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An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and
narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbi-
trary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical
equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in
the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing
wave plasma resonances is excited, a special feature of long Josephson junctions.

I. INTRODUCTION

The existence of plasma oscillations in the zero-voltage
state of Josephson tunnel junctions has been known since the
first experimental verification reported by Dahmet al.1 To-
day, plasma oscillations in short junctions are well under-
stood. The present work deals with the more general case
where one of the dimensions of the tunneling area is larger
than the characteristic Josephson~magnetic! penetration
length lJ . As a consequence of this extended tunneling
structure, the spatial variation of the Josephson phase differ-
encew is determined by self-field effects which affect the
plasma oscillation dynamics.

In any real Josephson junction, different types of reso-
nances exist which originate from the finite size of the tun-
neling area, i.e., Fiske modes and zero-field modes.2 Some
theoretical considerations concerning plasma oscillations in
long Josephson junctions have been published3 although the
resonant properties of the plasma oscillations have not been
discussed. Recently, experimental results dealing with the
crossover behavior of plasma oscillations in short to interme-
diate length junctions have been reported.4

It is of interest to describe the spectrum of plasma oscil-
lations in long junctions both in its own right and in an
attempt to understand more complex dynamics of such non-
linear one-dimensional structures. An example of a related
structure is the discrete parallel Josephson junction arrays.5

Only small-amplitude plasma oscillations will be ana-
lyzed here but the results are valid for arbitrary bias current
in the zero-voltage state and for arbitrary junction length.

II. PLASMA OSCILLATIONS

The overlap of two superconducting electrodes separated
by an insulating layer defines an electromagnetic transmis-
sion line, see Fig. 1. When the Josephson effect is present in
such a transmission line, electrons can tunnel between the
two electrodes either as electron~Cooper! pairs or as quasi-
particles. The long, one-dimensional Josephson junction is
given by the condition that the lengthL of the overlapping
electrodes is larger than or comparable tolJ , while the junc-
tion widthW is much smaller thanlJ . The governing equa-
tion of w is a perturbed sine-Gordon equation, a nonlinear,
partial differential equation which has been used successfully

over the last decade to explain experimental data for long
Josephson junctions, especially in terms of the dynamics of
solitons~fluxons!.6

In the following, the long Josephson junction is config-
ured in the in-line geometry shown in Fig. 1, where the sup-
plied current only passes through the tunneling barrier at the
junction ends. For a junction geometry of the in-line type,
the perturbed sine-Gordon equation in its normalized form
reads2

w tt2wxx1aw t1sin w50, ~1a!

with the boundary conditions

wx~6 l /2,t !56
l

2
~ i 01« i 1e

iVt!. ~1b!

Dissipative transport of quasiparticles through the junction is
represented by the parametera. The dc biasi 0 and the oscil-
lating current with amplitudei 1, which is used to probe the
plasma resonance in the linear regime, are in units of the
critical currentI c . The distancex is normalized tolJ and the
dimensionless junction length isl5L/lJ . The frequencyV
5v/vp* is measured in units of the maximum Josephson
plasma frequencyvp*5 c̄/lJ , wherec̄ is the speed of light in
the junction. Finally, the time coordinatet is normalized to
1/vp* .

In the absence of any perturbing probe current, the static
profile of the Josephson phasew0(x) is governed by the
equation

2w0xx1sin w050, ~2a!

w0x~6 l /2!56
l i 0
2
. ~2b!

The perturbative nature of the probe current allows for a
linearization of Eq.~1! around the equilibrium background:
w(x,t)5w0(x)1«w1(x,t). Due to the high frequency of the
plasma oscillations~typically ranging from 1 to 100 GHz!,
the main experimental interest is to find the stationary solu-
tion of w1, which I assume can be written as
w1(x,t)5a(x)exp~iVt). Insertion of this solution into Eq.
~1! gives an equation for the amplitude:
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axx5@cosw0~x!2V21 iaV#a,

ax~6 l /2!56
l i 1
2
,

which together with Eq.~2! constitute the system of equa-
tions to be solved.

The solution of Eq.~2!, which has been discussed in de-
tails by Owen and Scalapino,7 is given in terms of Jacobi’s
elliptic functions sn, cn, and dn:8

w0x52k cn~x1x0uk2!,

sin
w0

2
5dn~x1x0uk2!,

where the modulusk2 ~0,k2<1! andx0 are integration con-
stants which are to be determined by the boundary conditions
given by Eq.~2b!. It is simple to verify thatx05mK(k2) ~K
is the complete elliptic integral of the first kind8 andm is an
odd integer! which yields the following relation between the
bias currenti 0 and the modulusk0:

i 05
4k0~12k0

2!1/2 sn~ l /2uk0
2!

l dn~ l /2uk0
2!

,

together with cosw0(x)52k 0
2sn2(x1mKuk 0

2)21. The case
k051 corresponds toi 050 andw050. Only solutions station-
ary in time are considered, meaning that the junction is in the
~vortex free! zero-voltage state and moving vortex solutions
are excluded. The maximum zero-voltage current an inline
junction can carry is limited toi 0*5maxi0(k0)5i0(k0* ), where
the modulus covers the rangek0*,k0<1. As the junction
length is increased, the maximum critical current approaches
4/l , implying that the current carried at both ends of the
junction saturates as for example discussed in Ref. 7.

The equation for the amplitude function becomes

axx5@2k0
2 sn2~x1mKuk0

2!212V21 iaV#a,

ax~6 l /2!56
l i 1
2
,

which is Lamé’s equation. The exact analytic solution of this
equation may be found in the book of Whittaker and
Watson.9 Following their discussion, the two linearly inde-
pendent solutions are of the form

H1~x7t0uk0
2!

Q1~xuk0
2!

exp@6Z~t0uk0
2!x#,

whereH, Q, andZ are, respectively, the eta, theta, and zeta
functions of Jacob,8 provided the constantt0 satisfies the
equation

12cn2~t0uk0
2!dn2~t0uk0

2!5~11V22 iaV!sn2~t0uk0
2!.

~3!

Using various identities amongst these functions, Eq.~3! is
simplified into

cn~t0uk0
2!5

~V22 iaV!1/2

k0
.

The parameter t0 is given explicitly as
F$arccos@~V22iaV!1/2/k0#uk0

2%, whereF is the incomplete el-
liptic integral of the first kind.

Now the full solution can be written as

a~x!5
l i 1
2

Q1~ l /2!

Q1~x!

H1~x2t0!e
Z~t0!x1H1~x1t0!e

2Z~t0!x

g1e
Z~t0!l /21g2e

2Z~t0!l /2 ,

g65H1~ l /27t0!S 6k0
2 sn~ l /2!sn~t0!sn~ l /27t0!

2
dn~ l /27t0!sn~ l /27t0!

cn~ l /27t0!
1k0

2 sn~ l /2!cn~ l /2!

dn~ l /2! D .
~4!

FIG. 1. ~a! Schematic drawing of two superconducting electrodes separated by an insulating barrier. The arrows in the electrodes indicate
the flow of the bias currentI in the in-line geometry.~b! Electrical equivalent diagram where a LC transmission line together with the
Josephson effect~ohmic lossesR and maximum electron pair currentI c! models the Josephson transmission line.
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If the ohmic loss term is neglected,a50, I can distinguish
between two different types of dynamic modes, namely, the
following.

Case 1: cn~t0uk0
2!5V/k0<1. Heret0 is real, 0<t0<K,

and Z~t0! is real too. Since functions of the form
exp@iVt6Z(t0)x] dominate in the expression forw1, the
solution has the form of spatially decaying oscillations,
where l5Z21~t0! is a characteristic decaying length for
plasma oscillations. I call this the decaying mode. In the
absence of bias current,k051, I haveV2512l22.

Case 2: cn~it0uk0
2!5V/k0>1. Now, it0 is purely imagi-

nary, 0<t0<K85K~12k0
2! and consequentlyZ~it0! is purely

imaginary. This means that traveling waves of the form
exp~iVt6 iqx) can propagate through the junction, where the
wave numberq5ImZ~it0! is given by

q5
dn~t0u12k0

2!sn~t0u12k0
2!

cn~t0u12k0
2!

2Z~t0u12k0
2!2

pt0
2KK8

.

For i 050, I recover the dispersion relationV2511q2, which
is well known from various textbooks on the Josephson ef-
fect, e.g., Ref. 2. Note, however, that this dispersion relation
is only approached asO@l/ln~12k0!# because of the last term
in the expression forq.

The crossover from the decaying to the propagating mode
is set by the cutoff frequency

V05k0 ,

which also shows the physical meaning of the modulus.
Since 0.95,k0*,k0 for l.5, the cutoff frequency is always
close to unity in the case of long junctions. In the limit of
short junctions, one getsk0*5221/2'0.707.

There are two special cases where the amplitude function
and its resonance spectrum can readily be found without the
need of the Jacobian functions, namely the cases

l50: a5
i 1

Vp0
2 2V21 iaV

, Vp0
4 512 i 0

2,

i 050: a~x!5
l i 1 cosh~kx!

2k sinh~kl/2!
, Vpn

2 511S 2np

l D 2,
qn5

2np

l
, ~5!

where k2512V21 iaV. At resonance the standing wave
pattern in the junction consists of an integer numbern of
wavelengths.

III. PLASMA RESONANCE

It is convenient to extract the information contained in the
amplitude function in a way, which is more relevant to stan-
dard experimental techniques like those used in Refs. 1 and
4. In these works, the junction was biased by a probe signal
from a microwave source. A small fraction of the microwave
current interacted with the junction and a change in the re-
flected ~or transmitted! microwave signal was observed
whenever the plasma oscillation was tuned to resonance. In
this way the plasma resonance frequency was mapped out as
a function of junction parameters and the input currents.

For the in-line geometry studied here, the probe current is
applied to the end of the junction and the reflected~transmit-
ted! signal can be measured at either end of the junction.
This only provides information abouta~6l /2!. If appropriate
receiver antennas are located along the length of the junc-
tion, it may, in principle, be feasible to obtain information
about the amplitude of the plasma oscillation at a number of
discrete points.

In the case of negligible losses,a50, the plasma reso-
nances are easily recognized as singularities of the amplitude
function which are equivalent to solutions of the equation

g1e
Z~t0!l /21g2e

2Z~t0!l /250, ~6!

with g6 given by the expression in Eq.~4!. In the following
the two different dynamical modes are discussed.

Case 1: Decaying mode. Figure 2~b! shows how the
plasma resonance in the decaying mode~Vp0,V0! varies as
a function of the bias current for various junction lengths.
The well-known behavior in the limit of short junctions is a
straight line in a plot ofV p0

4 vs (i 0 / i 0* )
2. In the long junction

case, due to the decaying nature of this mode the interior part
of the junction is only slightly affected by the probe current
introduced at the ends. This explains qualitatively why the
resonant condition in the case of increasingl tends towards
the situation where the static background is spatially more
homogeneous and whereVp051. For l510, the shift in
plasma resonance frequency accounts for no more than a 5%
increase as compared to the short junction case.

FIG. 2. The plasma resonance is shown as a function of the bias
current in the zero-voltage state.~a! Examples of plasma resonances
in the propagating mode~standing waves!. The integern indicates
the number of wavelengths present in the junction.~b! The plasma
resonance in the decaying mode. For an easier comparison, the bias
current is shown normalized to the critical current for that specific
junction length: i 0* ( l50)51, i 0* ( l55)'0.757, i 0* ( l510)
'0.400.
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The 1/e decaying lengthl calculated at the resonance
frequency is plotted in Fig. 3. The spatially most homoge-
neous amplitude function exists in the vicinity ofi 0'0 and
i 0' i 0* . Given the actuall values, the amplitude function
does not exhibit much spatial structure in the decaying mode,
since the decaying length is always larger than the Josephson
penetration length.

Case 2: Propagating mode. Plasma resonances for the
propagating mode,Vpn.V0 with n>1, are special for finite
length junctions, contrary to the decaying mode resonance
which persists to exist into the short junction limit. Figure
2~a! shows examples of how these standing wave resonances
vary with the dc bias. This type of resonance depends weakly
on the bias current and is not tuned to zero asi 0 approaches
the maximum critical currenti 0* , which is the case for the
decaying mode resonance.

In Fig. 4 the dispersion relation is plotted for the case
when the junction is tuned to its resonance with the bias
current. Also shown is the dispersion relation valid fori 050,
which as mentioned earlier is only approached logarithmi-
cally.

IV. DISCUSSION

In the absence of a bias current, the static phase profile is
constant in space. When viewing the long Josephson junction

as a transmission line this is equivalent to a spatially homo-
geneous transmission line impedance. At resonance, the
nodes of the standing wave pattern are equally spaced along
the junction. The spacing between the nodes is a rational
fraction of the total junction length as generally known for
linear homogeneous transmission lines, see Eq.~5!. This is
illustrated in Fig. 5 for a normalized junction length of 10.

When a bias current is applied, the transmission line im-
pedance is no longer independent of the position. Precise
knowledge of how the static phase background is set up by
the bias current must be incorporated into the analysis in
order to trace the resonances, the result being solutions to
Eq. ~6!. From Fig. 5 it is clear that the contour of the nodes
changes very little when the bias current is increased towards
the critical current. What changes is the spectrum of the reso-
nances. The nodes are no longer exactly equidistant. In the
range of interest of the zero-voltage state, 0< i 0,u i 0* u, I find
~numerically! that Vp0<V0,Vp1,Vp2,••• , i.e., no
change of mode is possible for a given plasma resonance.

In conclusion, the spectrum of the plasma resonance fre-
quency in the zero-voltage state has been calculated for in-
line Josephson tunnel junctions of arbitrary lengths. From the
above analysis, the plasma oscillations naturally fall into two
regimes, namely, nearly~spatially! homogeneous oscillations
~decaying mode! at low frequencies and standing wave os-
cillations ~propagating mode! above a certain cutoff fre-
quency. Emphasis has been put on presenting the data in a
form which is relevant for experimentalists, see Fig. 2. To the
best of the author’s knowledge, nobody has yet made a direct
observation of the plasma resonance in the high-frequency
standing wave regime. This should be a straightforward pro-
cedure using well-known experimental techniques and would
be of interest in testing the predictions of this work.
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FIG. 3. Plot of the plasma resonance frequency as a function of
the inverse decaying length. The dash-dotted line indicates the
V2l21 relationship fori 050.

FIG. 4. The dispersion relation plotted at the resonant condition.
The dashed line represents the dispersion relation for the casei 050.
The integern represents the number of wavelengths present in the
junction at resonance.

FIG. 5. The curved lines show a contour plot of the nodes where
the plasma oscillation amplitude equals zero. The vertical lines in-
dicate the position of the various plasma resonance frequencies. The
solid lines are for the casei 050 and the dotted lines cover the case
i 050.95i 0* . For both cases, the cutoff frequency is very close to
unity, V0'1.000.
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