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We calculate both the dc and the ac Josephson current through a one-dimensional system of interacting
electrons, connected to two superconductors by tunnel junctions. We treat the~repulsive! Coulomb interaction
in the framework of the one-channel, spin-1/2 Luttinger model. The Josephson current is obtained for two
geometries of experimental relevance: a quantum wire and a ring. At zero temperature, the critical current is
found to decay algebraically with increasing distanced between the junctions. The decay is characterized by
an exponent which depends on the strength of the interaction. At finite temperaturesT, lower than the
superconducting transition temperatureTc , there is a crossover from algebraic to exponential decay of the
critical current as a function ofd, at a distance of the order of\vF /kBT. Moreover, the dependence of critical
current on temperature shows nonmonotonic behavior. If the Luttinger liquid is confined to a ring of circum-
ferenceL, coupled capacitively to a gate voltage and threaded by a magnetic flux, the Josephson current shows
remarkable parity effects under the variation of these parameters. For some values of the gate voltage and
applied flux, the ring acts as ap junction. These features are robust against thermal fluctuations up to
temperatures on the order of\vF /kBL. For the wire geometry, we have also studied the ac-Josephson effect.
The amplitude and the phase of the time-dependent Josephson current are affected by electron-electron inter-
actions. Specifically, the amplitude shows pronounced oscillations as a function of the bias voltage due to the
difference between the velocities of spin and charge excitations in the Luttinger liquid. Therefore, the ac-
Josephson effect can be used as a tool for the observation ofspin-chargeseparation.

I. INTRODUCTION

Due to the recent development of superconductor-
semiconductor~S–Sc! integration technology it has become
possible to observe the transport of Cooper pairs through
S–Sc mesoscopic interfaces. Examples are the supercurrent
through a two-dimensional electron gas~2DEG! with Nb
contacts~S–Sc–S junction!1 and excess low-voltage conduc-
tance due to Andreev scattering in Nb-InGaAs~S–Sc!
junctions.2 The transfer ofsingleelectrons through the inter-
face between a semiconductor and a superconductor with
energy gapD is exponentially suppressed at low tempera-
tures and bias voltageskBT,eV!D (e is the electron
charge!. Instead, electrons will be transferredin pairs
through the interface, a phenomenon known as Andreev
reflection.3 It has been realized only recently, that the phase
coherence between the two electrons involved in this process
could give rise to distinct signatures in the transport proper-
ties of mesoscopic S–Sc–S and S–Sc systems.4,5

If the normal~Sc! region is free of disorder, the propaga-
tion of electrons is ballistic. Phase coherence between the
two electrons is maintained over the length
Lcor5\vF /max$kBT,eV%, wherevF is the Fermi velocity.
In this regime, the critical currentI c through a short and
narrow constriction in a high-mobility noninteracting 2DEG,

connected to two superconductors should be quantized:6 each
propagating mode contributes an amounteD/\ to the critical
current.

In the presence of disorder in the normal region, the
motion of the two electrons will be diffusive. Like in
disordered metals, the phase coherence between the two
electrons is limited by the correlation length
Lcor5A\D/max$kBT,eV%, whereD is the diffusion con-
stant. For instance, the excess low-voltage conductance in
S–Sc junctions2 can be explained in terms of constructive
interference occurring over this length scale between the two
electrons incident on the S–Sc interface.7,8

In these examples, electron-electron interactions are ne-
glected. It is well known, though, that they may have a
strong influence on the transport properties of mesoscopic
systems. In general the interactions modify the phase-
coherence lengthLcor, which poses limitations on the above-
mentioned mesoscopic effects. In specific cases the effects of
electron-electron interactions will strongly depend on the
layout of the system under consideration.

For example, the interactions will modify the critical cur-
rent I c through a normal metallic slab sandwiched between
two superconductors.9 If the coupling between normal metal
and superconductors is weak~tunneling regime! and the size
of the slab~and hence its electric capacitanceC) is small, a
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phenomenological capacitive model10 can be used to de-
scribe the effect of interactions. As a result the critical cur-
rent shows strong resonant dependence on the electrochemi-
cal potential of the slab dependence has different character
for EC,D andEC.D, EC5e2/2C being the charging en-
ergy. On the other hand, if the normal metal and the super-
conductor are well coupled~regime of Andreev reflection!,
electron-electron interactions will modify the results ob-
tained in Ref. 9 in quite a different fashion. A perturbative
treatment of the interactions12 shows that an additional su-
percurrent through the slab arises, whose sign depends on the
nature of the interactions in the slab~attractive or repulsive!,
and whose phase dependence has periodp ~rather than 2p
in the noninteracting case!.

If instead of a metal a low-dimensional Sc nanostructure
with a small electron concentration is considered, the above-
mentioned descriptions of the electron-electron interactions
are no longer sufficient. In one-dimensional~1D! systems the
Coulomb interaction cannot be treated as a weak perturba-
tion. As a result a nonperturbative, microscopic treatment of
interactions is required. For 1D systems this can be done in
the framework of the Luttinger model.13 Interactions have a
drastic consequence: there are no fermionic quasiparticle ex-
citations. Instead, the low-energy excitations of the system
consist of independent long-wavelength oscillations of the
charge and spin density, which propagate with different ve-
locities. The density of states has power-law asymptotics at
low energies and the transport properties cannot be described
in terms of the conventional Fermi-liquid approach. For a
quantum wire with an arbitrarily small barrier this leads to a
complete supression of transport at low energies.14–17

Another interesting feature arises in 1D interacting sys-
tems of a finite size. For a Luttinger liquid confined to a ring,
Loss18 found remarkable parity effects19 for the persistent
currents. He used the concept of Haldane’s topological
excitations,20 extending the previous work of Byers and Yang
for noninteracting electrons in a ring.21 Depending on the
parity of the total number of electrons on the ring, the ground
state is either diamagnetic or paramagnetic. For spin-1/2
electrons an additional sensitivity on the electron number
modulo 4 has been found.22 Experimental evidence for
Luttinger-liquid behavior in Sc nanostructures has been
found recently. The dispersion of separate spin and charge
excitations in GaAs/AlGaAs quantum wires has been mea-
sured with resonant inelastic light scattering.23 Transport
measurements on quantum wires have revealed power-law
dependence of the conductance as a function of
temperature.24

In view of this we expect that electron-electron interac-
tions may well have drastic, observable consequences in sys-
tems which consist of low-dimensional Sc nanostructures
connected to superconductors. In this paper, we will study
the Josephson current through a Luttinger liquid.25,26Specifi-
cally, we consider two geometries which can be realized ex-
perimentally: a long wire with contacts to two superconduct-
ors at a distanced @see Fig. 1~a!# or a ring-shaped Luttinger
liquid shown in Fig. 1~b!. In both cases the 1D electron
liquid is connected to the superconducting electrodes by tun-
nel junctions. This is an interesting system from various
points of view. First of all, it enables one to study in a mi-
croscopic way how the Coulomb interaction influences the

phase-coherent propagation oftwo electrons through a 1D
normal region.27 Secondly, various aspects of transport in
mesoscopic systems~parity effects and interference com-
bined with electron-electron interactions! and their interplay
can be enlightened in such a device. Finally, since the Jo-
sephson effect is a ground-state property, the Josephson cur-
rent can be used as a tool to probe the ground state of an
interacting electron system. In particular, for the ring geom-
etry in the presence of an Aharonov-Bohm flux, the various
possible ground-state configurations can be determined by
studying flux and gate voltage dependence of the critical
current.

The paper is organized as follows. In Sec. II we briefly
review the properties of the spin-1/2 Luttinger model. In Sec.
III the general formalism for the dc-Josephson effect is pre-
sented. The dc-Josephson current is obtained by evaluating
the contribution to the free energy which depends on the
difference of the superconducting phases. Starting from the
general expression~12! we then consider various interesting
limiting situations. In Sec. IV, the wire geometry is consid-
ered@see Fig. 1~a!#. The critical current decays as a power of
the distanced between the contacts. The exponent depends
on the interaction strength. We distinguish two cases in
which the characteristic energy\vF /d for the 1D system is
either much smaller or much larger than the superconducting
gap D. For the ring geometry@Sec. V, see Fig. 1~b!#, we
focus on the dependence of the critical current on the applied
gate voltage and/or flux. Both Secs. IV and V contain a dis-
cussion of the effect of finite temperatures. Section VI is
devoted to the ac-Josephson effect. In this case the imaginary
time approach of the previous sections is inadequate and we
will use a real-time formulation. The amplitude of the ac
component is found to show oscillations as a function of
voltage due to spin-charge separation. In the last section we
present the conclusions.

II. THE SPIN-1/2 LUTTINGER LIQUID

We start the description of the model we use by reviewing
the theory of 1D interacting spin-1/2 fermions~throughout,

FIG. 1. The geometries discussed in the text:~a! one-
dimensional wire connected to two superconductors by tunnel junc-
tions. The distance between the junctions isd. ~b! Ring with cir-
cumference L connected to two superconductors by tunnel
junctions. The distance between the junctions isL/2, the ring is
threaded by a magnetic fluxF.
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we use\5kB51). The long-wavelength behavior of such a
quantum wire of lengthL is governed by the Hamiltonian20

ĤL5E
2L/2

L/2 dx

p (
j
v jFgj2 ~¹f j !

21
2

gj
~¹u j !

2G . ~1!

It is written as a sum of the contributions from the spin
( j5s) and charge (j5r) degrees of freedom. The param-
etersgj denote the interaction strengths andv j52vF /gj the
velocities of spin and charge excitations.14 The parameters
gj can be determined once one defines an appropriate micro-
scopic Hamiltonian~e.g., the Hubbard model!; an approxi-
mate form for the spinless case has been given in Refs. 14
and 15. In this paper we will neglect backscattering~via
umklapp or impurity scattering! and restrict ourselves to re-
pulsive, spin-independent interactions. As a result we have
gs52 andvs5vF .

14

We also introduced bosonic fieldsf j and u j . They are
related to the fieldsfs5fr1sfs and us5ur1sus for
spin up (s511) and down (s521) fermions. These
fields obey the commutation relation@fs(x),us8(x8)#
5( ip/2)sign(x82x)ds,s8. The fermionic field operatorsĈ
can be expressed in terms of the spin and charge degrees of
freedom:18,20

ĈL,s
† ~x!5Ar0 (

n,odd
exp$ inkFx%

3exp$ in@ur1sus#%exp$ i @fr1sfs#%, ~2!

where kF is the Fermi-wave vector andr0[N0 /L is the
average electron density per spin direction. The numberN0
determines the linearization point of the original electron
spectrum,kF[pN0 /L.

18

If the wire is closed to form a loop, the periodic condition

ĈL,s~x1L !5ĈL,s~x! ~3!

should be imposed on the Fermi operators~2!. The fieldsu
andf can then be decomposed in terms of bosonic fieldsū
and f̄ and topological excitations:18,20

u j~x!5 ū j~x!1u j
01pM j~x/2L !, ~4a!

f j~x!5f̄ j~x!1f j
01pJj@~x1L/2!/2L#. ~4b!

Here, ū j and f̄ j are given by

ū j~x!5
i

2
Agj

2 (
qÞ0

U p

qLU
1/2

sign~q!eiqx~ b̂ j ,q
† 1b̂ j ,2q!,

~5a!

f̄ j~x!5
i

2
A2

gj
(
qÞ0

U p

qLU
1/2

eiqx~ b̂ j ,q
† 2b̂ j ,2q!, ~5b!

whereb̂ j ,q ,b̂ j ,q
† are Bose operators.

The boundary condition~3! gives rise to the topological
excitationsM j and Jj for the spin and charge degrees of
freedom. They are related to the usual topological excitations
for fermions with spin s: Ms5(1/2)@M r1sMs# and
Js5(1/2)@Jr1sJs#. Physically, the numberMs denotes the
number of excess electrons in the Luttinger liquid~LL ! with

spin s in addition toN0 . The numberJs is the number of
current quantaevF /L, carried by electrons with spins.
Here, vF5pr0 /m is the Fermi velocity, withm being the
electron mass. A net currentJrevF /L flows through the
quantum wire if there is an imbalance between the number
electrons moving to the right and to the left. Using the
boundary condition~3! one obtains topological constraints
for Ms and Js ,

18,20 which lead to the following constraints
for M j andJj :

~i! The topological numbersM j andJj are eithersimulta-
neouslyeven orsimultaneouslyodd;

~ii ! whenN0 is odd the sumM r6Ms1Jr6Js takes val-
ues . . . ,24,0,4, . . . , when N0 is even the sum
M r6Ms1Jr6Js takes values. . . ,26,22,2,6, . . . .

An Aharonov-Bohm fluxF threading the loop couples to
the net current, characterized by the topological numberJr

of the fieldfr . The flux can be incorporated into the Hamil-
tonian ~1! by changing

¹f j→¹f j2~2p/L !d j ,r fF , ~6!

where fF5F/F0 is the flux frustration andF0 is the flux
quantumh/e.

Since the LL is brought into the contact with particle res-
ervoirs ~superconductors! kept at fixed electrochemical po-
tentialm, the number of particles~characterized by the topo-
logical numberM r of the field ur) should be coupled to
m. This can be achieved by replacing

¹u j→¹u j2~2p/L !d j ,r f m ~7!

in the Hamiltonian~1!. The parameterf m5(grL/4pvr)Dm
is related to the differenceDm betweenm and the Fermi
energyEF5kF

2/2m of the quantum wire, corresponding to
the linearization point. Generally, the reference point
Dm50 is defined from the requirement that forF50 there
are 2N0 electrons in the ground state and the energies to
add/remove electrons to/from the system are equal. The dif-
ferenceDm can be controlled, e.g., by a gate voltage.

Using Eqs.~1!, ~4a!, ~4b!, ~5a!, and ~5b! one concludes
that the Hamiltonian can be decomposed into nonzero modes
and topological excitations:

ĤL5 (
j5r,s

H (
qÞ0

v j uqub̂q, j
† b̂q, j1

pv j
4L Fgj2 ~Jj24d j ,r fF!2

1
2

gj
~M j24d j ,r f m!2G J . ~8!

Since this Hamiltonian is quadratic in the Bose operators, it
is possible to obtain all the correlation functions exactly.

III. dc-JOSEPHSON EFFECT

Both systems depicted in Fig. 1 can be described by the
Hamiltonian

Ĥ5ĤS11ĤS21ĤL1ĤT[Ĥ01ĤT . ~9!

Here, ĤS1 , ĤS2 are the BCS Hamiltonians for the bulk su-
perconductors kept at constant phase difference
x5xS12xS2 . For simplicity we assume equal magnitude
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D for both order parameters. The tunneling between the su-
perconductors and the 1D electron system is described by
ĤT . It is assumed to occur through two tunnel junctions

28 at
the pointsx50 andx5d,

ĤT5(
s
T1ĈS1,s

† ~x50!ĈL,s~x50!

1T2ĈS2,s
† ~x5d!ĈL,s~x5d!1~H.c.!. ~10!

The constant tunnel matrix elementsT1,2 can be related to
the tunnel conductancesG1,2 of the junctions,
Gi54pe2NL(0)Ni(0)uTi u2, whereNL(0)51/pvF , andNi
is the normal density of states in the superconductors
( i51,2).

The stationary Josephson effect can be obtained by evalu-
ating the phase-dependent part of the free energyF (x). The
Josephson current is then given by

I J522e]F /]x. ~11!

We expandF 52(1/b)lnZ, where Z5Tr exp$2bĤ% and
b51/T, in powers of the tunneling HamiltonianĤT , using
standard imaginary-time perturbation theory.29 The lowest
order phase-dependent contribution arises in fourth order.
Using Eq.~10! we see that there are 24 contributions to the
phase-dependent part ofF :

F ~x!52
1

bE0
b

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4$FS1

† ~0;t12t2!T1
2PL

~a!~0,d;t1 , . . . ,t4!~T2* !2FS2~0;t32t4!

1FS1
† ~0;t12t4!T1

2PL
~b!~0,d;t1 , . . . ,t4!~T2* !2FS2~0;t22t3!1~H.c.!%122 similar terms. ~12!

This result has a clear physical meaning, see Fig. 2. The
Josephson effect consists of processes in which a Cooper
pair tunnels from superconductorS2 into the LL with an
amplitude (T2* )

2. After propagation through the LL, it tun-
nels into superconductorS1 with an amplitude (T1)

2. The
Hermitian conjugate terms describe processes in the opposite
direction. The propagation in the superconductors is de-
scribed by the anomalous Green’s function

FSi~0;t2t8![^TtĈSi,2~d,t!ĈSi,1~d,t8!&Si

5
pN~0!

b (
vn

e2 ivn~t2t8!
DeixSi

Avn
21D2

, ~13!

where ^•••&Si indicates an average with respect toĤSi .
Propagation through the LL is determined by the Cooperon
propagatorPL(0,d;t1 , . . . ,t4). These 24 terms are obtained
by considering all possible time-ordered pairs of tunneling
eventst i ,t j (t i,t j ) at x50 and x5d together with all
possible spin configurations. However, which of these terms
are important depends on the relation between the character-
istic energyvF /d for the 1D system and the superconducting
gapD.30

If the distance between the contacts is large,vF /d!D, a
generic process consists of fast tunneling of two electrons
from the superconductor into the 1D system and their slow
propagation through the LL. Such a process is illustrated by
the first term in Eq.~12!. Here,

PL
~a!~0,d;t1 , . . . ,t4!

5^ĈL,1~0,t1!ĈL,2~0,t2!ĈL,1
† ~d,t3!ĈL,2

† ~d,t4!&,

~14!

where ut12t3u;d/vF@ut12t2u;ut32t4u;1/D @see Fig.
2~a!#. The average is taken over equilibrium fluctuations in
the LL ~described byĤL). The other relevant processes come
from diagrams which are obtained from the one in Fig. 2~a!
by means of particle-hole conjugation and by changing the
time ordering.

In the opposite limitvF /d@D, diagrams of the type de-
picted in Fig. 2~a! are no longer relevant. Instead, one should
consider fast and independent propagation of two electrons

FIG. 2. Relevant diagram for Josephson tunneling in the limit-
ing cases~a! vF /d!D and~b! vF /d@D. The shaded area indicates
the electron-electron interaction.
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through the LL and slow tunneling betweenS and LL. This
is illustrated by the second term in Eq.~12! @see also Fig.
2~b!#, where

PL
~b!~0,d;t1 , . . . ,t4!

5^ĈL,1~0,t1!ĈL,1
† ~d,t2!ĈL,2~0,t3!ĈL,2

† ~d,t4!&,

~15!

with ut12t2u;ut32t4u;d/vF!ut12t3u;1/D. Also in this
case the other relevant processes can be obtained from the
one in Fig. 2~b! by means of particle-hole conjugation and by
changing the time ordering.

The direct evaluation of averages like~14!, ~15! with the
help of bosonized field operators like~2! is tedious but
straightforward. The resulting expressions can be simplified
further in the two limiting casesvF /d!D and vF /d@D,
which contain all the important physics of the problem.

IV. dc-JOSEPHSON CURRENT
THROUGH A QUANTUM WIRE

We first turn to the geometry depicted in Fig. 1~a!. It
consists of a quantum wire of lengthL→` connected to two
superconductors by tunnel junctions separated by a distance

d. The topological excitations play no role in this case~their
energy is vanishingly small! and the wire is described by the
nonzero modes only@first term in Eq.~8!#.

A. The casevF /d!D

The expression for the phase-dependent part of the free
energy contains four terms of the type of the first term in Eq.
~12! @see Fig. 2~a!#. In this case at low temperaturesT!D
one can approximate the anomalous Green functions~13! by
d functions in time. This fixes equal time arguments
t15t2 , t35t4 in PL

(a) . The remaining integration should
be performed over the timet5t12t3 . The dominant con-
tribution to the the integral comes from the terms with
n561 in Eq. ~2!. As a result, the Josephson current~11!
through the quantum wire is given by

I J
~a!5I c

~a!~T!sinx, ~16!

with a temperature-dependent critical current

I c
~a!~T!5

4pevF
d

G1G2

~4e2!2
Fw

~a!~T!, ~17!

where

Fw
~a!~T!5F 1

kFd
G2/gr21E

2bvF/2d

bvF/2d dx

2p )
j5r,s

F2p2d2

v j
2b2

2

cosh~2pd/v jb!2cos~2pdx/bvF!G1/gj ~18!

~with gs52 andvs5vF).
In the noninteracting case, at zero temperature,

Fw
(a)(0)51. The Josephson current decreases as 1/d with in-

creasing distance between the tunnel junctions. This is re-
lated to the fact that the density of Cooper pairs in the LL
decays in space away from each junction. Hence the overlap
of the macroscopic wave functions of the two superconduct-
ors, which is responsible for the Josephson effect, is sup-
pressed. Repulsive interactions in the wire make the Joseph-
son effect vanish more rapidly with the distance between the
superconductors,

I c
~a!~0!}1/~kFd!2/gr.

The electron liquid acquires an additional stiffness against
density fluctuations, hence the tunneling betweenSand LL is
suppressed. This fact provides ana posteriorijustification of
our use of perturbation theory when treating electron tunnel-
ing in the presence of repulsive interactions.

We consider now the temperature dependence of the criti-
cal current. For noninteracting electrons,gr52, the critical
current can be calculated explicitly:

I c
~a!~T!

I c
~a!~0!

5
2pTd

vF

1

Acosh2~2pTd/vF!21
. ~19!

At low temperatures,T!vF/2pd, the critical current is sup-
pressed below its zero temperature value in a power-law
fashion

I c
~a!~T!/I c

~a!~0!.12
2

3 S pTd

vF
D 2. ~20!

In the high-temperature regime,T!vF/2pd, the decay is
exponential

I c
~a!~T!

I c
~a!~0!

.
A8pTd

vF
exp~22pTd/vF!.

It is possible to obtain analytical results also in the inter-
acting case. In particular, for weak interaction 22gr!2 and
low temperaturesT!vF/2pd the critical current behaves as

I c
~a!~T!

I c
~a!~0!

.11
22gr

4 S 2pTd

vF
D 2/gr

2
2

3 S pTd

vF
D 2, ~21!

where we dropped termsO @(22gr)
21(22gr)(Td/vF)

2#.
This result can be interpreted in terms of a competition be-
tween two effects. At low temperatures the dominant depen-
dence comes from the renormalization of the tunneling am-
plitudes T1,2 in the presence of interaction.14 The critical
current increaseswith temperature. Above the crossover
temperatureTcross.(3/8)(22gr)vF /pd the Josephson cur-
rent decreasesdue to the shortening of the phase coherence
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length. Although the maximum is not very pronounced, the
crossover temperature shifts to higher values as the interac-
tion strength increases~see Fig. 3!. This results in a wider
temperature range in which the critical stays almost constant.
It is evident from Eq.~21! that the coefficient responsible for
the anomalous temperature dependence vanishes in the ab-
sence of interaction, thus restoring theT2 suppression of the
critical current~20!. For high temperaturesT@vr/2pd the
suppression becomes exponential,

I c
~a!~T!}T2/grexp~22pTd/vF!. ~22!

The full temperature dependence of the critical current,
calculated by numerical integration of Eqs.~17!, ~18! is
shown in Fig. 3. We see that for moderate strength of the
interactiong;1 the Josephson current will maintain an ap-
preciable value up to a temperatureT;vF /d, which is of the
order of 0.7 K for typical experimental parametersvF5 3.0
105 m/s andd53 mm.31 Moreover, the value of the critical
current I c

(a)(T50)' 22 nA @estimated for the parameters
given above andGi /(4e

2)50.3#, is large enough to be mea-
sured experimentally.

Note that we estimated the Josephson current assuming
fixed Josephson phase difference between the superconduct-
ors. Thermal fluctuations of the Josephson phase would
smear the critical current at temperaturesT*;EJ[I c

(a)/2e,
provided that the superconductors are coupled by the LL
only. Using Eq. ~17! for the noninteracting case@with
Fw
(a)(0)51#, one obtains that the temperatureT* is by a

factor 2pG1G2 /(4e
2)2!1 smaller than the characteristic

temperature scalevF /d for the LL. Hence, in order to ob-
serve nontrivial temperature dependence of the critical cur-
rent, one has to fix the phase difference between the super-
conductors, e.g., by means of an additional Josephson
junction.

B. The casevF /d@D

In this limit, the electrons propagate fast and indepen-
dently through the LL on a time scale 1/D. A typical contri-
bution is depicted in Fig. 2~b!. The Cooperon~15! can be
approximated as

PL
~b!~0,d;t1 , . . . ,t4!

'^ĈL,1~0,t1!ĈL,1
† ~d,t2!&^ĈL,2~0,t3!ĈL,2

† ~d,t4!&,

where we substitute

^ĈL,1~0,t i !ĈL,1
† ~d,t j !&'Cd~t i2t j !.

The constantC is determined by integration of the time-
ordered single-particle correlator of the LL,

C5E
2b/2

b/2

dt^TtĈL,1~0,t!ĈL,1
† ~d,0!&.

The temperature-dependent Josephson current is found to be

I J
~b!5I c

~b!~T!sinx,

where the critical current is given by

I c
~b!~T!5eD

G1G2

~4e2/p!2
Fw

~b! ,

with

Fw
~b!5F 1

kFd
Ggr/411/gr21Fgr

2 Ggr/411/grF pd

bvF
Ggr/411/gr11H 2pE0bvF/2ddx sinS zr1zs

2 D
3 )

j5r,s
F 2

cosh~2pd/bv j !2cos2pdx/bvF
Ggj /1611/4gjJ 2. ~23!

The phase factorz j is given by

z j5arctanFcotS pdx

bvF
D tanhS pd

bv j
D G .

In the noninteracting casegr5gs52, Fw
(b) can be calcu-

lated explicitly:

Fw
~b!5F 2p arctanS 1

sinh~pd/bvF! D G
2

.

At zero temperature we findFw
(b)51. The resulting Joseph-

son current thus is independent of the distanced between the
contacts, analogous to the result obtained in Ref. 6. At finite

FIG. 3. The critical current of the wire as a function of the
temperature (t5Td/2pvF) for various values of the interaction
strengthgr51.0,1.25,1.75,2.0.
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temperatures the Josephson current is suppressed. If
T!vF /d, the suppression is linear inT:

I c
~b!~T!

I c
~b!~0!

.12
4Td

vF
.

In the interacting case, atT50, the critical current is sup-
pressed,

I c
~b!~0!}1/~kFd!gr/411/gr21.

At finite temperatures, and for weak interactions we obtain

I c
~b!~T!

I c
~b!~0!

21;2
3

2p FpTdvF
G1/21gr/811/2gr

1
22gr

2

pTd

vF
,

~24!

where we dropped terms of the order ofO @(22gr)
2

1(22gr)(Td/vF)
2]. We find again an anomalous depen-

dence on temperature, like the one we discussed in the case
vF /d!D.

V. dc-JOSEPHSON CURRENT THROUGH A RING

In case of the ring with circumferenceL @Fig. 1~b!#, we
should take into account the contribution to the Josephson
current due to the topological part, see Eqs.~4a!, ~4b!, and
~8!. The Cooperon for the ring in case of a symmetric setup
d5L/2@vF /D is evaluated along the same lines as before. It
is then straightforward to get the Josephson current

I J5
2pevF
L

G1G2

~4e2!2 (
e561

^Fr~gr ,L,e,Ms ,Jr!sin~x1epMs/21pJr/2!&J,M , ~25!

where

Fr5
1

2 F p

kFL
G2/gr21E

2pbvF/2L

pbvF/2L
dxF 1

cosh~2x/gr!G
2/gr 1

cosh~x!
coshF S 2gr

D 2~M r24 f m!x1eJsxG
3 )

j5r,s
F 11(nexp~2pbv jn

2/L !

11(nexp~2pbv jn
2/L !cos„2nl j~x!…G

1/gj

, ~26!

with

l j~x!5
1

2
arcosFcoshS 2v j xvF

D G .
The brackets,̂•••&J,M , should be considered as the thermal
average over the topological excitations weighted by the ap-
propriate Boltzmann factor and subject to the topological
constraints.

For zero temperature this calculation involves only the
ground state~see Ref. 25 for details!. The dependence of the
critical current onfF and f m has been found to show very
rich behavior. In the present study, we will focus on the
effect of finite temperatures. In particular, we will investigate
how robust the structure, found in Ref. 25 is against thermal
fluctuations.

Two remarks are in order at this point. First, throughout
this section, we assume that the linearization point of the
original electron spectrum corresponds to odd values ofN0
~for evenN0 the picture is the same, apart from a relative
shift of fF and f m). Second, the Josephson current depends
periodically on bothfF and fm with period 1. However, since
the original problem has additional symmetriesfF→2 fF

and fm→2 f m ~together with a change of sign of the corre-
sponding topological numbers,Jj andM j ), it is enough to
consider fF and fm in the intervals 0, fF,1/2 and
0, f m,1/2.

It is instructive to discuss first the noninteracting case
gr52, for T50. If f m1 fF,1/2 the ground-state configura-

tion of Jj and M j is found to be (Jr ,Js ,M r ,Ms)5
~0,0,0,0!; if f m1 fF.1/2 the configuration is~2,0,2,0!.
Hence, the ground state of the system can be changed by
varying either the flux or the gate voltage. As a result, the
Josephson current changes, see Eqs.~25!, ~26!. This is illus-
trated in Fig. 4, where the critical currentI c ~we write
I J5I csinx whereI c can be positive or negative! is plotted as
a function of f m andT at fixed fF50.2. ForT50, the criti-
cal current shows a maximum and a sharp jump atf m50.3

FIG. 4. The critical current through the ring$normalized to
(2pevF /L)@G1G2 /(4e

2/\)2#% at a fixed value of the flux
fF50.2 as a function of the gate voltage and the temperature
(t5TL/pvF) in the noninteracting case.
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where the states~0,0,0,0! and ~2,0,2,0! are degenerate. At
this value of the gate voltage, the number of electrons on the
ring (M r) increases by two. Since electronic states are dou-
bly degenerate in spin and nonzero flux is applied, the two
electrons will occupy the same~clockwise or counterclock-
wise moving! single-particle state. Therefore, the net current
evFJr /L increases by 2 quantaevF /L, while the topological
numbersMs andJs related to spin remain unchanged. At the
jump, I c changes sign. This reflects the fact that the ring acts
as ap junction (I c,0) in the state~2,0,2,0!, as can be seen
from Eq. ~25!. Therefore, for noninteracting electrons, the
critical current shows two jumps per period of the gate volt-
age dependence. The same is true for the dependence ofI c
on the magnetic flux.

This picture is correct for any generic point on the line
f m1 fF51/2. At the end points (f m , fF)5(0,0.5) and
(0.5,0), no jumps of the critical current occur~one can say
that two jumps in opposite directions merge together!. In-
stead, the critical current shows a resonance. The resonance
occurs due to alignment of two spin-degenerate energy levels
~for clockwise and counterclockwise moving electrons! with
the chemical potential of the superconductors.25

At a finite temperature, both the nonzero modes and the
topological excitations are thermally activated. Thermal ac-
tivation of the nonzero modes leads to an overall suppression
of the critical current, as it has been discussed for the wire in
Sec. IV. Thermal activation of the states~0,0,0,0! and
~2,0,2,0! will lead to a smearing of the jump. Moreover, at
finite temperature there will be a nonvanishing probability to
activate other topological excitations which can contribute to
the Josephson current. In the plotted temperature range, only
one additional state~1,1,1,1! with one extra electron on the
ring can be activated. As a result, the negative critical current
of the state~2,0,2,0! ~at f m*0.3) will be partially compen-
sated by the positive critical current of the state~1,1,1,1!, the
occupancy of which increases with temperature. Note that
the jump atf m50.3 remains visible up to temperatures of the
order of T;vF /L;1 K ~for the parameters mentioned
above andL52 mm!. Hence, the parity effect causing the
jump is quite robust against thermal fluctuations.

An important feature of the noninteracting case atT50 is
that the various possible ground-state configurations may dif-
fer by an even number of electrons only. The situation
changes drastically when repulsive interactions are switched
on. In addition to the states~0,0,0,0! and ~2,0,2,0!, the state
~1,1,1,1! can act as a ground-state configuration.25 This hap-
pens for parameters fm , fF within the range
113(gr/2)

2,8@ f m1(gr/2)
2fF#,31(gr/2)

2. Within this
‘‘strip,’’ it is energetically more favorable to add asingle
electron, rather than a pair of electrons to the ring, due to
repulsive electron-electron interactions. The Josephson cur-
rent in the state~1,1,1,1! differs from the current in the states
~0,0,0,0! and ~2,0,2,0!, see Eqs.~25!, ~26!. For example, for
gr51.75 andfF50.2 ~Fig. 5! the state~1,1,1,1! occurs in
the range 0.259, f m,0.318. Indeed, one sees two pro-
nounced jumps ofI c at the borders of this interval in Fig. 5
~at low temperatures!. Generally, for interacting electrons the
critical current shows four jumps per period of the gate volt-
age dependence.25

Similar jumps are seen also at the dependence of the criti-
cal current on the flux, Fig. 6. Moreover,I c is a stepwise

function of ff for T50 @this can be seen from Eqs.~25!,
~26!; the flux fF enters to these equations only implicitly, via
topological numbers#. Depending on the gate voltage, the
critical current can show zero, two, or four jumps per period
of the flux dependence.25

The state~1,1,1,1! is the ground state in a strip of width
d f m5@12(gr/2)

2#/4. This determines the energy
dE.@12(gr/2)

2#pvr /(grL) needed to create topological
excitations. The features related to the state~1,1,1,1! will be
smeared at temperaturesT;dE. Therefore, for weak inter-
action 22gr!1, the interaction effects will disappear at
much lower temperaturesT!vF /L than the parity effects.
For example, the features related to the configuration
~1,1,1,1! in Figs. 5 and 6 are seen only in the temperature
rangeT,dE;0.1 K whereas the overall dependence is ro-
bust up to the temperaturesT;1 K. However, it is worth-
while to stress that the~1,1,1,1! state survives at much higher
temperatures when the interaction strength is increased.

The behavior we described here is rather generic for all
values of fm , fF and for various values of the interaction.

FIG. 5. The same as in the previous figure for the interacting
case; for this plot we choosegr51.75 but the result is rather ge-
neric for repulsive interaction$the critical current is normalized to
(2pevF /L)@G1G2 /(4e

2/\)#2%.

FIG. 6. The critical current through the ring at a fixed value of
the gate voltagef m50.2 as a function of the flux and the tempera-
ture (t5TL/pvF) in the interacting casegr51.75$the critical cur-
rent is normalized to (2pevF /L)@G1G2 /(4e

2/\)2#%.
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What is specific is the configuration of the two superconduct-
ors: they are connected symmetrically to the ring. If the
points on the ring at which the electrodes are attached would
form a generic angle, a more complicated interference pat-
tern would arise. In the symmetric setup, the maximum Jo-
sephson current occurs either atx50 or at x5p. In the
nonsymmetric setup the maximum Josephson current would
occur at a valuex(Jr ,Js ,M r ,Ms) which depends on the
values of topological numbers. The critical current should
then be found by maximizing the resulting function of the
phase difference.

VI. ac-JOSEPHSON EFFECT

The effect of a finite dc bias voltageeV!2D applied
between the superconductorsS1 andS2, will be twofold.
First of all, the phase differencex betweenS1 andS2 will
acquire a time dependence, according to the Josephson rela-
tion ẋ5vJ52eV. As a result, the Josephson current will
oscillate as a function of time at a frequencyvJ ~ac-
Josephson effect, see Ref. 32!. Secondly, a dc subgap current
will be induced, due to Andreev reflection at both junctions.
This current is dissipative, energy will be dissipated in the
LL. In a typical experiment one thus will find a current with
both a dc and an ac component. In this section, we will
mainly concentrate on the ac-Josephson current, and estimate
the dc component at the end.

In the presence of a bias voltageV between the supercon-
ductors, the imaginary time formalism cannot be applied and
Josephson current is found by calculating the average of the
corresponding Heisenberg operator. Using the interaction
representation with the unperturbed HamiltonianĤ0 , see Eq.
~9!, one obtains

I ~ t !5^Û†~ t ! Î ~ t !Û~ t !&,

Û~ t !5T expF2 i E
2`

t

ĤT~ t8!dt8G . ~27!

We expand~27! to the fourth order inĤT and keep the Jo-
sephson terms in the current. These are proportional to
exp(62ieVt). As a result the Josephson current is given by an

expression which has the same structure as Eq.~12!. The
integrals are now taken over real times. It is convenient to
depict the timest,t1 ,t2 ,t3 of tunneling events on the
Keldysh contour33 ~the Josephson current is calculated at a
time t). Again, we will consider two cases of long
(vF /d!D) and short (vF /d@D) distance between the con-
tacts. The relevant diagrams are shown in Fig. 7 for both
cases. We restrict our consideration to the case of a quantum
wire at zero temperature.

A. The casevF /d!D

For a large distance between the contacts the tunneling of
two electrons to/from a superconductor is a fast process on
the time scale of their propagation through LL. The Joseph-
son current is described by diagrams of the type shown in
Fig. 7~a!. The Josephson current is then given by

I J~ t !54p2evF
2 G1G2

~4e2!2

3ReF(
6

6e62ieVtE
0

`

dt8e7 ieVt8P~ t8!G , ~28!

whereP(t)5PL
(a)(0,d; i t ,i t ,0,0) is the Cooperon propagator

~14! in real time taken at coinciding time arguments. The
leading contribution stems from the terms in Eq.~2! with
n561,

P~ t !52r0
2 )
j5r,s

$@11 ikF~v j t1d!#@11 ikF~v j t2d!#%21/gj .

~29!

In particular, for noninteracting electrons (gr52) we obtain

I J~ t !5
2pevF

d

G1G2

~4e2!2
sinS 2eVt2 eVd

vF
D . ~30!

This result means that the Josephson current acquires an ad-
ditional phase shift due to the propagation of electrons be-
tween the contacts. For interacting electrons we computed
the Josephson current numerically. We splitI J into sinusoidal
and cosinusoidal components,

I J~ t !5
2pevF

d

G1G2

~4e2!2 S 1

kFd
D 2/gr21H JsS eV

vF /d
,grD sin~2eVt!

1JcS eV

vF /d
,grD cos~2eVt!J . ~31!

The amplitudesJc(s) of the two components and the phase
w52arctan(Jc /Js) of the Josephson current are shown in
Fig. 8 as functions of the voltage for two values of the inter-
action parameter,gr51.75 and 1. One sees that the deviation
from the simple result~30! for noninteracting electrons
@which corresponds toJs5cos(eVd/vF), Jc52sin(eVd/vF),
andw5eVd/vF# increases with the increase of the interac-
tion. This deviation becomes striking in the dependence of
the ac current amplitudeJa5AJs21Jc

2 on the voltage, Fig. 9.
Apart from the noninteracting case@Ja(V)5const#, one sees
pronounced oscillations of the current amplitude. These os-
cillations are due to the difference in the velocities of the
charge (vr) and spin (vs) excitations. The perioddV of the

FIG. 7. Relevant diagrams for ac-Josephson current:~a!
vF /d@D and~b! vF /d!D. The shaded area indicates the electron-
electron interaction.
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oscillations corresponds to 2p difference between the phases
of charge (eVd/vr) and spin (eVd/vF) excitations. Using
the relation vr52vF /gr we obtain edV/(vF /d)
52p(12gr/2)

21.50.4,12.6 forgr51.75 and 1, respec-
tively. This is in very good argeement with the period of
oscillations in Fig. 9. Therefore, the ac-Josephson effect can
be used as a tool for the observation ofspin-chargesepara-
tion in the LL.

B. The casevF /d@D

At short distances between the contacts, the two electrons
propagate fast through the LL on the time scale 1/D. The
relevant diagrams are similar to the graph shown in Fig. 7~b!.
The main contribution to the Josephson current comes from
the integration of the two-particle propagators of the type
PL

(b)(0,d; i t ,i t 1 ,i t 2 ,i t 3), Eq. ~15! ~with possible permuta-

tions of creation and annihilation operators! over the range
t2t1;t22t3;d/vF andt2t2;1/D @see Fig. 7~b!#. For this
reason, we can presentPL

(b) as a product of two single-
particle propagators and integrate the latter over the ‘‘fast’’
variablest2t1 andt22t3 ~from 0 to`) as we did for the dc
case. The last integration over the ‘‘slow’’ variables5t2t2
involves the product of two anomalous Green functions with
an exponent containing the time-dependent Josephson phase:

E
0

`

dsFS1
1 ~0,is!FS2~0,is!exp~ ieVs!.

Hence, for short distances between the contacts the presence
of LL does not influence the voltage dependence of ac-
Josephson current. The latter is still given by the simple for-
mula

I J~ t !5~2/p!K~eV/2D!I c
~b!~0!sin~2eVt!,

whereK(x) is an elliptic integral andI c
(b)(0) is the critical

current in the dc case@cf. Eq. ~23! in the limit of zero tem-
perature#. The effect of the interaction is only to reduce the
value of the critical current, while its voltage dependence is
analogous to that of the critical current of a conventional
Josephson junction.34

We conclude this section with an estimate of the dissipa-
tive dc current due to Andreev reflection at both junctions.
For a single junction between a superconductor and a LL
with repulsive interactions, the subgap currentI s(V) as a
function of the applied voltageV is given by26,27,35

I s(V);VuVu2/gr21. For the system of Fig. 1~a!, which con-
sists of two junctions in series, the lowest-order contribution
to the subgap current stems from sequential tunneling. Em-
ploying a rate equation approach, we find for this contribu-
tion

I s~V!52pe
G1G2

~4e2!2
2eVF 2eVvFkF

G2/gr21 ~2/gr!2/gr

G~112/gr!

3F 2~G1G2!
gr/2

~G1
2!gr/21~G2

2!gr/2G2/gr

. ~32!

Comparing this result with the critical current we see that the
dissipative component is much smaller at low voltages. In
order to get a complete description at finite voltages, one has
to solve the corresponding equation for nonlinear resistively
shunted-junction model.9 This will be discussed in a forth-
coming publication.36

VII. DISCUSSION

In this paper, we studied the ac- and dc-Josephson effect
in a single-mode quantum wire and quantum ring connected
to two superconductors by tunnel junctions. Repulsive inter-
actions were treated in the framework of the Luttinger
model. Interactions were found to have a drastic influence on
both dc- and ac-Josephson effect.

The critical current is suppressed by interactions at zero
temperature. The results depend on the ratio between the
characteristic energy\vF /d of the 1D electron system and
the superconducting energy gapD. For large distances be-
tween the contactsd@\vF /D in the presence of interactions,

FIG. 8. The voltage dependence of sinusoidal~solid line! and
cosinusoidal~dashed line! components and the phase~dotted line!
of ac-Josephson current;~a! gr51.75 and~b! gr51.

FIG. 9. The voltage dependence of the amplitude of ac-
Josephson current. Here,gr52,1.75,1,0.75,0.5,0.25 for the curves
from top to bottom at zero voltage.
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there is a competition between thermal suppression of coher-
ent two-particle propagation in the wire and activation of
tunneling at the junctions at low temperatures. As a result,
the critical current shows maximum as a function of tem-
perature. At even higher temperatures,kBT@\vr/2pd, the
suppression becomes exponential.

In our model it is assumed that the superconducting elec-
trodes do not influence the uniformity of the potential along
the quantum wire, since they are separated from the wire by
thick barriers. It was argued in Ref. 37 that a nonuniform
potential in the wire will lead to an effective change of the
boundary conditions for the electronic wave function, which
in turn could strongly affect our results. However, a recent
calculation26 of the Josephson current through an interacting
quantum wire offinite length is in agreement with our re-
sults. This indicates that the results obtained are robust with
respect to the specific choice of boundary conditions. They
rather describe generic properties of the superconductor–
Luttinger-liquid system.

If a finite voltageV is applied between the junctions, the
ac-Josephson effect occurs. The ac current acquires phase
shift proportional to the distance between the tunnel junc-
tions. Moreover, the amplitude of ac current depends on the
voltage in an oscillatory fashion due to spin-charge separa-

tion. The corresponding period depends on the ratio of the
velocities of the spin and charge excitations in the LL.

A quantum wire closed to a loop~or quantum ring! shows
interesting parity effects. Boundary conditions on the elec-
tronic wave functions result in a discrete set of quantum
numbers, related to the number of particles and angular mo-
mentum. We showed how these numbers can be tuned by
applying a gate voltage and a magnetic flux, and calculated
the corresponding dependence of the critical current on these
parameters. This dependence shows a rich behavior, which
can be detected in an interference experiment employing a
superconducting quantum interference device. We showed
that the dependence is robust to thermal fluctuations up to
experimentally measurable temperatures.
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