# J ~35!

and a small elliptical polarization given by

ux
uy

5 i
r@~cl

v!22~ct
v!2#k2

aMv
. ~36!

On the other hand, the transversal wave along they di-
rection now becomes quasitransversal with velocity

c̃t
25~ct

v!2H 12
1

2

aM
2 ~ct

v!2

r2v2@~cl
v!22~ct

v!2# J ~37!

and a small elliptical polarization given by

ux
uy

5 i
aMv

r@~cl
v!22~ct

v!2#k2
. ~38!

Therefore, the effect of elliptical polarization due to the
Magnus force at low temperatures is negligibly small in this

FIG. 2. The sound dissipationD̃-D due to vortex dynamics and
the Faraday angleu as a function of temperature, calculated using
Eqs.~21!, ~22!, with the experimental parameters of Ref. 7 forB55
T and v/2p53 MHz. Here we assume thataM is linear in T
~dashed line! andhv is temperature independent. This is only in-
tended to be a guide to the reader, in order to show thatu and
D̃-D at low T will give direct information onaM(T) andhv(T).
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case, of order (aM /rv)2. Neglecting this effect, the modi-
fied sound longitudinal velocity is simplyc̃l

25cl
21C11/r,

the modified transversal velocity along they direction is
c̃t
25ct

21C66/r, and the modified dissipationD̃5D1hv .
Thus, measurements of ultrasound propagation perpendicular
to B can give infomation onC11 andC66.

At high temperatures,vtT!1, the elliptical polarization
effect is also negligible for similar reasons as before, now of
the order of (a I /rv)2. If we neglect this contribution, the
modified sound velocities are given as in Eq.~26! after the
replacementct→cl andC44→C11 for the longitudinal waves
and afterC44→C66 for the transversal waves alongy. Also
the change in sound attenuation is given by Eq.~27! after the
same replacements.

In general, the change in the ultrasound propagation for
any arbitrary direction can also be calculated. We discuss this
general case in the Appendix.

V. SOUND ECHO AND STANDING WAVE
MEASUREMENTS

The change of sound polarization and dissipation can be
measured for traveling waves. The polarization of transverse
sound rotates by the angleu5aMl /2rct when it propagates
along the pathl in the direction of thec axis in an uniaxial
crystal and parallel toB. The length of propagation may be
enhanced using the pulse-echo technique.35 For such mea-
surements it is important that the direction of rotation~clock-
wise or counterclockwise! depend only on the direction of
magnetic field, and not on the direction of propagation. For
transverse sound, when the magnetic fieldB is along the
direction of propagation, which coincides with thec axis of
the uniaxial crystal, we obtain the maximum effect for the
rotation of the sound polarization~acoustic Faraday effect!.
In this case the amplitudef n of thenth echo is

f n5 f 0UcosS aMLn

rct
D UexpS 2

2D̃Ln

rct
D , ~39!

whereL is the length of the sample andD̃5D1hv . The
cosine term is due to the rotation of the polarization angle.
Here the effect will be notable at low temperatures in the
superclean regime wherehv&aM ~see Ref. 5! andD is small
enough @D}exp(2D/kT) for s-wave superconductors#. In
this case, due to Faraday rotation, the amplitude of thenth
echo oscillates with n. The period of oscillations,
2prct /aML, is about 15 for a sample with thickness
L50.1 cm along thec axis. The decay of echo amplitude is
determined by sound attenuation. Again, a similar effect was
observed previously in ferromagnetic crystals because of the
magnetostriction effect.34 When the propagating sound is
perpendicular to the magnetic fieldB, sound waves are lon-
gitudinal, the rotation of polarization is negligible, and the
multiple echo amplitudef n is given by~39! but without the
cosine term and withct replaced bycl .

For standing sound waves the Magnus force lifts the de-
generacy of the resonance frequency with respect to polar-
ization, with a splitting ofDv5aM /r for transverse waves
along the direction ofB. This value is'0.01 MHz in a field
of 5 T. It can be observed for small dissipation
(D1hv)/r!Dv.

VI. GENERATION OF ULTRASONIC WAVES BY ac
MAGNETIC FIELDS

In a recent experiment, Haneda and Ishiguro observed
generation of ultrasonic waves in the mixed state of high-
Tc superconductors induced by the motion of vortices sub-
jected to an ac magnetic field.36 In a polycrystalline
Y-Ba-Cu-O sample under a dc magnetic field, a pulse of an
ac magnetic field was generated with a coil attached to one
end of the sample; see Fig. 3. After the supply of the ac
pulse, acoustic waves were detected by a quartz transducer
attached at the other end of the sample. Also the echo of the
acoustic signal was detected by the coil as an ac magnetic
field induced by the returning acoustic wave. These effects
arise because an ac electromagnetic field excites vortex os-
cillations, and the motion of vortices and sound waves are
coupled through pinning mechanisms. Therefore, as pointed
out by Haneda and Ishiguro, these measurements may pro-
vide means to study the pinning and dynamics of vortices. In
Ref. 36 a semiquantitative theoretical discussion of the ex-
perimental results was given, in the framework of the non-
linear regime of vortex motion. A theoretical treatment of
these effects in the linear regime was given in Ref. 9. Here
we present the main points of this latter consideration and
results.

The ac magnetic field produced by the coil induces vortex
displacements. To find them we notice that vortex displace-
ments produce an ac magnetic inductionBac,z5Bdiv(v) for
Bi ẑ andBac5B]v/]x for Bi x̂. At the boundary we should
haveBac,z(0,t)5hac(t), wherehac(t) is the ac magnetic field
produced by the coil. Thus we obtain the boundary condition
for v(r ,t):

]v
]x

5
hac~ t !

B
, x50, ~40!

with v5vx for Bi ẑ andv5vz for Bi x̂. The propagation of
vortex displacements is described by Eq.~7! which is valid at
distances larger thanlab from the sample surface atx50. As
we see from Eq.~7!, the characteristic length of variation of
v is the ac penetration depthlac5(B2/4pap)

1/2 which is
larger thanlab at fieldsB*1 T; see Refs. 29,31. The vortex
displacements induce sound waves as described by Eq.~13!.
Equation~13! for crystal displacements should be solved us-
ing the boundary condition

]u

]x
50, x50, ~41!

for a free crystal surface~in the absence of external forces
acting on the surface!.

Therefore, using Eqs.~7! and ~13!, one can describe the
following processes.

~1! Under the magnetic ac pulse, displacements of vorti-
ces are induced. At this stage the crystal displacementsu are
much smaller thanv, and the solution of~7! with boundary
condition ~40! for a semi-infinite sample is direct; see the
analysis of Brandt29 and van der Beeket al.31

~2! Once the displacementsv are found, we can solve Eq.
~13! for u, with v(r ,t) as a drive term and boundary condi-
tion ~41!, to obtain the amplitude of the induced sound pulse.

6688 53DOMÍNGUEZ, BULAEVSKII, IVLEV, MALEY, AND BISHOP



~3! This sound wave will propagate along the crystal; it
will reach the other side of the sample where it can be de-
tected by a quartz transducer, and where it will be reflected
producing an echo propagating back to the originating side.
This wave propagation was described with the modified
sound equations~7! and ~13! in Ref. 8.

~4! The returning sound echo induces displacements of
vortices of magnitudeve , which in turn cause an ac mag-
netic field that can be detected in the coil.

Let us discuss these processes in the low-temperature
Campbell regime,31 where we can takeap5aL . To describe
the first process we can drop the Magnus and viscous force
terms in~7! sinceaL /v@h,aM . Then, taking into account
that hereu!v, we have29,31

v~x,t !5
Bhac~ t !

4placaL
exp~2x/lac!. ~42!

In a second step, we find the amplitude of the generated
sound, solving Eq.~13!, which reduces to the wave equation

]2u

]t2
2cs

2 ]2u

]x2
5

aL

r
v~x,t !. ~43!

Herecs5ct for a longitudinal mode~excited whenB' x̂) and
cs5cl for a transversal mode~excited whenBi x̂); see Fig. 3.
The solution of~43! is given by the sum of the propagating
wave f (x2cst) ~solution of the homogeneous equation with
v50!, plus the solutiong(x,t) of the inhomogeneous wave
equation. The latter is

g~x,t !52
Blac

4prcs
2hac~ t !exp~2x/lac!, ~44!

where we have taken into account thatv!cs /l ac, which is
fulfilled for the typical magnetic fields and frequencies in the
experiments. From the boundary condition]u/]x5
]( f1g)/]x50 at x50, we finally get for the propagating
wave

f ~x!5
B

4prcs
E
t0

2x/cs
hac~ t !dt, ~45!

with t0 the starting time of the initial ac pulse. Now we
verify that u(x,t)!v(x,t) by noting that u/v'
lac
2 /aLrcs

25B2/rcs
2!4p, for reasonable magnetic fields.

This allowed us to neglectu in Eq. ~7!, when we obtained
the inducedv(x,t) in Eq. ~42!, and also in Eq.~43!.

We see in Eq.~45! that the amplitude of the sound pulse
reaching the other side of the sample is

f 0'
Bh0
rcsv

, ~46!

whereh0 is the amplitude of the ac magnetic pulse. Note that
the sound amplitude is proportional toB andh0 and it does
not depend on pinning in the Campbell regime. Now the
multiple echo can be found as was described in Sec. V. Fi-
nally, when thenth sound echo returns to the originating
side, it induces vortex displacementsve(x,t)' f n(x1cst).
This is because, in Eq.~7!, aL is the largest parameter at low

temperatures; i.e., pinning centers almost completely involve
vortices. The vortex displacements now induce an ac mag-
netic field with amplitude

Bac
~n!5BU]ve~n!

]x
U' h0B

2

rcs
2 UcosS aMLn

rcs
D UexpS 2

2D̃Ln

rcs
D . ~47!

The signal in the coil is proportional toBac
(n) .

The condition for the linear regime is that the displace-
ments of vortices at the surface~where they are maximum!
are much smaller than the typical radius of the pinning cen-
ters. The latter is of the order of the correlation lengthj, and
therefore we have the conditionuv(0,t)u!j. We obtain for
the amplitude of the electromagnetic pulse
h0!(4pJcjB/c)

1/2. For critical currentsJc'106 A/cm this
givesh0!50(B/@1 T#)1/2 G, which was obtained also in Ref.
32.

In the measurements of electromagnetic generation of ul-
trasound in Y-Ba-Cu-O by Haneda and Ishiguro,36 an ac
magnetic field with amplitudeh0550 G was used at a tem-
peratureT513 K and dc magnetic fields up to 5 T. At
T513 K these conditions correspond to the linear Campbell
regime. The amplitude of the induced sound wave was found
to be linear inB from 1 T up to 5 T, in agreement with our
result of Eq.~46!. The results of this section were recently
confirmed in an experiment by Haneda, Ishiguro, and
Murakami.37

FIG. 3. Configurations of external magnetic field:~a! BiHac,
generation of longitudinal sound waves propagating with velocity
cl ; ~b! B'Hac, generation of transversal sound waves propagating
with velocity ct . The direction of the induced displacementsv in
the vortex array is shown.
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VII. CONCLUSIONS

We have shown that the propagation of sound in the
mixed state provides a powerful tool to investigate elasticity
and dynamics of the vortex lattice, especially at low tem-
peratures where transport measurements become ineffective
for this purpose.

First, the rotation of sound polarization due to vortices
gives information on the Magnus force. This acoustic Fara-
day effect is quite large in uniaxial superconductors when the
magnetic field and the direction of sound propagation are
along thec axis. In this geometry the linear Faraday effect
may be observed. We note here that the acoustic Faraday
effect can be obtained regardless of the question of whether
the elastic properties are preserved in the vortex glass phase.
The only requirement is that at low temperatures vortex lines
move following the sound waves (v'u) due to strong pin-
ning. This makes the Magnus force active on the sound dis-
placements of transverse waves, inducing a rotation of the
polarization plane. Also, the high frequency of the ultrasound
oscillations makes negligible the effect of jumps between
different metastable vortex glass configurations, which hap-
pen mainly at very large time scales. Therefore, the Magnus
force coefficient can be extracted from the rotation of polar-
ization for traveling waves and the change of polarization is
approximately several degrees per cm in a field of 5 T at low
temperatures. The path of sound propagation may be en-
larged using the pulse-echo technique. This is possible only
in the superclean limit, when the dissipation is smaller than
the Magnus coefficient,hv,aM . The same information may
be extracted from splitting of standing wave resonances.
Here the splitting is approximately 0.01 MHz in a field of 5
T at low temperatures. High-Tc Bi- and Tl-based uniaxial
superconductors and low-Tc high-quality NbSe2 crystals are
good candidates for such study.

Second, the magnetic field dependence of sound velocity
in the mixed state provides information on the elastic mod-
ulii of the vortex lattice. The most interesting case is the tilt
modulusC44 which has a strong dispersion in highly aniso-
tropic superconductors. It may be probed when sound propa-
gates along the magnetic field direction and thec axis in
uniaxial superconductors. Then measurements of field de-

pendence of sound velocity provide quite direct information
on the dispersion ofC44 and thus on the anisotropy ratio
g. Information on this parameter obtained by other methods
is not accurate until now.

Third, the field dependence of sound attenuation is deter-
mined by the contribution of quasiparticles inside the normal
core and by the vortex viscosity. For superconductors with a
gap the former is negligible, but in gapless superconductors
both contributions may be important. Then attenuation of
sound provides useful information on the symmetry and type
of superconducting pairing.

ACKNOWLEDGMENTS

The authors thank A. Migliori for useful discussions. The
work at Los Alamos National Laboratory is performed under
the auspices of the U.S. DOE.

APPENDIX

For arbitrary directions of sound propagation and for crys-
tals of any symmetry, we can study the dynamical equations
for vortices and sound waves using tensor notation.

For vortices we have

@ ivhvI1 ivaMQz2F~k!#v5ap~v2u!, ~A1!

where we have chosenz as the direction of the applied mag-
netic field, the elasticity tensor of the vortex lattice is
F i j (k)5(C112C66)kikj1C66k'

2d i j1C44kz
2d i j , (Qz) i j5e i jz

is the antisymmetric tensor, andI i j5d i j is the identity.
For sound waves the dynamical equations are

@rv2I2L~k!1 ivDI #u5@apI2 iva IQz#~u2v!, ~A2!

where the elastic tensor isL i j (k)5l im,l j kmkl and for an
isotropic material isl im,l j5ld imd l j1m(d i ldmj1d i jdml).

Equations~48! and ~49! can be reduced to an effective
equation for sound waves of the form

@rv2I2Leff~k!1 ivDeff~k!#u50 , ~A3!

whereLeff andDeff are Hermitian. We obtain

Leff5L1aTI2 iva IQz2~aT
22v2hT

2!SG1G*

2 D1 i2vhTaTSG2G*

2 D
1 iva IaTS QzG1G*Qz

2 D1v2hTa I S QzG2G*Qz

2 D ,
Deff5DI1hTI22hTaTSG1G*

2 D 2 i S aT
2

v
2vhT

2D SG2G*

2 D ~A4!

2a IaTS QzG2G*Qz

2 D1 iva IhTS QzG1G*Qz

2 D ,
where we have taken ap5aT2 ivhT and the vortex Green’s function is defined as
G5@F1aTI2 ivaMQz2 iv(hv1hT)I #

21, which satisfiesG†5G* .
We can writeLeff5L̃2 ivF with L̃ a real symmetric matrix andF a real antisymmetric matrix that breaks time-reversal

symmetry and originates the rotation effect. Also for the generalized dissipation tensor we writeDeff5D̃2 ivG with D̃ real
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symmetric and G real antisymmetric. For aM small we have G'G01 ivaMG0QzG0 , with
G05@F1aTI2 iv(hv1hT)I #

21. Neglecting terms proportional toaMa I we obtain

L̃5L1aTI2~aT
22v2hT

2!SG01G0*

2 D 1 i2vhTaTSG02G0*

2 D ,
F5aMF ~aT

22v2hT
2!SG0QzG01G0*QzG0*

2 D 2 i2vhTaTSG0QzG02G0*QzG0*

2 D G
1a IFQz2aTS QzG01G0*Qz

2 D 1 ivhTS QzG02G0*Qz

2 D G ,
D̃5DI1hTI22hTaTSG01G0*

2 D 2 i S aT
2

v
2vhT

2D SG02G0*

2 D , ~A5!

G5aMF2aThTSG0QzG01G0*QzG0*

2 D 1 i S aT
2

v
2vhT

2D SG0QzG02G0*QzG0*

2 D G
2a IFhTS QzG01G0*Qz

2 D 1 i
aT

v S QzG02G0*Qz

2 D G .
In the low-temperature limitvtT@1 we takeG051/aTI2F/aT

21 iv(hv1hT)/aT
2I . We obtain

L̃5L1F1O S v2hT
2

aT
D ,

F5aMQz1O S a I iFi
aT

D ,
D̃5DI1hvI1O S hTiFi

aT
D ,

G'O S a Ihv

aT
D . ~A6!

In the high-temperature limitvtT!1, taking into account that we can writeG05@F1 iv(hv1hT)I #@F2

1v2hT
2I ]211O (aT /v

2hT
2), we obtain

L̃5L1Fv2hT
2~F21v2hT

2I !211O ~aT!,

F5aM@v2hT
2~v2hT

2I2F2!~F21v2hT
2I !21Qz~F21v2hT

2I !21#1a I@QzF
2~F21v2hT

2I !21#1O S a IaT

vhT
D ,

D̃5I1hTF2~F21v2hT
2I !211hvv

2hT
2~F21v2hT

2I !211O S aT

v D , ~A7!

G52aMv2hT
3F~F21v2hT

2I !21Qz~F21v2hT
2I !212a IhTF~F21v2hT

2I !21Qz1O S a IaT

v2hT
D .

Again, one can analyze the regimes below the dissipation peak,iFi!vhT , and above the peak,iFi@vhT , obtaining similar
results as in the main body of the text~see Secs. III and IV!. The termG, not discussed before, is negligibly small: Below the
peak it isvG'O (aMiFi /vhT), and above the peak it isvG'O (a IvhT /iFi). It only becomes relevant right at the
dissipation peak, where theF term is negligibly small.
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ioche, Rio Negro, Argentina.

†On leave from Landau Institute for Theoretical Physics, Kosygin
St. 2, Moscow, Russia.

1J. Bardeen and M.J. Stephen, Phys. Rev.140, A1197 ~1965!; M.
Tinkham, Phys. Rev. Lett.13, 804 ~1964!.

2P. Nozières and W.F. Vinen, Philos. Mag.14, 667 ~1966!.
3N.B. Kopnin and V.E. Kravtsov, Pis’ma Zh. Eksp. Teor. Fiz.23,

53 6691INTERACTION OF VORTICES WITH ULTRASOUND AND THE . . .



631 ~1976! @JETP Lett.23, 578~1976!#; Zh. Eksp. Teor. Fiz.71,
1644 ~1976! @Sov. Phys. JETP44, 861 ~1976!#.

4P. Ao and D.J. Thouless, Phys. Rev. Lett.70, 2158 ~1993!; L.
Bulaevskii, A.I. Larkin, M. Maley, and V.M. Vinokur, Phys. Rev.
B 52, 9205~1995!; E.M. Chudnovsky and A. Vilenkin, J. Phys.
Condens. Matter7, 6501~1995!.

5M. Harris, Y.F. Yan, O.K.C. Tsui, Y. Matsuda, and N.P. Ong,
Phys. Rev. Lett.73, 1711~1994!.

6A.V. Samoilov, Z.G. Ivanov, and L.-G. Johansson, Phys. Rev. B
49, 3667~1994!.

7J. Pankert, Physica B165-166, 1273~1990!; Physica C168, 335
~1990!.

8D. Domı́nguez, L. Bulaevskii, B. Ivlev, M. Maley, and A.R.
Bishop, Phys. Rev. Lett.74, 2579~1995!.

9D. Domı́nguez, L. Bulaevskii, B. Ivlev, M. Maley, and A.R.
Bishop, Phys. Rev. B51, 15 649~1995!.

10J. Pankertet al., Phys. Rev. Lett.65, 3052~1990!; M. Saint-Paul
et al., Physica C180, 394 ~1991!; M. Yoshizawaet al., Solid
State Commun.89, 701 ~1994!.

11H. Suhl, Phys. Rev. Lett.14, 226 ~1965!; M. Yu. Kupriyaniv and
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