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We develop a general framework for describing thermoelectric effects in phase-coherent superconducting
structures. Formulas for the electrical conductance, thermal conductance, thermopower, and Peltier coefficient
are obtained and their various symmetries discussed. Numerical results for both dirty and clean Andreev
interferometers are presented. We predict that giant oscillations of the thermal conductance can occur, even
when oscillations in the electrical conductance are negligibly small. Results for clean, two-dimensional sys-
tems with a single superconducting inclusion are also presented, which show that normal-state oscillations
arising from quasiparticle boundary scattering are suppressed by the onset of superconductivity. In contrast, for
a clean system with no normal-state boundary scattering, switching on superconductivity induces oscillations
in off-diagonal thermoelectric coefficients.

I. INTRODUCTION ly U1 U1 Oia\ [ (v1—0)
2| =| 921 922 a3 (vo—v) |. (1)
The past few years have seen a rapid growth of interest in Q Us1 O3z Gas/ \ (T1—Ty)

guantum transport through nanoscale superconductors and
normal-superconducting contacts. In such devices, a varietYhis result differs from more familiar current-voltage
of superconductivity-enhanced quasiparticle, interference efelations®’ derived for normal-state conductors, because the
fects (SEQUIN'9 have either been obser/e® or are condensate potential appears explicitly on the right-hand
predicted1_3‘31These include results for zero-bias anomalies side, reflecting the fact that the superconductor can act as a
quantization of the supercurrent in Josephson point contactspurce and sink of charg®.0n the other hand, in the ab-
anomalous proximity effects, and Andreev interferometerssence of inelastic scattering, the condensate cannot act as a
In the latter, which are formed from a phase-coherent nancsource or sink of energy and therefore the temperature of the
structure in contact with two superconductors, with superSuperconductor is absent from Hd). _
conducting order parameter phasés,d,, the electrical In steady state, if no net current_fl_ows into _the supercon-
conductance is observed to be an oscillatory function of thguctor, then the condensate potentias determined by the
externally controllable phase differende= ¢, — ¢,.1~* conditionl,=—1,=1 and Eq.(1) reduces to

Attention to data has centered almost exclusively on
charge transport measurements, which in the absence of ( ' ):(G L><(vl_”2)> 2
strong correlations, can be understood using quasiparticle Q M K/\(T—=Ty))/"
scattering theories. The aim of this paper is to develop a
theory of thermoelectric effects in nanoscale superconduct! the following section, expressions for the thermoelectric
ors. Thermoelectric properties of normal-state nanostructureeoefficientsG,L,M,K are derived and various symmetries
have already been discussed in the literdfirg and when hlghllghted._ In Sec. Il we present num_encal results for a
superconductivity is absent, the results of these theories a}yo-_dlmer_]smnal structure containing a single supercondupt-
recovered from the framework developed below. In the pres'—ng inclusion and in Sec. IV, we examine the thermoelectric
ence of superconductivity, the theory is strongly modified byp
Andreev scattering, whereby a particlelike excitation can co-
herently evolve into a hole and during which energy, but not [l. EXPRESSIONS FOR THERMOELECTRIC
guasiparticle charge is conserved. As a consequence of this COEFFICIENTS
chargg-energy separation, superconductors are excellent In this section, we generalize a microscopic scattering
electrical conductors, but poor thermal conductbrs. approach’® which describes electrical properties of nanos-

The formalism developed below is very general and de¢4je superconductors connected to external reservoirs by nor-
scribes systems containing finite-size superconducting isna| or superconducting contacts. In the absence of inelastic
lands, as well as systems attached to superconducting res@gattering, dc transport is determined by the quantum-
voirs. After deriving general current-voltage relations, mechanical scattering matrs(E,H), which yields scatter-
various limits are discussed. As an example, at low enoughhg properties of excitations at enerfy of a phase-coherent
temperatures, for a hybrid structure in contact with two nor-structure described by a Hamiltoniah. If the structure is

roperties of Andreev interferometers.

mal reservoirs at potentials;,v, and temperature$,,T,, connected to external reservoirs by open scattering channels
we demonstrate that to lowest orderin-v, T;—T,, these labeled by quantum numbens, then s-matrix elements
reduce to Sn.n(E,H) are defined such thés, ,,(E,H)|? is the outgo-
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ing flux of quasiparticles along chanmel arising from a unit
incident flux along channei’.

In what follows, we consider channels belonging to
current-carrying leads, with quasiparticles labeled by a dis-

crete quantum numbex (a=+1 for particles,—1 for
holeg and therefore write1= (I, «), wherel labels all other
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A=em3 (@ | de EP(N?(E)ff’(E)
a 0

—; Pﬁﬂ<E,H>f{’<E>) ®

guantum numbers associated with the leads. W|th this noteandf (E) = (exp{[E— a(ev;—w) ko T}+1)~ 1is the distribu-

tion, the scattering matrix elemengs . (E,H) = sI i’ (E H)
satisfys'(E,H)=s"(E,H),s'(E,H)=s(E,H*) and if E is

tion of incominga-type quasiparticles from legd To avoid
time-dependent order parameter phases varying at the Jo-

measured relative to the condensate chemical potentigephson frequency, which would render a time-independent

p=ev, s P(EH)=apls 7 #(—E,H)]*. For a scatterer
connected to external reservoirs lhy crystalline, normal
leads, labeled=1,2,.
labeled i=L+1,... ,L+ Lg, it is convenient to write
I=(i,a), I"=(j,b), wherea(b) is a channel belonging to
leadi(j) and focus attention on the quantity

PrAEH) = 2 |38, oy (EH)IZ, (3)

which is referred to as either a reflection probability=()
or a transmission probability € j) for quasiparticles of type
B from leadj to quasiparticles of typer in leadi. For «
#B, PP’
ability, while for «= g, it is a normal scattering probability.
Since unitarity yields

Z |S(| a), Jb(E H)|2 2 |S a),(j, b)(E H)|2 4)

wherei andj sum only over leads containing open channels

of energyE, this satisfies

L+Lg L+Lg
% PoB(E,H)=NI(E) and > PP
j=1

(E,H)=NF(E),

i=1

©)

where N{*(E) is the number of open channels fartype
qguasiparticles of energyE in lead i, satisfying
N;"(E)=N; (—E). For convenience, if a leaidcontains no
open channels of  energy E, we define
P#(E,H)=P{#(E,H)=0 and in Egs.(4) and (5) sum
over alli andj.

To compute the currert and heat fluxQ; into a normal
leadi, it is convenient to introduce the notatibh=1; /e and
Iil: -Qi.
voirs at potentiale; and temperatures; , one finds®3°

Ltlg
|P= 21 Al (i=1.2,...L), (6)
=
where
AP Li=( 2/h)2 ()t~ p>fwo||z EPPIA(E,H)fA(E),
(7)

(E,H) is referred to as an Andreev scattering prob—E

scattering approach invalid, we insist that all superconduct-
ors share a common condensate chemical poteptiahd

. L, andL superconducting leads therefore forj>L, chooseev;= u.

Once the currents in the normal leads are known, the total
L+Lg L+L

currentslg=2_ "2 I;, Qo=2;_ |_+1Q| flowing in the super-
conductofs) are given byly+={_;1;=0, Qo+3_,Q;=
Equation(6) yields the current-voltage characterlstlcs of a
given structure at finite voltages, provided all scattering co-
efficients are computed in the presence of a self-consistently
determined order parameter. Such calculations have been
carried out recently for one-dimensional structd?é$and
demonstrate that provided the currents are low enough, the
matrix P;}B(E,H) can remain unchanged, even by the appli-
cation of finite voltages of ordek,. In this case, expanding
gs.(7) and(8) to lowest order inuj—u andT;—T yields

L+Lg

|p—2 B (uj— p,)+2 CR(Tj=T) (i=1.2,...L),
9

where

87~ (—2m 3 (@) P “aE Ep(—f>P“ (EH),
’ aB 0 E
(10

Bﬁ—(zlh)E( ) '”ﬁf dE E"( il )[N (E)dap

Then for a system connected to external reser-

_piniVB(E,H)], (11
Cyui=(=2m <a><1‘p>f:dEEpT+l(_a—éf) PIAER).
(12
. +1 —of
=(2/h);ﬁ ()P , (f)[Nf’(E)ﬁ
—PeA(E,H)], (13

andf(E)={exgE/k,T]+1} L

The above current-voltage relation is a key result of this
paper. If the matrix eIement@ﬁB(E,H) vary significantly
over the energy randges T, then the integrals must be evalu-
ated without further approximation. On the other hand if
kgT is small enough, one can proceed as in the following
section, by Taylor expanding in energy and retaining only the
lowest nonzero terms.

It is interesting that the temperatufiehas not yet been
specified, whereas the paramejeris identified with the
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unique condensate chemical potential. An important feature U1 G1 i3
of Eqg. (9) is obtained by noting that in view of the unitarity
condition (5), g=1| 921 922 923
031 932 Uss
L+L ~ ~
s » EPYL—gf N+R,—Ry  Ti—Tg R.—R
S ch-en (@0 de| 25 gez[ | e o Talo R
=1 @ 0 T JE = Ta—To N+R;—Ry Ta—To
~b[(To+Ta) = (Ty+Tp)]  —c[To+Ta]
X(N?—E Pﬁﬁ(E,H)). (14) 19
j=1

In this expression, a tilde represents the derivative with re-
spect to energy, Ry=P;;"(0,H), To=P;," (0, H)
[R,=P1;"(0, H),T,=P, (0, H)] are probabilities for nor-
mal (Andreey reflection and transmission for quasiparticles
from reservoir 1, whileRy, Ty (R}, T,) are corresponding
probabilities for quasiparticles from reservoir 2. The number

Hence the explicit dependence on the temperaludrops

out from Eq.(9). In contrast, in the presence of Andreev
scattering, the coefficiemBﬂ satisfy no such sum rule and
the explicit dependence q remains. The only requirement
on T is that it is in the vicinity of the reservoir temperatures RN
T;, so that higher-order terms in the Sommerfeld expansiongf open channels per lead k=N, (0)=N, (0) and from

of Bﬁ Cﬂ can be neglected. In practice it may be convenienFqs' ®). , RO,JFT0+ RatTa=Ro+To+Ry+Ta=N and
TotTa=Tp+T,.

to equateT to one of the reservoir temperatures. 0 ) )
In principle, through the response to independent varia-
tions in the quantitiex);—v and T;—T,, all nine matrix

IIl. EXPRESSIONS FOR THERMOELECTRIC elements are measurable. For the case where the steady-state
COEEFICIENTS IN THE LOW-TEMPERATURE LIMIT condition| 1=—1,=1 is satisfied, Eq(2) is obtained, with
We now consider the low-temperature limit, in which the R.R,—T.T,
contribution from any open channels in the superconductors C=(To*tTa)+2) T 777 [ (20
is negligible and the lowest terms in a Taylor expansion is a a e e e
good approximation to the right-hand sides of E¢k5)— 5o ,
. . - “ (Ra+T)(Ry+TY)
(18). For convenience, we restrict the analysis to two normal L/ia=(Ty—TL)—2 - ot (21
probes of identical cross section, for which a more intuitive Rat Ryt Tat T,
notation can be employed. Open channels in the supercon- L
ductoKs) are negligible when superconducting leads are ab- ~ = (Ra+To)(Ra+TY)
sent(i.e.,L¢=0) or whenkgT is much lower than the super- “MIb=(To+Ta)+2) =7 o7 [+ (22
conducting energy gap of any superconducting leads. In this aa e e
cCa‘\)se Ci‘(};OHfor j>EL(ga)mddfor Lt=2, Eqg. (14) yields Clom it i zab (Ryt+ T (Ry+ T2 s
P, =—CP . Hence reduces to —Klc=(Tg+T,)+2—
12 11 q c ( 0 a) c Ra+R;+Ta+T; ( )
2 In these expressions, every numerator is second order in An-
|P= BP (1 — )+ CP (T —T i=12.... L), dreev coefficients, whereas the common denominator is first
! 121 i w) (Ti=Ta) ) order. This ensures that the ratios are well behaved in the
(15 limit that the Andreev coefficients approach zero. These

equations can of course be rewritten in many forms. For

which is of the form of Eq(1). example, the first two expressions can be written

Introducing the parameters ,
T G=(N+R,—Rg)—2 (Rat To)(Ra* To) (24)
B a 0 Ra+ R+ T+ T, |
21
=7 Jier (16) 5 Lz
=3 el Uae (R—ft)—2| Rat Ta)(Ra* T 5
a=(Ra~Ro Ro+ R+ Tt T,
w1 2 To highlight certain features of these expressions, it is in-
b= 3 ngT =afT, (17 structive to write down the matrix elements in various limits.

For example in the case of perfect left-right symmetry, where
each primed coefficient is equal to the corresponding
291 unprimed quantity, one obtains
—kiT=ale, (18)
€ G=Ty+Ra, (26)

(@]
Il
w3

yields for the conductance matrix of E(.), L/a::i—o+ Fea, (27
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M/b=Ty+T,, (28) /
Klc=Ty+T,. (29 //
As a second example, we note that in the absence of super- 7
conductivity, all Andreev terms vanish to yield z /
G=T,, (30

FIG. 1. A two-dimensional tight-binding system of widtlsites
L/azfo, (31) and length sﬂes(shown shadedconnected to normal, crystalline
external leads of widtth.

—M/b=T,, (32
k~LoTG. (40)

—K/c=Ty. 33 . .
c="To 33 Clearly this breaks down in the presence of Andreev scatter-
As a third example, we consider the case of a real ordeing.
parameter, in the absence of a magnetic field. In this limit,

time-reversal symmetry  yieldsR;(0)=0, R;(0)=0, IV. RESULTS FOR A SINGLE SUPERCONDUCTING
T.(0)=-T,(0), andTy(0)=T,(0). Moreover, theP ma- INCLUSION
trix is symmetric and therefor€,(0)=T_(0). Hence in this ) ) i o
case, In this section, as a first application of the above theory,
we present results for the thermoelectric coefficieBisL,
(Ra+To)(Ry+T)) M, andK, of a two-dimensional structure with a single su-
G=(N+R;—Rp)—2 RIRIT T |’ (34)  perconducting inclusion. The aim is to examine the role of
a’a’ faa boundary scattering atl-S interfaces and therefore in this
o 7 (R4+T.) section, o_nly clean structures will b_e con_sidered. All results
L/a=—M/b=(Ty+ Ta)—Z[ — 22 2 4 (35) are obtained from numerical simulations of a two-
RatRytTat+ T, dimensional tight-binding system, described by a
] 2 Bogoliubov—de Gennes operator of the form
a a
Kie=(TotTa) =27 ( R+ R;+Ta+T;}' (36) ! (Ho A ) "
Equation (35 demonstrates that in the presence of time- A*  —Hg

reversal symmetry, the thermoelectric coefficientand M

are related by an Onsager relation In this equationH,, is a nearest-neighbor Anderson model on

a square lattice, with off-diagonal hopping elements of value
M=—TL. (37) —vandA is a diagonal order-parameter matrix. The scatter-

) ) ~ing region is chosen to hblesites wide and’ sites long and

symmetric structure possessing time-reversal symmetryyithin the scattering region, diagonal elements-gfare set
To(0)=—T,(0) and T4(0)=+T,(0). Hence T4(0) to some values;, while those ofA are set equal ta,.

=T,(0)=0 and one finds L/a=—M/b=Ty,  Within the leads, the diagonal elementsttf are equal to a
—K/lc=Ty+Ts, G=Tg+R,. An alternative way of ex- constantey, while those ofA are set to zero. In what fol-
pressing the above results is obtained by writing &).in lows, for a given realization of the Hamiltoniad, the scat-

the form tering matrix is obtained numerically, using a transfer matrix
technique outlined in Appendix 2 of Ref. 39. All energy de-
(v1—v2) _ R S ' rivatives are calculated by obtaining the matrix atE=0
Q | \m —«/\(T,—-Ty and then again g =AE whereAE=10"°.

For the normalized thermoelectric coefficients defined by
R —RL ' 3g EUS-(20-(23) the temperature appears explicitly only in
—RM —K+MRL/\(T;-T,) )/’ (38) K/c, whose second term has a prefactab/c
_ _ _ =1?13(kgT)2. The temperatur& must be chosen to be suf-
whereR=1/G is the electrical resistanc&=(AV/AT) -0 fiiently small that the Sommerfeld expansion leading to Eq.
is the thermopowedI=(Q/I)sr-o is the Peltier coefficient, (1) remains valid and this holds if the energy scale over
and k=—(Q/AT),-q is the thermal conductance. In the

: which the scattering matrix elements change is much larger
presence of time-reversal symmetry, these reduce=tdl/ 5, kgT. In what follows we chooségT= SE/8, where
TG, I[I=-TS and the thermal conductanc& and

~%  OE is the level spacingsE=8v/(Il"), which yields

k=K(GTS/K+1). In the absence of superconductivity it abl/(cy?)~3(1") "2

can be seen from Eq&30)—(33) that Figure 2 shows results for the thermal coefficiefs

(39) L/a, M/b, andK/c, computed for five values of the super-
conducting order parameter, namely=0, 0.01, 0.1, 0.3,

where Ly=(kg/€)?7?/3 is the Lorentz number. 18?<L, and 0.5. For these calculations, the system is of width

then k~K and one obtains the Weidemann-Franz law =10, the choicey=1 was made and, lies in the range

K=—-cG=— LoTG,
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0
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a < A 000 c
-0.02

1 3 1 3
1 3 1 3
g, g, € €

FIG. 2. The electrical conductan€ (top left) and normalized FIG. 4. As for Fig. 2, except the system is of length-20.

thermal conductanci/c (bottom righ} as a function ofe, for a
clean system of width=10 and lengtH’=5. The top right graph
shows the normalized thermoelectric cross coefficidts=M/b increases with increasing length, as expected for a quasipar-
and the bottom left graph depicts the normalized thermop&@ker  ticle interference effect of this kind.
Each separate curve refers to one of the following values of the The results of Figs. 2—4 show the effect of a global shift
superconducting order parametér;=0 (solid), 0.1 (dashedl and  in the parametek,, in the presence of a finitd,. It is
0.3 (dotted. interesting to compare this with the behavior arising from a
normal system in the absence of disorder, but with a Fermi-
surface mismatch between the sample and the external leads.
0.0<¢y/y=<4.0. In Fig. 2, the length of the superconductor To simulate such a structure, Figs. 5—7 show results in the
is|’=5 ande;=¢€,. In the normal limit, whered,=0, the  presence of a shify= e; — €4 in the diagonal elements, of
conductancess=K/c exhibit a series of steps associatedthe superconducting region. For a system of length 5,
with the closing of scattering channels. From E@l) and  Fig. 5 shows results for the variation of thermoelectric coef-
(32, L/a=M/b is the energy derivative ofs and since, ficients with the global constast, for eight different values
whenA,=0, a shift iney is equivalent to a change in energy, of the mismatch parametey. Figures 6 and 7 show corre-
each step irG is accompanied by & function inL/a and  sponding results for systems of length=10 andl’ =20,
M/b. Theses functions cannot be discerned in the plots of respectively. In each figurey=1, | =10, ande lies in the
Fig. 2. For finiteA, the 6 functions are smeared arida range 0.6=¢y/y<4.0.
exhibits oscillations arising from the interference of quasi- These figures illustrate that for a normal system, steps in
particles from the two ends of the sample. With increasingG andK/c are suppressed by the introduction of a potential
Ag, the oscillations die away as the transmission coefficientsnismatch. They also illustrate that oscillations again arise
and their derivatives become suppressed. Increasjnglso  from quasiparticle reflections at the boundaries and that the
causes the conductance stepsGirto become rounded and frequency of these oscillations increases as the system length
suppressed, in the manner of Fig. 9 of Ref. 22. A similarincreases. A crucial difference between the normal-state re-
effect is observed in the coefficiektc, but the suppression sults of Figs. 5—7 and the superconducting results of Figs.
is more pronounced, due to the absence of Andreev scatter-
ing terms in Eq(33). Figures 3 and 4 show a corresponding

set of results for systems of length=10 andl’ =20, re-
spectively. These illustrate that increasing the lergtfur-
ther suppressds, but has little effect ors. They also illus- G L
trate that the frequency of oscillations in/a and S/a a
8 S K
a C
G 4 L
a
0 1 3 1 3
& €
S 0.1 K
a0 c FIG. 5. The electrical conductané (top left) and normalized
thermal conductanci/c (bottom righ} as a function ofe, for a
-0.1 clean system of width=10 and lengtH’=5. The top right graph
1 3 1 3 shows the normalized thermoelectric cross coefficiérits= M/b
80 80 and the bottom left graph depicts the normalized thermop&Aeer

Each separate curve refers to one of the following values of the
FIG. 3. As for Fig. 2, except the system is of length=10. parameterp=€;— €5: 7=0 (solid), 0.3 (dasheg, and 1.0(dotted.
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8 0.5
G 4 L G L
a 05 a
0 i
3 8 8
S o A K S K
2 . .;.‘: 4 C '5' 4 ?
-1.0 : 0 0
1 3 1 3 1 3 1 3
& & €, €,
FIG. 6. As for Fig. 5, except the system is of lengtk 10. FIG. 8. The results shown here are an exact replica of those of

Fig. 6 except that an order parameter of magnitdge=0.1 has
been switched on.
2—4, is that oscillations i andK only occur in the former.
Figure 8 shows the effect of the imposing a superconducting
order parameter of magnitude=0.1 on the system of Fig. 6 strength of the barrier. In every other region, the diagonal
and illustrates that switching on superconductivity SUP-glementse; = €.
presses oscillations associated with a Fermi-surface mis- g 5 parrier of thicknesk, =1, Fig. 10 shows numerical

match. results for a system of width=15 and three lengths =5
(solid ling), 1" =15 (open circleg, andl’ =25 (squarek Fig-
V. THERMOELECTRIC PROPERTIES ures 1@a)-10(d) show results for barrier strengths of
OF ANDREEV INTERFEROMETERS e,=0,1,2,3, respectively. Since there is no disorder in these

structures, in the absence of a barrier, the dominant scattering
- o ; .~ mechanism is either Andreev reflection or normal transmis-
plicit real_lzatlﬁn of thle fo_rmulas Of. Secf. III.dIn th'.s sefctlon sion. Both processes facilitate charge transport and therefore
we examine thermoelectric properties of Andreev inter €r0Mipe electrical conductance exhibits only a small nonclassical

eters, Iormt;d from ‘two sutpeicopt(:]uctorks] with hordetr'amplitude of oscillation, which would be absent from quasi-
paramte ert P aﬁ@lk‘ﬁzv&'[“l,‘l’;’_@l?ﬁ tvf[’;] 6} pt ?‘Sﬁ'co deren classical theories of interferometéf<’ This small oscilla-
hanostructure. it 1S known at tne electrical conduc- i, amplitude<1, is shown in the results fo& as a

tance of such structures is a periodic function of the.ph.asﬁmction of ¢, in Fig. 10a). In contrast Andreev reflection
difference ¢.: b1~ ¢2'. but no results for phase-penod]c impedes the flow of energy and as shown in Figal0he
thermoelectnc propertlles are purrently gvallable. Cor]S'de{hermal conductanc&/c exhibits giant oscillations. By
first _the _structure of Fig. 9, which .comprlses_two su_percon-varymg the width of the system, we find that the amplitude
ducting islands, each of lenglh sites and widthl, sites, of these oscillations irkK/c is proportional to the system

with a uniform order parameter of magnitud@=0.1. The width. Figures 1(b) and 1Qc) show further that both. and
transport current flows from left to right and apart from the are periodic functions ofb, with period 27 and that the

order-parameter phase difference, the islands are |dent|q ign of these quantities is phase dependent. In the presence

The islands are separated from each other by a normal regiol s parrier Figs. 10)—10(d) show that botf/c andG can

?f W'd(:.htlsl S't?js.’ yle[{dLEg a total s;:jste{n V.V'dtht o= 3:Sb' . exhibit large oscillations, which by increasing the system
mmediately adjacent the superconductor is a tunnel barrigf; i, “can again be shown to be proportional to

of width | sites and thickneds, sites. Within the barrier, the Figure 11 shows the same structure as Fig. 9, but with the

diagonal matrix elements; are set toeo+€,, Whereeo ISy nne| parrier replaced by a diffusive normal region of length
the site energy in the leads arg is a measure of the

The numerical results of Sec. IV are merely a first, ex-

w|w

FIG. 7. As for Fig. 5, except the system is of length-20. FIG. 9. A clean Andreev interferometer, with a tunnel barrier.
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S K
a <
(b) (d) (0] )

FIG. 10. (8—(d) show results for barrier strengths f=0, 1, 2, 3, respectively. In each case, results are shown for samples of lengths
I"=5 (solid line), I"=15 (open circley andl’ =25 (squares

l4. Within the diffusive region, the elemen¢sare chosen to cannot change any physical parameter. For the structure of
be uniformly distributed random numbers in the rangeFig. 11, this symmetry is broken for a given realization of the
eo— W= ¢;< ¢+ W, whereW is a measure of the strength of disorder, but not on the average. Consequently the average
disorder. For a system of dimensions=1'=15 and values ofL andS are even functions o$. To illustrate the
ls=14=5, Fig. 12 shows results fa/=1, 2, and 3. For each breaking of this symmetry, Fig. 13 shows a clean system
value of W, thermoelectric coefficients were calculated as awith no barrier of dimension$=1'=3I,=9, but with the
function of ¢, for 50 different realizations of the disorder. magnitude of the order parameter of the upfpewer) island
Figure 12 shows the ensemble averages of these results. set to 0.1(0.7). Both L and S are manifestly honsymmetric

It should be noted that whil& and G are necessarily about¢=0, whereass and « remain even functions ap.
even functions ofp, there is no such constraint anand S
and indeed results for individual realizations of the disorder VI. CONCLUSION

are nonsymmetric abouyt=0. One exception to this is for a -
system with a mirror symmetry about a horizontal line divid- e have developed a general framework for describing

ing the two superconductors, since in this case reversing thg€rmoelectric effects in phase-coherent superconducting
phase is equivalent to reflecting the sample and therefor%truc_tures- At low temperatures, t_he general current-voltage
relation of Eq.(16) reduces to the linear-response formula of

100 : . . —_ 0.0
I a
| . o
g I»"ég’ii iy i s K
S -
' Sl C
/

L l

FIG. 11. An Andreev interferometer, with a diffusive normal
region located to the left of the superconductors. All other regions FIG. 12. Results obtained for the structure of Fig. 11,6+ 1
are free from disorder. (solid line), W=2 (dotted ling, andW=3 (dashed ling
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™1 0.10 reservoirs connected to a scattering region, the steady-state
] condition I;+1,=0 yields a further reduction to Eq2),
with thermoelectric coefficients given by Eq20)—(23).

The numerical results of Secs. IV and V are the first ex-
plicit realizations of the above formulas. Those of Sec. V are
particularly interesting, since Andreev interferometers are
now available in the laboratory. To date all theories and ex-
periments on Andreev interferometers have focused exclu-
sively on electrical properties. As shown in Fig.(40 the
electrical conductance can have a negligible amplitude of

oots , , , , , J, oscillation, while in the same sample, the thermal conduc-
00 20 40 B0 20 4080 tance exhibits large-scale oscillations. This suggests that a

¢ ¢ complete understanding of quasiparticle interference effects

requires a systematic study of a range of thermoelectric co-

FIG. 13. Results for a clean interferometer, which lacks mirrorefficients.
symmetry along a horizontal line between the superconductors.
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