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Correlated-basis-functiofCBF) theory, which has provided a firm foundation falp initio calculations of
the properties of quantum fluids such as ligfiite, is adapted and applied at the Jastrow-Feenberg variational
level to give an optimized description of the structure and of the elementary excitations of the Ising-spin model
in a transverse magnetic field. A set of trial wave functions of Hartree-Jastrow form is assumed to describe the
spatial correlations present in the ordered as well as the disordered ground states, and the Rewaitaemn
consistently adopted to represent the elementary magnon states. The CBF analysis of the spin system employs
the hypernetted-chai(HNC) formalism for a substitutional binary mixture of bosons and derives HNC equa-
tions for the spatial distribution functions which determine the ground-state energy expectation value. Func-
tional variation of this quantity with respect to the magnetic order parameter and the trial states leads to two
Euler-Lagrange equations, which may be interpreted as a renormalized Hartree equation for the optimal
magnetization and as a paired-magnon equation for the magnetic correlation function that is analogous to the
familiar paired-phonon equation for conventional quantum fluids. Numerical calculations are based on simple
cubic lattices and an optimized nearest-neighBosatzfor the generating pseudopotential. Results are re-
ported on the order parameter, the energy per lattice site, the transverse magnetization, and the magnon
excitation energies as functions of the coupling parametexr<8» measuring the strength of the transverse
magnetic field. We also present numerical results on the magnetic correlation function, the static structure
function, and the correlation length. The system exhibits a second-order phase transition at a criticgl value
of the coupling strength. Our numerical calculations of the optimal order parameter ¥jetds17 for a
simple cubic lattice and.=3.12 for a square planar lattice. The calculated data are in very good agreement
with results derived from perturbation expansions in conjunction with Racteniques.

[. INTRODUCTION quantitatively, the properties of these systems or models in
an intermediate region of their phase spaces where a
Correlated-basis-functiofCBF) theory® provides a molecular-field approximation is not sufficiently accurate but
powerful and efficienab initio treatment of the ground and theories of the fine structure of phase transitions very close to
excited states of strongly correlated quantum fluids. It hashe critical point®28do not yet apply. Investigations of this
been successfully applied to homogeneous and inhomoge&ature are certainly of interest since anomalous features in
neous Bose and Fermi systems such as liquid helilfn, this range of phase space may signal the possibility of struc-
helium mixtures’'®interfaces! planar surface$>'3and he-  tural transitions. A sophisticated many-body theory of corre-
lium films with or without a supporting substratéd® and lations such as the CBF approach has the potential to realize
helium droplets® The semianalytic theory gives valuable in- these objectives and to provide insight into the physical
sight into the correlated structure of the ground state and itproblems. It has been already applied to explore the vibra-
stability and permits, notably, a quantitative analysis of thetional modes in quantum solith® the mass gap of the el-
elementary excitations of a correlated many-body system. ementary excitations in a lattice gauge model of quantum
Usually, CBF theory is employed in conjunction with the field theory»*> and the properties of the Hubbard
hypernetted-chain(HNC) classification scheme and has model®*3*However, a systematic study of lattices or models
therefore close relations with the diagrammatic parquebdf solids within CBF theory is still lacking. We therefore
approach”*® Further, CBF theory may be used to improve concentrate at present on one of the simplest models that
systematically the density-functional modélsften adopted exhibits a second-order phase transition, the Ising niodel
in theoretical studies of problems in condensed mattem a transverse magnetic fiell This spin-lattice system has
physics?® been extensively studiét°and its known properties may
It is our present aim to extend the application of CBFbe used to test the quality of the approximations in each
theory to an adequate formal and numerical study of corresystematic step within the CBF approach before we proceed
lation effects in crystalline materials that may underlie structo more complex lattice systems. We note that the transverse
tural phase transitions of second order or may generatising model provides, despite its simplicity, a useful descrip-
anomalies in the elementary excitation modes of these sydion of insulating magnetic systems, order-disorder ferroelec-
tems. Such an analysis may be based, initially, on sufficientlyrics, cooperative Jahn-Teller systems, and other systems
simple Hamiltonian models characterized by one- or two-with pseudospin-phonon interactiofis>243%40 Moreover,
dimensional order parameters for certain classes of magnetiir) two spatial dimensions the model is dual to E{(@) lattice
ferroelectric'~2* or ferroelastic materiafs or of alloys?®®  gauge model in the uncharged sector of st&téhe trans-
We are primarily interested in exploring, qualitatively and verse Ising system therefore provides information on the
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structure of the field vacuum and on the mass of the vacuura discussion of future improvements within CBF theory and

excitations??~4° application of the theory to more complex models of crystal-
CBF theory begins with an appropriate formulation of theline materials. The Appendix summarizes the HNC analysis

expectation value of the ground-state energy of the spinof the modified spatial distribution function that is needed for

lattice model with respect to a set of trial many-body statesthe evaluation of the transverse magnetization in the ordered

In a first step we assume these states to be of Hartree-JastréRase.

form.* To evaluate the associated spatial distribution func-

tion and the transverse magnetization that enter the energy Il. THE ENERGY FUNCTIONAL

expectation value we equivalently describe the infinitely ex- The Ising model in a transverse magnetic field is de-

tended lattice as a substitutional binary mixture of two tyPes ribed by the Hamiltonia®

of bosons® The results of Ref. 47 may be utilized to per-

form a hypernetted-chaifHNC) analysis of the correspond- 1 N N

ing partial distribution functions and to extract a set of HNC == E Aijgfgjﬂ )\E (1-0?), (1)

equations for the magnetic correlation function. We may also 297 [

use this formalism to evqluate the transverse magnetizatjogefined on &-dimensional simple hypercubic lattice wilth

in terms of the magnetic _order parameter ?‘”d the SPNattice points and periodic boundary conditions. The spin at

Exchange st:je_ngtth. In thfetr(]jlsor%erled ([j)hase th(;slstrength mMa¥e i (i=1,2,...N) is represented by the and z compo-

e expressed in terms of the nodal and nonnodal compone . X 2 .
of the spatial distribution function. To evaluate the exchangep%;1 et?ltica)lfl A’rhecﬁ ;rl;ttgﬁze éitct)gé sapr}g-(sréinr?rizfgggi/ggy.tr; k;e de-
strength associated with an ordered state a second set J

HNC equations for a modified spatial distribution function is 80;:::;02;2? r_?lr? é“t/reaglss\fg?s@ﬁgh i;j |n?:;\g§reendt2§ It?]tgcceou_
needed. This function describes the additional correlation e@ing paraméter)\ (0O<\<w). For simplicity, the potential
fects that are induced by the condensation of paramagnons _~ : ' L

into the degenerate ordered state. The squti%ns of these”_A(n) 's assumed to be of the nearest-neighbor form,
HNC equations may be employed to evaluate the excitation 2D, n=0,
energies of the elementary excitations of the ordered states
and the disordered states, in Feynman approximéfion.

The CBF analysis on the variational level may be com-
pleted by a systematic optimization procedure for constructat zero temperature the model exhibits an ordeffagro-
ing the best wave function of Hartree-Jastrow type. TWomagneti¢ phase at a coupling paramete<\. and a dis-
Euler-Lagrange equations are derived by utilizing the mini-orgered(paramagneticphase at,<A<w. A second-order
mum principle for the ground-state energjhese equations phase transition occurs at the critical-field streniytax, .

can be interpreted as a renormalized Hartree equation for thehe order in the ferromagnetic phase is measured by the
optimal magnetization if the system is ordered, and as @agnetization in the direction,

paired-magnon equation that determines the optimal spatial

distribution function of the spin system. The latter equation (VX W)
is the analog of the paired-phonon equatiéamiliar from = W
the CBF theory of liquid*He.

Numerical calculations within the CBF formalism devel- The ground Statd}{f) has the symmetry of the Hamiltonian
oped here are performed on the order parameter, the trangt) at M =0, while the reflection symmetry of the Hamil-
verse magnetization, the ground-state energy, the spatial digonjan(with respect to the operation— — x) is broken in the
tribution function, and the magnon energies. Theseyrdered phase, wheid #0.
calculations are based on an optimized nearest-neighivor Within CBF theory~3the analysis begins with the evalu-

satz for the pseudopotential defining the correlated waveation of the expectation value of the ground-state energy per
function of Jastrow type that describes the ground state Ofttice site,

Ising spins on a simple cubic lattice. The results for these
physical quantities as functions of the applied external field E (V]|7]|V)
are compared with available results obtained by series- N~ W (4)
expansion techniqué&:°
Section Il provides the necessary information on thewith respect to a suitable set of correlated trial wave func-
transverse Ising model and the set of correlated basis fungions ¥. Defining the spatial distribution function
tions adopted. Section Il describes the binary mixture for-
malism that is employed to analyze the energy functional, the (¥|ofo|®)
distribution functions, and the transverse magnetization. The g(n)= W 6)
next two sections report on the results of the formal CBF
analysis of the disordered phase of the ma&sc. IV), and  and the transverse magnetization
of the ordered phaséSec. \J. The renormalized Hartree
equation and the paired-magnon condition are developed in (P|af| W)
Sec. VI. The numerical results on various physical quantities = W (6)
that describe the properties of the spin-lattice model are re-
ported and discussed in Sec. VII. This section concludes witlve may write the expectation valyé) in the form

A(n)=4{ —1, for nearest neighbors, (2
0, otherwise.

()
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tance|n| (n=r;;=r;—r;). In the disordered phase, the state
> A(mg(n)+A(1-A), (7) (12 is determined by theAnsatz(13) and the component
" (14) is not needed. The latter portion contributes to the cor-
where the sum extends owlrlattice points. The distribution relations present in the ordered state and accounts for the
function (5) is short ranged in the disordered phase and exsymmetry breaking. Reflection at a mirror plane normal to
hibits long-range spatial order in the ferromagnetic phase othex axis transforms the quantitit4) to (—U,,) and reveals
the infinitely extended lattice, witg(n)=M? as|n|—=. We  a twofold degeneracy of the ordered ground steteracter-

Z|lm
N =

therefore decompose this function according to ized by the magnetizationsl and —M). We note that the
5 5 componentuy, (n) is not independent of the pseudopotential
g(n)= 8ot (1= 59 M+ (1-M“)G(n). (8 u(n). Their relationship will be analyzed in the following

The correlation functiorG(n) vanishes an=0 and in the ~Sections. If desirable, thansdze (13) and (14) may be im-
asymptotic regiorn|—. In the molecular-field approxima- Proved by complementing the pair potentials by pseudopo-

tion, which ignores the effects of spatial correlations, thef€ntials of triplet forn’
function G(n) vanishes identically. We next construct the full set of correlated many-body

To separate kinematic and dynamic effects in the transWave functions. In_ analogy with the density-fluctua}tion op-
verse magnetization we cast expressiBhinto the factor- €rators employed in the CBF theory of quantum fidistsch
ized form as liquid “He, we introduce the excitation operatops

=3NelkTigX and form the ideal magnon statdal})
A=(1-MHYVn,,. (9 =pi¥). The excitation energy of the magnons is then

In the mean-field approximation the spin-exchange strengtﬁvaluated in Feynman approximatith,

N, is unity, but it is smaller than unity if the spatial correla-
tions are properly incorporated. w(K) = € . (15)
In terms of the quantitie, n,,, and G(n), the energy S(k)

functional reads, explicitly, . S o
PHCITY The static structure function is related to the spatial distribu-

E 1 tion function by a Fourier transformation,
-1 MZ)[ D+ > A(n)e(n)]
n

- ik-n
+)\{l—(1—M2)1’2n12}_ (10) S(k)—l‘f'; e "G(n). (16)

In the mean-field approximation, expressid) is reduced The single-particle energy is defined by the expectation
to a simple function of the magnetizatidh. In this case the 5je

energy is minimal for
(WL L 1)

N2 _ M2}~
M2:1—<5) (11 ©= N MUy ANl MO T a7

in the ordered state, implying the familiar resnjt=2D for ~ In the Hartree approximation, whe@n)=0 andn,,=1, the

the critical coupling parameter. energy_of amagnon is therefore estimateddfly)=e¢. In this
CBF theory provides a systematic and efficient schem@pproximation paramagnons carry the energik)=2\,

for evaluating the optimal magnetizatioMs andA and the ~ While the Hartree energy of ferromagnons is constaii)

optimal spatial correlation functiofs(n) associated with a =4D. These estimates, however, only provide reasonable re-

set of suitably correlated many-body wave functions. In analSults in the weak\—<c) and strongA—0) coupling limits.

ogy to the established CBF treatment of conventional quanAs for the ground-state energy, CBF theory offers a system-

tum fluids®~® we adopt a correlated many-body ground statedtic means for the evaluation of correlation effects on the
of Hartree-Jastrow typE:4° excitation energies at any given value of the coupling param-

eter\ (see Sec. VIl for a detailed discussjon

|T)y=exp(MUy+U}|0), (12
with lll. MIXTURE FORMALISM
1 N To evaluate the energy expectation va{l) we have to
U== 2 u(r;)ole’, (13  construct the spatial distribution functi@(n) and the spin-
2 {3 SRR exchange strengthn,, associated with the Ansaze
N . (12),(13),(14) as functionals of the pseudopotentigh) that

.  x generates the spatial correlations. To do this we describe the

Un=2 us(r)o '+ 2 Z um(rij)(oi+o7). (14 spin-lattice system, more conveniently, as a binary mixture
' = of two types of boson$ The two boson species are charac-

The reference stat6) is represented by a symmetric product terized by the eigenvalugs-1) and(—1) of the spin opera-

of N single-spin states with spin component=+1. For a tor ¢ and may be called particles and holes, respectively.

translationally invariant system the single-spin quantityThe partial densitiep, and p_ of the two components are

u4(r;) is independent of the lattice pointand the pseudopo- determined by the magnetization through=3(1=M), i.e.,

tentialsu(r;;) and uy(r;;) depend only on the relative dis- by the expectation values
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(V[P IY) G(n)=(1-6 i 1 25
pi—W (18) (n)_( nO) 1-M {g++(n) }a (
of the projectorsP{*)=2%(1+¢%). Due to the sum rule G(M=(1-8.){1— n 26
P§+)+Pi(‘;=1, the total densitp=p, +p_ of the mixture (M=(1= {1 =g (M}, (2
iS unity. 1—M
Employing the projector® (*), we may rewrite the gen- G(n)=(1- 8, —— {g__(n)—1}. (27)
erator in the exponent dinsatz(12) as 1+M
N Since EQgs(25—(27) must be simultaneously fulfilled, they
_ (+)_p(-) constitute, in general, conditions on the partial distribution
MUy +U ulMEi (P =P functions g,4(n) and, therewith, on the pseudopotentials
N (20). These conditions enable us to simplify the HNC equa-
1 E () p(+) tions(23),(24) and to determine the functional dependence of
+ 2 = Uy (i) PP the pseudopotentialy,(n) on the generatou(n) in the or-
dered statéSecs. IV and V.
1 o) Reference 47 provides formal results on the spin-
+3 ; u__(rij) Py P, exchange strengtfcf. Eq. (33) of Ref. 47] with the mixture
! formalism,
N
1 (H)p(—) 1
+5 2 (PP, (19 niz=expDi— 3(D1+Dy)}. (28)
i#]
o ) . The quantitiedD; andD, appearing in the exponent are ex-
having introduced the partial pseudopotentias 0), plicitly given by the expression
Ui+ (n)=u(n)+Muy(n), 1
D1:P+§n: X++(n)+P—; X+—(n)_zp+§n: N, (n)
Uy —(n)=-u(n), (20)
1
U__(n)=u(n)—Muy(n). XX (4N (W} =5 p- 2 N (n)
Expression(19) has the familiar form corresponding to a X{X_(M)+N, _(n)}+Ep. (29)

Hartree-Jastrow wave function for a homogeneous binary
boson mixturé’’ To evaluate the quantitigd(n) andn;,, we  The quantityD, is obtained from Eq(29) by interchanging
may exploit the HNC analysis of the ground state of such ahe indices+ and —.

mixture, given in Ref. 47. Due to the symmetry of the disordered state the exponen-
The partial distribution functions characterizing the struc-tial termD ,, vanishes in the paramagnetic phase. In this case
ture of the binary mixture afé the strength facton,, may be calculated from the solutions
of the HNC equation$23),(24).
(W[P{PP W) In the ordered phase, the quantiy, differs from zero
PaPp9ap(N)=(1=5no) Ty (2D and may be evaluated frdth

where the indicesy, B label particles(+) or holes (). _
These functions are decomposed into nodd) @nd non- D12_2n: {p Xy (n)+p_X_(n);

nodal (X) components,
1

Gap(N) =1+ X,5(N) +N,yg(n). (22) —§p+§ N (M{X5(nN)+N(n)}

They are related by a set of HNC equatidns-+,—), 1
=5 -2 No(M{X_(M+N_(M}+Ep,,
Xaﬁ(n):(l_5n0)exp{uaﬁ(n)+Naﬁ(n)+Eaﬁ(n)} "

—Ngp(n)—1, (23 (30
This requires the solutions of a second set of HNC equations
for a modified distribution functiomg(n) within the binary
Ngp(n)= Ey Pv% Xay(N=m){X,5(M)+N,z(m)}. mixture formalism(see the Appendijx
(24)

. . . IV. THE DISORDERED PHASE
For given pseudopotentiaig,z(n) and elementary quantities

E.s(n), the HNC equationg23),(24) may be employed to The symmetry properties of the paramagnetic phase may
evaluate the distribution functiorg,4(n). According to the be exploited to simplify the HNC equatiori&3),(24). Spe-
definition (21), the spatial distribution functio®(n) can be cializing to p,=p_=3 and g, ,(n)=g__(n) at M=0, we
constructed via any of the relations work with the sum and the difference of the functions
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g..(n) andg,_(n). With Egs. (25 and (26) we have the Finally, we may use Eq$38) and(39) to eliminate the func-

relations tion Ng(n) from Eg. (40). The result is
2G(n)= —g4+_(n), 31 1 1
(N=g44+(nN)—g,_(n) (3D Dlz_EE |n{1—G2(n)}—§2 N(n)G(n) +Ep .
n n
2(1-6p0)=09++(N)+g,_(n). (32 (41
Introducing the linear superpositions The HNC equationg37),(39) and the relation$35),(41)

provide explicit expressions for the energy expectation value

X+ (M=X__(n)=Xo(n)+X(n), with respect to a disordered state as a functional of the gen-

X, (M) =X_, () =Xo()— X(n) (33) erating pseudopotential(n).
and V. THE ORDERED PHASE

N, . (n)=N__(n)=Ngy(n)+N(n), To reformulate the set of HNC equatio(&3),(24) for the

(34) case that the magnetizatidh differs from zero, we proceed
N, _(n)=N_,(n)=Ng(n)—N(n), in analogy to the treatment of Sec. IV and generalize the
linear superposition§33),(34). Thus, we introduce
the conditiong31) and(32) can be decoupled,
1-M
G(n)=X(n)+N(n), (35 X++(n):Xo(n)+—l+M X(n),
0=Xo()+No() + po. (36) X —(M=X_4(n)=Xo(M—=X(n), (42)

Employing the decomposition§33),(34) and the relation
(36), the set of chain equatiori4) collapses into a single

X =X +1+MX
equation, —=(M)=Xo(n)+ 737 X(N),

along with similar relations for the nodal functioh,(n).
N(n)=>, X(n—m){X(m)+N(m)}. (370  Appealing to the condition$25—(27) and the decomposi-
m tions (42), we may condense the set of three chain equations
Relation(37) has the form of the familiar chain equation for (24) into the single equation
a one-component systéfrat a densityp=1.
At M =0 the hypernet equation®3) reduce to two dif- N(n)= 2, X(n—m){X(m)+N(m)} (43)
ferent equations. With the help of the decompositi¢dl) m

a’.‘d (34), these equations may be refprmulated in analog%r the distribution functionG(n)=X(n)+N(n). Equation
with the treatment of the chain equations. The conS|stencY43) holds at any value of the order parameXérand agrees
condition (32) then permits the explicit construction of the therefore with the result37) derived in the preceding sec-

function No(f‘) in terms of the pseudopotentla(n) gnd the tion. However, atM #0 conditions(25)—(27) are only ful-
nodal functionN(n). Elementary algebraic manipulations filled if the relation

yield the result(n#0),

2
2 exd —Ng(n)}=expg{—u(n)—N(n)+E, _(n)} (1+M) exp[ 2u(n)+Mupy(n)+ v N(n)
+explu(n)+N(n)+E, . (n)}. (39
Relation(38) allows us, atM =0, to formulate a single hy- +E(n)- E+(n)} _1}
pernet equation associated with the spatial distribution func-

tion G(n), =(1-M)

2
exp{ 2u(n)—Mupy(n)+ M N(n)
X(n)=(1— pp)tanKu(n)+N(n)+E(n)}—N(n).
(39
The elementary contributioi(n) is defined by the differ-

ence E(n)=E..(n)—E,_(n). Equation(39) constitutes a s satisfied(n+0). For vanishing magnetization, E¢44) is
modified form of hypernet equation for a one-componentgentically fulfilled. We may interpret Eq44) as an equation

(44)

+E__(n)—E_+(n)+—1

boson sys_terﬁ‘? ) defining the pseudopotentiaj,(n) of Ansatz(14) as a func-
In the disordered state the transverse magnetiz&8par  tional of the generatou(n).

(9) is given by the spin-exchange streng#8) with D;,=0 In further algebraic manipulations, we solve Ed4) for

andD;=D,. Expression(29) for the quantityD; may be  the quantityuy(n) and insert the result, together with the

rewritten with the aid of Eqs(33)—(35), as decompositiong42), into the hypernet equatior(@3). This

enables us to extract an explicit expression for the function

1 . ;
__ _ = Nq(n) in terms of the functionsi(n), N(n), E_4(n), and the
D,= E N E N(n)G(n)+Ep . 40 0 ap
! n o(n) 25 (MG()+Ep, 40 order parameteM,
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2 ex —No(n)}={1+[1+(1-M?)(--)]*3
Xexp{—u(n)—N(n)+E, _(n)},
(45)
with
(- )=exp{4u(n)+4(1—M?)"IN(n)+4E(n)} -1
(46)

and ZE(n)=E, ,(n)+E__(n)—2E_ _(n). This result permits
us to replace the hypernet equatid@8) by a hypernet equa-
tion of the form

X(n)=(1=8no) = N(n) = 2(1~6no)

X{1+[1+(1—-M?)(--)]¥3 L, (47

the bracket tern{---) being defined by Eq(46). Equations
(42) and (47) specialize correctly to result83) and (39),
respectively, at vanishing magnetization=0.
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1 1 -
In n12:§ zn: In{l—G(n)}Jrz1 En: In{ 1+ oM G(n))
1 1+M 1
— _ _nm2)1
+4; Inj 1+ 757 G() | + 5 (1-M?)

x> G(n)N(n)—%E IN{1—M(1+M)G(n)}
—%Z IN{1+M(1-M)G(n)}—M?2

. 1 . 1
X D N(n)+ 5 M2> G(MN(n) -5 MZ(1—M?3)

X > G(n)N(n)+Ey,. (51)

Result(51) specializes correctly to the sur®(+D,)=2D,
that was obtained for the logarithm of the spin-exchange

To complete the theoretical analysis of the energy funcstrength at zero magnetizatifef. Eq. (41)].
tional (10) we have to derive explicit expressions for the

guantitiesD ;,, andD,,D, that determine the spin-exchange

strengthn,,. While it is straightforward to express the quan-

tity (29 in terms of the function$s(n) and N(n) via Egs.
(42), we need a modified distribution functida(n)=X(n)

+N(n) to evaluate the functionaD,, at nonzero order
parameterM. We may show(see_the Appendixthat the
nodal and nonnodal componentd(n) and X(n), respec-

VI. OPTIMIZATION

To complete the CBF analysis at the variational level we
employ the minimum principle for the ground-state energy.
The optimal correlated wave function of the ty(i?)—(14)
is determined by the solutions of the Euler-Lagrange equa-
tions

tively, are related by a set of modified HNC equations. These

functions together with the quantitiegn) and N(n) suffice
to evaluate the functiond) ;.

The HNC equations associated with the distribution func-

tion G(n) read

X(n)=—N(n)+(1— .M *

taniM{{(n) +N(n)+E(n)} .
1+M tanhM{O(n)+N(n)+l§(n)}’
N(n)=(1-M?)~1> G(n—m)G(m)
+> G(n—m)X(m). (49)

The generating pseudopotentish) appearing in Eq(48) is
defined by

In

1-M ]
1+ —— G(n)

1
NS S
unj=zM 1+ M

—In . (50

LM
1—wm G

The solutions of the HNC equation&43),(47), and

JE _

é’_M_O’ (52
oE _

5t =0 (53)

They may be used to calculate the optimal distribution func-
tion G(n), the optimal magnetizationM and A, and the
optimal magnon energy(k).

Equation(52) may be viewed as a renormalized Hartree
equation for the order parametét of the ferromagnetic
state. Equatiori52) can be given the explicit form

N LHHi [ A 1+H,
=117 20 M2, |1 2D M T,
(54)
with the Hartree potentials
Ho= 1 > A(n)G 5
0=3p 2 (N)G(n), (55
dlnnyg,
= 2—
H,=2(M“-1) FIVE: (56)

An explicit expression for the potentig@h6) may be derived

(48),(49) provide an explicit expression for the exchangeby taking the derivative of the resub1) with respect to the

strength (28) where quantitieg29) and (30) are given in
terms of the distribution functiong(n),G(n), the associated
nodal portiondN(n),N(n), and the order paramet®&t. Thus

magnetizatiorM .
Equation(54) yields an implicit condition on the critical
coupling parameter,
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_2D
c_n_12

1+H, .
1+Hy)" 57)
The Euler-Lagrange equatiofb3) is the analog of the
paired-phonon equation familiar from the CBF theory of
quantum fluids such as liquid heliuiVe may therefore call o6 |
Eg. (53) a paired-magnon equation. This equation can be cast 5

into the form
04 F

G(n)+ie(1-M?)G(n)=0. (59)

The functionG(n) is the derivative(d/dB)G(n,B)|z—o of a
generalized distribution functio®(n,B) that is generated by
a pseudopotential(n,8)=u(n)+ Buv(n). At B=0 we recover 00 | . L

the standard spatial distribution functi@(n) generated by A
the pseudopotential(n). The quantityv(n) is the Feenberg
effective potential associated with the Ising model and the
pseudopotentiali(n). It can be decomposed into two por-
tions,

FIG. 1. Optimized CBF result§in HNC/O approximatioh for
the order parametévl (magnetization in th& direction as a func-
tion of the coupling parameter(solid curve. The long-range order

_ox 2 % vanishes at the critical point.=5.17. For comparison we also
v(m=v(n)+M%y(n). (59 show the results of perturbation theory, in second ofdeiecular-

The component,(n) contributes only if the system is or- field approximation, denotell;) and in sixth orde(Ps).
dered. It describes the effect that originates from the conden-
sation of paramagnons into the ordered ground state. For tHearameteM and, particularly, on the critical coupling pa-
disordered phase the effective potentdl(n) is explicitly rameter\. where the magnetization vanishes. In a series of
given by figures, we display the optimal results for the ground-state
energy, the spin-exchange strength, the static structure factor
. € G(n) at zero wave number, the spatial distribution funct®m),
v (n)=A(N-5 N(n)—m - (60 and the magnon energies at vanishing momeniikmn as
functions of the external field. The results are compared with
It specializes ta*(n)=A(n) in the weak-coupling limit  results derived from series expansions in powers of At
(A—) since the spins are not correlated in the asymptoti¢eported in Refs. 38 and 39.
region of the coupling parameter. In the strong-coupling limit ~ Figure 1 shows the numerical results for the optimal order
(A—0) the effective potentiab(n) vanishes for the same parameteM. The calculation is done for a ¥32x32 lat-

reason. tice with periodic boundary conditions in the range
0=\=5.14 of the coupling strength and checked against the
VII. NUMERICAL RESULTS AND DISCUSSION results for a &8x8 lattice. We find that finite-size effects

o are very small and may be ignored as long as we do not
'In an application of the CBF approach to the transversgrobe the fine structure of the magnetization and the other
Ising model, we perform a restricted optimization based orphysical quantities of interest in the regigh—\.|<0.05

the one-parameteknsatz very close to the critical point.. The value of the critical
parameter calculated within the present realization of the
u(n)=a(l-,)A(n) (61)  CBF theory is\,~5.17. This result is in very good agree-

for the generating pseudopotential. The parametes cho- ment With the resglt of Ref. 3.8“%5.'21' Qerived frpm per-
turbation theory in conjunction with Padapproximation

sen such that the energy expectation valli6) attains a hni Th d ded | ¢
minimum. We note that the optimizekhsatz(61) reproduces techniques. € order parametdr expanded In powers o
he parametei in the ordered state is represented, up to

the exact results on the ground-state energy and other phyg_ h order bo8
cal quantities in the strong-coupling limix—0) and in the ~ S'Xth order y
weak-coupling regiméx—o),

. . . . _ 1/\ 2 A 4 A 6
The HNC equationg37),(39) associated with the disor M=1-3 (5) _0'25%6) _0'16746

dered state and the HNC equatio@®) and (47)—(49) cor- to

responding to the ordered phase are solved in HNC/O ap- (62

proximation, i.e., by neglecting the elementary contributions.

We emphasize that these equations are derived for an inflFor a convenient comparison we plot the results in second

nitely extended spin lattice in the limN—cx at fixed lattice = order—representing the molecular-field approximation—and

constant. Of course, the actual numerical calculations fomn sixth order in Fig. 1.

solving the HNC equations are carried out on a finite lattice A similar CBF calculation of the optimal order parameter

with periodic boundary conditions. and the critical transverse field of the two-dimensional Ising
We have performed numerical calculations at all ranges ofmodel on a square lattice yields~3.12 for the critical cou-

the coupling parametex for square and simple cubic lat- pling parameter. The result agrees very well with the value

tices. Here, we report on some results on the optimal ordex.~3.14 reported in Ref. 38 that is believed to be the most
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FIG. 2. Numerical results for the optimal ground-state energy

per lattice site based on thensaze (12)—(14) and(61), in HNC/0

1.00

099 |

FIG. 3. CBF results(in HNC/O approximatioh for the spin-
exchange strength,, of Eq. (28) [related by Eq(9) to the trans-

approximation. The results are compared with those of second-ord&€rse magnetizatidn compared with the result5) and (66) of

perturbation theory for the disordered phase, &4), A\>\., and

second-order perturbation expansions in powera ahd A2, re-

for the ordered phase, E¢63), which represent the results of the SPectively.

molecular-field approximation atsth<4.

reliable result within dirst-principlesapproact? Our result

may be also compared with results of other microscopic

approache&>°1-°°

The numerical results on the optimal ground-state energy
(10) of a simple cubic spin-lattice as a function of the cou-

1/6 6\2 6\3
S(O)=1+§ N +0.312%X +0.232<X)
4
+0'174%X +oe (67

pling parametei are presented in Fig. 2 together with the for the disordered phase. The fourth-order approximation is

results of second-order perturbation thety?

E_ 1 A 63
N—)\ —l—2+"' . A<M, (63
E_3 1 L 64
N— —Z)\ + ., N> ( )

The CBF results merge with the resul3) and (64) for

plotted in Fig. 4(dot-dashed curye For a coupling param-
eter\>15 the CBF results are well represented by the per-
turbative results in fourth order. In the transition range

the CBF results exhibit a rather sharp but finite peak indicat-
ing a maximum for the correlation length. However, this re-
sult signals the limitations of the approximatssatz(61)
presently adopted. If the structure functi@6) corresponds

to the exact ground state, quant®{0) diverges at the criti-
cal point. Consequentlhnsatz(61) is not flexible enough to

0=A<2.5 and\>10, respectively. They depend smoothly on describe correctly the asymptotic behavior of the spatial dis-

the coupling parameter in the transition range.

Figure 3 displays the numerical results on the spin-

exchange strength versus the external field. Since the spins

are not correlated in the limits of stror(@—0) and weak
(A—) coupling, the functionn,, must approach unity in

these limits. Our data agree very well with the perturbative

result$®3%in second order, in the ranges3<0.5 and 15\,

2
Feee A<, (65)

A
n12: 1_003246

2
+oo0 N>, (66)

6

Results on the behavior of the spatial correlations are dis- 5o 2 2 5 8 10 12

played in Figs. 4—6. The static structure functii6) at
vanishing wave vectdk is shown in Fig. 4. This quantity is

25 F

20 F

$(0)

1.0 4

0.5

a measure of the correlation length of the interacting spin  FiG. 4. The static structure functio(0) at zero momentum

system. Since the spins are uncorrelated\asd) or A—oo,
the spatial distribution functiof (n) vanishes in these limits

corresponding to th&nsaze (12)—(14) and optimized choic€61),
in HNC/0 approximation. The CBF results at coupling parameters

and, consequently, quanti§(0) approaches unity. Perturba- in the range\>\, (disordered phagare compared with the results

tion theory® yields the expansion

of expansion67), up to fourth order.
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FIG. 5. Plot of the logarithm of the functidn|G(n) versus the FIG. 7. Numerical results for the magnon energy gaf) at

lattice distanceén| at constant transverse field=3,4,9. The spatial  zerg wave number, in Feynman approximatias). The CBF data
distribution functionG(n) corresponds to an ordered state describedcorrectly reproduce the exact dependence on the coupling parameter
by the Ansdze (12)—(14) and (61) with the optimal parametef. ) in the limits \—0 and \—. The results for the paramagnon
The numerical calculation is based on the CBF formalism in con-gnergy are compared with the perturbation resg@®), in the
junction with the HNC/O approximation. The data are well repre-foyrth-order approximation. The Hartree energies are depicted by a
sented by straight lines, thus confirming the suggested exponentigloken line. In the transition region=\.=5.17, the gap exhibits a
behavior(68). minimum. Due to the approximations adopted, the minimum is not

deep enough and, consequently, the magnon mode is not completely
tribution functionG(n) that leads to a divergent correlation soft.

length. To improve the present result we sho(ldimple-
ment the strict functional optimization procedure described Go
in Sec. VI and(ii) incorporate systematically the correlation G(n)= — e« (68)
effects generated by pseudopotentials of triplet, quadruplet,... n|
n-tuplet type in addition to the pairpotential$n) anduy () where the inverse correlation lengthdepends on the trans-
considered irAnsaze(13) and(14). We stress, however, that yerse magnetic field. We therefore plot the quantity In
we aim primarily at a reliable quantitative study outside Of{|n|G(n)} in Fig. 5 versus the distan¢9| at various coupling
the narrow region of the fine structure of the transition Wherebarameters,)\<)\c. The linear dependence confirms very
theories of critical exponents are appropriate. well the suggested behavig68). The slope of each line

The CBF results on the (1) lattice gauge mod&**sug-  gives the inverse correlation lengthas a function of the
gest that the asymptotic behavior of the spatial distributiorfie|d strength. The result is shown in Fig. 6. The quantity
functionG(n) corresponding té\nsdze (12)—(14) should be  decreases linearly with increasing strength of the transverse
well represented by the classical dependence magnetic fieldh<\.. An analogous behavior is found in the
paramagnetic region.

As expected, the increase of the correlation lengthis
not rapid enough to reproduce correctly the singularity at the
critical point associated with the true ground state. If we
] wish to improve the description of the fine structure in the
transition region very close to the critical parametgr we
must appropriately generalize tA@sdze (12)—(14) and(61)
or we must proceed to the next level within the CBF theory
where perturbative corrections are taken into accdtht.

In Fig. 7 we present our numerical results on the magnon
energies athk=0, calculated in Feynman approximation
_ (15), as a function of the field strengih The calculated data
may be compared with the results in the Hartree approxima-
tion and with the result§ based on the series expansion
6 (A>No),

3
R

2
FIG. 6. CBF resultgin HNC/O approximatiop for the inverse “’(0):2)‘{ 1-5 (X) _0'083:< X) _0'0374‘{X
correlation lengthx of the distribution functionG(n) that charac-
terizes the structure of the ordered ph&é@eA<\;). The correla- (69)
tion length increases with increasing strength of the transverse mad-he CBF results correctly reproduce the exact results corre-
netic field but remains finitédue to the approximations madat ~ sponding to the true excited states at small transverse fields
the critical point\.. (A—0) and at very large coupling parametéis—x). The
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CBF results show a drastic reduction of the energy @&} The formalism presented here can be directly applied for
as the critical region=\, is approached. Thus, the presently a numerical study of th&(2) lattice gauge model in two
adoptedAnsize (12)—(14) and(61) take already account of a spatial dimension& = for investigating the properties of
substantial portion of long-range effects but do not lead to dsing models with spin interactiona(n) that are not re-
complete softening of the excitation mode at the criticaistricted to the form (2), or—with only minor
point. Employment of the solutions of the Euler-Lagrangemodifications—to a CBF analysis of antiferromagnetic
equations(54) and (58) and incorporation of “backflow” Phases, etc. _ _ _
effect$®3into the Ansatzfor the magnon states and triplet Concluding this discussion of future properties we point
correlationd® into the Ansaze (13),(14) may remedy this out that the methods we have explored may be adapted to the

shortcoming of the presently adopted approximation close t{i'eatment of more complex Spin mogjels, such as anisotropic
the transition. eisenberg models, mixtures of spin systefaoys), and

In summary, CBF theory at its variational level has beenOther SGOT&%E,'; of interest in  condensed-matter

adapted to treat the ground and excited states of the IsingYSICS-
model in a transverse magnetic field. HNC equations have
been derived for the spatial distribution functions associated ACKNOWLEDGMENTS

with a suitable class of correlated many-body ground states \ye wish to thank J. W. Clark. S. Hau$suN. H. March
of Hartree-Jastrow type. These distribution functions detery,q R. Mehimann for discussions and valuable information.
mine the energy functional, the transverse magnetization, thenis work has been supported, in part, by the EC Human

magnon energies, and other physical quantities of interes&apita| and Mobility Program under Contract No.
An optimal version of the theory has been given in terms ofcRgCHRXCT 940456.

Euler-Lagrange equations, consisting of a renormalized Har-
tree equation for the order parameter and a paired-magnon
condition for the best pseudopotential.

A detailed numerical application of the theory has been The functionalD ,,, Eq. (30), is determined by the nodal
performed in HNC/O approximation, based on a one-and nonnodal components of the modified distribution
parameter form for the pseudopotential. We have studied thgginctiong’
dependence of various properties of the model on the trans-
verse field. In particular, we have reported results on the 9a(N)=1+X,(N)+N,(n), (A1)
spatial distribution function and its correlation length, on the . _ . . .
static structure function, on the spin-exchange strength, an\ﬁyth a=-+or—. The associated HNC equations relating the
on the magnon energy gap. The results agree correctly wit nctionsX,(n) andN,(n) are
exact results of standard perturbation expansions in the
strong- and weak-coupling regime. Since CBF theory is, in ~ Xe(M=(1~ Sn0)€XP{3Uqq(N) + 35U, —(N)+N,(n)
spirit, a nonperturbative approach its application is not lim- +E, ()} —Ny(n)—1 (A2)
ited to these particular regions of the phase space. The ap- “ “ ’
proach, therefore, permits one to bridge the gap between the
regions where perturbative approaches are valid an¢htre N, (n)= 2 pBE Xg(N—m){Xz,(mM)+Ng,(m)}.
row) transition region where scaling theories of phase tran- B m
sitions are appropriate. We have shown that the CBF analysis
yields accurate numerical results on the critical points in two
and three spatial dimensions.

We finally note that the CBF approach is formulated for

APPENDIX: THE DISTRIBUTION FUNCTION é(n)

(A3)

The generating pseudopotentials in E42) may be writ-
ten in the form

infinitely extended systems, i.e., we are not limited to a nu- Uy (N)+u,_(n)=Muy(n),
merical analysis of small finite lattices.
The present numerical application of the variational-CBF u__(n)+u,_(n)=—Muy(n), (A4)

formalism should be complemented in future numerical work

by a strict functional optimization of the pseudopotentialdue to Egs.(20). They vanish atM =0 and, consequently,
u(n). Solving the Euler-Lagrange equatiof®}) and(58 we  Egs. (A2) and (A3) have the solutionsX,(n)=N,(n)=0,
can proper|y take account of the |ong-range effects of th|§1¢0 The distribution fUﬂCtiOﬂSA].) for the disordered state
function which are missing in the nearest-neighmsatz ~ are therefore given byg,(n)=1-4,, and the quantityD,,
(61). However, we believe that in the near term it would bevanishes identically. However, spatial correlations contribute
more fruitful to extend the formalism to a quantitative de- to the distribution function¢Al) if the state is ordered.
scription of the properties of lattice systems at finite tempera- T0 cast the HNC equation@2) and (A3) into a more
tures. Such a generalization of the CBF approach has bedi®nvenient form we decompose the functi¢Ad) and their
already developed for quantum fluids such as ligfite X andN components according to

(Refs. 8, 11, 13, 14, and bat low temperatures and has led

to the formulation of a correlated density matrix theory at 29,(N)=0aa(N)+ 9. -(N)+2G,(n),
more elevated temperaturs:° The implementation of these .
approaches to spin lattices would permit systematic studies 2Xo(N)=Xgo(N) + X4 —(N) +2X,4(N), (AS5)

of real crystalline materials where the structural phase tran- .
sitions are driven by a pseudospin mecharism. 2N,(n)=N_,(n)+N, _(n)+2N,(n).
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This enables us to eliminate the pseudopotent®y in the

hypernet equationéA2) and to reformulate the set of equa-

tions (A2),(A3) in terms of the function¥ (n) andN ,(n),
Xa(M) = (1= 800){Gaa(M g — (M} 2exp{N,(n) +E 4 (n)}

—No(N) = Hgua(M+g, (N}, (A6)

Na(m =2 2y Xg(m=m{Xg(m)+ Ngo()}-
(A7)
We may cast Eqs(A6) and (A7) into a simple and more
convenient form by employing the linear decompositions
X, (n)=Xo(M+M(1-M)X(n)+M(1+M) 1G(n),

. . . (A8)
X_(n)=Xo(N)—M(L+M)X(n)—M(1—M) 1G(n),

and
N, (n)=No(n)+M(1—M)N(n),

. . . (A9)
N_(n)=Ng(n)—M(1+M)N(n).

Elementary algebraic manipulations involving EG&7) and
the definitions(A8),(A9) lead to the chain equatiod9) and
the relation

Xo(n) +No(n)=0. (A10)

This equation establishes a condition on the functigpnpg)
andg_(n). From Egs.(25—-(27) there follows
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pP+9++(N)+gy (N)+p_g__(N)=2(1= ),
(A11)

and, with Eqs(A5), (A8), (A9), and(A10), we arrive at the
sum rule

p+9+(N)+p_g_(n)=(1-dno). (A12)

Further, relations(25—(27) and the decompositions
(A8),(A9) allow us to express the functiddy(n) in terms of
the distribution functiongs(n), G(n)=X(n)+N(n), and the
nodal portionN(n). The result is

No(n)=— 2In{1—G(n)}+M2N(n)
—3In{1+(1-M)(1+M)"1G(n)}
—3In{1+(1+M)(1-M) " 1G(n)}
+1In{1-M(1+M)G(n)}

+3In{1+M(1-M)G(n)}. (A13)

Insertion of expression@A8), (A9), and(A13) into the hy-

pernet equation§A6) leads us, after a few elementary alge-

braic steps, to a single hypernet equation for the functions

X(n) andN(n). The explicit form is given by Eq(48).
Employing Eqs(A8), (A9), and(A13), we may write the

functional (30) in terms of functionsG(n), G(n), andN(n).

The explicit result on quantiti ,,— 3 (D, + D,) is presented

in Eq. (51).
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