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We calculate both the dc and the ac Josephson current through a one-dimensional system of interacting
electrons, connected to two superconductors by tunnel junctions. We trea¢plésive Coulomb interaction
in the framework of the one-channel, spin-1/2 Luttinger model. The Josephson current is obtained for two
geometries of experimental relevance: a quantum wire and a ring. At zero temperature, the critical current is
found to decay algebraically with increasing distadcbetween the junctions. The decay is characterized by
an exponent which depends on the strength of the interaction. At finite temperatulesver than the
superconducting transition temperaturg, there is a crossover from algebraic to exponential decay of the
critical current as a function af, at a distance of the order 6% /kgT. Moreover, the dependence of critical
current on temperature shows nonmonotonic behavior. If the Luttinger liquid is confined to a ring of circum-
ferencel, coupled capacitively to a gate voltage and threaded by a magnetic flux, the Josephson current shows
remarkable parity effects under the variation of these parameters. For some values of the gate voltage and
applied flux, the ring acts as & junction. These features are robust against thermal fluctuations up to
temperatures on the order &b /kgL. For the wire geometry, we have also studied the ac-Josephson effect.
The amplitude and the phase of the time-dependent Josephson current are affected by electron-electron inter-
actions. Specifically, the amplitude shows pronounced oscillations as a function of the bias voltage due to the
difference between the velocities of spin and charge excitations in the Luttinger liquid. Therefore, the ac-
Josephson effect can be used as a tool for the observatigpirethargeseparation.

[. INTRODUCTION connected to two superconductors should be quanfizadh
propagating mode contributes an amoeAf7 to the critical
Due to the recent development of superconductorcurrent.
semiconductokS—Sg¢ integration technology it has become In the presence of disorder in the normal region, the
possible to observe the transport of Cooper pairs througmotion of the two electrons will be diffusive. Like in
S—Sc mesoscopic interfaces. Examples are the supercurrgfigordered metals, the phase coherence between the two
through a two-dimensional electron gé®DEG) with Nb  electrons is limited by the correlation length
contactgS—Sc-S junctiort and excess low-voltage conduc- L.,=VAD/max{ksT,eV}, whereD is the diffusion con-
tance due to Andreev scattering in Nb-InGaAS—S¢ stant. For instance, the excess low-voltage conductance in
junctions? The transfer okingleelectrons through the inter- S—Sc junctions can be explained in terms of constructive
face between a semiconductor and a superconductor witinterference occurring over this length scale between the two
energy gapA is exponentially suppressed at low tempera-electrons incident on the S—Sc interfdde.
tures and bias voltagekgT,eV<A (e is the electron In these examples, electron-electron interactions are ne-
charge. Instead, electrons will be transferreid pairs  glected. It is well known, though, that they may have a
through the interface, a phenomenon known as Andreestrong influence on the transport properties of mesoscopic
reflection® It has been realized only recently, that the phasesystems. In general the interactions modify the phase-
coherence between the two electrons involved in this procesoherence length,,, which poses limitations on the above-
could give rise to distinct signatures in the transport propermentioned mesoscopic effects. In specific cases the effects of
ties of mesoscopic S—Sc—S and S—Sc sysfens. electron-electron interactions will strongly depend on the
If the normal(S¢) region is free of disorder, the propaga- layout of the system under consideration.

tion of electrons is ballistic. Phase coherence between the For example, the interactions will modify the critical cur-
two electrons is maintained over the lengthrentl. through a normal metallic slab sandwiched between
Leo=hve/max{kgT,eV}, wherev is the Fermi velocity. two superconductor$lf the coupling between normal metal
In this regime, the critical currenit, through a short and and superconductors is weékinneling regimgand the size
narrow constriction in a high-mobility noninteracting 2DEG, of the slab(and hence its electric capacitanCg is small, a
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phenomenological capacitive motfekcan be used to de-
scribe the effect of interactions. As a result the critical cur-
rent shows strong resonant dependence on the electrochemi-
cal potential of the slab dependence has different character
for Ec<A andEc>A, Ec=€?%/2C being the charging en-
ergy. On the other hand, if the normal metal and the super-
conductor are well couplettegime of Andreev reflection
electron-electron interactions will modify the results ob-
tained in Ref. 9 in quite a different fashion. A perturbative
treatment of the interactioffsshows that an additional su-
percurrent through the slab arises, whose sign depends on the
nature of the interactions in the sléhttractive or repulsive
and whose phase dependence has periddather than 2r
in the noninteracting cage

If instead of a metal a low-dimensional Sc nanostructure
with a small electron concentration is considered, the above- 5 1 The geometries discussed in the tef@ one-

mentioned descriptions of the electron-electron interactiong;mensjonal wire connected to two superconductors by tunnel junc-

are no longer sufficient. In one-dimensiofaD) systems the  {ions The distance between the junctionglis(b) Ring with cir-
Coulomb interaction cannot be treated as a weak perturbgymference L connected to two superconductors by tunnel
tion. As a result a nonperturbative, microscopic treatment Ofunctions. The distance between the junctiond.ig, the ring is
interactions is required. For 1D systems this can be done ithreaded by a magnetic fluk.

the framework of the Luttinger modé&t.Interactions have a _

drastic consequence: there are no fermionic quasiparticle e;ghase-coheren;c propagation wfo electrons through a 1D
citations. Instead, the low-energy excitations of the systenfformal regiorf.” Secondly, various aspects of transport in
consist of independent long-wavelength oscillations of thdl€Soscopic systemeparity effects and interference com-
charge and spin density, which propagate with different vePined with electron-electron interactiorand their interplay
locities. The density of states has power-law asymptotics arn be enlightened in such a device. Finally, since the Jo-

low energies and the transport properties cannot be describé&pthson EﬁeCt |sda groutnd—lsiate prl;)pei;]ty, the J?jse;t:)htsonfcur—
in terms of the conventional Fermi-liquid approach. For Nt can be used as a tool fo probe the ground staté of an

guantum wire with an arbitrarily small barrier this leads to alnteractlng electron system. In particular, for the ring geom-
complete supression of transport at low enerdfes’ etry in the presence of an Aharonov-Bohm flux, the various

Another interesting feature arises in 1D interacting Syspossible ground-state configurations can be determine_(_j by
tems of a finite size. For a Luttinger liquid confined to aring,StUdyIng flux and gate voltage dependence of the critical

Loss® found remarkable parity effe¢tsfor the persistent cur_lr_(ra]nt. . ved as foll in Sec. Il we briefl
currents. He used the concept of Haldane’s topological . € paper 1S organized as Tollows. In Sec. 1l we brietly
excitations? extending the previous work of Byers and Yang review the properties _of the spin-1/2 Luttinger model. I_n Sec.
for noninteracting electrons in a rirfg.Depending on the lll the general formalism for the dc-‘_Joseph_son effect is pre-
parity of the total number of electrons on the ring, the grounosented' t'l'_getch-Jtos?r;])hs}on current is ?]t.)t?":jed bydevalue:';]mg
state is either diamagnetic or paramagnetic. For spin-1/ .; contri qu;)hn o the reg e?ergth Ic S?psn sf on the
electrons an additional sensitivity on the electron numbe iherence of the superconducting phases. starting from the
modulo 4 has been fount® Experimental evidence for general expressiofl2) we then consider various interesting

Luttinger-liquid behavior in Sc nanostructures has beeH'ggFgeg'gat'?h?)?' _II_T]esgfi;{ié\;’l tcrlljerr;vr:rt'edgs;)n;e;rsy;s g\(/)vr:esrlg;‘
found recently. The dispersion of separate spin and chargt% di gj b ‘ h Th Y pd d
excitations in GaAs/AlGaAs quantum wires has been mea- N |sta}nc gtween the contacts: he gxponent €penas
sured with resonant inelastic light scatterfiigTransport on the interaction strength. We distinguish two cases in

measurements on quantum wires have revealed power-la\%lﬂIICh the characteristic energh/d for the 1D system is .
dependence of the conductance as a function Oflether much smaller or much larger than the superconducting
temperaturé? gap A. For the ring geometrySec. V, see Fig. (b)], we

In view of this we expect that electron-electron interac-focus on the dependence of the critical current on the applied

tions may well have drastic, observable consequences in sygfjlte .volta.(‘f:]ehand/fcf)r qux]; I?o_th Secs. IV and V gont{;un e:/?'.s'
tems which consist of low-dimensional Sc nanostructure&£ussion of the effect of finite temperatures. Section Vi is
connected to superconductors. In this paper, we will stud evoted to the ac-Josephson effect. In this case the imaginary

the Josephson current through a Luttinger liogfié Specifi- ir_ne approach Of the previou_s sections is in_adequate and we
cally, we consider two geometries which can be realized exVlll Use a real-time formulation. The amplitude of the ac
component is found to show oscillations as a function of

perimentally: a long wire with contacts to two superconduct- : ) :
ors at a distance [see Fig. 1a)] or a ring-shaped Luttinger voltage due to spln—_charge separation. In the last section we
liguid shown in Fig. 1b). In both cases the 1D electron present the conclusions.

liquid is connected to the superconducting electrodes by tun-
nel junctions. This is an interesting system from various
points of view. First of all, it enables one to study in a mi-  We start the description of the model we use by reviewing
croscopic way how the Coulomb interaction influences thethe theory of 1D interacting spin-1/2 fermiofithroughout,

®

Il. THE SPIN-1/2 LUTTINGER LIQUID
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we usefi =kg=1). The long-wavelength behavior of such a spin s in addition toN,. The number] is the number of
quantum wire of length. is governed by the Hamiltonidh  current quantaevg/L, carried by electrons with spis.
Here,vg=mpo/m is the Fermi velocity, withm being the
i :f'-’z dx S electron mass. A net curremt,eve/L flows through the
L) 5T guantum wire if there is an imbalance between the number

] ] o . electrons moving to the right and to the left. Using the
It is written as a sum of the contributions from the spinpoyundary condition(3) one obtains topological constraints
(j=0) and charge (=p) degrees of freedom. The param- for \_ and Jg,82° which lead to the following constraints
etersg; denote the interaction strengths ane=2ve/g; the  for M. andJ; :
velocities of spin and charge excitatiolfsThe parameters (i) ll'he tog)ological number®l; andJ. are eithesimulta-
g can be determined once one defines an appropriate MiCrpoyslyeven orsimultaneousl;oéid; :

9 2
(Ve g Vo)’ @

scopic Hamiltonian(e.g., the Hubbard modelan approxi- (i) whenN, is odd the sumM =M, +J,+J,, takes val-
mate form for the spinless case has been given in Refs. 14~ _40 4... when ’f\|0 is epven the sum
and 15. In this paper we will neglect backscatteriwia M,+M,+J,+J, takes values...,~6,-2,26 ... .

umk_lapp or impurity scatte_rir)gand _restrict ourselves to re- An Aharonov-Bohm fluxd threading the loop couples to
pulsive, spin-independent interactions. As a result we havg,q et current, characterized by the topological nundher

— — 14
g,=2 andv(_,—vp. o of the field¢, . The flux can be incorporated into the Hamil-
We also introduced bosonic fields; and 6;. They are  (nian (1) by changing

related to the fieldsps=d¢,+s¢, and 6s=0,+s6, for

spin up 6=+1) and down §=-—1) fermions. These Vo —Vé—(2mIL) 5 fe, (6)
fields obey the commutation relatiofi¢s(X),0s(X")] _ _’ _
:(i’]T/Z)Sign(X'_X) 53'5,_ The fermionic field Operatorﬂr Wherefq,:CI)/CDO is the flux frustration an@c is the flux

can be expressed in terms of the spin and charge degrees@antumh/e. _ _ _
freedom?*®20 Since the LL is brought into the contact with particle res-

' ervoirs (superconductojskept at fixed electrochemical po-
~ . tential u, the number of particle&characterized by the topo-
T _ M p y p
¥ 0 =1o Mzdd expinkex;} logical numberM, of the field 6,) should be coupled to

. This can be achieved by replacing
xexp{in[ 6,+s6,]}expfi[ ¢, +5d,]}, (2

where kg is the Fermi-wave vector and,=Ng/L is the
average electron density per spin direction. The nunder in the Hamiltonian(1). The parametef , = (g,L/4mv,)Au
determines the linearization point of the original electronis related to the differencé u betweenu and the Fermi
spectrumkeg=mNy/L.*® energy Er=k2/2m of the quantum wire, corresponding to
If the wire is closed to form a loop, the periodic condition the linearization point. Generally, the reference point
- - Ap=0 is defined from the requirement that f&r=0 there
WL s(X+L) =W 4(X) @ are N, electrons in the ground state and the energies to
should be imposed on the Fermi operattits The fields add/remove electrons to/from the system are equal. The dif-

; e ferenceA . can be controlled, e.g., by a gate voltage.
and ¢ can then be decomposed in terms of bosonic fiélds ;
and 6 and topological excitation&2 Using Egs.(1), (4a), (4b), (58, and (5b) one concludes

that the Hamiltonian can be decomposed into nonzero modes
and topological excitations:

Vo,—Vo,—(2mIL)3, f, (7)

6,(x) = 6;(x)+ 60+ M (x/2L), (4a)

—_ ~ ~ ~ TV g
b (X)= () + ¢+ wI;[ (x+LI2)[2L]. (4b) HL:jEPU{quvj|q|bg,jbq,j+4—LJ{E’(JJ—45LP]=¢)2

Here,gj and (;j are given by

2 2
_ i \ﬁ 1/2 +g_j(MJ_45Lpfu)
0;(xX)=5\% qgo

T s bt +b

qL S'QV'(CI)e ( i.q j,*q)i
— i\/§ T
$i(X)=5 g—jgo aL

] . (8

5 Since this Hamiltonian is quadratic in the Bose operators, it
(53 is possible to obtain all the correlation functions exactly.

1/2
(bl ,—b; _g), (Bb) IIl. dc-JOSEPHSON EFFECT

Both systems depicted in Fig. 1 can be described by the

whereb; q ,b;q are Bos_e_ operators. _ Hamiltonian
The boundary conditioii3) gives rise to the topological
excitationsM; and J; for the spin and charge degrees of H=Hg+Hg+H_ +Hr=Hy+Hr. 9

freedom. They are related to the usual topological excitations R R

for fermions with spins: M¢=(1/2)[M,+sM,] and Here,Hg, Hg, are the BCS Hamiltonians for the bulk su-
Js=(1/2)J,+5sJ,]. Physically, the numbeM denotes the perconductors kept at constant phase difference
number of excess electrons in the Luttinger liqUidl ) with ~ x=xs1— xs. For simplicity we assume equal magnitude
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A for both order parameters. The tunneling between the su- The stationary Josephson effect can be obtained by evalu-
perconductors and the 1D electron system is described bating the phase-dependent part of the free enef(ly). The

H+. Itis assumed to occur through two tunnel junctf§ret ~ Josephson current is then given by

the pointsx=0 andx=d,

He= z T, WL (x=0)T (x=0) l3=—2ed71dx. (11)

+TLVEL(x=d) ¥ (x=d)+(Hc). (10  we expand.7=—(1/8)InZ, where Z=Tr exp{—ﬁﬁ} and
The constant tunnel matrix elemenis , can be related to B=21/T, in powers of the tunneling Hamiltonia, using
the tunnel conductancesG,, of the junctions, standard imaginary-time perturbation the&tyThe lowest
Gi=47e®N_(0)N;(0)|T;|?, WheréNL(O)=l/7-er, and N; order phase-dependent contribution arises in fourth order.
is the normal density of states in the superconductor$/sing Eq.(10) we see that there are 24 contributions to the

(i=1,2). phase-dependent part of:
|
7 15 e 2 2 t 2r1(a) *12
](X): - E 0 d’Tl o d7'2 0 dT3 0 dT4{F81(0;Tl_7-2)T1HL (O,d;Tl, . ,T4)(T2) Fsz(o;’Tg_ T4)
+FL (0,7 — ) T2 (0,d; 74, . . . ,74)(T5)2Fgp(0; 75— 73) + (H.C) } + 22 similar terms. (12

This result has a clear physical meaning, see Fig. 2. Thep (Q:7— T’)E<Tfﬁ,8if(d17)\i’$i+(d17',)>si
Josephson effect consists of processes in which a Cooper ' '

pair tunnels from superconduct@? into the LL with an ~ @N(0) E o) Aelxsi
amplitude (T%)2. After propagation through the LL, it tun- B wp ° W 49

nels into superconductddl with an amplitude T;)2. The
Hermitian conjugate terms describe processes in the opposite o , ~
direction. The propagation in the superconductors is de!Vhere (::*)s; indicates an average with respect kb;.
scribed by the anomalous Green's function Propagation through the LL is determined by the Cooperon
propagatodl, (0d; 74, ...,74). These 24 terms are obtained
by considering all possible time-ordered pairs of tunneling
eventst,7j (7;<7j) at x=0 andx=d together with all

possible spin configurations. However, which of these terms

S1 T LL ) are important depends on the relation between the character-
istic energyv ¢ /d for the 1D system and the superconducting
gapA.%°

T If the distance between the contacts is large/d<A, a
generic process consists of fast tunneling of two electrons
T from the superconductor into the 1D system and their slow
propagation through the LL. Such a process is illustrated by
) the first term in Eq(12). Here,
Ty (a)
m20d;7y, .. .,74)
SIL| LL |S2 =V (0¥ (0,7) W], (d,79) W] _(d, 7)),
T T, (14
Where |T1_T3|"‘dlv|:>|7'1_ 7'2|""|T3_7'4|"‘1/A [See F|g
2(a)]. The average is taken over equilibrium fluctuations in
T T the LL (described byH,). The other relevant processes come
4

from diagrams which are obtained from the one in Fi@) 2
by means of particle-hole conjugation and by changing the
time ordering.

FIG. 2. Relevant diagram for Josephson tunneling in the limit-  In the opposite limitv/d>A, diagrams of the type de-
ing casesa) ve /d<A and(b) ve /d>A. The shaded area indicates picted in Fig. Za) are no longer relevant. Instead, one should
the electron-electron interaction. consider fast and independent propagation of two electrons

()
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through the LL and slow tunneling betwe&nmand LL. This  d. The topological excitations play no role in this cageeir
is illustrated by the second term in E@L2) [see also Fig. energy is vanishingly smalbnd the wire is described by the
2(b)], where nonzero modes onlffirst term in Eq.(8)].

B/ o
Im70d; 7y, ... ,7) A. The casevg /d<A

=<\If|_,+(0,rl)‘l’[+(d,72)\If,_'_(0,r3)\1f[’_(d,74)>, The expression for the phase-dependent part of the free
(15) energy contains four terms of the type of the first term in Eq.
(12) [see Fig. 2a)]. In this case at low temperaturds<A
with |7y — 75| ~| 73— 74| ~d/ve<| 7, — 73|~ 1/A. Also in this  one can approximate the anomalous Green funciib8sby
case the other relevant processes can be obtained from tlde functions in time. This fixes equal time arguments
one in Fig. 2b) by means of particle-hole conjugation and by r,=r,, 73=17, in II{¥). The remaining integration should
changing the time ordering. be performed over the time=7;— r3. The dominant con-
The direct evaluation of averages likk4), (15 with the  tripution to the the integral comes from the terms with

help of bosonized field operators like) is tedious but n=+1 in Eq. (2). As a result, the Josephson currémt)
straightforward. The resulting expressions can be simplifieghrough the quantum wire is given by

further in the two limiting casesr/d<A andvg/d>A,

which contain all the important physics of the problem. 1@ =13 (T)siny, (16)
IV. de-JOSEPHSON CURRENT with a temperature-dependent critical current
THROUGH A QUANTUM WIRE
4’7TeU|: G]_Gz
. . . . |(a) T = F(a) T 17)
We first turn to the geometry depicted in Fig(al It ¢ (T) d (4ed)2 v (D), (
consists of a quantum wire of length— connected to two
superconductors by tunnel junctions separated by a distansghere
|
1 12971 rpopi2d dx 27292 2 v
FaMm=|— f — s (18
Ked —Bupl2d2T [Zpo | VB cosh{2md/v;B)—cog2mdx/ Bu)
|
(with g,=2 andv,=vg). At low temperaturesT <vg/27d, the critical current is sup-

In the noninteracting case, at zero temperaturepressed below its zero temperature value in a power-law
F(&(0)=1. The Josephson current decreases @svith in-  fashion
creasing distance between the tunnel junctions. This is re-
lated to the fact that the density of Cooper pairs in the LL
decays in space away from each junction. Hence the overlap
of the macroscopic wave functions of the two superconduct- , i )
ors, which is responsible for the Josephson effect, is sugh the high-temperature regim@ <ve/27d, the decay is
pressed. Repulsive interactions in the wire make the JosepfXPonential
son effect vanish more rapidly with the distance between the (a)
superconductors, 1(T) _ \8wTd

1@(0) v

(a) (a) ~ _E 7T_Td ?
I@MNEO)=1-3 o E (20)

exp(— 27 Tdlvg).

182(0) o 1/(Ked)#9e. It is possible to obtain analytical results also in the inter-
acting case. In particular, for weak interaction §,<2 and

- . . . . low temperature¥ <v/27d the critical current behaves as
The electron liquid acquires an additional stiffness against

density fluctuations, hence the tunneling betwS8emd LL is @ T 2_ 2-Td\ 29 2/ 7Td\>2
suppressed. This fact provides aposteriorijustification of ‘(‘a)( ) ~ gp( 7 d) ' _(W_d) , (21
our use of perturbation theory when treating electron tunnel- 1:7(0) 4 UF 3\ vr

ing in the presence of repulsive interactions.

We consider now the temperature dependence of the crit
cal current. For noninteracting electromg,= 2, the critical
current can be calculated explicitly:

where we dropped term[(z—gp)2+(2—gp)(Td/vF)Z].
'This result can be interpreted in terms of a competition be-
tween two effects. At low temperatures the dominant depen-
dence comes from the renormalization of the tunneling am-
plitudes T, , in the presence of interactidf.The critical
1@(T)  24Td 1 current increaseswith temperature. Above the crossover
¢ — _ (19) temperatureT ¢,ss=(3/8) (2—g,)ve/7d the Josephson cur-
120) vk Jeos(2nTdlvp)—1 rent decreaseslue to the shortening of the phase coherence
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Note that we estimated the Josephson current assuming
fixed Josephson phase difference between the superconduct-
ors. Thermal fluctuations of the Josephson phase would
smear the critical current at temperatufigs~ E;=1{/2e,
provided that the superconductors are coupled by the LL
only. Using Eq. (17) for the noninteracting caséwith
F{&(0)=1], one obtains that the temperatuf& is by a
factor 2rG,G,/(4e?)?<1 smaller than the characteristic
temperature scaler/d for the LL. Hence, in order to ob-
serve nontrivial temperature dependence of the critical cur-
rent, one has to fix the phase difference between the super-
conductors, e.g., by means of an additional Josephson
junction.

I(a)c(T)/I(a)C(O)

%0 01 0.2 B. The casevg /d>A

t

In this limit, the electrons propagate fast and indepen-
FIG. 3. The critical current of the wire as a function of the dently through the LL on a time scaleAl/ A typical contri-
temperature t(=Td/27v¢) for various values of the interaction bution is depicted in Fig. ®). The Cooperon1l5) can be
strengthg,=1.0,1.25,1.75,2.0. approximated as

length. Although the maximum is not very pronounced, theH 0d; 7y, ...,74)
crossover temperature shifts to higher values as the interac- T - .

tion strength increasesee Fig. 3. This results in a wider “(‘I’L,+(0-Tl)‘1’|_,+(daTz)><‘I’L,—(0173)‘1’ —(d, 7)),
temperature range in which the critica! stays almost constanfyhere we substitute

It is evident from Eq(21) that the coefficient responsible for

the anom_alous temperature dependence vanishes in the ab- <¢'L,+(Oa7i)‘i'[,+(daTj)>%C5(7'i_Tj)-

sence of interaction, thus restoring thé suppression of the ) ) . ) )
critical current(20). For high temperature$>v /2wd the ~ The constantC is determined by integration of the time-
Suppression becomes exponentiaL ordered Slngle-partlcle correlator of the LL,

@ (T)oc T20, _ . "
[(T)e T 9exp(— 27T d/vg) (22 oo fﬁ ax(T, ‘I’L (0, T)\I'L (0.

The full temperature dependence of the critical current,
calculated by numerical integration of Eq&l7), (18) is  The temperature-dependent Josephson current is found to be
shown in Fig. 3. We see that for moderate strength of the b b .
interactiong~1 the Josephson current will maintain an ap- I.(J ):|(c (T)siny,
preciable value up to a temperatdre v /d, which is of the
order of 0.7 K for typical experimental parameters= 3.0
10° m/s andd=3 um.3! Moreover, the value of the critical G,G,
current1 @ (T=0)~ 22 nA [estimated for the parameters P(m)= GAWF
given above an@; /(4e?)=0.3], is large enough to be mea-
sured experimentally. with

where the critical current is given by

(b)

F(b): 1 gp/4+1/g,—1 % g,/4+1/g, d gpfa+1/g,+1 EfﬁvF/dex sin §p+ é"U
w ked 2 Bue m)o 2
2 g;/16+1/4g; 2

(23

< 11

cosh{2md/ Bv;) —cos2mdx/ Bu g

The phase factog; is given by

wdX d )
.=arctanco tan
gl + t(:B Ur I‘(ﬂvj b
At zero temperature we finB{”=1. The resulting Joseph-

In the noninteracting casg,=g,=2, F{” can be calcu- son current thus is mdependent of the distamdmetween the
lated explicitly: contacts, analogous to the result obtained in Ref. 6. At finite

2
Fo=| 2 arctaf
Wl sinh(wd/Bug)/ | ~
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temperatures the Josephson current is suppressed. vihere we dropped terms of the order eff[(z—gp)2

T<vg/d, the suppression is linear if: +(2—gp)(Td/vF)2]. We find again an anomalous depen-
) dence on temperature, like the one we discussed in the case
le (1) _,_4Td veld<A.
11(0) vr

In the interacting case, &= 0, the critical current is sup-

pressed, V. dc-JOSEPHSON CURRENT THROUGH A RING

|E:b)(o)oc1/(de)gp/4+1/gp—1_
In case of the ring with circumferende [Fig. 1(b)], we
At finite temperatures, and for weak interactions we obtain should take into account the contribution to the Josephson
current due to the topological part, see E@s), (4b), and
1P(T) i 3 l/2+g”/8+1/29”+ 2-9g, 7Td (8). The Cooperon for the ring in case of a symmetric setup
1P(0) 27 2 vg d=L/2>vg/A is evaluated along the same lines as before. It
(24) s then straightforward to get the Josephson current

7Td

Ur

2’7Tel)|: GlGZ ]
= g 2, (Fil8,Le My 3)Sin 0+ emM 12+ 73,12, 25
where
1] o 1291 [mpogiL 1 2, 1 2\2
Fr=3 KeL fﬂﬂvF/zLdX cosh2x/g,)|  coshx) cos g, (M, —4f ,)x+ €J,X
1+ exp27Bu;n?/L 1lg;
X H n q ZB ] ) , (26)
i=p.0 | 1+Znexp(27Bujn?/L)cog2n\ (X))
|
with tion of J; and M; is found to be {,,J,,M,,M,)=

(0,0,0,0; if f,+fu>1/2 the configuration is(2,0,2,0.
Hence, the ground state of the system can be changed by
varying either the flux or the gate voltage. As a result, the
Josephson current changes, see E2fS), (26). This is illus-

The brackets(- - - }; v, should be considered as the thermaltrated in Fig. 4, where the critical curret (we write
average over the topological excitations weighted by the apls=!cSinx wherel; can be positive or negatiyés plotted as
propriate Boltzmann factor and subject to the topological function off , andT at fixedfq=0.2. ForT=0, the criti-

1 ZUJ'X
\j(X)= 5 arcoscos .
2 (=

constraints. cal current shows a maximum and a sharp jumgp, at0.3
For zero temperature this calculation involves only the
ground statésee Ref. 25 for detailsThe dependence of the fp=02,g,=20

critical current onfg, andf, has been found to show very
rich behavior. In the present study, we will focus on the
effect of finite temperatures. In particular, we will investigate
how robust the structure, found in Ref. 25 is against thermal |
fluctuations. !

Two remarks are in order at this point. First, throughout
this section, we assume that the linearization point of the .|
original electron spectrum corresponds to odd valuehlpf 1
(for evenN, the picture is the same, apart from a relative
shift of f, andf,). Second, the Josephson current depends
periodically on botH 4 andf ,, with period 1. However, since 0
the original problem has additional symmetrieg— —f
andf,— —f, (together with a change of sign of the corre-
sponding topological numbersg; and M;), it is enough to
consider fg, and f, in the intervals 6<f<1/2 and FIG. 4. The critical current through the ringnormalized to
0<f,<1/2. (2mevp IL)[G1G,/(4€?/1)?]} at a fixed value of the flux

It is instructive to discuss first the noninteracting casef,=0.2 as a function of the gate voltage and the temperature
g,=2, for T=0. If f ,+f4<1/2 the ground-state configura- (t=TL/#7v) in the noninteracting case.

1

05
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where the state$0,0,0,0 and (2,0,2,0 are degenerate. At fp=02,g,=175
this value of the gate voltage, the number of electrons on the
ring (M) increases by two. Since electronic states are dou- fer
bly degenerate in spin and nonzero flux is applied, the two
electrons will occupy the samglockwise or counterclock-
wise moving single-particle state. Therefore, the net current
eved, /L increases by 2 quan& /L, while the topological
numberaM , andJ,, related to spin remain unchanged. At the
jump, I . changes sign. This reflects the fact that the ring acts
as aw junction (I.,<0) in the statg2,0,2,0, as can be seen
from Eq. (25). Therefore, for noninteracting electrons, the o4}
critical current shows two jumps per period of the gate volt- 0
age dependence. The same is true for the dependerige of
on the magnetic flux. f 0.5
This picture is correct for any generic point on the line

f,+fp=1/2. At the end points f(,,f4)=(0,0.5) and FIG. 5. The same as in the previous figure for the interacting
(0.5,0), no jumps of the critical current occlone can say case; for this plot we choosg,=1.75 but the result is rather ge-
that two jumps in opposite directions merge togethér-  neric for repulsive interactiofthe critical current is normalized to
stead, the critical current shows a resonance. The resonang®rev,/L)[G,G,/(4e%/%)]?}.

occurs due to alignment of two spin-degenerate energy levels
(for clockwise and counterclockwise moving electrongth
the chemical potential of the superconductors.

os}

021

e

0.8

function of f, for T=0 [this can be seen from Eq&5),
At a finite temperature, both the nonzero modes and th 26); the fluxf 4 enters to these equations only implicitly, via

. o . opological numbers Depending on the gate voltage, the
t_opo.log|cal excitations are thermally activated. Thermal aC%ritical current can show zero, two, or four jumps per period
tivation of the nonzero modes leads to an overall SUPPressioft 1o flux dependenc.
of the critical current, as it has been discussed for the wire in The state(1,1,1,1 is the ground state in a strip of width
Sec. IV. Thermal activation of the statg®,0,0,0 and 5t =[1-(g /é)é]/’4 This determines the energy
(2,0,2,0 will lead to a smearing of the jump. Moreover, at A '

—_ . o - 5Ez[1—(gp/2)2]7rvp/(gpL) needed to create topological
finite temperature there will be a nonvanishing probability t0aycitations. The features related to the statd. 1,9 will be

e s s egEed . emperalrgs: 7. Thereor, o ik e
b ' b P ge, ction 2-g,<1, the interaction effects will disappear at

one additional _stat(al,l,l,i) with one extra glectr(_)_n on the much lower temperature§<<vg/L than the parity effects.
ring can be activated. As a result, the negative critical currenlt:Or example, the features related to the configuration

of the state(2,0,2,0 (at f,=0.3) will be partially compen- L .
o iy 1,1,1,2 in Figs. 5 and 6 are seen only in the temperature
sated by the positive critical current of the stétel,1,], the Eange'l?)< 5E~go.1 K whereas the overa)I/I dependencpe is ro-

occupancy of which increases with temperature. Note thalt)ust up to the temperaturds-1 K. However, it is worth-

Lﬁzél;'mog ?rtff: ?fﬁim?nff(\ﬂsﬁwlg upatrc;:ﬁé?ggaﬁéﬁig;égewhiIe to stress that thel,1,1,) state survives at much higher
above and. _UZF m). Hence, the r;rit effect causing the temperatures when the interaction strength is increased.
atihs : parity 9 The behavior we described here is rather generic for all

jump is quite robust against thermal fluctuations. ; . .
An important feature of the noninteracting cas& a0 is values off ,, fq and for various values of the interaction.

that the various possible ground-state configurations may dif-
fer by an even number of electrons only. The situation f,=02,g,=175
changes drastically when repulsive interactions are switched
on. In addition to the state®,0,0,0 and(2,0,2,0, the state
(1,1,1,2 can act as a ground-state configuratiohis hap-
pens for parametersf,, fq within the range 0.8
1+3(gp/2)2<8[fﬂ+(gp/2)5f¢]<3+(gp/2)2. Within this
“strip,” it is energetically more favorable to add single
electron, rather than a pair of electrons to the ring, due to -0.4
repulsive electron-electron interactions. The Josephson cur- |
rent in the stat€l1,1,1,1 differs from the current in the states
(0,0,0,0 and(2,0,2,0, see Eqgs(25), (26). For example, for
g,=1.75 andf4,=0.2 (Fig. 5 the state(1,1,1,) occurs in 0.1
the range 0.25€f,<0.318. Indeed, one sees two pro-
nounced jumps of; at the borders of this interval in Fig. 5
(at low temperaturgsGenerally, for interacting electrons the
critical current shows four jumps per period of the gate volt-  FiG. 6. The critical current through the ring at a fixed value of
age dependence. the gate voltagé ,=0.2 as a function of the flux and the tempera-
Similar jumps are seen also at the dependence of the critiure (t=TL/mv¢) in the interacting casg,=1.75{the critical cur-

cal current on the flux, Fig. 6. Moreovel, is a stepwise rent is normalized to (2evg/L)[G,G,/(4€%/%)?]}.

0.2
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t t, expression which has the same structure as (ED). The
N ty integrals are now taken over real times. It is convenient to
depict the timest,t;,t;,t3; of tunneling events on the
t Keldysh contou®® (the Josephson current is calculated at a
time t). Again, we will consider two cases of long
(ve/d<€A) and short ¢ /d>A) distance between the con-
(a) tacts. The relevant diagrams are shown in Fig. 7 for both
cases. We restrict our consideration to the case of a quantum
t3 b t, wire at zero temperature.

A. The casevg /d<A

For a large distance between the contacts the tunneling of
two electrons to/from a superconductor is a fast process on
(b) the time scale of their propagation through LL. The Joseph-
son current is described by diagrams of the type shown in
FIG. 7. Relevant diagrams for ac-Josephson curréal:  Fig. 7(8). The Josephson current is then given by
ve/d>A and(b) v /d<A. The shaded area indicates the electron-
electron interaction.

GG
IJ(t)=47TZev,2:m;—2)22
What is specific is the configuration of the two superconduct-

ors: they are connected symmetrically to the ring. If the woievt | Zuer Fievt ,

points on the ring at which the electrodes are attached would x RE{Z‘ =€ fo dt'e It )}’ 28
form a generic angle, a more complicated interference pat-

tern would arise. In the symmetric setup, the maximum JowhereIl(t)=II{*(0d;it,it,0,0) is the Cooperon propagator
Sephson current occurs either ®E0 or at y=m. In the (14) in real time taken at Coinciding time arguments. The
nonsymmetric setup the maximum Josephson current woulgading contribution stems from the terms in Eg) with
occur at a valuey(J,,J,,M,,M,;) which depends on the n=x1,

values of topological numbers. The critical current should

then be found by maximizing the resulting function of the mt)=2p2 [1] {[1+ik,:(vjt+d)][1+ikF(vJ-t—d)]}‘”gi.
i

phase difference. =p,0o
(29
Vl. ac-JOSEPHSON EFFECT In particular, for noninteracting electrong {=2) we obtain
The effect of a finite dc bias voltageV<2A applied
between the superconducto®d and S2, will be twofold. I5(t)= @Gl_?zz sin( 2eVit— %j) (30)
First of all, the phase differencge betweenS1 andS2 will d (4€9) Uk

acquire a time dependence, according to the Josephson refenjs result means that the Josephson current acquires an ad-
tion x=w;=2eV. As a result, the Josephson current will gitional phase shift due to the propagation of electrons be-
oscillate as a function of time at a frequenay; (ac-  tween the contacts. For interacting electrons we computed

Josephson effect, see Ref)38econdly, a dc subgap current the Josephson current numerically. We shjiinto sinusoidal
will be induced, due to Andreev reflection at both junctions.and cosinusoidal components,

This current is dissipative, energy will be dissipated in the

LL. In a typical experiment one thus will find a current with 2meve GG,
both a dc and an ac component. In this section, we willl (V)= 4= 722
mainly concentrate on the ac-Josephson current, and estimate
the dc component at the end.

In the presence of a bias voltalyebetween the supercon-
ductors, the imaginary time formalism cannot be applied and )
Josephson current is found by calculating the average of thEhe amplitudes¢) of the two components and the phase
corresponding Heisenberg operator. Using the interactiog= —arctan{:/Jg of the Josephson current are shown in

representation with the unperturbed Hamiltori'fﬂm see Eq. Fig. 8 as functions of the voltage for two values of the inter-
(9), one obtains action parameteg,=1.75 and 1. One sees that the deviation

from the simple result(30) for noninteracting electrons

() =(Ut It 0(M)), [which corresponds tds=cosgeVdvg), J.= —sineVdug),

and ¢=eVduv] increases with the increase of the interac-

tion. This deviation becomes striking in the dependence of
' 27 the ac current amplitudé, = \J32+J2 on the voltage, Fig. 9.
R Apart from the noninteracting ca$d,(V)=consi, one sees
We expand(27) to the fourth order irH; and keep the Jo- pronounced oscillations of the current amplitude. These os-
sephson terms in the current. These are proportional toillations are due to the difference in the velocities of the
exp(+2ieVt). As a result the Josephson current is given by archarge ¢,) and spin ¢ ) excitations. The periodV of the

1\2%71 [ ev _
il Mg snzevs

+J;

eV
m,gp) cog2eVt) . (31

~ [N
U(t)=Texp{—if Ho(t")dt’
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tions of creation and annihilation operatomver the range

Jo,s, ¢ . .
¢ 1 ' ' t—ty~t,—ty~d/vg andt—gz~1/A [see Fig. )] For.th|s
; reason, we can preseiﬁI(L) as a product of two single-
N AN AN particle propagators and integrate the latter over the “fast”
0.5} F / v S i . variablest —t; andt,—t5 (from 0 to) as we did for the dc
oF / Vv / v case. The last integration over the “slow” variatde-t—t,
\ P AN 8N P > 7w involves the product of two anomalous Green functions with
-0.5f \ !/ i\ ! For/d an exponent containing the time-dependent Josephson phase:
-1 ] \\ z/' : -
s i / fo dsF&;(0is)F(0jis)expieVs).
Jos, e Hence, for short distances between the contacts the presence
1.5 of LL does not influence the voltage dependence of ac-
1 . Josephson current. The latter is still given by the simple for-
mula
0.5 _,i,»—‘-~\
0 < i oo ;%;.z . I3(t)=(2/m)K(eVI2A) 1P (0)sin(2e V1),
- e
-0.5 D g whereK(x) is an elliptic integral and{’(0) is the critical
1 current in the dc caskef. Eq. (23) in the limit of zero tem-
peraturg. The effect of the interaction is only to reduce the
-1.5

value of the critical current, while its voltage dependence is

analogous to that of the critical current of a conventional
Josephson junctioff.

We conclude this section with an estimate of the dissipa-
tive dc current due to Andreev reflection at both junctions.
For a single junction between a superconductor and a LL
oscillations corresponds tor2difference between the phases yith repulsive interactions, the subgap currégtv) as a
of charge eVdu,) and spin €Vdug) excitations. Using  fynction of the applied voltageV is given by®?735
the relation v,=2vg/g, we obtain esV/(ve/d) | (v)~V|V|?%~L. For the system of Fig.(&), which con-
=2m(1-9,/2) *=50.4,12.6 forg,=1.75 and 1, respec- sists of two junctions in series, the lowest-order contribution
tively. This is in very good argeement with the period of tg the subgap current stems from sequential tunneling. Em-

oscillations in Flg 9. Therefore, the aC-Josephson effect Caﬂ|0ying a rate equation approach, we find for this contribu-
be used as a tool for the observationspin-chargesepara- tjon

tion in the LL.

FIG. 8. The voltage dependence of sinusoitallid line) and
cosinusoidaldashed ling components and the phagiotted ling
of ac-Josephson currer(®) g,=1.75 and(b) g,=1.

2g,-1 (Zlgp)Z/gP

) ne 81C2 o [ 26V
(V)= 71'(3(482)2 €

B. The casevg /d>A vEke I'(1+2/g,)
At short distances between the contacts, the two electrons 2(G,G,)%? 129,
propagate fast through the LL on the time scalA.1The 73 ,; 2 73 ,2} (32
relevant diagrams are similar to the graph shown in Fig).7 (G +(G2)%

The.maln cc_)ntrlbutlon to the Jqsephson current comes fror@:omparing this result with the critical current we see that the
the integration of the two-particle propagators of the typ€jissinative component is much smaller at low voltages. In

(0 d;itity,it,,its), Eq. (15 (with possible permuta- order to get a complete description at finite voltages, one has
to solve the corresponding equation for nonlinear resistively

14 shunted-junction modé&lThis will be discussed in a forth-
i / / coming publicatiors®
e :f VII. DISCUSSION
0.6 In this paper, we studied the ac- and dc-Josephson effect
- in a single-mode quantum wire and guantum ring connected
to two superconductors by tunnel junctions. Repulsive inter-
0-2 actions were treated in the framework of the Luttinger
° 20 20 0 30 Too model. Interactions were found to have a drastic influence on
eV both dc- and ac-Josephson effect.
hor/d The critical current is suppressed by interactions at zero

temperature. The results depend on the ratio between the
FIG. 9. The voltage dependence of the amplitude of ac-Characteristic energjve/d of the 1D electron system and
Josephson current. Herg,=2,1.75,1,0.75,0.5,0.25 for the curves the superconducting energy gap For large distances be-
from top to bottom at zero voltage. tween the contacd>#Av /A in the presence of interactions,
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there is a competition between thermal suppression of cohetion. The corresponding period depends on the ratio of the
ent two-particle propagation in the wire and activation ofvelocities of the spin and charge excitations in the LL.
tunneling at the junctions at low temperatures. As a result, A quantum wire closed to a loofor quantum ring shows

the critical current shows maximum as a function of tem-interesting parity effects. Boundary conditions on the elec-

; tronic wave functions result in a discrete set of quantum
perature. At even higher temperatur&gl>fv ,/27d, the . q i
suppression becomes exponential numbers, related to the number of particles and angular mo

In our model it is assumed that the superconducting elec':nenmm' We showed how these numbers can be tuned by
. . . : applying a gate voltage and a magnetic flux, and calculated

trodes do not |r_1fluer_lce the uniformity of the potential a_longthe corresponding dependence of the critical current on these

the quantum wire, since they are separated from the wire byarameters. This dependence shows a rich behavior, which

thick barriers. It was argued in Ref. 37 that a nonuniformcan be detected in an interference experiment emp|oying a

potential in the wire will lead to an effective change of the superconducting quantum interference device. We showed

boundary conditions for the electronic wave function, whichthat the dependence is robust to thermal fluctuations up to

in turn could strongly affect our results. However, a recentexperimentally measurable temperatures.

calculatiorf® of the Josephson current through an interacting
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