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Spectrum of resonant plasma oscillations in long Josephson junctions
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An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and
narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbi-
trary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical
equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in
the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing
wave plasma resonances is excited, a special feature of long Josephson junctions.

[. INTRODUCTION over the last decade to explain experimental data for long
Josephson junctions, especially in terms of the dynamics of
The existence of plasma oscillations in the zero-voltagesolitons(fluxons.6
state of Josephson tunnel junctions has been known since the In the following, the long Josephson junction is config-
first experimental verification reported by Datehal! To-  ured in the in-line geometry shown in Fig. 1, where the sup-
day, plasma oscillations in short junctions are well underplied current only passes through the tunneling barrier at the
stood. The present work deals with the more general cagenction ends. For a junction geometry of the in-line type,
where one of the dimensions of the tunneling area is largethe perturbed sine-Gordon equation in its normalized form
than the characteristic Josephs@magneti¢ penetration read$
length \;. As a consequence of this extended tunneling
structure, the spatial variation of the Josephson phase differ- @it~ Pxxt @@+ Ssin =0, (1a
ence ¢ is determined by self-field effects which affect the
plasma oscillation dynamics.
In any real Josephson junction, different types of reso- |

nances exist which originate from the finite size of the tun- - (i L i0t
neling area, i.e., Fiskegmodes and zero-field méd8sme (=2 =25 (ot el €. (10)
theoretical considerations concerning plasma oscillations in.. . N . L
long Josephson junctions have been publidlthough the Dissipative transport of quasiparticles thrgugh thejunct!on is
resonant properties of the plasma oscillations have not bedffPresented by the parameterThe dc bias, and the oscil-
discussed. Recently, experimental results dealing with th&ting current with amplitude,, which is used to probe the

crossover behavior of plasma oscillations in short to intermeP!asma resonance in the linear regime, are in units of the
diate length junctions have been reported. critical currentl .. The distance is normalized to\; and the

It is of interest to describe the spectrum of plasma osciI—d'men‘:"c’_”IeSS junction length Is=L/X,. The frequency)
lations in long junctions both in its own right and in an = ®/@p is measured in units of the maximum Josephson
attempt to understand more complex dynamics of such norRlasma frequencyy =c/X;, wherec is the speed of light in
linear one-dimensional structures. An example of a relatedhe junction. Finally, the time coordinateis normalized to
structure is the discrete parallel Josephson junction a?rays.l/w;‘ .

Only small-amplitude plasma oscillations will be ana- In the absence of any perturbing probe current, the static
lyzed here but the results are valid for arbitrary bias currenprofile of the Josephson phasg(x) is governed by the
in the zero-voltage state and for arbitrary junction length. equation

with the boundary conditions

- +sin ¢o=0, 2
IIl. PLASMA OSCILLATIONS POt =T Po 23
The overlap of two superconducting electrodes separated . _ +Ii
by an insulating layer defines an electromagnetic transmis- Pox(£1/2)= —2 (2b)

sion line, see Fig. 1. When the Josephson effect is present in

such a transmission line, electrons can tunnel between thEhe perturbative nature of the probe current allows for a
two electrodes either as electré@oopej pairs or as quasi- linearization of Eq.(1) around the equilibrium background:
particles. The long, one-dimensional Josephson junction ig(X,t) = ¢q(X) +e¢,(X,t). Due to the high frequency of the
given by the condition that the length of the overlapping plasma oscillationgtypically ranging from 1 to 100 GHz
electrodes is larger than or comparable }o while the junc-  the main experimental interest is to find the stationary solu-
tion width W is much smaller than;. The governing equa- tion of ¢;, which | assume can be written as
tion of ¢ is a perturbed sine-Gordon equation, a nonlineargp(X,t) =a(x)expi{t). Insertion of this solution into Eq.
partial differential equation which has been used successfull{l) gives an equation for the amplitude:
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FIG. 1. (a) Schematic drawing of two superconducting electrodes separated by an insulating barrier. The arrows in the electrodes indicate
the flow of the bias currenit in the in-line geometry(b) Electrical equivalent diagram where a LC transmission line together with the
Josephson effedbhmic lossek and maximum electron pair currehf) models the Josephson transmission line.

a=[C0Ss po(X)— Q2+iaf)]a, li
wx=L @o(X) ] aX(iI/2)=t—1,
li 2
1
a,(x1/2)= i7, which is Lamés equation. The exact analytic solution of this
equation may be found in the book of Whittaker and

which together with Eq(2) constitute the system of equa- Watson® Following their discussion, the two linearly inde-

tions to be solved. pendent solutions are of the form
The solution of Eq(2), which has been discussed in de-
tails by Owen and Scalapirfois given in terms of Jacobi's Hq(x= 7'0|K(2))
ipti i dh: ——————— exfd * Z( 70| k3)x]
elliptic functions sn, cn, and dh: 2 ol Ko) X1,
0,(x|xp)
— 2
Pox=2K CN(X+Xo| k%), whereH, O, andZ are, respectively, the eta, theta, and zeta
functions of JacoB, provided the constant, satisfies the
sin % = dn(x+ x| ), equation

2 2\ _ 2_ 2
where the modulug? (0<«?<1) andx, are integration con- 1= crP (70| ko) drP (| cg) = (1+ 0 |aQ)sr12(TO|KO).(3)
stants which are to be determined by the boundary conditions
given by Eq.(2b). It is simple to verify that,=mK(«?) (K Using various identities amongst these functions, @Bg.is
is the complete elliptic integral of the first kiidndm is an simplified into
odd integer which yields the following relation between the
bias current, and the modulus: . (Q2—ia)'?

en(ro|kd)=————.
 Akg(1— kD) V2 sn(1/2|k2) Ko
lo= | dn(1/2] k2) ' The  parameter 7, is  given  explicity as
F{arcco$(Q2—iaf)) Y%/ ky]|«3}, whereF is the incomplete el-
together with cospo(X) =2k §sif(x+mK|x§)—1. The case |iptic integral of the first kind.

Ko=1 corresponds tg,=0 andg,=0. Only solutions station- Now the full solution can be written as

ary in time are considered, meaning that the junction is in the

(vortex freg zero-voltage state and moving vortex solutions liy ®1(1/2) Hy(x— 7o)€ 0+ H (x+ 7o)€ (70X
are excluded. The maximum zero-voltage current an inlinead(x)= 2 0,0 5. L0 g L2 '

junction can carry is limited tof = maxy(xp) =io(kg), where
the modulus covers the rangg <x,<1. As the junction
length is increased, the maximum critical current approaches ., =H,(1/2% 7,)| = «3 sn(1/2)sn( 7o)sn(1/2F 7,)
4/, implying that the current carried at both ends of the
jun_?gon saturatefs ashfor exalmpclle (fJIiscu_sse(g in Ref. 7. dn(1/2% ro)sn(1/2%75)  , sn(l/2)en(1/2)
e equation for the amplitude function becomes - = K
cn(1/25 7g) dn(1/2)

ay=[2x2 sPP(x+mK|k2) —1- Q2 +iaQ]a, @
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If the ohmic loss term is neglected=0, | can distinguish a)
between two different types of dynamic modes, namely, the
following.

Case 1. crgkd)=0/ko=<1. Herez, is real, G=7,=<K,

and Z(m) is real too. Since functions of the form s o4l
exdiQt+Z(7y)x] dominate in the expression fap;, the ¢
solution has the form of spatially decaying oscillations, 3r
where A\=2"%(r,) is a characteristic decaying length for 5
plasma oscillations. | call this the decaying mode. In the [ n=1
absence of bias currenty=1, | haveQ?=1-\"2 00 o o7 o5 o8 10
Case 2: cfin|k3)=0/ky=1. Now, ir, is purely imagi- iV
nary, O<7,<K'=K(1—«3) and consequentl¥(ir,) is purely
imaginary. This means that traveling waves of the form b) 10 | ' : '
expiQdt=igx) can propagate through the junction, where the 08
wave numbeig=ImZ(i7y) is given by ‘
dn( 7o| 1~ K§)sn(7o|1— K) o TTo "R >
= — 2 Z(7ol1—kp) — 7 S Al |
cn( 7o|1— k§) 2KK 0.4 e
Foriy=0, | recover the dispersion relatid’=1+q? which 02} /=5
is well known from various textbooks on the Josephson ef- | 7777 /=0
fect, e.g., Ref. 2. Note, however, that this dispersion relation "0z oz o8  os 10
is only approached a&3[l/In(1— «;)] because of the last term iy

in the expression fog.
The crossover from the decaying to the propagating mode FIG. 2. The plasma resonance is shown as a function of the bias

is set by the cutoff frequency current in the zero-voltage stat@) Examples of plasma resonances
in the propagating modéstanding waves The integem indicates
Qo= ko, the number of wavelengths present in the junctidm.The plasma

which also shows the physical meaning of the modulus'€senance in the decaying mode. For an easier comparison, the bias

Since 0.95 KS <k for |>5, the cutoff frequency is always F:urrgnt is shown'np:mzillzeg to thi cancaLcurrent fqithzi'[ specific
L9 . ) . junction length: ig(1=0)=1, i5(I=5)=~0.757, i;(I=10)
close to unity in the case of long junctions. In the limit of _ 490

short junctions, one geteg =2~ 2~0.707.

There are two special cases where the amplitude function poy the in-line geometry studied here, the probe current is
and its resonance spectrum can readily be found without thﬁpplied to the end of the junction and the refleatieansmit-

need of the Jacobian functions, namely the cases ted signal can be measured at either end of the junction.
. This only provides information aboat(*+1/2). If appropriate
1 4 :2 i i -
1=0: a=—5—5——, Q%=1-i2 receiver antennas are located along the length of the junc
Qo= Q7 +ial) P tion, it may, in principle, be feasible to obtain information
about the amplitude of the plasma oscillation at a number of
. li; costikx) 2 2nm)? discrete points.
=01 a(x)=5 Sinh(KI/2)’ pn= 1+ /| In the case of negligible lossea=0, the plasma reso-
nances are easily recognized as singularities of the amplitude
2nw - function which are equivalent to solutions of the equation
fn I ’)/+eZ(TO)|/2+ 77e72(70)|/2:0, (6)

where k?=1—Q?%+ia). At resonance the standing wave . o _
pattern in the junction consists of an integer numheof ~ With . given by the expression in E¢4). In the following
wavelengths. the two different dynamical modes are discussed.

Case 1: Decaying mode. Figurdb? shows how the
plasma resonance in the decaying médg,<(),) varies as
a function of the bias current for various junction lengths.

It is convenient to extract the information contained in theThe well-known behavior in the limit of short junctions is a
amplitude function in a way, which is more relevant to stan-straight line in a plot ongo vs (ig/i§)?. In the long junction
dard experimental technigues like those used in Refs. 1 anchse, due to the decaying nature of this mode the interior part
4. In these works, the junction was biased by a probe signaif the junction is only slightly affected by the probe current
from a microwave source. A small fraction of the microwaveintroduced at the ends. This explains qualitatively why the
current interacted with the junction and a change in the reresonant condition in the case of increasingnds towards
flected (or transmitte microwave signal was observed the situation where the static background is spatially more
whenever the plasma oscillation was tuned to resonance. momogeneous and whe®,,=1. For 1=10, the shift in
this way the plasma resonance frequency was mapped out pasma resonance frequency accounts for no more than a 5%
a function of junction parameters and the input currents. increase as compared to the short junction case.

Ill. PLASMA RESONANCE
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FIG. 3. Plot of the plasma resonance frequency as a function of

the irj\llerse (decaying length. The dash-dotted line indicates the |G 5. The curved lines show a contour plot of the nodes where
Q—\"" relationship fori ,;=0. the plasma oscillation amplitude equals zero. The vertical lines in-
dicate the position of the various plasma resonance frequencies. The

The 1k decaying length\ calculated at the resonance
ying g solid lines are for the cadg=0 and the dotted lines cover the case

frequency is plotted in Fig. 3. The spatially most homoge- - ,

neous amplitude function exists in the vicinity igF=0 and |0=_0.95o . For both cases, the cutoff frequency is very close to

io~i% . Given the actuak values, the amplitude function UM% {}~1.000.

does not exhibit much spatial structure in the decaying mode,

since the decaying length is always larger than the Josephs@s a transmission line this is equivalent to a spatially homo-

penetration length. geneous transmission line impedance. At resonance, the
Case 2: Propagating mode. Plasma resonances for thgydes of the standing wave pattern are equally spaced along

propagating modet),,>{), with n=1, are special for finit¢ e junction. The spacing between the nodes is a rational

Iength junctions, contrary to the deca.ylng.moc?e [TESONANCR A tion of the total junction length as generally known for
which persists to exist into the short junction limit. Flgureg].

2(a) shows examples of how these standing wave resonanc car hom_oge_neous transm|35|pn Ilr?es, _see(E}:].Thls IS
vary with the dc bias. This type of resonance depends weakl{fustrated in Fig. 5 for a normalized junction length of 10.
on the bias current and is not tuned to zerd gapproaches ~ When a bias current is applied, the transmission line im-
the maximum critical currenitj , which is the case for the Pedance is no longer independent of the position. Precise
decaying mode resonance. knowledge of how the static phase background is set up by
In Fig. 4 the dispersion relation is plotted for the casethe bias current must be incorporated into the analysis in
when the junction is tuned to its resonance with the bia®rder to trace the resonances, the result being solutions to
current. Also shown is the dispersion relation validifg=0,  Eq. (6). From Fig. 5 it is clear that the contour of the nodes
which as mentioned earlier is only approached logarithmichanges very little when the bias current is increased towards
cally. the critical current. What changes is the spectrum of the reso-
nances. The nodes are no longer exactly equidistant. In the
range of interest of the zero-voltage statesig<|ig|, I find
In the absence of a bias current, the static phase profile iumerically that Qp<Q,<Q,<Q,<---, ie., no
constant in space. When viewing the long Josephson junctiothange of mode is possible for a given plasma resonance.
In conclusion, the spectrum of the plasma resonance fre-
i T ' - quency in the zero-voltage state has been calculated for in-
— /=10 n=2 . line Josephson tunnel junctions of arbitrary lengths. From the
250 /=5 A0 above analysis, the plasma oscillations naturally fall into two
------------ Q= (1+q3)"? regimes, namely, nearlgpatiall) homogeneous oscillations
" (decaying modeat low frequencies and standing wave os-
2.0t - cillations (propagating modeabove a certain cutoff fre-
.~ quency. Emphasis has been put on presenting the data in a
form which is relevant for experimentalists, see Fig. 2. To the
15k n= 1/’—’,, =92 i best of the author’s knowledge, nobody has yet made a direct
observation of the plasma resonance in the high-frequency
standing wave regime. This should be a straightforward pro-
=" n= cedure using well-known experimental techniques and would

Yy 10 15 20 55 be of interest in testing the predictions of this work.

q,

IV. DISCUSSION
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