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We develop a general framework for describing thermoelectric effects in phase-coherent superconducting
structures. Formulas for the electrical conductance, thermal conductance, thermopower, and Peltier coefficient
are obtained and their various symmetries discussed. Numerical results for both dirty and clean Andreev
interferometers are presented. We predict that giant oscillations of the thermal conductance can occur, even
when oscillations in the electrical conductance are negligibly small. Results for clean, two-dimensional sys-
tems with a single superconducting inclusion are also presented, which show that normal-state oscillations
arising from quasiparticle boundary scattering are suppressed by the onset of superconductivity. In contrast, for
a clean system with no normal-state boundary scattering, switching on superconductivity induces oscillations
in off-diagonal thermoelectric coefficients.

I. INTRODUCTION

The past few years have seen a rapid growth of interest in
quantum transport through nanoscale superconductors and
normal-superconducting contacts. In such devices, a variety
of superconductivity-enhanced quasiparticle, interference ef-
fects ~SEQUIN’s! have either been observed1–12 or are
predicted.13–31These include results for zero-bias anomalies,
quantization of the supercurrent in Josephson point contacts,
anomalous proximity effects, and Andreev interferometers.
In the latter, which are formed from a phase-coherent nano-
structure in contact with two superconductors, with super-
conducting order parameter phasesf1 ,f2 , the electrical
conductance is observed to be an oscillatory function of the
externally controllable phase differencef5f12f2 .

1–4

Attention to data has centered almost exclusively on
charge transport measurements, which in the absence of
strong correlations, can be understood using quasiparticle
scattering theories. The aim of this paper is to develop a
theory of thermoelectric effects in nanoscale superconduct-
ors. Thermoelectric properties of normal-state nanostructures
have already been discussed in the literature32–35 and when
superconductivity is absent, the results of these theories are
recovered from the framework developed below. In the pres-
ence of superconductivity, the theory is strongly modified by
Andreev scattering, whereby a particlelike excitation can co-
herently evolve into a hole and during which energy, but not
quasiparticle charge is conserved. As a consequence of this
charge-energy separation, superconductors are excellent
electrical conductors, but poor thermal conductors.36

The formalism developed below is very general and de-
scribes systems containing finite-size superconducting is-
lands, as well as systems attached to superconducting reser-
voirs. After deriving general current-voltage relations,
various limits are discussed. As an example, at low enough
temperatures, for a hybrid structure in contact with two nor-
mal reservoirs at potentialsv1,v2 and temperaturesT1 ,T2 ,
we demonstrate that to lowest order inv i2v, T12T2 , these
reduce to

S I 1I 2
Q
D 5S g11 g12 g13

g21 g22 g23

g31 g32 g33
D S ~v12v !

~v22v !

~T12T2!
D . ~1!

This result differs from more familiar current-voltage
relations,37 derived for normal-state conductors, because the
condensate potentialv appears explicitly on the right-hand
side, reflecting the fact that the superconductor can act as a
source and sink of charge.38 On the other hand, in the ab-
sence of inelastic scattering, the condensate cannot act as a
source or sink of energy and therefore the temperature of the
superconductor is absent from Eq.~1!.

In steady state, if no net current flows into the supercon-
ductor, then the condensate potentialv is determined by the
condition I 152I 25I and Eq.~1! reduces to

S IQD 5S G L

M K D S ~v12v2!

~T12T2!
D . ~2!

In the following section, expressions for the thermoelectric
coefficientsG,L,M ,K are derived and various symmetries
highlighted. In Sec. III we present numerical results for a
two-dimensional structure containing a single superconduct-
ing inclusion and in Sec. IV, we examine the thermoelectric
properties of Andreev interferometers.

II. EXPRESSIONS FOR THERMOELECTRIC
COEFFICIENTS

In this section, we generalize a microscopic scattering
approach,38 which describes electrical properties of nanos-
cale superconductors connected to external reservoirs by nor-
mal or superconducting contacts. In the absence of inelastic
scattering, dc transport is determined by the quantum-
mechanical scattering matrixs(E,H), which yields scatter-
ing properties of excitations at energyE, of a phase-coherent
structure described by a HamiltonianH. If the structure is
connected to external reservoirs by open scattering channels
labeled by quantum numbersn, then s-matrix elements
sn,n8(E,H) are defined such thatusn,n8(E,H)u

2 is the outgo-

PHYSICAL REVIEW B 1 MARCH 1996-IIVOLUME 53, NUMBER 10

530163-1829/96/53~10!/6605~8!/$10.00 6605 © 1996 The American Physical Society



ing flux of quasiparticles along channeln, arising from a unit
incident flux along channeln8.

In what follows, we consider channels belonging to
current-carrying leads, with quasiparticles labeled by a dis-
crete quantum numbera (a511 for particles,21 for
holes! and therefore writen5( l ,a), wherel labels all other
quantum numbers associated with the leads. With this nota-
tion, the scattering matrix elementssn,n8(E,H)5sl ,l 8

a,b(E,H)
satisfys†(E,H)5s21(E,H),st(E,H)5s(E,H* ) and if E is
measured relative to the condensate chemical potential
m5ev, sl ,l 8

a,b(E,H)5ab@sl ,l 8
2a,2b(2E,H)#* . For a scatterer

connected to external reservoirs byL crystalline, normal
leads, labeledi51,2, . . . ,L, andLs superconducting leads
labeled i5L11, . . . ,L1Ls , it is convenient to write
l5( i ,a), l 85( j ,b), wherea(b) is a channel belonging to
lead i ( j ) and focus attention on the quantity

Pi , j
a,b~E,H !5(

a,b
us~ i ,a!,~ j ,b!

a,b ~E,H !u2, ~3!

which is referred to as either a reflection probability (i5 j )
or a transmission probability (iÞ j ) for quasiparticles of type
b from lead j to quasiparticles of typea in lead i . For a
Þb, Pi , j

a,b(E,H) is referred to as an Andreev scattering prob-
ability, while for a5b, it is a normal scattering probability.
Since unitarity yields

(
bb j

us~ i ,a!,~ j ,b!
a,b ~E,H !u25(

aa j
us~ i ,a!,~ j ,b!

a,b ~E,H !u251, ~4!

wherei and j sum only over leads containing open channels
of energyE, this satisfies

(
b
j51

L1Ls

Pi j
a,b~E,H !5Ni

a~E! and (
a
i51

L1Ls

Pi j
a,b~E,H !5Nj

b~E!,

~5!

whereNi
a(E) is the number of open channels fora-type

quasiparticles of energyE in lead i , satisfying
Ni

1(E)5Ni
2(2E). For convenience, if a leadi contains no

open channels of energy E, we define
Pi j

a,b(E,H)5Pji
a,b(E,H)50 and in Eqs.~4! and ~5! sum

over all i and j .
To compute the currentI i and heat fluxQi into a normal

leadi , it is convenient to introduce the notationI i
05I i /e and

I i
152Qi . Then for a system connected to external reser-
voirs at potentialsv i and temperaturesTi , one finds38,39

I i
p5 (

j51

L1Ls

Āi j
p ~ i51,2, . . . ,L !, ~6!

where

Āi , jÞ i
p 5~22/h!(

ab
~a!~12p!E

0

`

dE EpPi j
ab~E,H ! f j

b~E!,

~7!

Āii
p5~2/h!(

a
~a!~12p!E

0

`

dE EpSNi
a~E! f i

a~E!

2(
b

Pii
ab~E,H ! f i

b~E! D ~8!

and f j
a(E)5„exp$@E2a(evj2m)#/kbTj%11…21 is the distribu-

tion of incominga-type quasiparticles from leadj . To avoid
time-dependent order parameter phases varying at the Jo-
sephson frequency, which would render a time-independent
scattering approach invalid, we insist that all superconduct-
ors share a common condensate chemical potentialm and
therefore forj.L, chooseev j5m.

Once the currents in the normal leads are known, the total
currentsI 05( i5L11

L1Ls I i , Q05( i5L11
L1Ls Qi flowing in the super-

conductor~s! are given byI 01( i51
L I i50, Q01( i51

L Qi50.
Equation ~6! yields the current-voltage characteristics of a
given structure at finite voltages, provided all scattering co-
efficients are computed in the presence of a self-consistently
determined order parameter. Such calculations have been
carried out recently for one-dimensional structures30,31 and
demonstrate that provided the currents are low enough, the
matrix Pi j

ab(E,H) can remain unchanged, even by the appli-
cation of finite voltages of orderD0 . In this case, expanding
Eqs.~7! and ~8! to lowest order inm j2m andTj2T yields

I i
p5(

j51

L

Bi j
p ~m j2m!1 (

j51

L1Ls

Ci j
p ~Tj2T! ~ i51,2, . . . ,L !,

~9!

where

Bi , jÞ i
p 5~22/h!(

ab
~a!~12p!bE

0

`

dE EpS 2] f

]E DPi j
ab~E,H !,

~10!

Bii
p5~2/h!(

ab
~a!~12p!bE

0

`

dE EpS 2] f

]E D @Ni
a~E!dab

2Pii
ab~E,H !#, ~11!

Ci , jÞ i
p 5~22/h!(

ab
~a!~12p!E

0

`

dE
Ep11

T S 2] f

]E DPi j
ab~E,H !,

~12!

Cii
p5~2/h!(

ab
~a!~12p!E

0

`

dE
Ep11

T S 2] f

]E D @Ni
a~E!dab

2Pii
ab~E,H !#, ~13!

and f (E)5$exp@E/kbT#11%21.
The above current-voltage relation is a key result of this

paper. If the matrix elementsPi j
ab(E,H) vary significantly

over the energy rangekBT, then the integrals must be evalu-
ated without further approximation. On the other hand if
kBT is small enough, one can proceed as in the following
section, by Taylor expanding in energy and retaining only the
lowest nonzero terms.

It is interesting that the temperatureT has not yet been
specified, whereas the parameterm is identified with the
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unique condensate chemical potential. An important feature
of Eq. ~9! is obtained by noting that in view of the unitarity
condition ~5!,

(
j51

L1Ls

Ci j
p5~2/h!(

a
~a!~12p!E

0

`

dE
Ep11

T S 2] f

]E D
3S Ni

a2(
b
j51

Pii
ab~E,H !D . ~14!

Hence the explicit dependence on the temperatureT drops
out from Eq. ~9!. In contrast, in the presence of Andreev
scattering, the coefficientsBi j

p satisfy no such sum rule and
the explicit dependence onm remains. The only requirement
on T is that it is in the vicinity of the reservoir temperatures
Ti , so that higher-order terms in the Sommerfeld expansions
of Bi j

p ,Ci j
p can be neglected. In practice it may be convenient

to equateT to one of the reservoir temperatures.

III. EXPRESSIONS FOR THERMOELECTRIC
COEFFICIENTS IN THE LOW-TEMPERATURE LIMIT

We now consider the low-temperature limit, in which the
contribution from any open channels in the superconductors
is negligible and the lowest terms in a Taylor expansion is a
good approximation to the right-hand sides of Eqs.~15!–
~18!. For convenience, we restrict the analysis to two normal
probes of identical cross section, for which a more intuitive
notation can be employed. Open channels in the supercon-
ductor~s! are negligible when superconducting leads are ab-
sent~i.e.,Ls50) or whenkBT is much lower than the super-
conducting energy gap of any superconducting leads. In this
case Ci j

p50 for j.L and for L52, Eq. ~14! yields
Ci2
p 52Ci1

p . Hence Eq.~9! reduces to

I i
p5(

j51

2

Bi j
p ~m j2m!1Ci1

p ~T12T2! ~ i51,2, . . . ,L !,

~15!

which is of the form of Eq.~1!.
Introducing the parameters

a[
p2

3

1

e
kB
2T, ~16!

b[
p2

3

1

e
kB
2T25aT, ~17!

c[
p2

3

1

e2
kB
2T5a/e, ~18!

yields for the conductance matrix of Eq.~1!,

g5S g11 g12 g13

g21 g22 g23

g31 g32 g33
D

5
2e2

h S FN1Ra2R0 Ta82T08

Ta2T0 N1Ra82R08
G aF R̃a2R̃0

T̃a2T̃0
G

2b@~ T̃01T̃a!2~ T̃a81T̃08!# 2c@T01Ta#
D .
~19!

In this expression, a tilde represents the derivative with re-
spect to energy, R05P11

11(0,H), T05P21
11(0, H)

@Ra5P11
21(0, H),Ta5P21

21(0, H)# are probabilities for nor-
mal ~Andreev! reflection and transmission for quasiparticles
from reservoir 1, whileR08 ,T08 (Ra8 ,Ta8) are corresponding
probabilities for quasiparticles from reservoir 2. The number
of open channels per lead isN5N1

1(0)5N2
1(0) and from

Eqs. ~5!, R01T01Ra1Ta5R081T081Ra81Ta85N and
T01Ta5T081Ta8 .

In principle, through the response to independent varia-
tions in the quantitiesv i2v and Ti2T2 , all nine matrix
elements are measurable. For the case where the steady-state
condition I 152I 25I is satisfied, Eq.~2! is obtained, with

G5~T01Ta!12H RaRa82TaTa8

Ra1Ra81Ta1Ta8
J , ~20!

L/a5~ T̃082T̃a8!22H ~R̃a1T̃a!~Ra1Ta8!

Ra1Ra81Ta1Ta8
J , ~21!

2M /b5~ T̃01T̃a!12H ~Ra1Ta!~R̃a1T̃a8!

Ra1Ra81Ta1Ta8
J , ~22!

2K/c5~T01Ta!12
ab

c H ~R̃a1T̃a!~R̃a1T̃a8!

Ra1Ra81Ta1Ta8
J . ~23!

In these expressions, every numerator is second order in An-
dreev coefficients, whereas the common denominator is first
order. This ensures that the ratios are well behaved in the
limit that the Andreev coefficients approach zero. These
equations can of course be rewritten in many forms. For
example, the first two expressions can be written

G5~N1Ra2R0!22H ~Ra1Ta!~Ra1Ta8!

Ra1Ra81Ta1Ta8
J , ~24!

L/a5~R̃a2R̃0!22H ~R̃a1T̃a!~Ra1Ta8!

Ra1Ra81Ta1Ta8
J . ~25!

To highlight certain features of these expressions, it is in-
structive to write down the matrix elements in various limits.
For example in the case of perfect left-right symmetry, where
each primed coefficient is equal to the corresponding
unprimed quantity, one obtains

G5T01Ra , ~26!

L/a5T̃01R̃a , ~27!
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M /b5T̃01T̃a , ~28!

K/c5T01Ta . ~29!

As a second example, we note that in the absence of super-
conductivity, all Andreev terms vanish to yield

G5T0 , ~30!

L/a5T̃0 , ~31!

2M /b5T̃0 , ~32!

2K/c5T0 . ~33!

As a third example, we consider the case of a real order
parameter, in the absence of a magnetic field. In this limit,
time-reversal symmetry yields R̃a(0)50, R̃a8(0)50,
T̃a(0)52T̃a8(0), andT̃0(0)5T̃08(0). Moreover, theP ma-
trix is symmetric and thereforeTa(0)5Ta8(0). Hence in this
case,

G5~N1Ra2R0!22H ~Ra1Ta!~Ra1Ta8!

Ra1Ra81Ta1Ta8
J , ~34!

L/a52M /b5~ T̃01T̃a!22H T̃a~Ra1Ta!

Ra1Ra81Ta1Ta8
J , ~35!

2K/c5~T01Ta!22
ab

c H T̃a
2

Ra1Ra81Ta1Ta8
J . ~36!

Equation ~35! demonstrates that in the presence of time-
reversal symmetry, the thermoelectric coefficientsL andM
are related by an Onsager relation

M52TL. ~37!

Finally we note that in the most extreme case of a spatially
symmetric structure possessing time-reversal symmetry,
T̃a(0)52T̃a8(0) and T̃a(0)51T̃a8(0). Hence T̃a(0)
5T̃a8(0)50 and one finds L/a52M /b5T̃0 ,
2K/c5T01Ta , G5T01Ra . An alternative way of ex-
pressing the above results is obtained by writing Eq.~2! in
the form

S ~v12v2!

Q D 5S R S

P 2k D S I

~T12T2!
D

5S R 2RL

2RM 2K1MRLD S I

~T12T2!
D , ~38!

whereR51/G is the electrical resistance,S[(DV/DT) I50
is the thermopower,P[(Q/I )DT50 is the Peltier coefficient,
and k[2(Q/DT) I50 is the thermal conductance. In the
presence of time-reversal symmetry, these reduce toS5M /
TG, P52TS and the thermal conductancek and
k5K(GTS2/K11). In the absence of superconductivity it
can be seen from Eqs.~30!–~33! that

K52cG52L0TG, ~39!

where L05(kB /e)
2p2/3 is the Lorentz number. IfS2!L0

thenk'K and one obtains the Weidemann-Franz law

k'L0TG. ~40!

Clearly this breaks down in the presence of Andreev scatter-
ing.

IV. RESULTS FOR A SINGLE SUPERCONDUCTING
INCLUSION

In this section, as a first application of the above theory,
we present results for the thermoelectric coefficientsG, L,
M , andK, of a two-dimensional structure with a single su-
perconducting inclusion. The aim is to examine the role of
boundary scattering atN-S interfaces and therefore in this
section, only clean structures will be considered. All results
are obtained from numerical simulations of a two-
dimensional tight-binding system, described by a
Bogoliubov–de Gennes operator of the form

H5S H0 D

D* 2H0*
D . ~41!

In this equation,H0 is a nearest-neighbor Anderson model on
a square lattice, with off-diagonal hopping elements of value
2g andD is a diagonal order-parameter matrix. The scatter-
ing region is chosen to bel sites wide andl 8 sites long and
is connected to external leads of widthl as shown in Fig. 1.
Within the scattering region, diagonal elements ofH0 are set
to some valuee1 , while those ofD are set equal toD0 .
Within the leads, the diagonal elements ofH0 are equal to a
constante0 , while those ofD are set to zero. In what fol-
lows, for a given realization of the HamiltonianH, the scat-
tering matrix is obtained numerically, using a transfer matrix
technique outlined in Appendix 2 of Ref. 39. All energy de-
rivatives are calculated by obtaining theP matrix atE50
and then again atE5DE whereDE51026.

For the normalized thermoelectric coefficients defined by
Eqs. ~20!–~23! the temperature appears explicitly only in
K/c, whose second term has a prefactorab/c
5p2/3(kBT)

2. The temperatureT must be chosen to be suf-
ficiently small that the Sommerfeld expansion leading to Eq.
~1! remains valid and this holds if the energy scale over
which the scattering matrix elements change is much larger
than kBT. In what follows we choosekBT5dE/8, where
dE is the level spacingdE58g/( l l 8), which yields
ab/(cg2)'3(l l 8)22.

Figure 2 shows results for the thermal coefficientsG,
L/a, M /b, andK/c, computed for five values of the super-
conducting order parameter, namelyD050, 0.01, 0.1, 0.3,
and 0.5. For these calculations, the system is of width
l510, the choiceg51 was made ande0 lies in the range

FIG. 1. A two-dimensional tight-binding system of widthl sites
and lengthl 8 sites~shown shaded! connected to normal, crystalline
external leads of widthl .
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0.0<e0 /g<4.0. In Fig. 2, the length of the superconductor
is l 855 ande15e0 . In the normal limit, whereD050, the
conductancesG5K/c exhibit a series of steps associated
with the closing of scattering channels. From Eqs.~31! and
~32!, L/a5M /b is the energy derivative ofG and since,
whenD050, a shift ine0 is equivalent to a change in energy,
each step inG is accompanied by ad function in L/a and
M /b. Thesed functions cannot be discerned in the plots of
Fig. 2. For finiteD0 , the d functions are smeared andL/a
exhibits oscillations arising from the interference of quasi-
particles from the two ends of the sample. With increasing
D0 , the oscillations die away as the transmission coefficients
and their derivatives become suppressed. IncreasingD0 also
causes the conductance steps inG to become rounded and
suppressed, in the manner of Fig. 9 of Ref. 22. A similar
effect is observed in the coefficientK/c, but the suppression
is more pronounced, due to the absence of Andreev scatter-
ing terms in Eq.~33!. Figures 3 and 4 show a corresponding
set of results for systems of lengthl 8510 and l 8520, re-
spectively. These illustrate that increasing the lengthl 8 fur-
ther suppressesK, but has little effect onG. They also illus-
trate that the frequency of oscillations inL/a and S/a

increases with increasing length, as expected for a quasipar-
ticle interference effect of this kind.

The results of Figs. 2–4 show the effect of a global shift
in the parametere0 , in the presence of a finiteD0 . It is
interesting to compare this with the behavior arising from a
normal system in the absence of disorder, but with a Fermi-
surface mismatch between the sample and the external leads.
To simulate such a structure, Figs. 5–7 show results in the
presence of a shifth5e12e0 in the diagonal elementse1 of
the superconducting region. For a system of lengthl 855,
Fig. 5 shows results for the variation of thermoelectric coef-
ficients with the global constante0 , for eight different values
of the mismatch parameterh. Figures 6 and 7 show corre-
sponding results for systems of lengthl 8510 and l 8520,
respectively. In each figure,g51, l510, ande0 lies in the
range 0.0<e0 /g<4.0.

These figures illustrate that for a normal system, steps in
G andK/c are suppressed by the introduction of a potential
mismatch. They also illustrate that oscillations again arise
from quasiparticle reflections at the boundaries and that the
frequency of these oscillations increases as the system length
increases. A crucial difference between the normal-state re-
sults of Figs. 5–7 and the superconducting results of Figs.

FIG. 5. The electrical conductanceG ~top left! and normalized
thermal conductanceK/c ~bottom right! as a function ofe0 for a
clean system of widthl510 and lengthl 855. The top right graph
shows the normalized thermoelectric cross coefficientsL/a5M /b
and the bottom left graph depicts the normalized thermopowerS/a.
Each separate curve refers to one of the following values of the
parameterh5e12e0 :h50 ~solid!, 0.3 ~dashed!, and 1.0~dotted!.

FIG. 2. The electrical conductanceG ~top left! and normalized
thermal conductanceK/c ~bottom right! as a function ofe0 for a
clean system of widthl510 and lengthl 855. The top right graph
shows the normalized thermoelectric cross coefficientsL/a5M /b
and the bottom left graph depicts the normalized thermopowerS/a.
Each separate curve refers to one of the following values of the
superconducting order parameter:D050 ~solid!, 0.1 ~dashed!, and
0.3 ~dotted!.

FIG. 3. As for Fig. 2, except the system is of lengthl 8510.

FIG. 4. As for Fig. 2, except the system is of lengthl 8520.
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2–4, is that oscillations inG andK only occur in the former.
Figure 8 shows the effect of the imposing a superconducting
order parameter of magnitudeD50.1 on the system of Fig. 6
and illustrates that switching on superconductivity sup-
presses oscillations associated with a Fermi-surface mis-
match.

V. THERMOELECTRIC PROPERTIES
OF ANDREEV INTERFEROMETERS

The numerical results of Sec. IV are merely a first, ex-
plicit realization of the formulas of Sec. III. In this section
we examine thermoelectric properties of Andreev interferom-
eters, formed from two superconductors with order-
parameter phasesf1 ,f2 in contact with a phase-coherent
nanostructure. It is known1–4,13–21that the electrical conduc-
tance of such structures is a periodic function of the phase
difference f5f12f2 , but no results for phase-periodic
thermoelectric properties are currently available. Consider
first the structure of Fig. 9, which comprises two supercon-
ducting islands, each of lengthl 8 sites and widthl s sites,
with a uniform order parameter of magnitudeD050.1. The
transport current flows from left to right and apart from the
order-parameter phase difference, the islands are identical.
The islands are separated from each other by a normal region
of width l s sites, yielding a total system width ofl53l s .
Immediately adjacent the superconductor is a tunnel barrier
of width l sites and thicknessl b sites. Within the barrier, the
diagonal matrix elementse i are set toe01eb , wheree0 is
the site energy in the leads andeb is a measure of the

strength of the barrier. In every other region, the diagonal
elementse i5e0 .

For a barrier of thicknessl b51, Fig. 10 shows numerical
results for a system of widthl515 and three lengthsl 855
~solid line!, l 8515 ~open circles!, andl 8525 ~squares!. Fig-
ures 10~a!–10~d! show results for barrier strengths of
eb50,1,2,3, respectively. Since there is no disorder in these
structures, in the absence of a barrier, the dominant scattering
mechanism is either Andreev reflection or normal transmis-
sion. Both processes facilitate charge transport and therefore
the electrical conductance exhibits only a small nonclassical
amplitude of oscillation, which would be absent from quasi-
classical theories of interferometers.19,20 This small oscilla-
tion of amplitude!1, is shown in the results forG as a
function of f, in Fig. 10~a!. In contrast Andreev reflection
impedes the flow of energy and as shown in Fig. 10~a!, the
thermal conductanceK/c exhibits giant oscillations. By
varying the width of the system, we find that the amplitude
of these oscillations inK/c is proportional to the system
width. Figures 10~b! and 10~c! show further that bothL and
S are periodic functions off, with period 2p and that the
sign of these quantities is phase dependent. In the presence
of a barrier, Figs. 10~b!–10~d! show that bothK/c andG can
exhibit large oscillations, which by increasing the system
width, can again be shown to be proportional tol .

Figure 11 shows the same structure as Fig. 9, but with the
tunnel barrier replaced by a diffusive normal region of length

FIG. 6. As for Fig. 5, except the system is of lengthl 8510.

FIG. 7. As for Fig. 5, except the system is of lengthl 8520.

FIG. 8. The results shown here are an exact replica of those of
Fig. 6 except that an order parameter of magnitudeD050.1 has
been switched on.

FIG. 9. A clean Andreev interferometer, with a tunnel barrier.
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l d . Within the diffusive region, the elementse i are chosen to
be uniformly distributed random numbers in the range
e02W<e i<e01W, whereW is a measure of the strength of
disorder. For a system of dimensionsl5 l 8515 and
l s5 l d55, Fig. 12 shows results forW51, 2, and 3. For each
value ofW, thermoelectric coefficients were calculated as a
function of f, for 50 different realizations of the disorder.
Figure 12 shows the ensemble averages of these results.

It should be noted that whileK and G are necessarily
even functions off, there is no such constraint onL andS
and indeed results for individual realizations of the disorder
are nonsymmetric aboutf50. One exception to this is for a
system with a mirror symmetry about a horizontal line divid-
ing the two superconductors, since in this case reversing the
phase is equivalent to reflecting the sample and therefore

cannot change any physical parameter. For the structure of
Fig. 11, this symmetry is broken for a given realization of the
disorder, but not on the average. Consequently the average
values ofL andS are even functions off. To illustrate the
breaking of this symmetry, Fig. 13 shows a clean system
with no barrier of dimensionsl5 l 853l s59, but with the
magnitude of the order parameter of the upper~lower! island
set to 0.1~0.7!. Both L andS are manifestly nonsymmetric
aboutf50, whereasG andk remain even functions off.

VI. CONCLUSION

We have developed a general framework for describing
thermoelectric effects in phase-coherent superconducting
structures. At low temperatures, the general current-voltage
relation of Eq.~16! reduces to the linear-response formula of

FIG. 10. ~a!–~d! show results for barrier strengths ofeb50, 1, 2, 3, respectively. In each case, results are shown for samples of lengths
l 855 ~solid line!, l 8515 ~open circles!, and l 8525 ~squares!.

FIG. 11. An Andreev interferometer, with a diffusive normal
region located to the left of the superconductors. All other regions
are free from disorder.

FIG. 12. Results obtained for the structure of Fig. 11, forW51
~solid line!, W52 ~dotted line!, andW53 ~dashed line!.
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Eq. ~9!. In the absence of superconducting leads, or at a low
enough temperature where open channels in any supercon-
ducting leads can be neglected, this further reduces to an
equation of the form~1!. For the simplest case of two normal

reservoirs connected to a scattering region, the steady-state
condition I 11I 250 yields a further reduction to Eq.~2!,
with thermoelectric coefficients given by Eqs.~20!–~23!.

The numerical results of Secs. IV and V are the first ex-
plicit realizations of the above formulas. Those of Sec. V are
particularly interesting, since Andreev interferometers are
now available in the laboratory. To date all theories and ex-
periments on Andreev interferometers have focused exclu-
sively on electrical properties. As shown in Fig. 10~a!, the
electrical conductance can have a negligible amplitude of
oscillation, while in the same sample, the thermal conduc-
tance exhibits large-scale oscillations. This suggests that a
complete understanding of quasiparticle interference effects
requires a systematic study of a range of thermoelectric co-
efficients.
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FIG. 13. Results for a clean interferometer, which lacks mirror
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