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Monte Carlo method for obtaining the ground-state properties of quantum spin systems
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(Received 14 July 1995

A Monte Carlo method to find the ground-state properties of quantum spin systems is presented. Transform-
ing a quantum spin Hamiltonian in a matrix with non-negative elements, we set up a Markov process whose
stationary probability is dominated by the leading eigenvector of this matrix. From the simulation of the
Markov process, by means of a Metropolis algorithm, we obtain the properties and the energy of the ground
state. The method is applied to the spin-1 isotropic, Heisenberg antiferromagnet chain.

I. INTRODUCTION m by w=(m1,m2,...,4) and assign to it a probability
P(u) given by

The present Monte Carlo method was developed to obtain
the properties of the leading eigenvector of non-negative ma- P(u)=Z " T(p1,p2) T(pz ) - -
trices. The method is based on the recognition that any given
matrix with non-negative entries can be regarded as the tran- XT (-1 p) TR ), @
fer matrix of a certain statistical mechanical model. Since thevhereZ is a normalization constant. The present method is
properties of the model are dominated by the leading eigenbased on the recognition that the statistical properties of a
vector of the transfer matrixthen a Monte Carlo method system described bl(u) are dominated by the leading ei-
that simulates the model will provide the properties of thegenvector ofT, for sufficiently largelL.. Therefore, from the
leading eigenvector. If the leading eigenvector is also theroperties of thestatistical mechanicakystem defined by
ground state of a quantum system, then the method is c#(u), obtained, for instance, by the Metropolis algorithin,
pable of simulating the zero-temperature properties of thimne gets the properties of the leading eigenvector of the
guantum system. This is, in fact, the case of several manyguantumsystem described by the matflx
body quantum systems. Although the method presented here The method is particularly useful to find the properties of
is general, we will be concerned only with quantum spinthe ground state of quantum Hamiltonians whose nondiago-
sytems. nal elements, calculated on an appropriate vector basis, are

If the quantum system has dimensidnthen the statisti- nonpositive. If.7 is such a Hamiltonian anfl )} the ap-
cal model system to be simulated has dimensiari. Inthis  propriate vector basis, then the elements of the matrate
sense the present method resembles other stochastic methagined byT(u',u)=Cdo(u',u)—{u'|.7#|n) whereC is a
such as the path integral Monte Carlo metfotiHowever, positive constant chosen to make(u,u) positive. The
there is an essential distinction. In the path integral Montgyround-state energf, and the largest eigenvalug, of T
Carlo method, the simulation is performed at a finite tem-are related by.,=C— E, and the ground state o¥ is iden-
perature and the ground-state properties of the system mugfied with the leading eigenvector df.
be obtained by a zero-temperature extrapolation. Our The Monte Carlo method is constructed by setting up a
method, on the other hand, is a zero-temperature Mont®larkov process for which the probabili®(u«) given by(1)
Carlo method. is the stationary probability. To this end it suffices to define a

The method we present is yet distinct from other zero-ransition probabilityW(u— ') which satisfies the detailed
temperature Monte Carlo methods applied to quantum spifalance condition
systems such as the Green’s function Monte Carlo
method 12 and the guided random-walk algorithth'® All P(u)W(p—pu")=P(u" )W(u'— ). 2
these techniques can be viewed as stochastic versions of tpr?this way, with knowledge of the quotieRt()/P(x'), it

power metgod ianhiCh thedleading eiglen\llector of a matrixis possible to make a simulation based on the Metropolis
is projected out by repeated matrix multiplication. Y !
The method present here has been used formerly to obtaj?{gomhm' We chooseW(n—u') such that the allowed

the zero-temperature properties of spin-1/2 antiferromagneticranS|tI0nS are those for which the stagesand " differ by

Heisenberg model$-18 Here, we generalize the method to Jus_t_one compo_nent. If we denote oy (w,— u) th,e prob-
be used to any value of spin and apply to the case of th@Pility of changing the”th component fromu, to u,, then
spin-1 isotropic antiferromagnetic Heisenberg chain. the detailed balance condition is written as

T(py—1. )Ty by )W (o= )
II. MONTE CARLO METHOD

_ , , =T(y-1.m )T () s DWA Ry — 1)) )
Let T be a non-negative matrixi;(wq,u,)=0, with w4

and u, two suitable indices that take a discrete and finite set A possible Monte Carlo algorithm can be set up by choos-
of values. For a given integér, let us define a configuration ing
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( /) A (4)
w — = )
AR T T (e )Tty +1)
whereA is a constant, or
) ) Ty )Ty 1)
W, (@, — ) =min (5)

Ty -1 ) Ty y1)’

Ill. BASIC FORMULAS

In a Monte Carlo simulation we obtain estimates of quan-
we are

tities that are averages of state functions. Particularly,
interested in two types of averages:

Alp))=2 A(p)P(p)=2 A(u)P(p1) ()
® M1
and
<B(,u1,,u,2))=§/} B(uy,uz)P(u)
:; ; By, p2)P(peg, m0), (7)
where
P(up)=2 8(ui,u1)P(p) (8)
M
and
F’(MLM&F% Sy 1) S b, o) P(1e) (9)

are marginal probability distributions.
We considefT to be an irreducible matrighat is, a ma-

trix that cannot be reduced to block diagonal form by per-

mutation of row and column indicgsvith non-negative ele-
ments, so that the Perron-Frobenius thedfeguarantees
that its largest eigenvalue, will be nondegenerated and the
corresponding eigenvectap, will have positive elements,
that is, ¢o(1)>0. It is easy to prove that, for sufficiently
largelL,

P(p1) =[ do(p1)]? (10

and

Py, 2) =Ng ol ) T, ) do(p2),  (11)

the error being of the ordei /\,)" where), is the second
largest eigenvalue ofF.
Suppose one wants to calculate tiigantumaverage

(Dol Cldo)=2 2 o) Q1 m2) o) (12

M1 M2
of a certain operatory where Q(u1,u2) =(u1|C|u,) are

the matrix elements of’ in the{| )} representation. i is
diagonal in this representation,

Q(p1,42) =Q(pe1) d(p1,12), then
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<¢o|@1¢o>=§ Q(u)P(u)=(Q(ry). (13

For a generic operator, we use Efl) to get

Qg p2)
) P(1,42)

(bl doy=No2 X =———

M1 M2
:7\0< Q1 p2) >

). 14
T(p1.m2) 19
If we multiply both sides of Eq(11) by 6(wx4,u2) and

sum overwq and w,, we get, after using10),
(8(p1,12))=No (D (1)), (15)
whereD(w1) =T(®1,m1), SO that
(D(11)) 16)

O:<5(,U«1:/v¢2)> .

If in Eq. (14) we choose? to be the identity operator, then
we obtain

-1_
0 =

<5(M1-M2)> 17)

D(u1)

From the estimates of averages obtained from the Monte
Carlo method we can use either formul) or (17) to get
the largest eigenvalue, of T and formulag13) and(14) to
get thequantumaverages ¢o| | ¢o) over the leading eigen-
vector ¢y of T. The use of formuld14) is, however, useful
only when the elemenf§(u,u,) are strictly positive.

IV. MATRIX T

Our interest is to study the ground-state, or zero-
temperature, properties of one-dimensional quantum spin
systems described by Heisenberg-like Hamiltonians. We con-
sider a spinS Heisenberg Hamiltonian of the form

T=Toxy+ Ty, (18)
where
Hy=— 2 (SS+99Y), (19
(ij)

where the summation is over nearest-neighbor pairs of sites
and.7Z, is a diagonal operator in the basis in which the spin
operatorsS’ are diagonal.

Let us define the operator by

T=—

4+ C, (20

whereC is a positive constant. The elements of the matrix
are defined by T(o',0)=(0'|7]o) where |o)
=|oi0, - - o), With 0j=—S,-S+1,... S-1S vectors
of the basis in which the operato8; are diagonal.

The nondiagonal elements @fare given by
T(o',0)=—{(0'|.7, (21

o),

that is, in the caseand they vanish unless the states) and|o) are of the

form
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loy=|oy: - aioj- - - o) (220 column by performing the transformations

and og,—0o,+1 and oi41,— 01,1
|(T’)=|0'l...,a'iil,()'jil,...(TN>, (23 or

wherei and j are nearest-neighbor sites. In this case the o o1 and o er o A1
elements are positive and are given by i Cis i+l Tl S

1 Of course, these transformations are not performed when the
T(o',0)= —\/(Siai)(Siai+1)(Siaj)(S$oj+1). pair of sites are such thatcri/=(ri+l/_=8 or
2 oi,=0i+1,=—S. Pairs of this type we call forbidden pairs
(24 and the others allowed pairs. We denoteNfy+,) the num-
The diagonal elements df are given by ber of allowed pairs in the configuratiqn, of the /'th col-
umn.
o)+C. (25 At each time step of the Monte Carlo simulation we first
choose one column at random, say, #i@ column, and try
to modify its configuration according to the following cases.
(1) The chosen column is identical to the preceding and

D(o)=T(o,0)=—(0|. 7,

In the case where

Ty= —Z SIZSJ-Z, (26) following columns. Then, we choose at random one of the
{5 allowed pairs of spins of the chosen column with probability
which will be considered further on, we have 1/N(um,). Let the states of the pair be and 8. Then, the
chosen column could be modified according to the two pos-
D(o)= — E oio+C. 27) sibilities
(”)__ . a a « a at+tl «
We choose the constaft sufficiently large so thabD (o) is — (29
positive. B B B B B-1 B
Notice that the operator and
Z_ z a a « a a-1 «
F=25 28 ( )H( ) (30)
B B B B B+l pB

commutes with7 and also with7" Due to this property, the
matrix T defined above reduces to a block diagonal form
each one of the + 1 blocks, or sectors, being labeled by
the eigenvalueM of S*. Each block has the important prop-
erty of being an irreducible matrix.

We choose one of the possibilities with equal probability. If
|a|=Sor|B|=S, there is just one possibility. Then, the new
configuration will be accepted with probability

N(x,)

YT e (31)
V. MONTE CARLO ALGORITHM [D(u,)]

In this section we present a generalization of the Monte (2) The preceding column is identical to the following and
Carlo algorithm developed by de Olivetfavhich was only  distinct from the chosen column which differs from the other
suitable for spin-1/2 chains. We set up an algorithm to get théwo by just one pair of sites whose states are 1 and
properties of the leading eigenvector of a given sectof of B+ 1. The two possibilities of changing the states are
defined in the previous section. The algorithm for a given
sectorM is defined as follows. a a1 « a a «a

Consider a square lattice dFX L sites havind- columns B B+1 B - B8 B B
of N sites each. At each site there is a spin variable
o,, i=12,...N and /=1,2,...L, that takes the and
values —S, —S+1, —S+2, ..., S-1, S. To make a
connection with previous results we use the notation a a1l «a a atl «a
u,=(01,,02/,...,0n,) ANd py=(01,,05,,...,04,) g B+1 B) \g B-1 B
for the present and next configuration of tHéh column.

We start with a total configuration such th@) for each ~We choose one of them with equal probability.d=S or
column/, o,,+0,,+---+oy,=M, and(2) the configu- B=—S, there is just one possibility. In this case the new
rations u, and u,,, of two consecutive columns are configuration is accepted with probability
either equal to each other or are of the

(32)

. (33

form w,=(oy,... i/ 1 0ik1/ 00 ons) and usig p,= 1 _ (34)
=01/ 1 01 E L1 L ) [T(rr s PP

The algorithm is constructed in such a way that these two
properties are preserved in each step of the simulation. (3) The preceding column is identical to the chosen col-

At each step of the process we try to modify the states ofimn and distinct from the following column. There is just
two nearest-neighbor sites that belong to a randomly chosesne possibility of changing the state which is
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a a atl a at+l a+l
— . (395
B B B-1 B B—1 B-1
The new configuration is accepted with probability equal to
D(u,) ] 5
=min{ ———, 1. 36 §
P/ (Dw/_l) S
. o ® ospiz
(4) The following column is identical to the chosen col- = 0% vs
umn and distinct from the preceding column. There is just§
one possibility of changing the state which is )
0.272 ¢
a at+tl at+l a a atl
— . (37
B B-1 pB-1 B B B-1
The new configuration is accepted with probability 00, 1 > 3 4
10°MCS
[ D(us-1)
p,=min — 2 1}, (39 | | -
D(u,) FIG. 1. Time evolution of the staggered magnetization for the
o ) ) case of a chain wittN= 32 sites. Each point represents an average
(5) The three columns are distinct by just one pair: over 1¢ MCS. The line represents the average value over the last
3x10° MCS.
at+l a a—1 ag
B—1 B B+1) (39
. . VI. APPLICATION
In this case we cannot make any change in the chosen col-
umn. To show the usefulness of the method we present a simu-

(6) The preceding and following columns are distinct in lation made in a quantum spin system described by the iso-
two pairs that have one site in common. Here we distinguishropic antiferromagnetic Heisenberg Hamiltonian given by
two cases which are

N
a a—1 a—1 o o a—1 .7/=21§i~§i+1, (44)
<

B B+l B || B B-1 B (40) here §= (5550 ) - i oeriod
i1 +1 v+l where S=(S,S,S)) are spin-1 operators, with periodic
oy v 4 boundary conditions. This model is particularly interesting
and due to the prediction by Haldane that isotropic antiferromag-
netic Heisenberg chains, with integer spin, have an energy
a a—1 a1 16 a a—1 gap?l
B B+l B+2| | B B+l B |. (4D _ Performing rotations on the spi_ns operators o_f the odd
1 1 41 sites by an angler around thez axis, that is, making the
yoro yorTL 7 transformationsS‘— — S, §——9, and S~ if i is

In the first case the states of the three sites are modifieddd, we obtain a Hamiltonian of the for@8), namely,
whereas in the second case we change the states of two the
external sites only. In both cases, however, the new state is
accepted with probability

N N
H==2 (S8 + 9.+ 2 S, (49

| T DTy 1) The operator7” is defined by
p,=min , 1. (42
T -1 )Ty pys1) N N

(7) The preceding and following columns are distinct in-”7:i21 (ST(3X+1+S|Y3)/+1)_;1 S'Sii+t(N+1). (46)

two pairs that do not overlap:
We performed simulations within the sectors wikh=0

@ a-1l a-1 @« a a-l andM =1 to get the ground-state enerfy and the energy
B B+l pB+1 B B pBtl1 of the first excited statg&, . In this way it is possible to find

— . (43)  the energy gap\E=E;—E, of the system. We have also
y v r-1 y v=1 y-1 measured the staggered magnetizations pemnsitedefined
5 & 6+1 5 6+1 o+1 by

In this case we make the transition with probability 1. 1 .

It is straightforward, although tedious, to verify that the M= {Boll- 7| bo), (47)
transition probabilities defined by this algorithm satisfy the
detailed balance condition. and the staggered susceptibility per sitedefined by
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FIG. 2. Staggered magnetizatiom, versus 1N. FIG. 4. Energy densitieE,/N andE; /N, of the ground state
and the first excited state versuiN1/
1
_ 2 2 2 . . .
=3 1 Bol- 72| ¢o) = (oll- 7| ¢0)7F, (48)  my as a function of 1YN. The extrapolatiotN— gives a
vanishing staggered magnetization per site for the infinite
where chain, which is the expected result. Figure 3 shawsgN as

a function of 1N. The slope at the origin gives the suscep-
tibility for the infinite chain, namelyy=0.85+0.03.

Figure 4 shows a plot of the energy densitigg/N and
E;/N, corresponding to the ground state and first excited
and ¢, is the ground state. state, respectively, versusNL/ The extrapolationN— o

The Monte Carlo simulations were performed startingdives the result, for the ground-state energy per site,
from a configuration corresponding to a saturatéeiNgate €= —1.402-0.005. Figure 5 displays the gap energy
and we used chains of sizes ranging fro=4 up to AE=E;—E, versus 1N* from which we obtain
N=48 and a number of Co|umnB,: 1000. We obtained the AE=0.414+0.005. This is in agreement with the prediction
average estimates using a number of Monte Carlo stepd Haldané' and previous numerical resuft§:*-*

(MCS) of the order of 18. One MCS is defined ds trials of The simulations were made in a HP Apollo. The CPU
changing the state of a column. time required in the longest chain was about 48 h.

Figure 1 shows the time evolution of the staggered mag-
netizationmy for the case oN=32. There is a transitory
period, of about 1DMCS after which the system reaches the
stationary state. Taking the average over the nextl@®
MCS, we get the resulg,=0.272+0.007. Figure 2 shows

N
//=/2 (—1)'S (49
/=1

VII. CONCLUSIONS

We have presented a Monte Carlo method to find the
ground properties of quantum spin systems. The method was
used to obtain the properties of the ground state of the spin-1
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FIG. 3. Staggered susceptibilityy over N versus 1N. The
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isotropic Heisenberg antiferromagnet chain. The energy gapusceptibility in thez direction. The algorithm presented here
was found with a precision which is comparable with otheris valid for Heisenberg-like Hamiltonians of any value of
Monte Carlo methods. The method was also capable of givspin, defined on a chain. However, the algorithm can be gen-
ing the ground-state averages of quantum operators, esperalized to be used in the case of any dimension. Due to the
cially those which are diagonal in the representation used igeneral validity of the method it is suitable for studying more
the simulation such as the staggered magnetization and tloemplex spin systems.
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