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AMonte Carlo method to find the ground-state properties of quantum spin systems is presented. Transform-
ing a quantum spin Hamiltonian in a matrix with non-negative elements, we set up a Markov process whose
stationary probability is dominated by the leading eigenvector of this matrix. From the simulation of the
Markov process, by means of a Metropolis algorithm, we obtain the properties and the energy of the ground
state. The method is applied to the spin-1 isotropic, Heisenberg antiferromagnet chain.

I. INTRODUCTION

The present Monte Carlo method was developed to obtain
the properties of the leading eigenvector of non-negative ma-
trices. The method is based on the recognition that any given
matrix with non-negative entries can be regarded as the tran-
fer matrix of a certain statistical mechanical model. Since the
properties of the model are dominated by the leading eigen-
vector of the transfer matrix,1 then a Monte Carlo method
that simulates the model will provide the properties of the
leading eigenvector. If the leading eigenvector is also the
ground state of a quantum system, then the method is ca-
pable of simulating the zero-temperature properties of this
quantum system. This is, in fact, the case of several many-
body quantum systems. Although the method presented here
is general, we will be concerned only with quantum spin
sytems.

If the quantum system has dimensiond, then the statisti-
cal model system to be simulated has dimensiond11. In this
sense the present method resembles other stochastic methods
such as the path integral Monte Carlo method.2–6 However,
there is an essential distinction. In the path integral Monte
Carlo method, the simulation is performed at a finite tem-
perature and the ground-state properties of the system must
be obtained by a zero-temperature extrapolation. Our
method, on the other hand, is a zero-temperature Monte
Carlo method.

The method we present is yet distinct from other zero-
temperature Monte Carlo methods applied to quantum spin
systems such as the Green’s function Monte Carlo
method7–13 and the guided random-walk algorithm.14,15 All
these techniques can be viewed as stochastic versions of the
power method in which the leading eigenvector of a matrix
is projected out by repeated matrix multiplication.

The method present here has been used formerly to obtain
the zero-temperature properties of spin-1/2 antiferromagnetic
Heisenberg models.16–18 Here, we generalize the method to
be used to any value of spin and apply to the case of the
spin-1 isotropic antiferromagnetic Heisenberg chain.

II. MONTE CARLO METHOD

Let T be a non-negative matrix,T(m1 ,m2)>0, with m1
andm2 two suitable indices that take a discrete and finite set
of values. For a given integerL, let us define a configuration

m by m5(m1 ,m2 , . . . ,mL) and assign to it a probability
P(m) given by

P~m!5Z21T~m1 ,m2!T~m2 ,m3!•••

3T~mL21 ,mL!T~mL ,m1!, ~1!

whereZ is a normalization constant. The present method is
based on the recognition that the statistical properties of a
system described byP(m) are dominated by the leading ei-
genvector ofT, for sufficiently largeL. Therefore, from the
properties of thestatistical mechanicalsystem defined by
P(m), obtained, for instance, by the Metropolis algorithm,19

one gets the properties of the leading eigenvector of the
quantumsystem described by the matrixT.

The method is particularly useful to find the properties of
the ground state of quantum Hamiltonians whose nondiago-
nal elements, calculated on an appropriate vector basis, are
nonpositive. IfH is such a Hamiltonian and$um&% the ap-
propriate vector basis, then the elements of the matrixT are
defined byT(m8,m)5Cd(m8,m)2^m8uHum& whereC is a
positive constant chosen to makeT(m,m) positive. The
ground-state energyE0 and the largest eigenvaluel0 of T
are related byl05C2E0 and the ground state ofH is iden-
tified with the leading eigenvector ofT.

The Monte Carlo method is constructed by setting up a
Markov process for which the probabilityP(m) given by~1!
is the stationary probability. To this end it suffices to define a
transition probabilityW(m→m8) which satisfies the detailed
balance condition

P~m!W~m→m8!5P~m8!W~m8→m!. ~2!

In this way, with knowledge of the quotientP(m)/P(m8), it
is possible to make a simulation based on the Metropolis
algorithm.19 We chooseW(m→m8) such that the allowed
transitions are those for which the statesm andm8 differ by
just one component. If we denote bywl (m l →m l8 ) the prob-
ability of changing thel th component fromm l to m l8 , then
the detailed balance condition is written as

T~m l 21 ,m l !T~m l ,m l 11!wl ~m l →m l8 !

5T~m l 21 ,m l8 !T~m l8 ,m l 11!wl ~m l8→m l !. ~3!

A possible Monte Carlo algorithm can be set up by choos-
ing
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wl ~m l →m l8 !5
A

T~m l 21 ,m l !T~m l ,m l 11!
, ~4!

whereA is a constant, or

wl ~m l →m l8 !5minH T~m l 21 ,m l8 !T~m l8 ,m l 11!

T~m l 21 ,m l !T~m l ,m l 11!
, 1J . ~5!

III. BASIC FORMULAS

In a Monte Carlo simulation we obtain estimates of quan-
tities that are averages of state functions. Particularly, we are
interested in two types of averages:

^A~m1!&5(
m

A~m1!P~m!5(
m1

A~m1!P~m1! ~6!

and

^B~m1 ,m2!&5(
m

B~m1 ,m2!P~m!

5(
m1

(
m2

B~m1 ,m2!P~m1 ,m2!, ~7!

where

P~m18!5(
m

d~m18 ,m1!P~m! ~8!

and

P~m18 ,m28!5(
m

d~m18 ,m1!d~m28 ,m2!P~m! ~9!

are marginal probability distributions.
We considerT to be an irreducible matrix~that is, a ma-

trix that cannot be reduced to block diagonal form by per-
mutation of row and column indices! with non-negative ele-
ments, so that the Perron-Frobenius theorem20 guarantees
that its largest eigenvaluel0 will be nondegenerated and the
corresponding eigenvectorf0 will have positive elements,
that is,f0(m1).0. It is easy to prove that, for sufficiently
largeL,

P~m1!5@f0~m1!#
2 ~10!

and

P~m1 ,m2!5l0
21f0~m1!T~m1 ,m2!f0~m2!, ~11!

the error being of the order (l1 /l0)
L wherel1 is the second

largest eigenvalue ofT.
Suppose one wants to calculate thequantumaverage

^f0uQ uf0&5(
m1

(
m2

f0~m1!Q~m1 ,m2!f0~m2! ~12!

of a certain operatorQ whereQ(m1 ,m2)5^m1uQ um2& are
the matrix elements ofQ in the$um1&% representation. IfQ is
diagonal in this representation, that is, in the case
Q(m1 ,m2)5Q(m1)d(m1 ,m2), then

^f0uQ uf0&5(
m1

Q~m1!P~m1!5^Q~m1!&. ~13!

For a generic operator, we use Eq.~11! to get

^f0uQ uf0&5l0(
m1

(
m2

Q~m1 ,m2!

T~m1 ,m2!
P~m1 ,m2!

5l0KQ~m1 ,m2!

T~m1 ,m2!
L . ~14!

If we multiply both sides of Eq.~11! by d(m1 ,m2) and
sum overm1 andm2 , we get, after using~10!,

^d~m1 ,m2!&5l0
21^D~m1!&, ~15!

whereD(m1)5T(m1 ,m1), so that

l05
^D~m1!&

^d~m1 ,m2!&
. ~16!

If in Eq. ~14! we chooseQ to be the identity operator, then
we obtain

l0
215 K d~m1 ,m2!

D~m1!
L . ~17!

From the estimates of averages obtained from the Monte
Carlo method we can use either formula~16! or ~17! to get
the largest eigenvaluel0 of T and formulas~13! and~14! to
get thequantumaverageŝf0uQ uf0& over the leading eigen-
vectorf0 of T. The use of formula~14! is, however, useful
only when the elementsT(m1 ,m2) are strictly positive.

IV. MATRIX T

Our interest is to study the ground-state, or zero-
temperature, properties of one-dimensional quantum spin
systems described by Heisenberg-like Hamiltonians. We con-
sider a spin-S Heisenberg Hamiltonian of the form

H5Hxy1Hz , ~18!

where

Hxy52(
~ i j !

~Si
xSj

x1Si
ySj

y!, ~19!

where the summation is over nearest-neighbor pairs of sites
andHz is a diagonal operator in the basis in which the spin
operatorsSi

z are diagonal.
Let us define the operatorT by

T 52H1C, ~20!

whereC is a positive constant. The elements of the matrixT
are defined by T(s8,s)5^s8uT us& where us&
5us1s2•••sN&, with s i52S,2S11, . . . ,S21,S vectors
of the basis in which the operatorsSi

z are diagonal.
The nondiagonal elements ofT are given by

T~s8,s!52^s8uHxyus&, ~21!

and they vanish unless the statesus8& and us& are of the
form
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us&5us1•••s is j•••sN& ~22!

and

us8&5us1 . . . ,s i61,s j71, . . .sN&, ~23!

where i and j are nearest-neighbor sites. In this case the
elements are positive and are given by

T~s8,s!5
1

2
A~S7s i !~S6s i11!~S6s j !~S7s j11!.

~24!

The diagonal elements ofT are given by

D~s!5T~s,s!52^suHzus&1C. ~25!

In the case where

Hz52(
~ i j !

Si
zSj

z , ~26!

which will be considered further on, we have

D~s!52(
~ i j !

s is j1C. ~27!

We choose the constantC sufficiently large so thatD(s) is
positive.

Notice that the operator

Sz5(
i
Si
z ~28!

commutes withH and also withT . Due to this property, the
matrix T defined above reduces to a block diagonal form,
each one of the 2S11 blocks, or sectors, being labeled by
the eigenvalueM of Sz. Each block has the important prop-
erty of being an irreducible matrix.

V. MONTE CARLO ALGORITHM

In this section we present a generalization of the Monte
Carlo algorithm developed by de Oliveira16 which was only
suitable for spin-1/2 chains. We set up an algorithm to get the
properties of the leading eigenvector of a given sector ofT
defined in the previous section. The algorithm for a given
sectorM is defined as follows.

Consider a square lattice ofN3L sites havingL columns
of N sites each. At each site there is a spin variable
s i l , i51,2, . . . ,N and l 51,2, . . . ,L, that takes the
values 2S, 2S11, 2S12, . . . , S21, S. To make a
connection with previous results we use the notation
m l 5(s1l ,s2l , . . . ,sNl ) and m l8 5(s1l8 ,s2l8 , . . . ,sNl8 )
for the present and next configuration of thel th column.

We start with a total configuration such that~1! for each
column l , s1l 1s2l 1•••1sNl 5M , and~2! the configu-
rations m l and m l 11 of two consecutive columns are
either equal to each other or are of the
form m l 5(s1l , . . . ,s i l ,s i11,l , . . . ,sNl ) and m l 11
5(s1l , . . . ,s i l 61,s i11,l 71, . . . ,sNl ).

The algorithm is constructed in such a way that these two
properties are preserved in each step of the simulation.

At each step of the process we try to modify the states of
two nearest-neighbor sites that belong to a randomly chosen

column by performing the transformations

s i l →s i l 11 and s i11,l →s i11,l 21

or

s i l →s i l 21 and s i11,l →s i11,l 11.

Of course, these transformations are not performed when the
pair of sites are such thats i l 5s i11,l 5S or
s i l 5s i11,l 52S. Pairs of this type we call forbidden pairs
and the others allowed pairs. We denote byN(m l ) the num-
ber of allowed pairs in the configurationm l of the l th col-
umn.

At each time step of the Monte Carlo simulation we first
choose one column at random, say, thel th column, and try
to modify its configuration according to the following cases.

~1! The chosen column is identical to the preceding and
following columns. Then, we choose at random one of the
allowed pairs of spins of the chosen column with probability
1/N(m l ). Let the states of the pair bea andb. Then, the
chosen column could be modified according to the two pos-
sibilities

S a a a

b b b D→S a a11 a

b b21 b D ~29!

and

S a a a

b b b D→S a a21 a

b b11 b D . ~30!

We choose one of the possibilities with equal probability. If
uau5S or ubu5S, there is just one possibility. Then, the new
configuration will be accepted with probability

pl 5
N~m l !

@D~m l !#2
. ~31!

~2! The preceding column is identical to the following and
distinct from the chosen column which differs from the other
two by just one pair of sites whose states area21 and
b11. The two possibilities of changing the states are

S a a21 a

b b11 b D→S a a a

b b b D ~32!

and

S a a21 a

b b11 b D→S a a11 a

b b21 b D . ~33!

We choose one of them with equal probability. Ifa5S or
b52S, there is just one possibility. In this case the new
configuration is accepted with probability

pl 5
1

@T~m l ,m l 11!#
2 . ~34!

~3! The preceding column is identical to the chosen col-
umn and distinct from the following column. There is just
one possibility of changing the state which is
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S a a a11

b b b21D→S a a11 a11

b b21 b21D . ~35!

The new configuration is accepted with probability equal to

pl 5minH D~m l !

D~m l 21!
, 1J . ~36!

~4! The following column is identical to the chosen col-
umn and distinct from the preceding column. There is just
one possibility of changing the state which is

S a a11 a11

b b21 b21D→S a a a11

b b b21D . ~37!

The new configuration is accepted with probability

pl 5minH D~m l 21!

D~m l !
, 1J . ~38!

~5! The three columns are distinct by just one pair:

S a11 a a21

b21 b b11D . ~39!

In this case we cannot make any change in the chosen col-
umn.

~6! The preceding and following columns are distinct in
two pairs that have one site in common. Here we distinguish
two cases which are

S a a21 a21

b b11 b

g g g11
D→S a a a21

b b21 b

g g11 g11
D ~40!

and

S a a21 a21

b b11 b12

g g g21
D→S a a a21

b b11 b

g g21 g11
D . ~41!

In the first case the states of the three sites are modified
whereas in the second case we change the states of two the
external sites only. In both cases, however, the new state is
accepted with probability

pl 5minH T~m l 21 ,m l8 !T~m l8 ,m l 11!

T~m l 21 ,m l !T~m l ,m l 11!
, 1J . ~42!

~7! The preceding and following columns are distinct in
two pairs that do not overlap:

S a a21 a21

b b11 b11

g g g21

d d d11

D→S a a a21

b b b11

g g21 g21

d d11 d11

D . ~43!

In this case we make the transition with probability 1.
It is straightforward, although tedious, to verify that the

transition probabilities defined by this algorithm satisfy the
detailed balance condition.

VI. APPLICATION

To show the usefulness of the method we present a simu-
lation made in a quantum spin system described by the iso-
tropic antiferromagnetic Heisenberg Hamiltonian given by

H5(
i51

N

SW i•SW i11 , ~44!

where SW 5(Si
x ,Si

y ,Si
z) are spin-1 operators, with periodic

boundary conditions. This model is particularly interesting
due to the prediction by Haldane that isotropic antiferromag-
netic Heisenberg chains, with integer spin, have an energy
gap.21

Performing rotations on the spins operators of the odd
sites by an anglep around thez axis, that is, making the
transformationsSi

x→2Si
x , Si

y→2Si
y , and Si

z→Si
z if i is

odd, we obtain a Hamiltonian of the form~18!, namely,

H52(
i51

N

~Si
xSi11

x 1Si
ySi11

y !1(
i51

N

Si
zSi11

z . ~45!

The operatorT is defined by

T 5(
i51

N

~Si
xSi11

x 1Si
ySi11

y !2(
i51

N

Si
zSi11

z 1~N11!. ~46!

We performed simulations within the sectors withM50
andM51 to get the ground-state energyE0 and the energy
of the first excited stateE1 . In this way it is possible to find
the energy gapDE5E12E0 of the system. We have also
measured the staggered magnetizations per sitemN , defined
by

mN5
1

N
^f0uuMuuf0&, ~47!

and the staggered susceptibility per sitex, defined by

FIG. 1. Time evolution of the staggered magnetization for the
case of a chain withN532 sites. Each point represents an average
over 103 MCS. The line represents the average value over the last
33106 MCS.
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xN5
1

N
$^f0uM2uf0&2^f0uuMuuf0&

2%, ~48!

where

M5 (
l 51

N

~21! l Sl
z ~49!

andf0 is the ground state.
The Monte Carlo simulations were performed starting

from a configuration corresponding to a saturated Ne´el state
and we used chains of sizes ranging fromN54 up to
N548 and a number of columns,L51000. We obtained the
average estimates using a number of Monte Carlo steps
~MCS! of the order of 106. One MCS is defined asL trials of
changing the state of a column.

Figure 1 shows the time evolution of the staggered mag-
netizationmN for the case ofN532. There is a transitory
period, of about 106 MCS after which the system reaches the
stationary state. Taking the average over the next 33106

MCS, we get the resultm3250.27260.007. Figure 2 shows

mN as a function of 1/AN. The extrapolationN→` gives a
vanishing staggered magnetization per site for the infinite
chain, which is the expected result. Figure 3 showsxN /N as
a function of 1/N. The slope at the origin gives the suscep-
tibility for the infinite chain, namely,x50.8560.03.

Figure 4 shows a plot of the energy densitiesE0 /N and
E1 /N, corresponding to the ground state and first excited
state, respectively, versus 1/N. The extrapolationN→`
gives the result, for the ground-state energy per site,
e521.40260.005. Figure 5 displays the gap energy
DE5E12E0 versus 1/N2 from which we obtain
DE50.41460.005. This is in agreement with the prediction
by Haldane21 and previous numerical results.6,8,22–24

The simulations were made in a HP Apollo. The CPU
time required in the longest chain was about 48 h.

VII. CONCLUSIONS

We have presented a Monte Carlo method to find the
ground properties of quantum spin systems. The method was
used to obtain the properties of the ground state of the spin-1

FIG. 2. Staggered magnetizationmN versus 1/AN.

FIG. 3. Staggered susceptibilityxN over N versus 1/N. The
slope at the origin gives the susceptibility for the infinite chain.

FIG. 4. Energy densitiesE0 /N andE1 /N, of the ground state
and the first excited state versus 1/N.

FIG. 5. Gap energyDE5E12E0 versus 1/N
2.
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isotropic Heisenberg antiferromagnet chain. The energy gap
was found with a precision which is comparable with other
Monte Carlo methods. The method was also capable of giv-
ing the ground-state averages of quantum operators, espe-
cially those which are diagonal in the representation used in
the simulation such as the staggered magnetization and the

susceptibility in thez direction. The algorithm presented here
is valid for Heisenberg-like Hamiltonians of any value of
spin, defined on a chain. However, the algorithm can be gen-
eralized to be used in the case of any dimension. Due to the
general validity of the method it is suitable for studying more
complex spin systems.
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