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Correlated-basis-function~CBF! theory, which has provided a firm foundation forab initio calculations of
the properties of quantum fluids such as liquid4He, is adapted and applied at the Jastrow-Feenberg variational
level to give an optimized description of the structure and of the elementary excitations of the Ising-spin model
in a transverse magnetic field. A set of trial wave functions of Hartree-Jastrow form is assumed to describe the
spatial correlations present in the ordered as well as the disordered ground states, and the FeynmanAnsatzis
consistently adopted to represent the elementary magnon states. The CBF analysis of the spin system employs
the hypernetted-chain~HNC! formalism for a substitutional binary mixture of bosons and derives HNC equa-
tions for the spatial distribution functions which determine the ground-state energy expectation value. Func-
tional variation of this quantity with respect to the magnetic order parameter and the trial states leads to two
Euler-Lagrange equations, which may be interpreted as a renormalized Hartree equation for the optimal
magnetization and as a paired-magnon equation for the magnetic correlation function that is analogous to the
familiar paired-phonon equation for conventional quantum fluids. Numerical calculations are based on simple
cubic lattices and an optimized nearest-neighborAnsatzfor the generating pseudopotential. Results are re-
ported on the order parameter, the energy per lattice site, the transverse magnetization, and the magnon
excitation energies as functions of the coupling parameter 0<l<` measuring the strength of the transverse
magnetic field. We also present numerical results on the magnetic correlation function, the static structure
function, and the correlation length. The system exhibits a second-order phase transition at a critical valuelc
of the coupling strength. Our numerical calculations of the optimal order parameter yieldslc.5.17 for a
simple cubic lattice andlc.3.12 for a square planar lattice. The calculated data are in very good agreement
with results derived from perturbation expansions in conjunction with Pade´ techniques.

I. INTRODUCTION

Correlated-basis-function~CBF! theory1–6 provides a
powerful and efficientab initio treatment of the ground and
excited states of strongly correlated quantum fluids. It has
been successfully applied to homogeneous and inhomoge-
neous Bose and Fermi systems such as liquid helium,5,7,8

helium mixtures,9,10 interfaces,11 planar surfaces,12,13and he-
lium films with or without a supporting substrate14,15 and
helium droplets.16 The semianalytic theory gives valuable in-
sight into the correlated structure of the ground state and its
stability and permits, notably, a quantitative analysis of the
elementary excitations of a correlated many-body system.

Usually, CBF theory is employed in conjunction with the
hypernetted-chain~HNC! classification scheme and has
therefore close relations with the diagrammatic parquet
approach.17,18 Further, CBF theory may be used to improve
systematically the density-functional models19 often adopted
in theoretical studies of problems in condensed matter
physics.20

It is our present aim to extend the application of CBF
theory to an adequate formal and numerical study of corre-
lation effects in crystalline materials that may underlie struc-
tural phase transitions of second order or may generate
anomalies in the elementary excitation modes of these sys-
tems. Such an analysis may be based, initially, on sufficiently
simple Hamiltonian models characterized by one- or two-
dimensional order parameters for certain classes of magnetic,
ferroelectric,21–24 or ferroelastic materials25 or of alloys.26

We are primarily interested in exploring, qualitatively and

quantitatively, the properties of these systems or models in
an intermediate region of their phase spaces where a
molecular-field approximation is not sufficiently accurate but
theories of the fine structure of phase transitions very close to
the critical point26–28do not yet apply. Investigations of this
nature are certainly of interest since anomalous features in
this range of phase space may signal the possibility of struc-
tural transitions. A sophisticated many-body theory of corre-
lations such as the CBF approach has the potential to realize
these objectives and to provide insight into the physical
problems. It has been already applied to explore the vibra-
tional modes in quantum solids29,30 the mass gap of the el-
ementary excitations in a lattice gauge model of quantum
field theory,31,32 and the properties of the Hubbard
model.33,34However, a systematic study of lattices or models
of solids within CBF theory is still lacking. We therefore
concentrate at present on one of the simplest models that
exhibits a second-order phase transition, the Ising model35,36

in a transverse magnetic field.21 This spin-lattice system has
been extensively studied37–39 and its known properties may
be used to test the quality of the approximations in each
systematic step within the CBF approach before we proceed
to more complex lattice systems. We note that the transverse
Ising model provides, despite its simplicity, a useful descrip-
tion of insulating magnetic systems, order-disorder ferroelec-
trics, cooperative Jahn-Teller systems, and other systems
with pseudospin-phonon interactions.21,22,24,39,40Moreover,
in two spatial dimensions the model is dual to theZ~2! lattice
gauge model in the uncharged sector of states.41 The trans-
verse Ising system therefore provides information on the
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structure of the field vacuum and on the mass of the vacuum
excitations.42–45

CBF theory begins with an appropriate formulation of the
expectation value of the ground-state energy of the spin-
lattice model with respect to a set of trial many-body states.
In a first step we assume these states to be of Hartree-Jastrow
form.46 To evaluate the associated spatial distribution func-
tion and the transverse magnetization that enter the energy
expectation value we equivalently describe the infinitely ex-
tended lattice as a substitutional binary mixture of two types
of bosons.25 The results of Ref. 47 may be utilized to per-
form a hypernetted-chain~HNC! analysis of the correspond-
ing partial distribution functions and to extract a set of HNC
equations for the magnetic correlation function. We may also
use this formalism to evaluate the transverse magnetization
in terms of the magnetic order parameter and the spin-
exchange strength. In the disordered phase this strength may
be expressed in terms of the nodal and nonnodal components
of the spatial distribution function. To evaluate the exchange
strength associated with an ordered state a second set of
HNC equations for a modified spatial distribution function is
needed. This function describes the additional correlation ef-
fects that are induced by the condensation of paramagnons
into the degenerate ordered state. The solutions of these
HNC equations may be employed to evaluate the excitation
energies of the elementary excitations of the ordered states
and the disordered states, in Feynman approximation.48

The CBF analysis on the variational level may be com-
pleted by a systematic optimization procedure for construct-
ing the best wave function of Hartree-Jastrow type. Two
Euler-Lagrange equations are derived by utilizing the mini-
mum principle for the ground-state energy.3 These equations
can be interpreted as a renormalized Hartree equation for the
optimal magnetization if the system is ordered, and as a
paired-magnon equation that determines the optimal spatial
distribution function of the spin system. The latter equation
is the analog of the paired-phonon equation3 familiar from
the CBF theory of liquid4He.

Numerical calculations within the CBF formalism devel-
oped here are performed on the order parameter, the trans-
verse magnetization, the ground-state energy, the spatial dis-
tribution function, and the magnon energies. These
calculations are based on an optimized nearest-neighborAn-
satz for the pseudopotential defining the correlated wave
function of Jastrow type that describes the ground state of
Ising spins on a simple cubic lattice. The results for these
physical quantities as functions of the applied external field
are compared with available results obtained by series-
expansion techniques.38,39

Section II provides the necessary information on the
transverse Ising model and the set of correlated basis func-
tions adopted. Section III describes the binary mixture for-
malism that is employed to analyze the energy functional, the
distribution functions, and the transverse magnetization. The
next two sections report on the results of the formal CBF
analysis of the disordered phase of the model~Sec. IV!, and
of the ordered phase~Sec. V!. The renormalized Hartree
equation and the paired-magnon condition are developed in
Sec. VI. The numerical results on various physical quantities
that describe the properties of the spin-lattice model are re-
ported and discussed in Sec. VII. This section concludes with

a discussion of future improvements within CBF theory and
application of the theory to more complex models of crystal-
line materials. The Appendix summarizes the HNC analysis
of the modified spatial distribution function that is needed for
the evaluation of the transverse magnetization in the ordered
phase.

II. THE ENERGY FUNCTIONAL

The Ising model in a transverse magnetic field is de-
scribed by the Hamiltonian38,39

H5
1

2 (
i , j

N

D i js i
xs j

x1l(
i

N

~12s i
z!, ~1!

defined on aD-dimensional simple hypercubic lattice withN
lattice points and periodic boundary conditions. The spin at
site i ( i51,2,...,N) is represented by thex and z compo-
nents of the Pauli operator,s i

x and s i
z, respectively. The

potentialDi j characterizes the spin-spin interaction that de-
pends on the relative distanceunu5ur i2r j u between the lattice
points i and j . The transverse field is measured by the cou-
pling parameterl ~0<l<`!. For simplicity, the potential
Di j[D~n! is assumed to be of the nearest-neighbor form,

D~n!5H 2D, n50,
21, for nearest neighbors,
0, otherwise.

~2!

At zero temperature the model exhibits an ordered~ferro-
magnetic! phase at a coupling parameter 0<l,lc and a dis-
ordered~paramagnetic! phase atlc,l<`. A second-order
phase transition occurs at the critical-field strengthl5lc .
The order in the ferromagnetic phase is measured by the
magnetization in thex direction,

M5
^Cus i

xuC&

^CuC&
. ~3!

The ground stateuC& has the symmetry of the Hamiltonian
~1! at M50, while the reflection symmetry of the Hamil-
tonian~with respect to the operationx→2x! is broken in the
ordered phase, whereMÞ0.

Within CBF theory1–3 the analysis begins with the evalu-
ation of the expectation value of the ground-state energy per
lattice site,

E

N
5

^CuHuC&
N^CuC&

, ~4!

with respect to a suitable set of correlated trial wave func-
tionsC. Defining the spatial distribution function

g~n!5
^Cus i

xs j
xuC&

^CuC&
~5!

and the transverse magnetization

A5
^Cus i

zuC&

^CuC&
, ~6!

we may write the expectation value~4! in the form
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E

N
5
1

2 (
n

D~n!g~n!1l~12A!, ~7!

where the sum extends overN lattice points. The distribution
function ~5! is short ranged in the disordered phase and ex-
hibits long-range spatial order in the ferromagnetic phase of
the infinitely extended lattice, withg~n!5M2 as unu→`. We
therefore decompose this function according to

g~n!5dn01~12dn0!M
21~12M2!G~n!. ~8!

The correlation functionG~n! vanishes atn50 and in the
asymptotic regionunu→`. In the molecular-field approxima-
tion, which ignores the effects of spatial correlations, the
functionG~n! vanishes identically.

To separate kinematic and dynamic effects in the trans-
verse magnetization we cast expression~6! into the factor-
ized form

A5~12M2!1/2n12. ~9!

In the mean-field approximation the spin-exchange strength
n12 is unity, but it is smaller than unity if the spatial correla-
tions are properly incorporated.

In terms of the quantitiesM , n12, andG~n!, the energy
functional reads, explicitly,

E

N
5~12M2!HD1

1

2 (
n

D~n!G~n!J
1l$12~12M2!1/2n12%. ~10!

In the mean-field approximation, expression~10! is reduced
to a simple function of the magnetizationM . In this case the
energy is minimal for

M2512S l

2D D 2 ~11!

in the ordered state, implying the familiar resultlc52D for
the critical coupling parameter.

CBF theory provides a systematic and efficient scheme
for evaluating the optimal magnetizationsM andA and the
optimal spatial correlation functionG~n! associated with a
set of suitably correlated many-body wave functions. In anal-
ogy to the established CBF treatment of conventional quan-
tum fluids,3–6 we adopt a correlated many-body ground state
of Hartree-Jastrow type,12,46

uC&5exp$MUM1U%u0&, ~12!

with

U5
1

2 (
i, j

N

u~r i j !s i
xs j

x , ~13!

UM5(
i

N

u1~r i !s i
x1

1

4 (
i, j

N

uM~r i j !~s i
x1s j

x!. ~14!

The reference stateu0& is represented by a symmetric product
of N single-spin states with spin components z511. For a
translationally invariant system the single-spin quantity
u1~r i! is independent of the lattice pointi and the pseudopo-
tentialsu~r i j ! and uM~r i j ! depend only on the relative dis-

tance unu ~n[r i j[r i2r j !. In the disordered phase, the state
~12! is determined by theAnsatz~13! and the component
~14! is not needed. The latter portion contributes to the cor-
relations present in the ordered state and accounts for the
symmetry breaking. Reflection at a mirror plane normal to
thex axis transforms the quantity~14! to ~2UM! and reveals
a twofold degeneracy of the ordered ground state~character-
ized by the magnetizationsM and2M !. We note that the
componentuM~n! is not independent of the pseudopotential
u~n!. Their relationship will be analyzed in the following
sections. If desirable, theAnsätze ~13! and ~14! may be im-
proved by complementing the pair potentials by pseudopo-
tentials of triplet form.49

We next construct the full set of correlated many-body
wave functions. In analogy with the density-fluctuation op-
erators employed in the CBF theory of quantum fluids3 such
as liquid 4He, we introduce the excitation operatorsrk

x

5( i
Neik•r is i

x and form the ideal magnon statesuCk
x&

5rk
xuC&. The excitation energy of the magnons is then

evaluated in Feynman approximation,48

v~k!5
«

S~k!
. ~15!

The static structure function is related to the spatial distribu-
tion function by a Fourier transformation,

S~k!511(
n
eik•nG~n!. ~16!

The single-particle energy« is defined by the expectation
value

«5
^Cu@rk

x ,@H,r2k
x ##uC&

2N~12M2!^CuC&
52ln12~12M2!21/2. ~17!

In the Hartree approximation, whereG~n![0 andn1251, the
energy of a magnon is therefore estimated byv~k!.«. In this
approximation paramagnons carry the energyv~k!.2l,
while the Hartree energy of ferromagnons is constant,v~k!
.4D. These estimates, however, only provide reasonable re-
sults in the weak~l→`! and strong~l→0! coupling limits.
As for the ground-state energy, CBF theory offers a system-
atic means for the evaluation of correlation effects on the
excitation energies at any given value of the coupling param-
eterl ~see Sec. VII for a detailed discussion!.

III. MIXTURE FORMALISM

To evaluate the energy expectation value~10! we have to
construct the spatial distribution functionG~n! and the spin-
exchange strengthn12 associated with theAnsätze
~12!,~13!,~14! as functionals of the pseudopotentialu~n! that
generates the spatial correlations. To do this we describe the
spin-lattice system, more conveniently, as a binary mixture
of two types of bosons.25 The two boson species are charac-
terized by the eigenvalues~11! and~21! of the spin opera-
tor sx and may be called particles and holes, respectively.
The partial densitiesr1 and r2 of the two components are
determined by the magnetization throughr651

2~16M !, i.e.,
by the expectation values
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r65
^CuPi

~6 !uC&

^CuC&
~18!

of the projectorsP i
(6)5 1

2 (16s i
x). Due to the sum rule

P i
(1)1P i

(2)51, the total densityr5r11r2 of the mixture
is unity.

Employing the projectorsP i
(6), we may rewrite the gen-

erator in the exponent ofAnsatz~12! as

MUM1U5u1M(
i

N

~Pi
~1 !2Pi

~2 !!

1
1

2 (
i, j

N

u11~r i j !Pi
~1 !Pj

~1 !

1
1

2 (
i, j

N

u22~r i j !Pi
~2 !Pj

~2 !

1
1

2 (
iÞ j

N

u12~r i j !Pi
~1 !Pj

~2 ! , ~19!

having introduced the partial pseudopotentials~nÞ0!,

u11~n!5u~n!1MuM~n!,

u12~n!52u~n!, ~20!

u22~n!5u~n!2MuM~n!.

Expression~19! has the familiar form corresponding to a
Hartree-Jastrow wave function for a homogeneous binary
boson mixture.47 To evaluate the quantitiesG~n! andn12, we
may exploit the HNC analysis of the ground state of such a
mixture, given in Ref. 47.

The partial distribution functions characterizing the struc-
ture of the binary mixture are47

rarbgab~n!5~12dn0!
^CuPi

~a!Pj
~b!uC&

^CuC&
, ~21!

where the indicesa, b label particles~1! or holes ~2!.
These functions are decomposed into nodal (N) and non-
nodal (X) components,

gab~n!511Xab~n!1Nab~n!. ~22!

They are related by a set of HNC equations~g51,2!,

Xab~n!5~12dn0!exp$uab~n!1Nab~n!1Eab~n!%

2Nab~n!21, ~23!

Nab~n!5(
g

rg(
m

Xag~n2m!$Xgb~m!1Ngb~m!%.

~24!

For given pseudopotentialsuab~n! and elementary quantities
Eab~n!, the HNC equations~23!,~24! may be employed to
evaluate the distribution functionsgab~n!. According to the
definition ~21!, the spatial distribution functionG~n! can be
constructed via any of the relations

G~n!5~12dn0!
11M

12M
$g11~n!21%, ~25!

G~n!5~12dn0!$12g12~n!%, ~26!

G~n!5~12dn0!
12M

11M
$g22~n!21%. ~27!

Since Eqs.~25!–~27! must be simultaneously fulfilled, they
constitute, in general, conditions on the partial distribution
functions gab~n! and, therewith, on the pseudopotentials
~20!. These conditions enable us to simplify the HNC equa-
tions~23!,~24! and to determine the functional dependence of
the pseudopotentialuM~n! on the generatoru~n! in the or-
dered state~Secs. IV and V!.

Reference 47 provides formal results on the spin-
exchange strength@cf. Eq. ~33! of Ref. 47# with the mixture
formalism,

n125exp$D122
1
2 ~D11D2!%. ~28!

The quantitiesD1 andD2 appearing in the exponent are ex-
plicitly given by the expression

D15r1(
n
X11~n!1r2(

n
X12~n!2

1

2
r1(

n
N11~n!

3$X11~n!1N11~n!%2
1

2
r2(

n
N12~n!

3$X12~n!1N12~n!%1ED1
. ~29!

The quantityD2 is obtained from Eq.~29! by interchanging
the indices1 and2.

Due to the symmetry of the disordered state the exponen-
tial termD12 vanishes in the paramagnetic phase. In this case
the strength factorn12 may be calculated from the solutions
of the HNC equations~23!,~24!.

In the ordered phase, the quantityD12 differs from zero
and may be evaluated from47

D125(
n

$r1X1~n!1r2X2~n!%

2
1

2
r1(

n
N1~n!$X1~n!1N1~n!%

2
1

2
r2(

n
N2~n!$X2~n!1N2~n!%1ED12

.

~30!

This requires the solutions of a second set of HNC equations
for a modified distribution functionga~n! within the binary
mixture formalism~see the Appendix!.

IV. THE DISORDERED PHASE

The symmetry properties of the paramagnetic phase may
be exploited to simplify the HNC equations~23!,~24!. Spe-
cializing to r15r251

2 and g11~n!5g22~n! at M50, we
work with the sum and the difference of the functions
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g11~n! and g12~n!. With Eqs. ~25! and ~26! we have the
relations

2G~n!5g11~n!2g12~n!, ~31!

2~12dn0!5g11~n!1g12~n!. ~32!

Introducing the linear superpositions

X11~n!5X22~n!5X0~n!1X~n!,
~33!

X12~n!5X21~n!5X0~n!2X~n!,

and

N11~n!5N22~n!5N0~n!1N~n!,
~34!

N12~n!5N21~n!5N0~n!2N~n!,

the conditions~31! and ~32! can be decoupled,

G~n!5X~n!1N~n!, ~35!

05X0~n!1N0~n!1dn0. ~36!

Employing the decompositions~33!,~34! and the relation
~36!, the set of chain equations~24! collapses into a single
equation,

N~n!5(
m

X~n2m!$X~m!1N~m!%. ~37!

Relation~37! has the form of the familiar chain equation for
a one-component system50 at a densityr51.

At M50 the hypernet equations~23! reduce to two dif-
ferent equations. With the help of the decompositions~33!
and ~34!, these equations may be reformulated in analogy
with the treatment of the chain equations. The consistency
condition ~32! then permits the explicit construction of the
functionN0~n! in terms of the pseudopotentialu~n! and the
nodal functionN~n!. Elementary algebraic manipulations
yield the result~nÞ0!,

2 exp$2N0~n!%5exp$2u~n!2N~n!1E12~n!%

1exp$u~n!1N~n!1E11~n!%. ~38!

Relation~38! allows us, atM50, to formulate a single hy-
pernet equation associated with the spatial distribution func-
tion G~n!,

X~n!5~12dn0!tanh$u~n!1N~n!1E~n!%2N~n!.
~39!

The elementary contributionE~n! is defined by the differ-
ence 2E~n!5E11~n!2E12~n!. Equation~39! constitutes a
modified form of hypernet equation for a one-component
boson system.50

In the disordered state the transverse magnetization~6! or
~9! is given by the spin-exchange strength~28! with D1250
andD15D2 . Expression~29! for the quantityD1 may be
rewritten with the aid of Eqs.~33!–~35!, as

D152(
n
N0~n!2

1

2 (
n
N~n!G~n!1ED1

. ~40!

Finally, we may use Eqs.~38! and~39! to eliminate the func-
tion N0~n! from Eq. ~40!. The result is

D152
1

2 (
n
ln$12G2~n!%2

1

2 (
n
N~n!G~n!1ED .

~41!

The HNC equations~37!,~39! and the relations~35!,~41!
provide explicit expressions for the energy expectation value
with respect to a disordered state as a functional of the gen-
erating pseudopotentialu~n!.

V. THE ORDERED PHASE

To reformulate the set of HNC equations~23!,~24! for the
case that the magnetizationM differs from zero, we proceed
in analogy to the treatment of Sec. IV and generalize the
linear superpositions~33!,~34!. Thus, we introduce

X11~n!5X0~n!1
12M

11M
X~n!,

X12~n!5X21~n!5X0~n!2X~n!, ~42!

X22~n!5X0~n!1
11M

12M
X~n!,

along with similar relations for the nodal functionsNab~n!.
Appealing to the conditions~25!–~27! and the decomposi-
tions ~42!, we may condense the set of three chain equations
~24! into the single equation

N~n!5(
m

X~n2m!$X~m!1N~m!% ~43!

for the distribution functionG~n!5X~n!1N~n!. Equation
~43! holds at any value of the order parameterM and agrees
therefore with the result~37! derived in the preceding sec-
tion. However, atMÞ0 conditions~25!–~27! are only ful-
filled if the relation

~11M !FexpH 2u~n!1MuM~n!1
2

11M
N~n!

1E11~n!2E12~n!J 21G
5~12M !FexpH 2u~n!2MuM~n!1

2

12M
N~n!

1E22~n!2E21~n!J 21G ~44!

is satisfied~nÞ0!. For vanishing magnetization, Eq.~44! is
identically fulfilled. We may interpret Eq.~44! as an equation
defining the pseudopotentialuM~n! of Ansatz~14! as a func-
tional of the generatoru~n!.

In further algebraic manipulations, we solve Eq.~44! for
the quantityuM~n! and insert the result, together with the
decompositions~42!, into the hypernet equations~23!. This
enables us to extract an explicit expression for the function
N0~n! in terms of the functionsu~n!, N~n!, Eab~n!, and the
order parameterM ,
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2 exp$2N0~n!%5$11@11~12M2!~••• !#1/2%

3exp$2u~n!2N~n!1E12~n!%,

~45!

with

~••• !5exp$4u~n!14~12M2!21N~n!14E~n!%21
~46!

and 4E~n!5E11~n!1E22~n!22E12~n!. This result permits
us to replace the hypernet equations~23! by a hypernet equa-
tion of the form

X~n!5~12dn0!2N~n!22~12dn0!

3$11@11~12M2!~••• !#1/2%21, ~47!

the bracket term~•••! being defined by Eq.~46!. Equations
~42! and ~47! specialize correctly to results~33! and ~39!,
respectively, at vanishing magnetization,M50.

To complete the theoretical analysis of the energy func-
tional ~10! we have to derive explicit expressions for the
quantitiesD12, andD1 ,D2 that determine the spin-exchange
strengthn12. While it is straightforward to express the quan-
tity ~29! in terms of the functionsG~n! andN~n! via Eqs.
~42!, we need a modified distribution functionĜ~n!5X̂~n!
1N̂~n! to evaluate the functionalD12 at nonzero order
parameterM . We may show~see the Appendix! that the
nodal and nonnodal components,N̂~n! and X̂~n!, respec-
tively, are related by a set of modified HNC equations. These
functions together with the quantitiesX~n! andN~n! suffice
to evaluate the functionalD12.

The HNC equations associated with the distribution func-
tion Ĝ~n! read

X̂~n!52N̂~n!1~12dn0!M
21

3
tanhM $û~n!1N̂~n!1Ê~n!%

11M tanhM $û~n!1N̂~n!1Ê~n!%
, ~48!

N̂~n!5~12M2!21(
m

G~n2m!G~m!

1(
m

G~n2m!X̂~m!. ~49!

The generating pseudopotentialû~n! appearing in Eq.~48! is
defined by

û~n!5
1

4
M21F lnH 11

12M

11M
G~n!J

2 lnH 11
11M

12M
G~n!J G . ~50!

The solutions of the HNC equations~43!,~47!, and
~48!,~49! provide an explicit expression for the exchange
strength~28! where quantities~29! and ~30! are given in
terms of the distribution functionsG~n!,Ĝ~n!, the associated
nodal portionsN~n!,N̂~n!, and the order parameterM . Thus

ln n125
1

2 (
n

ln$12G~n!%1
1

4 (
n

lnH 11
12M

11M
G~n!J

1
1

4 (
n

lnH 11
11M

12M
G~n!J 1

1

2
~12M2!21

3(
n
G~n!N~n!2

1

2 (
n

ln$12M ~11M !Ĝ~n!%

2
1

2 (
n

ln$11M ~12M !Ĝ~n!%2M2

3(
n
N̂~n!1

1

2
M2(

n
G~n!N̂~n!2

1

2
M2~12M2!

3(
n
Ĝ~n!N̂~n!1E12. ~51!

Result~51! specializes correctly to the sum (D11D2)52D1
that was obtained for the logarithm of the spin-exchange
strength at zero magnetization@cf. Eq. ~41!#.

VI. OPTIMIZATION

To complete the CBF analysis at the variational level we
employ the minimum principle for the ground-state energy.
The optimal correlated wave function of the type~12!–~14!
is determined by the solutions of the Euler-Lagrange equa-
tions

]E

]M
50, ~52!

dE

du~n!
50. ~53!

They may be used to calculate the optimal distribution func-
tion G~n!, the optimal magnetizationsM and A, and the
optimal magnon energyv~k!.

Equation~52! may be viewed as a renormalized Hartree
equation for the order parameterM of the ferromagnetic
state. Equation~52! can be given the explicit form

M25H 12
l

2D
n12

11H1

11H0
J H 11

l

2D
n12

11H1

11H0
J ,

~54!

with the Hartree potentials

H05
1

2D (
n

D~n!G~n!, ~55!

H152~M221!
] ln n12

]M2 . ~56!

An explicit expression for the potential~56! may be derived
by taking the derivative of the result~51! with respect to the
magnetizationM .

Equation~54! yields an implicit condition on the critical
coupling parameter,
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lc5
2D

n12
S 11H0

11H1
D . ~57!

The Euler-Lagrange equation~53! is the analog of the
paired-phonon equation familiar from the CBF theory of
quantum fluids such as liquid helium.3 We may therefore call
Eq. ~53! a paired-magnon equation. This equation can be cast
into the form

Ġ~n!1 1
2«~12M2!G~n!50. ~58!

The functionĠ~n! is the derivative~]/]b!G~n,b!ub50 of a
generalized distribution functionG~n,b! that is generated by
a pseudopotentialu~n,b!5u~n!1bv~n!. At b50 we recover
the standard spatial distribution functionG~n! generated by
the pseudopotentialu~n!. The quantityv~n! is the Feenberg
effective potential3 associated with the Ising model and the
pseudopotentialu~n!. It can be decomposed into two por-
tions,

v~n!5v* ~n!1M2vM* ~n!. ~59!

The componentvM* (n) contributes only if the system is or-
dered. It describes the effect that originates from the conden-
sation of paramagnons into the ordered ground state. For the
disordered phase the effective potentialv* ~n! is explicitly
given by

v* ~n!5D~n!2
«

2 HN~n!2
G~n!

12G2~n! J . ~60!

It specializes tov* ~n!5D~n! in the weak-coupling limit
~l→`! since the spins are not correlated in the asymptotic
region of the coupling parameter. In the strong-coupling limit
~l→0! the effective potentialv~n! vanishes for the same
reason.

VII. NUMERICAL RESULTS AND DISCUSSION

In an application of the CBF approach to the transverse
Ising model, we perform a restricted optimization based on
the one-parameterAnsatz

u~n!5a~12dn0!D~n! ~61!

for the generating pseudopotential. The parametera is cho-
sen such that the energy expectation value~10! attains a
minimum. We note that the optimizedAnsatz~61! reproduces
the exact results on the ground-state energy and other physi-
cal quantities in the strong-coupling limit~l→0! and in the
weak-coupling regime~l→`!.

The HNC equations~37!,~39! associated with the disor-
dered state and the HNC equations~43! and ~47!–~49! cor-
responding to the ordered phase are solved in HNC/0 ap-
proximation, i.e., by neglecting the elementary contributions.
We emphasize that these equations are derived for an infi-
nitely extended spin lattice in the limitN→` at fixed lattice
constant. Of course, the actual numerical calculations for
solving the HNC equations are carried out on a finite lattice
with periodic boundary conditions.

We have performed numerical calculations at all ranges of
the coupling parameterl for square and simple cubic lat-
tices. Here, we report on some results on the optimal order

parameterM and, particularly, on the critical coupling pa-
rameterlc where the magnetization vanishes. In a series of
figures, we display the optimal results for the ground-state
energy, the spin-exchange strength, the static structure factor
at zero wave number, the spatial distribution functionG~n!,
and the magnon energies at vanishing momentum\k, as
functions of the external field. The results are compared with
results derived from series expansions in powers ofl or l21

reported in Refs. 38 and 39.
Figure 1 shows the numerical results for the optimal order

parameterM . The calculation is done for a 32332332 lat-
tice with periodic boundary conditions in the range
0<l<5.14 of the coupling strength and checked against the
results for a 83838 lattice. We find that finite-size effects
are very small and may be ignored as long as we do not
probe the fine structure of the magnetization and the other
physical quantities of interest in the regionul2lcu<0.05
very close to the critical pointlc . The value of the critical
parameter calculated within the present realization of the
CBF theory islc'5.17. This result is in very good agree-
ment with the result of Ref. 38,lc'5.21, derived from per-
turbation theory in conjunction with Pade´ approximation
techniques. The order parameterM expanded in powers of
the parameterl in the ordered state is represented, up to
sixth order by38

M512
1

2 S l

6D 220.255S l

6D 420.1672S l

6D 61••• .

~62!

For a convenient comparison we plot the results in second
order—representing the molecular-field approximation—and
in sixth order in Fig. 1.

A similar CBF calculation of the optimal order parameter
and the critical transverse field of the two-dimensional Ising
model on a square lattice yieldslc'3.12 for the critical cou-
pling parameter. The result agrees very well with the value
lc'3.14 reported in Ref. 38 that is believed to be the most

FIG. 1. Optimized CBF results~in HNC/0 approximation! for
the order parameterM ~magnetization in thex direction! as a func-
tion of the coupling parameterl ~solid curve!. The long-range order
vanishes at the critical pointlc55.17. For comparison we also
show the results of perturbation theory, in second order~molecular-
field approximation, denotedP2! and in sixth order~P6!.
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reliable result within afirst-principlesapproach.44 Our result
may be also compared with results of other microscopic
approaches.45,51–55

The numerical results on the optimal ground-state energy
~10! of a simple cubic spin-lattice as a function of the cou-
pling parameterl are presented in Fig. 2 together with the
results of second-order perturbation theory,38,39

E

N
5lH 12

l

12
1•••J , l,lc , ~63!

E

N
53H 12

1

4
l211•••J , l.lc . ~64!

The CBF results merge with the results~63! and ~64! for
0<l,2.5 andl.10, respectively. They depend smoothly on
the coupling parameter in the transition range.

Figure 3 displays the numerical results on the spin-
exchange strength versus the external field. Since the spins
are not correlated in the limits of strong~l→0! and weak
~l→`! coupling, the functionn12 must approach unity in
these limits. Our data agree very well with the perturbative
results38,39in second order, in the range 0<l,0.5 and 15,l,

n125120.0328S l

6D 21••• , l,lc , ~65!

n125A5120.0208S 6l D 21••• , l.lc . ~66!

Results on the behavior of the spatial correlations are dis-
played in Figs. 4–6. The static structure function~16! at
vanishing wave vectork is shown in Fig. 4. This quantity is
a measure of the correlation length of the interacting spin
system. Since the spins are uncorrelated asl→0 or l→`,
the spatial distribution functionG~n! vanishes in these limits
and, consequently, quantityS~0! approaches unity. Perturba-
tion theory38 yields the expansion

S~0!511
1

2 S 6l D10.3125S 6l D 210.2326S 6l D 3
10.1742S 6l D 41••• ~67!

for the disordered phase. The fourth-order approximation is
plotted in Fig. 4~dot-dashed curve!. For a coupling param-
eterl.15 the CBF results are well represented by the per-
turbative results in fourth order. In the transition rangel.lc
the CBF results exhibit a rather sharp but finite peak indicat-
ing a maximum for the correlation length. However, this re-
sult signals the limitations of the approximateAnsatz~61!
presently adopted. If the structure function~16! corresponds
to the exact ground state, quantityS~0! diverges at the criti-
cal point. Consequently,Ansatz~61! is not flexible enough to
describe correctly the asymptotic behavior of the spatial dis-

FIG. 2. Numerical results for the optimal ground-state energy
per lattice site based on theAnsätze ~12!–~14! and ~61!, in HNC/0
approximation. The results are compared with those of second-order
perturbation theory for the disordered phase, Eq.~64!, l.lc , and
for the ordered phase, Eq.~63!, which represent the results of the
molecular-field approximation at 0<l<4.

FIG. 3. CBF results~in HNC/0 approximation! for the spin-
exchange strengthn12 of Eq. ~28! @related by Eq.~9! to the trans-
verse magnetization#, compared with the results~65! and ~66! of
second-order perturbation expansions in powers ofl andl21, re-
spectively.

FIG. 4. The static structure functionS~0! at zero momentum
corresponding to theAnsätze~12!–~14! and optimized choice~61!,
in HNC/0 approximation. The CBF results at coupling parameters
in the rangel.lc ~disordered phase! are compared with the results
of expansion~67!, up to fourth order.
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tribution functionG~n! that leads to a divergent correlation
length. To improve the present result we should~i! imple-
ment the strict functional optimization procedure described
in Sec. VI and~ii ! incorporate systematically the correlation
effects generated by pseudopotentials of triplet, quadruplet,...
n-tuplet type in addition to the pairpotentialsu~n! anduM~n!
considered inAnsätze~13! and~14!. We stress, however, that
we aim primarily at a reliable quantitative study outside of
the narrow region of the fine structure of the transition where
theories of critical exponents are appropriate.

The CBF results on the U~1! lattice gauge model31,32sug-
gest that the asymptotic behavior of the spatial distribution
functionG~n! corresponding toAnsätze~12!–~14! should be
well represented by the classical dependence

G~n!.
G0

unu
e2kunu, ~68!

where the inverse correlation lengthk depends on the trans-
verse magnetic field. We therefore plot the quantity ln
$unuG~n!% in Fig. 5 versus the distanceunu at various coupling
parameters,l,lc . The linear dependence confirms very
well the suggested behavior~68!. The slope of each line
gives the inverse correlation lengthk as a function of the
field strengthl. The result is shown in Fig. 6. The quantityk
decreases linearly with increasing strength of the transverse
magnetic fieldl,lc . An analogous behavior is found in the
paramagnetic region.

As expected, the increase of the correlation lengthk21 is
not rapid enough to reproduce correctly the singularity at the
critical point associated with the true ground state. If we
wish to improve the description of the fine structure in the
transition region very close to the critical parameterlc , we
must appropriately generalize theAnsätze~12!–~14! and~61!
or we must proceed to the next level within the CBF theory
where perturbative corrections are taken into account.1–3

In Fig. 7 we present our numerical results on the magnon
energies at\k50, calculated in Feynman approximation
~15!, as a function of the field strengthl. The calculated data
may be compared with the results in the Hartree approxima-
tion and with the results38 based on the series expansion
~l.lc!,

v~0!52lH 12
1

2 S 6l D20.0833S 6l D 220.03747S 6l D 31•••J .
~69!

The CBF results correctly reproduce the exact results corre-
sponding to the true excited states at small transverse fields
~l→0! and at very large coupling parameters~l→`!. The

FIG. 5. Plot of the logarithm of the functionunuG~n! versus the
lattice distanceunu at constant transverse field~l53,4,5!. The spatial
distribution functionG~n! corresponds to an ordered state described
by theAnsätze ~12!–~14! and ~61! with the optimal parametera.
The numerical calculation is based on the CBF formalism in con-
junction with the HNC/0 approximation. The data are well repre-
sented by straight lines, thus confirming the suggested exponential
behavior~68!.

FIG. 6. CBF results~in HNC/0 approximation! for the inverse
correlation lengthk of the distribution functionG~n! that charac-
terizes the structure of the ordered phase~0<l<lc!. The correla-
tion length increases with increasing strength of the transverse mag-
netic field but remains finite~due to the approximations made! at
the critical pointlc .

FIG. 7. Numerical results for the magnon energy gapv~0! at
zero wave number, in Feynman approximation~15!. The CBF data
correctly reproduce the exact dependence on the coupling parameter
l in the limits l→0 and l→`. The results for the paramagnon
energy are compared with the perturbation results~69!, in the
fourth-order approximation. The Hartree energies are depicted by a
broken line. In the transition regionl.lc55.17, the gap exhibits a
minimum. Due to the approximations adopted, the minimum is not
deep enough and, consequently, the magnon mode is not completely
soft.
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CBF results show a drastic reduction of the energy gapv~0!
as the critical regionl.lc is approached. Thus, the presently
adoptedAnsätze~12!–~14! and~61! take already account of a
substantial portion of long-range effects but do not lead to a
complete softening of the excitation mode at the critical
point. Employment of the solutions of the Euler-Lagrange
equations~54! and ~58! and incorporation of ‘‘backflow’’
effects56,3,14into theAnsatzfor the magnon states and triplet
correlations49 into the Ansätze ~13!,~14! may remedy this
shortcoming of the presently adopted approximation close to
the transition.

In summary, CBF theory at its variational level has been
adapted to treat the ground and excited states of the Ising
model in a transverse magnetic field. HNC equations have
been derived for the spatial distribution functions associated
with a suitable class of correlated many-body ground states
of Hartree-Jastrow type. These distribution functions deter-
mine the energy functional, the transverse magnetization, the
magnon energies, and other physical quantities of interest.
An optimal version of the theory has been given in terms of
Euler-Lagrange equations, consisting of a renormalized Har-
tree equation for the order parameter and a paired-magnon
condition for the best pseudopotential.

A detailed numerical application of the theory has been
performed in HNC/0 approximation, based on a one-
parameter form for the pseudopotential. We have studied the
dependence of various properties of the model on the trans-
verse field. In particular, we have reported results on the
spatial distribution function and its correlation length, on the
static structure function, on the spin-exchange strength, and
on the magnon energy gap. The results agree correctly with
exact results of standard perturbation expansions in the
strong- and weak-coupling regime. Since CBF theory is, in
spirit, a nonperturbative approach its application is not lim-
ited to these particular regions of the phase space. The ap-
proach, therefore, permits one to bridge the gap between the
regions where perturbative approaches are valid and the~nar-
row! transition region where scaling theories of phase tran-
sitions are appropriate. We have shown that the CBF analysis
yields accurate numerical results on the critical points in two
and three spatial dimensions.

We finally note that the CBF approach is formulated for
infinitely extended systems, i.e., we are not limited to a nu-
merical analysis of small finite lattices.

The present numerical application of the variational-CBF
formalism should be complemented in future numerical work
by a strict functional optimization of the pseudopotential
u~n!. Solving the Euler-Lagrange equations~54! and~58! we
can properly take account of the long-range effects of this
function which are missing in the nearest-neighborAnsatz
~61!. However, we believe that in the near term it would be
more fruitful to extend the formalism to a quantitative de-
scription of the properties of lattice systems at finite tempera-
tures. Such a generalization of the CBF approach has been
already developed for quantum fluids such as liquid4He
~Refs. 8, 11, 13, 14, and 57! at low temperatures and has led
to the formulation of a correlated density matrix theory at
more elevated temperatures.58,59The implementation of these
approaches to spin lattices would permit systematic studies
of real crystalline materials where the structural phase tran-
sitions are driven by a pseudospin mechanism.39

The formalism presented here can be directly applied for
a numerical study of theZ~2! lattice gauge model in two
spatial dimensions,42–45 for investigating the properties of
Ising models with spin interactionsD~n! that are not re-
stricted to the form ~2!, or—with only minor
modifications—to a CBF analysis of antiferromagnetic
phases, etc.

Concluding this discussion of future properties we point
out that the methods we have explored may be adapted to the
treatment of more complex spin models, such as anisotropic
Heisenberg models, mixtures of spin systems~alloys!, and
other models of interest in condensed-matter
physics.60–62,26,34
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APPENDIX: THE DISTRIBUTION FUNCTION Ĝ„n…

The functionalD12, Eq. ~30!, is determined by the nodal
and nonnodal components of the modified distribution
functions47

ga~n!511Xa~n!1Na~n!, ~A1!

with a51 or 2. The associated HNC equations relating the
functionsXa~n! andNa~n! are

Xa~n!5~12dn0!exp$
1
2uaa~n!1 1

2u12~n!1Na~n!

1Ea~n!%2Na~n!21, ~A2!

Na~n!5(
b

rb(
m

Xb~n2m!$Xba~m!1Nba~m!%.

~A3!

The generating pseudopotentials in Eq.~A2! may be writ-
ten in the form

u11~n!1u12~n!5MuM~n!,

u22~n!1u12~n!52MuM~n!, ~A4!

due to Eqs.~20!. They vanish atM50 and, consequently,
Eqs. ~A2! and ~A3! have the solutionsXa~n!5Na~n![0,
nÞ0. The distribution functions~A1! for the disordered state
are therefore given byga~n!512dn0 and the quantityD12
vanishes identically. However, spatial correlations contribute
to the distribution functions~A1! if the state is ordered.

To cast the HNC equations~A2! and ~A3! into a more
convenient form we decompose the functions~A1! and their
X andN components according to47

2ga~n!5gaa~n!1g12~n!12Ĝa~n!,

2Xa~n!5Xaa~n!1X12~n!12X̂a~n!, ~A5!

2Na~n!5Naa~n!1N12~n!12N̂a~n!.
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This enables us to eliminate the pseudopotentials~A4! in the
hypernet equations~A2! and to reformulate the set of equa-
tions ~A2!,~A3! in terms of the functionsX̂a~n! and N̂a~n!,

X̂a~n!5~12dn0!$gaa~n!g12~n!%1/2exp$N̂a~n!1Êa~n!%

2N̂a~n!2 1
2 $gaa~n!1g12~n!%, ~A6!

N̂a~n!5(
b

rb(
m

X̂b~m2n!$Xba~n!1Nba~n!%.

~A7!

We may cast Eqs.~A6! and ~A7! into a simple and more
convenient form by employing the linear decompositions

X̂1~n!5X̂0~n!1M ~12M !X̂~n!1M ~11M !21G~n!,
~A8!

X̂2~n!5X̂0~n!2M ~11M !X̂~n!2M ~12M !21G~n!,

and

N̂1~n!5N̂0„n)1M ~12M !N̂~n!,
~A9!

N̂2~n!5N̂0~n!2M ~11M !N̂~n!.

Elementary algebraic manipulations involving Eqs.~A7! and
the definitions~A8!,~A9! lead to the chain equation~49! and
the relation

X̂0~n!1N̂0~n!50. ~A10!

This equation establishes a condition on the functionsg1~n!
andg2~n!. From Eqs.~25!–~27! there follows

r1g11~n!1g12~n!1r2g22~n!52~12dn0!,
~A11!

and, with Eqs.~A5!, ~A8!, ~A9!, and~A10!, we arrive at the
sum rule

r1g1~n!1r2g2~n!5~12dn0!. ~A12!

Further, relations ~25!–~27! and the decompositions
~A8!,~A9! allow us to express the functionN̂0~n! in terms of
the distribution functionsG~n!, Ĝ~n!5X̂~n!1N̂~n!, and the
nodal portionN̂~n!. The result is

N̂0~n!52 1
2 ln$12G~n!%1M2N̂~n!

2 1
4 ln$11~12M !~11M !21G~n!%

2 1
4 ln$11~11M !~12M !21G~n!%

1 1
2 ln$12M ~11M !Ĝ~n!%

1 1
2 ln$11M ~12M !Ĝ~n!%. ~A13!

Insertion of expressions~A8!, ~A9!, and ~A13! into the hy-
pernet equations~A6! leads us, after a few elementary alge-
braic steps, to a single hypernet equation for the functions
X̂~n! and N̂~n!. The explicit form is given by Eq.~48!.

Employing Eqs.~A8!, ~A9!, and~A13!, we may write the
functional ~30! in terms of functionsG~n!, Ĝ~n!, andN̂~n!.
The explicit result on quantityD122

1
2 (D11D2) is presented

in Eq. ~51!.
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